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The MIDL language currently being developed at NYU in­

corporates features of two other NYU languages (SETL and LITTLE), 

and welds these rather different languages together, The SETL 

language (cf. Kennedy and Schwartz [3 ]) is a very high level 

algorithm specification language with sets and tuples as its 

data types; SETL supports many set theoretic dictions. 

Because of SETL's high level, it is essential that it be 

implemented in an efficient systems-oriented language. We also 

felt it to be essential that SETL be portable between machines. 

These goals shaped the design of the implementation language 

used to realise SETL: this is LITTLE (cf. Shields [6 ]) a 

FORTRAN-like, machine independent language. The LITTLE co~piler 

is itself written in LI'J'TLE, and is carried to a new machine by 

a bootstrap procedure. The extensive run-time support library 

required by SETL is written entirely in LITTLE. LITTLE achieves 

efficiency comparable to that of standard FORTRAN compilers. 

SETL serves well for the specification of complex algorithms, 

but not for writing production software. The present SETL 

implementation, which is fully compiled but not globally optimized, 

attains between 1/6 and 1/50 of the speed of FORTRAN (depending 

on the nature, combinatorial or arithmetic) of the program µeing 

run. We expect that global optimization will improve SETL's 

efficiency to lie between 1/2 and 1/10 of that of FORTRAN, and 

have begun to develop a global SETL optimizer (see Schwartz [4,5} 
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for some of the optimization approaches which will be used.) This 

optimizer will itself be a large complex program. It is being 

specified in SETL, but a production version of the optimizer 

will also be required as a component of a new SETL system. 

The optimizer is complicated enough to make dynamic storage 

a highly desirable feature of the language used to implement it. 

These considerations led us to propose the MIDL language 

as a major extension to LITTLE. Efficiency requirements keep 

MIDL reasonably close to the low level semantic approach of 

LITTLE; but MIDL runs in a garbage-collected memory millieu 

fully compatible with that of SETL. This makes SETL primitives 

available for use in MIDL, and, more significantly, allows MIDL 

routines to be called from SETL. Thus one can use a SETL 

program Pas a framework within which developing MIDL programs 

can be debugged. It is also possible, by transcribing some 

innermost part of Pinto MIDL, to produce a high efficiency 

version of P ,much as is done when FORTR/\.N inner loops are 

replaced by assembly language code. Thus MIDL will serve 

to bring programs originally written in SETL to 

production efficiency levels,by hand transcription. MIDL is 

also upwardly compatible from LITTLE, and any LIT'f'LE prograrrt 

is a valid MIDL program. A programmer can therefore improve 

the efficiency of a MIDL program by rewriting sections of it 

in pure LITTLE. 

In implementing MIDL, we have tried as far as possible to 

preserve the machine independence which characterizes LITTLE 

and SETL. This entails avoiding word-length dependencies and 

explicit restrictions on the number and position of pointers 

in a machine word. 
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Description of the MIDL Language 

The syntax of MIDL is very much like that of LITTLE. 

A program consists of a sequence of subroutines and 

functions. Program text may be free-format; statements are 

terminated by semi-colons,; standard compound statement forms 

are provided to support structured programming style. A simple 

macro-processor allowing parameter substitution is provided; 

this has proven to be an invaluable tool for writing clear, 

portable programs. 

All variables must be declarea. The narnescoping scheme is 

static. Variables are by default local to a procedure but may 

be made available to other routines by declaring them within 

the scope of a nameset. A nameset may be accessed by another 

routine via an aeeess statement; all variable names in the 

nameset then become known to the accessing routine. 

Data Types 

LITTLE supports no data type* notion. Data objects are 

bitstrings or one-dimensional arrays of bitstrings. Declarations 

specify the size (in bits) and dimension of variables. Field 

extraction operations access subparts of bitstrings. 

