
A Type Algebra for SETL — Preliminary Proposal

Fritz Henglein

March 13, 1987

1 A little bit of background

SETL has a notion of several distinct (data) types, such as sets, maps, tuples,
and simple types like integer, real, string, atom. The fact that objects of
these types may only operate in a controlled fashion with each other makes
SETL a typed language; since this is done at runtime, it is weakly typed. So,
for example, applying addition to an integer value and a procedure doesn’t
make all that much sense to SETL and its runtime system will take a short
cut to the end of the program execution at this point; this is in contrast to
a machine language program which will happily do anything it can without
giving terribly much attention to the type of the objects involved.

Runtime type checking, however, is costly in terms of memory manage-
ment (space and organizational complexity) and execution speed. Moreover,
since type checking is only performed at program execution time instead of
program composition or compile time, type errors are detected very late.

To remedy — at least partially — the first deficit, namely the time and
space cost of execution time type checking, there have been various attempts
at finding the types of program objects (mostly variable occurrences) at com-
pile time [Tenenbaum 74, Jones/Muchnick 76, Kaplan/Ullman 78, Suzuki
81, Weiss 86]; such information can consequently be used for circumventing
some of the dynamic type checks. This work can be said to have arisen
within a framework of “permissive” languages: It is assumed the program-
mer knows what s/he is doing, and a type finding algorithm tries to collect
as much information as is possible in reasonable time, but the language itself
imposes not many constraints on the programmer at composition time.

Another approach to type checking comes from strongly typed languages,
in which (almost) all named program objects have to be declared to be of
a certain type, and the compiler (or structure editor?!) will check the us-
age of objects against their type declarations. The produced code contains

1

no dynamic type checks any more. This makes usually for very fast code
at the expense of cluttering up the program with type declarations and
other redundant information and restricting the flexibility of the program-
mer. In particular, code that only requires some structural properties of
a type to work properly (e.g. sorting, which works on any data type that
has a comparison relation) has to be written for every single specific type.
Recently developed languages have tried to keep the type checking in the
compilation phase while extending the flexibility of the language towards
their weakly typed counterparts; foremost amongst these are ML [Milner
78], Poly [Matthews 83], Hope [Burstall, MacQueen, Sanella 80], Miranda
[Turner 85], B [Meertens 83, 85].

SETL currently falls into the category of weakly typed languages, but
imposing a strong typing discipline along the lines of ML on it promises to
increase program efficiency substantially while not compromising its conve-
nience and flexibility too much.

2 Types

While most people would agree with the view that types are semantically
some sets of values, this “naive” view cannot be mathematically formalized
because we would run into basic set theoretic contradictions. For this rea-
son several quite involved mathematical models of types have been devised,
usually based on domain theory and/or category theory. For our purposes
the view that types are just sets of values is perfectly adequate, though (as
of yet).

The “strong typing problem”, as we will call it, can usually be decom-
posed into three subproblems:

1. provision of a type algebra describing

• the types available (i.e. what the sets of values are that we con-
sider types) in the form of a type language and

• the algebraic properties of the latter

2. compilation of type requirements imposed by programming language
constructs (e.g., the left-hand side and the right-hand side of an as-
signment statement have to have the same type)

2

3. specification of a valid typing, i.e. what constitutes an acceptable asso-
ciation of named program entities (usually identifiers in the program)
with types in the type algebra, and ways of constructing such a typing

Naturally, these three subproblems interact with each other, but we be-
lieve that the type algebra is the first of them that has to be provided since
there the most fundamental decisions are made and the other two subprob-
lems can only be expressed formally after it is dealt with.

For this reason this note contains a preliminary proposal for a type al-
gebra for SETL. We hope that the decisions incorporated herein are well-
motivated in relevant past research and in the spirit of SETL itself.

3 Special Type Requirements for SETL

Since SETL, just like ML, is a language that mandates hardly any identifier
declarations we have been guided by the approach to type inference taken
in ML. SETL, however, has some features that necessitate a treatment more
general than in ML.

