
MIDL: A Hybrid Language of Medium Level.

by

E. Deak, M. Shimasaki*, and J. Schwartz

Co~puter Science Depart,.~ent,

Courant Institute of Mathematical Sciences

New York University

The MIDL language currently being developed at NYU in­

corporates features of two other NYU languages (SETL and LITTLE),

and welds these rather different languages together, The SETL

language (cf. Kennedy and Schwartz [3]) is a very high level

algorithm specification language with sets and tuples as its

data types; SETL supports many set theoretic dictions.

Because of SETL's high level, it is essential that it be

implemented in an efficient systems-oriented language. We also

felt it to be essential that SETL be portable between machines.

These goals shaped the design of the implementation language

used to realise SETL: this is LITTLE (cf. Shields [6]) a

FORTRAN-like, machine independent language. The LITTLE co~piler

is itself written in LI'J'TLE, and is carried to a new machine by

a bootstrap procedure. The extensive run-time support library

required by SETL is written entirely in LITTLE. LITTLE achieves

efficiency comparable to that of standard FORTRAN compilers.

SETL serves well for the specification of complex algorithms,

but not for writing production software. The present SETL

implementation, which is fully compiled but not globally optimized,

attains between 1/6 and 1/50 of the speed of FORTRAN (depending

on the nature, combinatorial or arithmetic) of the program µeing

run. We expect that global optimization will improve SETL's

efficiency to lie between 1/2 and 1/10 of that of FORTRAN, and

have begun to develop a global SETL optimizer (see Schwartz [4,5}

* On leave from Department of Computer Science, Kyoto University

t Work supported by the National Science Foundation, Office of

Corr.puter Activities, Grant DCR75-09218.

278

for some of the optimization approaches which will be used.) This

optimizer will itself be a large complex program. It is being

specified in SETL, but a production version of the optimizer

will also be required as a component of a new SETL system.

The optimizer is complicated enough to make dynamic storage

a highly desirable feature of the language used to implement it.

These considerations led us to propose the MIDL language

as a major extension to LITTLE. Efficiency requirements keep

MIDL reasonably close to the low level semantic approach of

LITTLE; but MIDL runs in a garbage-collected memory millieu

fully compatible with that of SETL. This makes SETL primitives

available for use in MIDL, and, more significantly, allows MIDL

routines to be called from SETL. Thus one can use a SETL

program Pas a framework within which developing MIDL programs

can be debugged. It is also possible, by transcribing some

innermost part of Pinto MIDL, to produce a high efficiency

version of P ,much as is done when FORTR/\.N inner loops are

replaced by assembly language code. Thus MIDL will serve

to bring programs originally written in SETL to

production efficiency levels,by hand transcription. MIDL is

also upwardly compatible from LITTLE, and any LIT'f'LE prograrrt

is a valid MIDL program. A programmer can therefore improve

the efficiency of a MIDL program by rewriting sections of it

in pure LITTLE.

In implementing MIDL, we have tried as far as possible to

preserve the machine independence which characterizes LITTLE

and SETL. This entails avoiding word-length dependencies and

explicit restrictions on the number and position of pointers

in a machine word.

279

Description of the MIDL Language

The syntax of MIDL is very much like that of LITTLE.

A program consists of a sequence of subroutines and

functions. Program text may be free-format; statements are

terminated by semi-colons,; standard compound statement forms

are provided to support structured programming style. A simple

macro-processor allowing parameter substitution is provided;

this has proven to be an invaluable tool for writing clear,

portable programs.

All variables must be declarea. The narnescoping scheme is

static. Variables are by default local to a procedure but may

be made available to other routines by declaring them within

the scope of a nameset. A nameset may be accessed by another

routine via an aeeess statement; all variable names in the

nameset then become known to the accessing routine.

Data Types

LITTLE supports no data type* notion. Data objects are

bitstrings or one-dimensional arrays of bitstrings. Declarations

specify the size (in bits) and dimension of variables. Field

extraction operations access subparts of bitstrings.

