A Type Inference System for SETL

Fritz Henglein
Courant Institute of Mathematical Sciences
New York University
251 Mercer St.
New York, N.Y. 10012, USA
Internet: henglein@nyu.nyu.edu

June 19th, 1987

Abstract

We present a type inference system that should function as the basis for a strong typing discipline in SETL. It extends the polymorphism found in languages like ML in several respects. In particular, it handles unioned and implicit recursive types, and provides a form of restricted polymorphism which is derived from SETL’s dynamic overloading.

1 Introduction

In this paper we present a type inference system for SETL. The reader is assumed to be familiar with the notions of weak typing and strong typing, type checking and type inference, type inference systems and typing algorithms. For a background on these topics [CW85] and [Car85] are sufficient.

We have attempted to separate the type inference system from the particular type model (i.e., what is considered the types in a language) as much as possible. We only assume that the types have a lattice structure. How this lattice is defined is part of the type model. In combination with the well-known parametric polymorphism from ML [Mil78] this represents a novel integration of a subtype discipline [Rey85] with parametric polymorphism.

The type model, described in a companion paper, encompasses union types, implicit recursive types, and finitary polymorphism. The latter is a form of restricted parametric polymorphism derived from the dynamic overloading discipline in current SETL (see [Hen87] for an exposition of SETL overloading).

The following section contains the core of the type inference system. Of course it is not complete for the whole language, but it contains all the crucial elements.

2 The Inference System

The reader is referred to [Lei83] and [Mit84b] for a more thorough discussion of the following concepts.
The type inference system is given as a collection of rules. Every rule consists of an antecedent and a consequent. The rules are to be read “Given the antecedent of a rule is true, then the consequent in the same rule is also true.” The only statements that can occur in such rules are typings and type containments. A typing is a statement of the following form:

\[\mathcal{A} \vdash e : \tau \]

\(e \) is an expression or any other well-formed syntactic unit in the programming language, \(\tau \) is a type, and finally, since the type of an expression is dependent on the types of the unbound identifiers in it, \(\mathcal{A} \) represents a set of assumptions on the types of identifiers in \(e \).

We present the rules in groups. Every rule is explained, an example for it given, and some remarks for clarification may be added.

2.1 Application

\[
\begin{align*}
\mathcal{A} & \vdash f : \sigma \rightarrow \tau \\
\mathcal{A} & \vdash e : \sigma' \\
\sigma' & \leq \sigma \\
\mathcal{A} & \vdash f(e) : \tau
\end{align*}
\]

Given \(f \) of function type \(\sigma \rightarrow \tau \) with domain type \(\sigma \) and codomain type \(\tau \) and an argument \(e \) with a subtype \(\sigma' \) of \(\sigma \), the type of \(f(e) \) is simply the codomain type of \(f \).

Because of the presence of a containment statement, this rule cannot be supplanted by simply providing a primitive operator \texttt{apply} with the type \(\Delta \sigma. \Delta \tau. (\sigma \rightarrow \tau) \times \sigma \rightarrow \tau \) \(^1\) since this operator would require the argument of a function \(f \) to have the exact same type as the domain type of \(f \) whereas the above rule allows for a coercion, that is implicit “upwards” type conversion \(^2\), of the argument into the domain type \(\sigma \) as long as its type \(\sigma' \) is a subtype of \(\sigma \). This extension is crucial in a system with union types. Note that we cannot add a universal coercion rule

\[
\begin{align*}
\mathcal{A} & \vdash e : \sigma \\
\sigma & \leq \sigma' \\
\mathcal{A} & \vdash e : \sigma'
\end{align*}
\]

to overcome this shortcoming of \texttt{apply} since the left-hand sides of assignments should never be coerced. This phenomenon is in marked contrast with functional languages. Our type inference system facilitates specification of the local context in which coercions are sound and thus permitted.

\(^1\)This type expresses that \texttt{apply} has two arguments, one with a function type, the other with the domain type of the first argument; its result type is the codomain type of the first argument.

\(^2\)Our notion of coercion is essentially the same as in [Mit84a]
2.2 Conditional Expression and Conditional Statement

\[
\begin{align*}
A &\vdash b : boolean \\
A &\vdash e_1 : \sigma_1 \\
A &\vdash e_2 : \sigma_2
\end{align*}
\]

\[A \vdash \text{if } b \text{ then } e_1 \text{ else } e_2 \text{ end } : \sigma_1 \lor \sigma_2
\]

Given a boolean expression \(b\) and two expressions \(e_1\) and \(e_2\) with types \(\sigma_1\) and \(\sigma_2\), respectively, the type of the conditional expression above is the join of the types \(\sigma_1\) and \(\sigma_2\).

We might be tempted to mandate that the types of both branches of a conditional expression be equal for the conditional to be well-typed. Once again, our rule leaves room for coercions, and is thus more flexible. Consider, for example the following assignment to a variable \(x\).

\[
x := \text{IF} \text{integerflag}\text{THEN}5\text{ELSE}5.0
\]

This assignment makes perfect sense if \(x\) is defined as a union of \text{integer} and \text{real}. We can think of both 5 and 5.0 being coerced into values of the union type, which is the smallest type greater than both \text{integer} and \text{real}. This particular rule not only applies to conditional expressions, but also to conditional statements, if we have a type \text{void}, the type of a statement with no return value, in our type model.

2.3 Case Expression and Case Statement

\[
\begin{align*}
A, x : \tau_1 &\vdash e_1 : \sigma_1 \\
A, x : \tau_2 &\vdash e_2 : \sigma_2 \\
\ldots
\end{align*}
\]

\[A \vdash \text{case } x \text{ of } \tau_1 : e_1; \tau_2 : e_2; \ldots \tau_n : e_n \text{ end case } : \sigma_1 \lor \sigma_2 \lor \ldots \lor \sigma_n
\]

if \(A\) contains \(x : \tau_1 \lor \tau_2 \lor \ldots \lor \tau_n\).

Assuming the \(n\) branches above have types \(\sigma_1\) through \(\sigma_n\) if \(x\) has type \(\tau_1\) through \(\tau_n\), respectively, in them, then a case distinction on exactly those \(n\) types of \(x\) has the join of all branch types as its type if \(x\) has indeed type \(\tau_1 \lor \tau_2 \lor \ldots \lor \tau_n\).

This rule is similar to the conformity clause in ALGOL 68. We can provide a rule also for the case statement with an else clause.

\[
\begin{align*}
A, x : \tau_1 &\vdash e_1 : \sigma_1 \\
A, x : \tau_2 &\vdash e_2 : \sigma_2 \\
\ldots
\end{align*}
\]

\[A \vdash \text{case } x \text{ of } \tau_1 : e_1; \tau_2 : e_2; \ldots \text{ else } \tau_{n+1} : e_{n+1} \text{ end case } : \sigma_1 \lor \sigma_2 \lor \ldots \lor \sigma_{n+1}
\]

if \(A(x) \geq \tau_1 \lor \tau_2 \lor \ldots \lor \tau_n\).

Here \(\omega\) denotes the greatest type in the type lattice. We assume \(\omega\) exists, of course.

3Remember that we stipulated that the types have a lattice structure.
References