MIDL supports several primitive data types going beyond 

the fundamental bitstring of LITTLE. The predefined types are: 

bitstring, real nurnber,pointer, SETL object, entry object, and 

maptable. These will be described more fully below. The MIDL user 

may define new types, which are always structures consisting 

of one or more components, each component being of a specified 

type. For an operation to be valid, the declared types of the 

operands must be (statically) acceptable to the operator 

appearing in the operation. Note that this static treatment of 

data types contrasts with the totally dynamic treatment 

of types in SETL. 

* With the grudging exception of real numbers. 
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Variable are declared in the form 

DCL name 1 typedesc 1 , •.. , namen typedescn; 

Here namei names a variable and typedesei is a type descriptor. 

A type descriptor may either be a user type name, indicating that 

the variable is of user defined type, or is one of the following: 

{a} BITS (n) 

(b) REAL 

{c) PTR(typename) 

(d) PTR ( *typename) 

(e) SETLOBJ 

(£) MAP(n, typename) 

A bitstring of size n. 

Real number (implementation dependent) 

A pointer to a structure. 

A pointer to an array of structures. 

A SETL object. 

A maptable defi~ing a function from 

bitstring arguments of size n into 

structures of type typename. 

(g) ENTRY A procedure entry variable. 

New types (structures) are introduced by type definitions of 

the form 

TYPE typename: ctypedesc 1 , 

ctypedesc 2 , 

ctypedescn; 

The name of the new type is typename; enamei and etypedesei 

specify the name and type of its i-th component. 

An example would be 

TYPE LISTNODE: PREV PTR(LISTNODE), 

NEXT PTR(LISTNODE), VALUE BITS(l0); 

To access the component ename of the object pointed to by 

a pointer V, one writes 

cnarrie V 

if V points to a non-array structure, or (for a vector component) 

writes 

V(index) 
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if V points to an array, or writes 

partname V(index). 

in case of an array of structures. 

The diction 

t V 

accesses the whole of a non-array object pointed to by a pointer V. 

Storage for structures which are accessed via pointers 

must be explicitly allocated. A structure of type t is created 

by a function call of the form 

NEW(t). 

An array of structures with n components of type t is created 

by a function call of the form 

NEW (t,n) . 

There is no explicit deallocation; free storage is recovered 

by means of garbage collection. 

Map tables 

The array notion is well adapted to the representation 

of functions defined on a dense range of integers, 

but is not adequate when we attempt to deal with functions 

defined on a sparse range of integers. In SETLsich functions 

raise no problem, since SETL's general'mapping' concept handles 

sparsely defined functiom well;the technique used is hashing. 

When faced with a sparsely defined map, a programmer striving 

for efficiency in a low-level language will often invent ad hoe 

encodings or data arrangements which expedite access to map 

values. These encodings often hide the algorithmic kernel of a 

program behind a distorting roass of accessing and filing 

procedures, which can grow to be something much larger than 

the algorithm from which the program has been aeveloped. In most 

cases a standardized hash-access technique will be competitive 

with more special techniques; 
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recognising this, MIDL supports a standardized hashing technique 

through its maptable notion. A MIDL maptable is capable of 

storing functions of a bitstring argument; the value of the 

function can be an 

object of any user-defined type. MIDL maptables, like the tables 

used in SETL to represent sets, grow and shrink as functional 

values are added to and deleted from them. 

To declare a maptable, we write 

DCL x MAP(argsize, type); 

Here, argsize, a constant, denotes the size (in bits) of the 

argument which will be supplied to x; type is a type name 

denoting the type of value which x returns. To retrieve 

(resp. store) a value from (resp. into) a maptable, we write 

X (s) resp. x(s) = val; 

where sis a bitstring of size argsize. 

Interfaee between SETL and MIDL 

The following MIDL features support communication between 

SETL and MIDL: 

(1) SETL objeet is a primitive data type in MIDL. A 

variable is declared to be a SETL object by writing 

DCL x SETLOBJ; 

Every SETL operation has a counterpart in MIDL; these have the 

semantics of corresponding SETL operations. For example, 

in SETL,if variables A and Bare sets, the expression 

A + B 

yields the set union of A and B; the same is true in MIDL if 

A and Bare declared to be SETL objects. 
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'Mixed mode' expressions involving both SETL and MIDL 

operands are illegal and produce compile-time diagnostics. 