MIDL supports several primitive data types going beyond

the fundamental bitstring of LITTLE. The predefined types are:

bitstring, real nurnber,pointer, SETL object, entry object, and

maptable. These will be described more fully below. The MIDL user

may define new types, which are always structures consisting

of one or more components, each component being of a specified

type. For an operation to be valid, the declared types of the

operands must be (statically) acceptable to the operator

appearing in the operation. Note that this static treatment of

data types contrasts with the totally dynamic treatment

of types in SETL.

* With the grudging exception of real numbers.

280

Variable are declared in the form

DCL name 1 typedesc 1 , •.. , namen typedescn;

Here namei names a variable and typedesei is a type descriptor.

A type descriptor may either be a user type name, indicating that

the variable is of user defined type, or is one of the following:

{a} BITS (n)

(b) REAL

{c) PTR(typename)

(d) PTR (*typename)

(e) SETLOBJ

(£) MAP(n, typename)

A bitstring of size n.

Real number (implementation dependent)

A pointer to a structure.

A pointer to an array of structures.

A SETL object.

A maptable defi~ing a function from

bitstring arguments of size n into

structures of type typename.

(g) ENTRY A procedure entry variable.

New types (structures) are introduced by type definitions of

the form

TYPE typename: ctypedesc 1 ,

ctypedesc 2 ,

ctypedescn;

The name of the new type is typename; enamei and etypedesei

specify the name and type of its i-th component.

An example would be

TYPE LISTNODE: PREV PTR(LISTNODE),

NEXT PTR(LISTNODE), VALUE BITS(l0);

To access the component ename of the object pointed to by

a pointer V, one writes

cnarrie V

if V points to a non-array structure, or (for a vector component)

writes

V(index)

281

if V points to an array, or writes

partname V(index).

in case of an array of structures.

The diction

t V

accesses the whole of a non-array object pointed to by a pointer V.

Storage for structures which are accessed via pointers

must be explicitly allocated. A structure of type t is created

by a function call of the form

NEW(t).

An array of structures with n components of type t is created

by a function call of the form

NEW (t,n) .

There is no explicit deallocation; free storage is recovered

by means of garbage collection.

Map tables

The array notion is well adapted to the representation

of functions defined on a dense range of integers,

but is not adequate when we attempt to deal with functions

defined on a sparse range of integers. In SETLsich functions

raise no problem, since SETL's general'mapping' concept handles

sparsely defined functiom well;the technique used is hashing.

When faced with a sparsely defined map, a programmer striving

for efficiency in a low-level language will often invent ad hoe

encodings or data arrangements which expedite access to map

values. These encodings often hide the algorithmic kernel of a

program behind a distorting roass of accessing and filing

procedures, which can grow to be something much larger than

the algorithm from which the program has been aeveloped. In most

cases a standardized hash-access technique will be competitive

with more special techniques;

282

recognising this, MIDL supports a standardized hashing technique

through its maptable notion. A MIDL maptable is capable of

storing functions of a bitstring argument; the value of the

function can be an

object of any user-defined type. MIDL maptables, like the tables

used in SETL to represent sets, grow and shrink as functional

values are added to and deleted from them.

To declare a maptable, we write

DCL x MAP(argsize, type);

Here, argsize, a constant, denotes the size (in bits) of the

argument which will be supplied to x; type is a type name

denoting the type of value which x returns. To retrieve

(resp. store) a value from (resp. into) a maptable, we write

X (s) resp. x(s) = val;

where sis a bitstring of size argsize.

Interfaee between SETL and MIDL

The following MIDL features support communication between

SETL and MIDL:

(1) SETL objeet is a primitive data type in MIDL. A

variable is declared to be a SETL object by writing

DCL x SETLOBJ;

Every SETL operation has a counterpart in MIDL; these have the

semantics of corresponding SETL operations. For example,

in SETL,if variables A and Bare sets, the expression

A + B

yields the set union of A and B; the same is true in MIDL if

A and Bare declared to be SETL objects.

283

'Mixed mode' expressions involving both SETL and MIDL

operands are illegal and produce compile-time diagnostics.

However, the MIDL compiler makes no distinction among the

various SETL primitive objects (e.g.sets,tuples,. integers);

run-time type checking is performed as in SETL.

