

















Given a PSPACE-bounded Alternating Turing Machine! M with
input z, we use the techniques of [CKS81] to deterministically simulate
its behavior. Our contribution is in showing that this simulation is
possible by the extended polymorphic unification of a graph? G whose
size is polynomial in the description of M and z and that represents
the type of a £ix expression.

The simulation of [CKS81] organizes the configurations of M on z
as nodes of a “computation tree” and assigns each a value such that
M accepts if and only if the root is assigned true®. But, since M is
PSPACE-bounded, the depth of this tree can be as great as 2™, where
n is the length of z. Therefore, the crux of our proof is in concisely
representing trees of depth 2" as the type of a £ix expression.

The graph of Figure 1 compactly respresents a binary tree whose
nodes are instances of the graph contained in the circle (the “super-
node”). This super-node will contain many sub-graphs related to the
simulation, such as an encodings of configurations, Boolean functions,
and a “next-configuration” function that maps a configuration into its
successor configurations according to the next-state function of M.
We first concentrate on specifying the sub-graph that keeps count of
a node’s depth with the computation tree.

Throughout our simulation, a Boolean variable v will be repre-
sented by four nodes vp,...,v3. If v9 = v, (i.e., vp and v; unify),
then we interpret » as having value true or 1; if instead vy = v;, we
intepret v as having value false or 0. A single bit of the counter is
shown in Figure 2. It takes a bit { and a “gate” value g as inputs, and
produces o as output according to the rule o = (i + g) mod 2. That
is, the graph counts up when the gate value is true.

Now consider connecting n of these counters in series (with inputs
i%...,i""L, outputs o°,...,0""!, and gates g% ...,¢""!) according
to the following equations:

1Recall, EXPTIME = Alternating PSPACE.

2Type expressions have a natural representation as graphs, which we use here for con-
venience. It is equally possible to directly give an equivalent system of constraints on type
expressions.

3The root of this tree is the initial configuration and the children of a node are its im-
mediate successor configurations. Leaves are assigned Boolean values indicating whether
they are accepting configurations. Nodes that are universal (resp., existential) configura-

tions are assigned a value that is the conjuction (resp., disjunction) of the values assigned
to its children.



90

yj+i = e /\I‘J

€

1l

Then letting I denote the integer represented by the Boolean string
i""1i"=2...i% and O the integer with representation o"~'i""2...0%,
we can prove that O = (I + e¢) mod n. That is, setting e to 1 causes
the n-bit counter to be incremented.

Having shown that trees of depth 2™ are constructible, we can
adapt the techniques of [DKM84] [DKS88] that give encodings of
Boolean functions as graphs. We can then embed a “next-configuration”
function within the super-node to ensure that the resulting tree is in
fact the computation tree of M on input z. The technique of [KM89]
that computes values for nodes in a bottom-up manner can also be
adapted to assign values to the nodes of this “computation-tree”. Fi-
nally, the results of [KM89] can be extended so as to extract an ML*
expression from our graph. 1




References

[Cho8é]

[CKS81]

[DKMs4]

[DKS88]

[DMs2]

[GRs8]

[Hen88]

[KMs89]

[KTUS88a]

[KTUS88b]

C.-T. Chou. Relazation Proceses: Theory, Case Studies
and Applications. PhD thesis, University of California at
Los Angeles, 1986.

A.K. Chandra, D.C. Kozen, and L.J. Stockmeyer. Alter-
nation. Journal of the ACM, 287(1):114-133, 1981.

C. Dwork, P. Kanellakis, and J. C. Mitchell. On the se-
quential nature of unification. Journal of Logic Program-
ming, 1:35-50, 1984,

C. Dwork, P. Kanellakis, and L. Stockmeyer. Parallel al-
gorithms for term matching. STAM Journal of Computing,
17(4):711-731, 1988.

L. Damas and R. Milner. Principal type schemes for
functional programs. In Proc. 9th Annual ACM Symp.
on Principles of Programming Languages, pages 207-212,
Jan. 1982.

P. Giannini and S. Ronchi Della Rocca. Characteriza-
tion of typings in polymorphic type discipline. In Proc.
Third Annual Symposium on Logic tn Computer Science,
pages 61-71, IEEE, 1988.

F. Henglein. Type inference and semi-unification. In Proc.
ACM Symposium on LISP and Functional Programming,
page 7, ACM, 1988.

P.C. Kanellakis and J.C. Mitchell. Polymorphic unifica-
tion and ML typing (extended abstract). In Proc. Siz-
teenth ACM Symposium on Principles of Programming
Languages, ACM, January 1989.

AJ. Kfoury, J. Tiuryn, and P. Urzyczyn. 77 In Proc.
Third Annual Symposium on Logic in Computer Science,
page 77, 7, 1988.

A.J. Kfoury, J. Tiuryn, and P. Urzyczyn. A proper ex-
tension of ml with effective type assignment. In Proc.
Fifteenth ACM Symposium on Principles of Programming
Languages, pages 58-69, ACM, 1988.



[Mee83]

[Mil7s]
[Mit8s]

[Myc84]

[PMss]

L. Meerteens. Incremental polymorphic type checking in
B. In Proc. Tenth ACM Symposium on Principles of Pro-
grammaing Languages, pages 265-275, ACM, 1983.

R. Milner. A theory of polymorphism in programming.
JCSS, 17:348-375, 1978.

J.C. Mitchell. Polymorphic type inference and contain-
ment. Information and Computation, 76(2/3):, 1988.

A. Mycroft. Polymorphic type schemes and recursive def-
initions. In M. Paul and B. Robinet, editors, Proc. In-
ternational Symposium on Programming, Lecture Notes in
Computer Science 167, pages 217-228, 1984.

D.S. Parker and R.R. Muntz. A theory of directed logic
programs and streams. In Proc. Fifth Internation Confer-
ence on Logic Programming, pages 620-650, MIT Press,
1988.

10

0 LA PR B8 il md e i cn i g — -

L i e



A ML Typing Rules

ML? is an extended A-calculus. The type expressions are given by

Ti=l|r—or71

t := (type variables)

oc:=r71|Vio
Type expressions derived from 7 above are called monotypes and the
larger set of type expressions derived from o are polytypes. A type
assignment is a mapping from A-calculus variables to type expressions.
For detailed definitions of A-expressions, type expressions, and type
assignments we refer to [DM82] and [Myc84] or any number of other
papers on type theory.

The canonical type inference system for the ML* [Myc84] is given
below. Let A range over type assignments, z over A-calculus vari-
ables, ¢ over type variables, e and e’ over expressions, 7 and 7’ over
monotypes, and o and ¢’ over polytypes.

11



(TAUT)

(INST)

(GEN)

(APPL)

(ABS)

(LET)

(FIX-P)

A{z:o}Dz:0

ADe:Vieo

Ade:o[r/1])

ADe:o
(¢ not free in A)

ADe:Vieo

ADe:T' =1
A>e: 7

AD(ee): 7

Afz : ') Benr

AdDMAze:T' =7

ADe:o
Alz:0} D€ 0

ADletz=cine:0o

Alz:o}De:0

ADftixze:0o

12




B Figures

Figure 1: Compact respresentation of a binary tree of “super-nodes”

Jy Ay 4y L 2y

S, S35 0% %% ¢G5

The following relations hold among the nodes: )
¢ = t, ] = 0, ey 3
8 = 3j42)modd 1= 0,...,3

Figure 2: A single bit of the n-bit counter