However, the MIDL compiler makes no distinction among the 

various SETL primitive objects ( e.g.sets,tuples,. integers); 

run-time type checking is performed as in SETL. 

A SETL algori thrn can be improved in efficiency by keepin<;r 

part of it in SETL but transcribing critical procedures 

into MIDL. The SETL algorithm may also serve as a specification 

for a more efficient version written wholly in MIDL. In developing 

a MIDL code, SETL objects in its original specification can 

be selectively and gradually translated into MIDL structures 

and maptables, or can be left as SETL objects. This gives a 

programmer control over the semantic level of his program. In 

generaL the lower the semantic level chosen, the more efficient 

the resulting program. 

(2) We allow MIDL pointers to be members of SETL sets; 

SETL treats these objects as a new type of blank atom. 

(3) MIDL provides conversion operators which transform 

certain of the MIDL atomic objects to SETL objects, and vice 

versa. For example, to convert a MIDL bitstring b into a SETL 

integer, one can write 

.CN. SETLINT, b 

Thus if a is declared to be a SETL object, the expression 

a+ .CN. SETLINT, b 

is valid; the result will be a SETL object. 

MIDL extends the subroutine linkages of LITTLE, to come 

to a closer match with SETL semantics. Recursion is supported 

in the conventional way. A routine which is used recursively 

must be declared in the form 

SUBR name RECURSIVE; 
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The compiler can therefore distinguish between recursive and 

non-recursive routines and need not generate the more costly 

prologues and epilogues required by recursion in cases when 

these are not necessary. 

The parameter passing mechanisms of MIDL and LITTLE are 

the same. The address of an actual parameter is passed if the 

parameter is a simple variable; otherwise, the address of 

a temporary is passed. 

MIDL also provides objects and variables of type entry; 

these correspond to the procedure objects of SETL. Entry variables 

can be called in the same way as (constant) subprocedures. 

Run-Time Environment 

The run-time environment of MIDL incorporates the run-time 

environment of SETL (see [ 4 ]) . All storage is divided into 

a STACK area and HEAP area. Pointers reference locations in 

the HEAP area; the heap is managed by a compacting garbage collector. 

The compiler allocates a stack location to every variable which 

stores a pointer. A. second stack called RSTACK is used along with 

STACK to implement recursion; RSTACK stores recursive variables 

and parameters not involving pointers, and therefore is not 

involved in garbage collection. 

Variables are treated as'static' in the PL/I sense, except 

that storage for local variables of recursive routines is re­

allocated each time the routine is invoked and deallocated upon 

return. 

Each MIDL routine has associated with it a base environment 

block, which is a block of consecutive STACK locations reserved 

for local variables. A block of STACK words is also associated 

with each global nameset. The sizes of all such blocks are 

known at compile time; however, in order to make routines separately 

compilable, these blocks are not allocated until run-time. 

Instead, for each block the compiler generates a variable 

which, after initialisation at the start of execution, references 

the beginning of the block. 
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References to a variable belonging to the block are then compiled 

as an offset from this base pointer. 

Non-recursion related requests for dynamic storage are 

fulfilled from the HEAP. In MIDL such requests appear as uses 

of the NEW function, which returns a pointer to the allocated 

block. 

Struetures 

A MIDL structure is represented as a block of one or more 

words; structure components are packed when appropriate. A 

structure may or may not contain pointers to objects in the 

heap. Structure words containing pointers must be in a 

garbage-collector compatible 'STACK word format'. An array of 

structures is represented as a contiguous block of scalar 

structures. 

The compiler computes an internal representation for each 

structure defined in a program. This template is computed at 

the time the associated structure type declaration is processed; 

thus subfield address offsets are computable at compile time. 

References to MIDL structures and structure components generate 

in-line code. Operations involving SETL objects are compiled 

into calls to run-time routines of the SETL run-time library. 

