










t', we add the equation t = t'. Now, foI eveiy let- and fix-bound 
variable z, labelled with the type variable t, and every occuuence of 
that z, labelled with t', we collect all the >.-bound variables and their 
type labels ti, ... , t,. in whose scope z occuis and add the subsump­
tion inequality /( t, ti, ... , t,.) :5 /( t', ti, ... , t1c); heie / is any suitable 
function symbol. The Iesulting system of equations and inequalities 
has the piopeity that it is semi-unifiable if and only if the oiiginal 
ML+ program is typable. 

For the second reduction, (3) :::} (2), let 
{ Mu = M121 ••• 1 M1c1 = M1c2, 

Nu :5 N12, ... , N11 :5 N12} 
be a system of equations and inequalities with variables z1,•••,z1c, 
From [KM89] we know that every term can be encoded by Ux- and 
let-free >.-expressions and that there is a >.-expression "=" that en­
codes equality between teims. Similady, tuples [Li, ... , Lh] and tuple 
selection functions 1([L1, .. ,,Lh]) = L; can be represented by stan­
dard constructions. Now, the >.-expression 

fix /. >.z1 ... z1c. 
K[M1, ... , M1,J[>.y1 ... Y1c.i(/y1 ... Y1c) = N1, ... , AY1 ... Y1c-k(/111. · · Y1c) = N1c] 

is typable if and only if the original system of equations and inequal-
ities is semi-unifiable. 

5 Lower Bound 
The main result of this section is the following. 

Theorem 1 Recognizing typable ML+ expre.!.!ion.! i.5 hard for EXP­
TIME. 

By the equivalence results of the previous section, this demon­
strates an EXPTIME lower bound for the semi-unification and poly­
moiphic unification problems as well. 

This result contrasts with the PSPACE lower bound and EXP­
TIME upper bound derived by [KM89] for recognizing typable ML 
expressions. Using let constructs nested to a depth of n [KM89) can 
only specify trees of depth n. With a single, un-nested :fix we ate 
able to specify trees of depth 2n. Thus, the :fix construct seems to 
be much more powerful a means of introducing polymorphism than is 
the let construct. 

Proof: (sketch) 
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Given a PSPACE-bounded Alternating Turing Machine 1 M with 
input x, we use the techniques of (CKS81] to deterministically simulate 
its behavior. Our contribution is in showing that this simulation is 
possible by the extended polymorphic unification of a graph 2 G whose 
size is polynomial in the description of M and x and that represents 
the type of a fix expression. 

The simulation of (CKS81] organizes the configurations of Mon x 
as nodes of a "computation tree" and assigns each a value such that 
M accepts if and only if the root is assigned true 3. But, since M is 
PSPACE-bounded, the depth of this tree can be as great as 2", where 
n is the length of x. Therefore, the crux of our proof is in concisely 
representing trees of depth 2" as the type of a fix expression. 

The graph of Figure 1 compactly respresen ts a binary tree whose 
nodes are instances of the graph contained in the circle ( the "super­
node"). This super-node will contain many sub-graphs related to the 
simulation, such as an encodings of configurations, Boolean functions, 
and a "next-configuration" function that maps a configuration into its 
successor configurations according to the next-state function of M. 
We first concentrate on specifying the sub-graph that keeps count of 
a node's depth with the computation tree. 

Throughout our simulation, a Boolean variable v will be repre­
sented by four nodes vo, ... , v3. If vo = v1 (i.e., vo and v1 unify), 
then we interpret v as having value true or l; if instead v2 = v3 , we 
intepret v as having value false or 0. A single bit of the counter is 
shown in Figure 2. It takes a bit i and a "gate" value g as inputs, and 
produces o as output according to the rule o = (i + g) mod 2. That 
is, the graph counts up when the gate value is true. 

Now consider connecting n of these counters in series (with inputs 
·O •n-1 t t O n-1 d t O n-1) d" 1 , ... , 1 1 ou pu s o , ... , o , an ga es g , ... , g accor mg 
to the following equations: 

1 Recall, EXPTIME = Alternating PSPA CE. 
2 TYI~e expressions have a natural representation as graphs, which we use here for con­

venience. It. is equally possible to directly give an equivalent system of constraints on type 
expressions. 

3The root of this tree is the initial configuration and the children of a node are its im­
mediate successor configurations. Leaves are assigned Boolean values indicating whether 
they are accepting configurations. Nodes that are universal (resp., existential) configura­
tions are assigned a value that is the conjuction (resp., disjunction) of the values assigned 
to its children. 
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go = e 
gj+l - e /1. ij 

Then letting I denote the integer represented by the Boolean string 
in-lin-

2 

• • • i0 and O the integer with representation on-lin-

2 

• • • o0 , 

we can prove that O = (I+ e) mod n. That is, setting e to 1 causes 
the n-bit counter to be incremented. 

Having shown that trees of depth 2n are constructible, we can 
adapt the techniques of (DKM84] (DKS88] that give encodings of 
Boolean functions as graphs. We can then embed a "next-configuration" 
function within the super-node to ensure that the resulting tree is in 
fact the computation tree of Mon input z. The technique of (KM89] 
that computes values for nodes in a bottom-up manner can also be 
adapted to assign values to the nodes of this "computation-tree". Fi­
nally, the results of (KM89] can be extended so as to extract an ML+ 
expression from our graph. I 
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A ML+ Typing Rules 
ML+ is an extended A-calculus. The type expressions are given by 

T == t IT-. T 

t := (type variables) 
u :=TI Vt.u 

Type expressions derived from T above a.re called monotypea and the 
larger set o{ type expressions derived from " are polytype.!. A type 
assignment is a. mapping from A-calculus variables to type expressions. 
For detailed definitions o{ A-expressions, type expressions, and type 
assignments we refer to [DM82] and [Myc84] or any number of other 
papers on type theory. 

The ca.nonical type inference system {or the ML+ (Myc84] is given 
below. Let A range over type assignments, z over A-calculus vari­
ables, t over type variables, e and e' over expressions, T and T

1 over 
monotypes, and " and u' over polytypes. 
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(TAUT) A{z: 11} :> z: 11 

(INST) A ::, e : Vt.tr 
A:> e: u(r/t] 

(GEN) A::>e:11 
{t not free in A) 

A ::, e : Vt.tr 

(APPL) A::>e:r 1 -+r 
A:> e': r' 
A::, (ee'): r 

(ABS) A { z : r'} ::> e : r 
A::> ,\z.e: r'-+ r 

(LET) A:>e:u 
A{z: 11} ::> e': u' 
A ::> let z = e in e' : u' 

(FIX-P) A{z: 11} ::> e: 11 
A :> fix :z:.e: 11 
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Figure 1: Compact respresentation of a binary tree of "super-nodes" 

The following relations hold among the nodes: 
c; = i; j = O, ... , 3 
a; = ic;+2)mod4 j = 0, • • •, 3 

Figure 2: A single bit of the n-bit counter 
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