A SETL algori thrn can be improved in efficiency by keepin<;r

part of it in SETL but transcribing critical procedures

into MIDL. The SETL algorithm may also serve as a specification

for a more efficient version written wholly in MIDL. In developing

a MIDL code, SETL objects in its original specification can

be selectively and gradually translated into MIDL structures

and maptables, or can be left as SETL objects. This gives a

programmer control over the semantic level of his program. In

generaL the lower the semantic level chosen, the more efficient

the resulting program.

(2) We allow MIDL pointers to be members of SETL sets;

SETL treats these objects as a new type of blank atom.

(3) MIDL provides conversion operators which transform

certain of the MIDL atomic objects to SETL objects, and vice

versa. For example, to convert a MIDL bitstring b into a SETL

integer, one can write

.CN. SETLINT, b

Thus if a is declared to be a SETL object, the expression

a+ .CN. SETLINT, b

is valid; the result will be a SETL object.

MIDL extends the subroutine linkages of LITTLE, to come

to a closer match with SETL semantics. Recursion is supported

in the conventional way. A routine which is used recursively

must be declared in the form

SUBR name RECURSIVE;

284

The compiler can therefore distinguish between recursive and

non-recursive routines and need not generate the more costly

prologues and epilogues required by recursion in cases when

these are not necessary.

The parameter passing mechanisms of MIDL and LITTLE are

the same. The address of an actual parameter is passed if the

parameter is a simple variable; otherwise, the address of

a temporary is passed.

MIDL also provides objects and variables of type entry;

these correspond to the procedure objects of SETL. Entry variables

can be called in the same way as (constant) subprocedures.

Run-Time Environment

The run-time environment of MIDL incorporates the run-time

environment of SETL (see [4]) . All storage is divided into

a STACK area and HEAP area. Pointers reference locations in

the HEAP area; the heap is managed by a compacting garbage collector.

The compiler allocates a stack location to every variable which

stores a pointer. A. second stack called RSTACK is used along with

STACK to implement recursion; RSTACK stores recursive variables

and parameters not involving pointers, and therefore is not

involved in garbage collection.

Variables are treated as'static' in the PL/I sense, except

that storage for local variables of recursive routines is re­

allocated each time the routine is invoked and deallocated upon

return.

Each MIDL routine has associated with it a base environment

block, which is a block of consecutive STACK locations reserved

for local variables. A block of STACK words is also associated

with each global nameset. The sizes of all such blocks are

known at compile time; however, in order to make routines separately

compilable, these blocks are not allocated until run-time.

Instead, for each block the compiler generates a variable

which, after initialisation at the start of execution, references

the beginning of the block.

285

References to a variable belonging to the block are then compiled

as an offset from this base pointer.

Non-recursion related requests for dynamic storage are

fulfilled from the HEAP. In MIDL such requests appear as uses

of the NEW function, which returns a pointer to the allocated

block.

Struetures

A MIDL structure is represented as a block of one or more

words; structure components are packed when appropriate. A

structure may or may not contain pointers to objects in the

heap. Structure words containing pointers must be in a

garbage-collector compatible 'STACK word format'. An array of

structures is represented as a contiguous block of scalar

structures.

The compiler computes an internal representation for each

structure defined in a program. This template is computed at

the time the associated structure type declaration is processed;

thus subfield address offsets are computable at compile time.

References to MIDL structures and structure components generate

in-line code. Operations involving SETL objects are compiled

into calls to run-time routines of the SETL run-time library.

Maptables

Maptables, like the tables used in SETLto represent sets,

are stored as hash tables. They grow and shrink by binary

jumps as values are added to and deleted from them.

A maptable is always accessed through an auxiliary pointer P;

when the maptable grows and must be recopied, the pointer is

changed, thus instantaneously updating all references to the

table. This use of an auxiliary pointer adds an additional

level of indirection in the access path which leads to a particular

table entry.

286

The index used to enter a maptable is computed from a

bitstring argument of a fixed, declared number of bits. Entries

which hash to the same position are chained together. When

undefined entries are accessed, a copy of the maptable value

template is initialized and returned. A small package of

run-time routines provides the various hashing operations needed

to support the maptable construct.