First of all, SETL heavily uses overloaded operators (not functions,
though). Since most of these overloaded uses cannot be resolved — and in-
deed should not be resolved — locally but only in a wider program context,
there is a need for union types to capture this behavior without having to re-
sort to restrictive type declarations or even type errors. Furthermore union
types are essential in a language with overloading as the NP-completeness
result of [Burstall, MacQueen, Sanella 80] shows.

Second, SETL supports the construction and use of recursive (data)
types without unique constructors since no type declarations are necessary.
In fact, tuple and set constructors can be viewed as totally overloaded con-
structors for all recursive types. This necessitates a careful treatment of
(implicit) recursive types.

Third, SETL provides type testing predicates; their interaction with type
inference has to be examined carefully.

And fourth, the polymorphism in SETL is more general for two reasons:
As we expect to treat functions as first class types it should be possible to
return polymorphic functions, and type instantiation of the arguments at
the call site of a function with union typed arguments has to be treated
separately.

3

4 The Type Language

We describe the set of types in our language in three stages:

1. constant types

2. type constructors

3. type combinators

Constant types are the smallest possible types of constant denotations
occurring in a program, essentially just the singleton set consisting of the
denoted value itself. These types allow a refined treatment of record types
and, in general, a more precise type analysis.

Type constructors allow us to build the usual monomorphic world of
types: integers, reals, sets of integers, tuples of reals, and so forth. Charac-
teristic of them is that they constitute the “free” part of the type algebra,
that is, no two different type expressions built solely from type constructors
are considered equal (see minor exception later, though).

Type combinators contain the heart of the complex properties of our
type algebra. We will introduce union types, recursive types, and polymor-
phic types. These types address the aforementioned special needs of SETL,
but they also contain the hard core of the mathematical and algorithmic
problems of type inference.

4.1 Constant Types

There is a constant type for every possible constant denotation in SETL.
Since there are infinitely many of these, they can’t be listed here. Instead
they are grouped into categories according to the smallest nonconstant types
they can be coerced into (implicitly).

• integer constant types (e.g. 5, -8, 0)

• real constant types (e.g. 5.0, -.33, 1.9E87)

• string constant types (e.g. ’hello’, ’can”t do without it’)

• boolean constant types (namely false and true)

• omega constant type (namely om)

4

Parenthetical remark: We hope that the use of 5 for both the value
and the constant type consisting only of value 5 is not confusing, but
rather emphasizes the close relationship of the value with its constant
type.

We will use the notation [value¿: [type]for the statement “[value]is of
type [type]” in the following. Legal type statements would be

5: 5

’hello’: ’hello’

3.0: 3.0

5: integer

3.0: real

’hello’: string

but not

5: 5.0

v: 5 (where v is a variable initialized to 1)

4.2 Type constructors

As we mentioned before, the type constructors provide the monomorphic
type universe as it is present in Pascal or Algol68 or C for that matter, but
without variant (union) types and recursive types (SETL also doesn’t have
any pointers).

The type constructors are most conveniently separated into nullary and
nonnullary constructors.

4.2.1 Nullary Type Constructors

The following are types:

• integer (the integer values)

• real (the floating point values)

• boolean (the boolean values false and true)

• string (the character strings)

• OM (the undefined value om)

5

• atom (the blank atoms)

• unit (the “no-value” type)

4.2.2 Nonnullary Type Constructors

The nonnullary type constructors roughly fall into two classes: static and
dynamic type constructors.

Static Nonnullary Type Constructors Let a, b, c, ... be types; then
the following are also types:

• { a, b, c, ...}

• [a, b, c, ...]

