

















Given a PSPACE-bounded Alternating Turing Machine! M with
input z, we use the techniques of [CKS81] to deterministically simulate
its behavior. Our contribution is in showing that this simulation is
possible by the extended polymorphic unification of a graph? G whose
size is polynomial in the description of M and z and that represents
the type of a £ix expression.

The simulation of [CKS81] organizes the configurations of M on z
as nodes of a “computation tree” and assigns each a value such that
M accepts if and only if the root is assigned true®. But, since M is
PSPACE-bounded, the depth of this tree can be as great as 2™, where
n is the length of z. Therefore, the crux of our proof is in concisely
representing trees of depth 2" as the type of a £ix expression.

The graph of Figure 1 compactly respresents a binary tree whose
nodes are instances of the graph contained in the circle (the “super-
node”). This super-node will contain many sub-graphs related to the
simulation, such as an encodings of configurations, Boolean functions,
and a “next-configuration” function that maps a configuration into its
successor configurations according to the next-state function of M.
We first concentrate on specifying the sub-graph that keeps count of
a node’s depth with the computation tree.

Throughout our simulation, a Boolean variable v will be repre-
sented by four nodes vp,...,v3. If v9 = v, (i.e., vp and v; unify),
then we interpret » as having value true or 1; if instead vy = v;, we
intepret v as having value false or 0. A single bit of the counter is
shown in Figure 2. It takes a bit { and a “gate” value g as inputs, and
produces o as output according to the rule o = (i + g) mod 2. That
is, the graph counts up when the gate value is true.

Now consider connecting n of these counters in series (with inputs
i%...,i""L, outputs o°,...,0""!, and gates g% ...,¢""!) according
to the following equations:

1Recall, EXPTIME = Alternating PSPACE.

2Type expressions have a natural representation as graphs, which we use here for con-
venience. It is equally possible to directly give an equivalent system of constraints on type
expressions.

3The root of this tree is the initial configuration and the children of a node are its im-
mediate successor configurations. Leaves are assigned Boolean values indicating whether
they are accepting configurations. Nodes that are universal (resp., existential) configura-

tions are assigned a value that is the conjuction (resp., disjunction) of the values assigned
to its children.
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Then letting I denote the integer represented by the Boolean string
i""1i"=2...i% and O the integer with representation o"~'i""2...0%,
we can prove that O = (I + e¢) mod n. That is, setting e to 1 causes
the n-bit counter to be incremented.

Having shown that trees of depth 2™ are constructible, we can
adapt the techniques of [DKM84] [DKS88] that give encodings of
Boolean functions as graphs. We can then embed a “next-configuration”
function within the super-node to ensure that the resulting tree is in
fact the computation tree of M on input z. The technique of [KM89]
that computes values for nodes in a bottom-up manner can also be
adapted to assign values to the nodes of this “computation-tree”. Fi-
nally, the results of [KM89] can be extended so as to extract an ML*
expression from our graph. 1
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A ML Typing Rules

ML? is an extended A-calculus. The type expressions are given by

Ti=l|r—or71

t := (type variables)

oc:=r71|Vio
Type expressions derived from 7 above are called monotypes and the
larger set of type expressions derived from o are polytypes. A type
assignment is a mapping from A-calculus variables to type expressions.
For detailed definitions of A-expressions, type expressions, and type
assignments we refer to [DM82] and [Myc84] or any number of other
papers on type theory.

The canonical type inference system for the ML* [Myc84] is given
below. Let A range over type assignments, z over A-calculus vari-
ables, ¢ over type variables, e and e’ over expressions, 7 and 7’ over
monotypes, and o and ¢’ over polytypes.
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B Figures

Figure 1: Compact respresentation of a binary tree of “super-nodes”
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The following relations hold among the nodes: )
¢ = t, ] = 0, ey 3
8 = 3j42)modd 1= 0,...,3

Figure 2: A single bit of the n-bit counter