Maptables 

Maptables, like the tables used in SETLto represent sets, 

are stored as hash tables. They grow and shrink by binary 

jumps as values are added to and deleted from them. 

A maptable is always accessed through an auxiliary pointer P; 

when the maptable grows and must be recopied, the pointer is 

changed, thus instantaneously updating all references to the 

table. This use of an auxiliary pointer adds an additional 

level of indirection in the access path which leads to a particular 

table entry. 
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The index used to enter a maptable is computed from a 

bitstring argument of a fixed, declared number of bits. Entries 

which hash to the same position are chained together. When 

undefined entries are accessed, a copy of the maptable value 

template is initialized and returned. A small package of 

run-time routines provides the various hashing operations needed 

to support the maptable construct. 

Implementation of the MIDL Compiler 

In developing the MIDL compiler a 'two stage programming' 

approach was used. Before the actual coding was begun, a 

non-executable specification for most of the compiler was written 

in SETL. This specification served subseque.ntly as documentation 

for the production compiler. The semantic power of SETL allows 

succint expression and frees the programmer from concerns about 

details of data structures, allowing concentration on design issues. 

We hoped that production implementation would then proceed in an 

orderly, straightfo·ward, and organized way. 

This expectation has been borne out. The SETL specification 

defines the procedural structure of the compiler; various decisions 

relating to efficiency, bookeeping, data structures etc., are 

then faced just before actual coding begins, at which time these 

lower-level considerations can be better handled, since the 

basic organization of the compiler has already been determined. 

Typical issues which must be handled as the compiler is 

reworked in LITTLE are static table overflows, hashtable 

management, and the field size and formats of table entries. 

These issues do not arise in SETL, which provides dynamically 

expandable data structures, sets usable as mappings, and 

recursion which can be used advantageously tocescribe parse tree 

handling. 

In the production version of the MIDL compiler we were able 

to re-use the front end of the LITTLE compiler. Consequently, 

the MIDL compiler has an overall .structure much like that of 

the LITTLF. compiler. Both compilers consists of three separate 

overlays. 
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The first overlay performs lexical processing and 

macro expansion. The second overlay parses and constructs 

intermediate tables. This overlay also performs all type 

checking and emits error diagnostics ir necessary. The parsing 

technique used is topdown-advancing. The parser is driven by 

tables produced using a meta-compiler system, whose ultimate 

input is ~ suitably extended BNF grammar. 

The third overlay of the MIDL compiler generates target 

code from the intermediate table produced by the second overlay. 

The target language of the MIDL compiler is LITTLE itself. 

This approach minimises both implemento.tion and debugging 

effort. It also ensures compatibility with the existing SETL 

run-time library. Finally, it ensures that MIDL will be as 

transportable as LITTLE. A disadvantage of using LITTLE as a 

target language is of course the expense of compiling the 

LITTLE code produced by the MIDL compiler. Eowever, the LITTLE 

compiler is rather fast (it compiles 6000 cards/minute on the 

CDC 6600) and produces good code. To speed up recompilation, 

character handling can be bypassed, and token streams passed 

directly. 

Conclusions 

Because the production version of the MIDLcompiler is not yet 

complete, it is premature to draw conclusions about MIDL's 

success in regard to usefulness and efficiency. However, we 

very much expect that MIDL will be a suitable tool for developing 

a production version of a global SETL optimizer from the 

(already formidable) SETL version of this optimi·zer. More generally, 

it will make SETL more widely useable by allowing critical 

sections of SETL progr&~s to be optimized manually. PL/I and 
ALGOL 68 are existing languages with roughly the same semantic 

level as MIDL; However, MIDL is compatible with our existing SETL 

software, and is highly transportable. 



288 

Because MIDL is a hybrid of SETL and LITTLE, its design and 

implementation did not proceed from scratch, but were dictated 

by the existing features of LITTLE and of the run-time 

library of SETL, The two pass programming technique we 

have used has proved to be successful: the production compiler 

code is very close to the original SETL specification, and 

the SETL version is indeed a useful document formderstanding 

the production version. 
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