Any finite number of types can appear inside the {} and []. Static types of
this sort are mostly used to define named and indexed record types. [integer,
real, string], for example, stands for the type of triples, i.e. an indexed
record, consisting of an integer in the first position, a real in the second
position, and a string in the third position. In contrast, {integer, real, string}
stands for the type of three-element sets with exactly one integer, one real,
and one string. Note that types inside {} can be repeated, but their position
is irrelevant. The {} type seems quite useless in the previous example, but
we can model named records with it: { [’year of birth’, integer], [’weight’,
real], [’name’, string] } can be viewed as the named record version of the
indexed record above. Note that the availability of constant types facilitates
this integration of record types into the language without a distinct record
facility in the language. Furthermore, since not only string constants can
function as keyword types, a more general named record type facility is
provided.

Dynamic Nonnullary Type Constructors Let a, b be types; then the
following are also types:

• set(a) (the sets of elements of type a)

• tuple(a) (the tuples of elements of type a)

• function(a,b) (the functions with domain type a and codomain type
b)

6

• smap(a,b) (the finite single-valued maps with domain type a and range
type b)

• mmap(a,b) (the finite multi-valued maps with domain type a and range
type b)

Although mmap(a,b) could be viewed simply as a notational abbrevia-
tion for set([a,b]), one could argue that, instead, they should be different
to distinguish between the different usages of a value as a map, as in f{x}
:= S, or simply as a set (no map operations). Of course there would be
implicit coercions from mmaps to the appropriate sets, but not the other
way around.

Parenthetical remark: The distinction between smaps and mmaps
would have an analog in functions and generators, if SETL ever were
to incorporate generators.

Static types can always be coerced into the appropriate dynamic types
should the need arise. {integer, integer, integer} can be coerced into set(integer),
and [real, real, real] can be coerced into tuple(real). Once we will have intro-
duced union types in the next subsection, even heterogeneous static types
such as {integer, real} or [string, real] can be coerced into dynamic types.

4.3 Type combinators

The type combinators give us unioned/intersected, recursive, and polymor-
phic types.

(4.3.1) Finite Union Types and Finite Intersection Types
We can create new types by taking the finite union of types or the finite

intersection of types. Union types contain what is sometimes called variant
records or simply unions, while intersection types contain overloaded objects,
mostly overloaded operators.

Let a, b be types; then

• a | b

is also a type, namely the union of the types a and b. E.g., integer —
real is the type of numbers; integer — real — string — boolean — OM is the
type of all basic values with constant denotations; set(integer) — set(real)
is the type of sets containing only integers or only reals, but set(integer —
real) is the type of sets containing integers and reals, possibly mixed.

Let a, b be types; then

7

• a & b

is also a type, namely the intersection of the types a and b. E.g., integer
& real is the type of values that are both integers and reals. Depending
on the interpretation of integer and real this is either the empty type (if
integer values are considered a separate breed of objects from reals) or the
integer type (if integer values are considered a subset of the reals). Most
often, however, we will see intersection types in the context of overloading.
The “+” operator in SETL, for example, has type

“+”: (real x real → real) & (integer x integer → integer) & (string x
string → string) & ... (sets and tuples)

It may come as a surprise at first that overloading does not correspond
to union types but instead to intersection types, since intuitively “+” seems
to “add” its basic functionalities together just like a union type. That this
is not so, can be seen by considering the following line of reasoning.

If a variable x has type integer we can safely conclude that x has also type
integer — real, but given y of type integer — real we don’t know whether
or not y has type integer. Now, if “+” had the type (integer x integer →
integer) — (real x real → real) — ... we couldn’t conclude that “+” has
also type integer x integer → integer, but this has to be the case because of
the very essence of overloading.

Parenthetical remark: if you know a better way of exemplifying
this, please let me know as soon as possible. It took me quite some
time to realize that overloading is not modelled by union types, and
now I am looking for a convincing way of making sure other people
don’t fall into the same mental trap.