Implementation of the MIDL Compiler

In developing the MIDL compiler a 'two stage programming'

approach was used. Before the actual coding was begun, a

non-executable specification for most of the compiler was written

in SETL. This specification served subseque.ntly as documentation

for the production compiler. The semantic power of SETL allows

succint expression and frees the programmer from concerns about

details of data structures, allowing concentration on design issues.

We hoped that production implementation would then proceed in an

orderly, straightfo·ward, and organized way.

This expectation has been borne out. The SETL specification

defines the procedural structure of the compiler; various decisions

relating to efficiency, bookeeping, data structures etc., are

then faced just before actual coding begins, at which time these

lower-level considerations can be better handled, since the

basic organization of the compiler has already been determined.

Typical issues which must be handled as the compiler is

reworked in LITTLE are static table overflows, hashtable

management, and the field size and formats of table entries.

These issues do not arise in SETL, which provides dynamically

expandable data structures, sets usable as mappings, and

recursion which can be used advantageously tocescribe parse tree

handling.

In the production version of the MIDL compiler we were able

to re-use the front end of the LITTLE compiler. Consequently,

the MIDL compiler has an overall .structure much like that of

the LITTLF. compiler. Both compilers consists of three separate

overlays.

287

The first overlay performs lexical processing and

macro expansion. The second overlay parses and constructs

intermediate tables. This overlay also performs all type

checking and emits error diagnostics ir necessary. The parsing

technique used is topdown-advancing. The parser is driven by

tables produced using a meta-compiler system, whose ultimate

input is ~ suitably extended BNF grammar.

The third overlay of the MIDL compiler generates target

code from the intermediate table produced by the second overlay.

The target language of the MIDL compiler is LITTLE itself.

This approach minimises both implemento.tion and debugging

effort. It also ensures compatibility with the existing SETL

run-time library. Finally, it ensures that MIDL will be as

transportable as LITTLE. A disadvantage of using LITTLE as a

target language is of course the expense of compiling the

LITTLE code produced by the MIDL compiler. Eowever, the LITTLE

compiler is rather fast (it compiles 6000 cards/minute on the

CDC 6600) and produces good code. To speed up recompilation,

character handling can be bypassed, and token streams passed

directly.

Conclusions

Because the production version of the MIDLcompiler is not yet

complete, it is premature to draw conclusions about MIDL's

success in regard to usefulness and efficiency. However, we

very much expect that MIDL will be a suitable tool for developing

a production version of a global SETL optimizer from the

(already formidable) SETL version of this optimi·zer. More generally,

it will make SETL more widely useable by allowing critical

sections of SETL progr&~s to be optimized manually. PL/I and
ALGOL 68 are existing languages with roughly the same semantic

level as MIDL; However, MIDL is compatible with our existing SETL

software, and is highly transportable.

288

Because MIDL is a hybrid of SETL and LITTLE, its design and

implementation did not proceed from scratch, but were dictated

by the existing features of LITTLE and of the run-time

library of SETL, The two pass programming technique we

have used has proved to be successful: the production compiler

code is very close to the original SETL specification, and

the SETL version is indeed a useful document formderstanding

the production version.

289

References

1. J. Cocke and J. T. Schwartz, Programming Languages and

their Compilers. Lecture Notes, Computer Science Dept.,

Courant Institute of Mathematical Science (1970).

2. K. Jenson and N.Viirth, PA.SCAL: User Manual and Report.

Springer Publishing Company, (1974).

3. K. Kennedy and J.T. Schwartz, An Introduetion to the Set

Theoretie Language SETL. Computers & Mathematics with

Applications, vol. 1, pp. 97-119. Pergamon Press (1975).

4. J. T. Schwartz, On Programming: An Interim Report on the

SETL Project. Installment 1 - Generalities.

Installment II - The SETL Language and Examples of its

Use. computer Science Department Courant Institute of

Mathematical Sciences (1973).

5. J.T. Schwartz, Optimization of Very High Level Language

I. Value Transmission and its Corollaries. Journal of

Computer Languages, vol. 1, # 2, pp. 161-194 (June 1975).

II. Dedueing Relations of Inelusion and Membership.

Journal of Computer Languages, vol. 1, I 3 (1975).

6. D. Shields, Guide to the LITTLE Language.

LITTLE Newsletter #- 33, (March 1974).