4.3.1 Recursive types

Let x be a type variable, and let s[x] be a type expression in our type
language with the additional type variable x, then

• µ x. s[x]

is a (directly recursive) type.
E.g., µ intlist = [integer, intlist] — [] is the type of integer lists; µ

bintree = [bintree, integer, bintree] — [] is the type of binary trees with
integer values. Some recursive types don’t make much sense, though. µ
x. x could be viewed as the (dynamic) “error” type; it contains no “real”

8

element. Recursive types constructed from the function type constructor
are quite peculiar. It is not clear if a type like µ x. function(x, integer) is
very useful or even desireable, and only recently have [MacQueen, Plotkin,
Sethi 84] come up with a model for such types.

For mutually recursive types we also introduce the following types. Let
x, y, ... be type variables, and let s[x,y,...], t[x,y,...], ... be type expressions
containing type variables x, y, ..., then

• µ [x, y, ...]. [s[x,y,...], t[x,y,...], ...]

is a (collection of mutually recursive) type(s) as long as the number of
type expressions on the right is the same as the number of type variables on
the left.

4.3.2 Polymorphic types

Let x be a type variable, and let s[x] be a type expression containing x, then

• V x. s[x]

• s[x]

are types. In the first case we have a fully independent polymorphic
type, while in the second case we have a possibly dependent polymorphic
type. A type statement

v: V x. s[x]
should be understood as “v has type s[x] simultaneously for every type

x there is”, but
v: s[x]
should stand for “v has type s[x] for any one type x stands for”. To

illustrate the difference consider the following program fragment.

procedure copy(n);

k := n;

return n;

end procedure;

We get the following type statements (x and y are type variables):

k: x

n: x

copy: V y. y -> y

9

k and n have the same type x, but not V x. x, since the type of n can
be any type depending on the actual argument at a call site of copy, but
it is not every type simultaneously, which would be expressed as V x. x.
In any reasonable interpretation of types there is only one “element” that
has every type: the error value, sometimes called “bottom” because of its
domain theoretic relevance. The procedure copy, on the other hand, has all
types y → y “simultaneously”; e. g., it is of type integer → integer as well
as real → real as well as (µ x. [integer, x] — []) → (µ x. [integer, x] — []).

Universal polymorphism is related to intersection types. Whereas in-
tersection types are the finite intersection of some given types, universal
polymorphism describes the infinite, universal (over all types) intersection
of a set of types given by a type pattern.

4.4 Grammar for type language

We will summarize the context-free language aspects of our type algebra
in a (context free) grammar; the algebraic aspects are tackled in the next
section.

TYPE ::= CONSTANT_TYPE |

MONO_TYPE_CONS |

POLY_TYPE_CONS |

TYPEVAR

CONSTANT_TYPE ::= INTEGER_CONSTANT_TYPE |

REAL_CONSTANT_TYPE |

STRING_CONSTANT_TYPE |

BOOLEAN_CONSTANT_TYPE |

OMEGA_CONSTANT_TYPE

INTEGER_CONSTANT_TYPE ::= <integer constants>

REAL_CONSTANT_TYPE ::= <real constants>

STRING_CONSTANT_TYPE ::= <string constants>

BOOLEAN_CONSTANT_TYPE ::= false | true

OMEGA_CONSTANT_TYPE ::= om

MONO_TYPE_CONS ::= NULLARY_TYPE |

NONNULLARY_TYPE_CONS

10

NULLARY_TYPE ::= integer |

real |

boolean |

string |

OM |

atom |

unit

NONNULLARY_TYPE_CONS ::= STAT_NN_TYPE_CONS |

DYN_NN_TYPE_CONS

STAT_NN_TYPE_CONS ::= { TYPE_LIST } |

[TYPE_LIST]

TYPE_LIST ::= TYPE TYPE_LIST |

<empty>

DYN_NN_TYPE_CONS ::= set (TYPE) |

tuple (TYPE) |

function (TYPE , TYPE) |

smap (TYPE , TYPE) |

mmap (TYPE , TYPE)

POLY_TYPE_CONS ::= UNION_TYPE_CONS |

INTERSECT_TYPE_CONS |

REC_TYPE_CONS |

POLY_TYPE_CONS

UNION_TYPE_CONS ::= TYPE ‘‘|’’ TYPE

INTERSECT_TYPE_CONS ::= TYPE & TYPE

REC_TYPE_CONS ::= DIR_REC_TYPE_CONS |

MUT_REC_TYPE_CONS

DIR_REC_TYPE_CONS ::= m TYPEVAR . TYPE_WITH_VAR

TYPEVAR ::= <type variable>

11

TYPE_WITH_VAR ::= TYPE

MUT_REC_TYPE_CONS ::= m [TYPEVARLIST] . [T_W_V_LIST]

TYPEVARLIST ::= TYPEVAR TYPEVARLIST |

<empty>

T_W_V_LIST ::= TYPE_WITH_VAR T_W_V_LIST |

<empty>

POLY_TYPE_CONS ::= IND_POLY_TYPE_CONS |

DEP_POLY_TYPE_CONS

IND_POLY_TYPE_CONS ::= V TYPEVAR . TYPE_WITH_VAR

DEP_POLY_TYPE_CONS ::= TYPE_WITH_VAR

5 Algebraic properties of types

As we shall see in the type requirements part of this trilogy, it is necessary
to reason about, amongst other things, equality of types. We have noted
several times that the type constructors have hardly any algebraic laws they
satisfy, and so determining equality or inequality of two type expressions
(and even their unification) involving only type constructors and constant
types is pretty easy.

It is a different matter to decide equality of types (and in particular
to do unification) in the presence of algebraic laws. In a companion note
we have already pointed out that the unrestrained use of intersection types
(overloading) makes type inference infeasible (see [Aho, Sethi, Ullman 86,
ex. 6.25] and previous note on Overloading and NP-completeness). In this
section we will present only the basic properties of our type algebra and
leave a more involved investigation for later study when we will introduce
the context in which they will be needed, namely S-unification (where S is
an equational theory).

12

5.1 Union and intersection types

Union and intersection types have the obvious properties; they are associa-
tive, commutative, and idempotent. The latter sets them apart from disjoint
unions, which lack idempotency. In fact they satisfy all the axioms of mono-
tone set algebra (since they’re essentially nothing else but set union and set
intersection).

Symbolically, for types a, b we have

a | b = b | a a & b = b & a

(a | b) | c = a | (b | c) (a & b) & c = a & (b & c)

a | a = a a & a = a

Since overloading (intersection types) is permitted in a very restricted
sense only in SETL, we won’t have to examine the interaction of — and &
in general.

5.2 Recursive Types

Given a recursive type µ x. s[x], we can “unfold” the definition of x by
substituting s[x] for x in s[x].

Symbolically,
µ x. s[x] = µ x. s[x] { s[x]/x }
Of course, given an unfolded recursive type we can “fold” it back into

the original type definition.

Parenthetical remark: One has to be careful with the folding/unfolding
rules since oftentimes they don’t preserve equality. I’ll look at this
later.

5.3 Polymorphic types

Type variables bound by V can be renamed without changing the meaning
of the type expression.

V y. s[y] = V z. s[z]
Other properties of polymorphic types will be introduced along with an

ordering relation on types later on.

13

6 The question of equality and unification of types

Unification attempts to find a solution for the equation s[x,y,...] = t[x,y,...].
If unification is to be an algorithmically feasible task, then necessarily it
should be possible to decide if equality holds between two type expressions.

[Solomon 78] has pointed out that equality of socalled context-free re-
cursive types is computationally equivalent to the equivalence problem for
deterministic push-down automata. Since it is not even known if the lat-
ter problem is decidable, the presence of these recursive types would make
unification and thus type inference or type checking hopeless. Luckily our
recursive types are more restrictive; in Solomon’s terminology they are called
regular recursive types. It is instructive to analyse a program that constructs
values of a proper context-free recursive type and to see with what kind of
type a hypothetical SETL type inference machine would come up. We will
present such a case study in our next note.

14

