

t', we add the equation t = t'. Now, foI eveiy let- and fix-bound
variable z, labelled with the type variable t, and every occuuence of
that z, labelled with t', we collect all the >.-bound variables and their
type labels ti, ... , t,. in whose scope z occuis and add the subsump­
tion inequality /(t, ti, ... , t,.) :5 /(t', ti, ... , t1c); heie / is any suitable
function symbol. The Iesulting system of equations and inequalities
has the piopeity that it is semi-unifiable if and only if the oiiginal
ML+ program is typable.

For the second reduction, (3) :::} (2), let
{ Mu = M121 ••• 1 M1c1 = M1c2,

Nu :5 N12, ... , N11 :5 N12}
be a system of equations and inequalities with variables z1,•••,z1c,
From [KM89] we know that every term can be encoded by Ux- and
let-free >.-expressions and that there is a >.-expression "=" that en­
codes equality between teims. Similady, tuples [Li, ... , Lh] and tuple
selection functions 1([L1, .. ,,Lh]) = L; can be represented by stan­
dard constructions. Now, the >.-expression

fix /. >.z1 ... z1c.
K[M1, ... , M1,J[>.y1 ... Y1c.i(/y1 ... Y1c) = N1, ... , AY1 ... Y1c-k(/111. · · Y1c) = N1c]

is typable if and only if the original system of equations and inequal-
ities is semi-unifiable.

5 Lower Bound
The main result of this section is the following.

Theorem 1 Recognizing typable ML+ expre.!.!ion.! i.5 hard for EXP­
TIME.

By the equivalence results of the previous section, this demon­
strates an EXPTIME lower bound for the semi-unification and poly­
moiphic unification problems as well.

This result contrasts with the PSPACE lower bound and EXP­
TIME upper bound derived by [KM89] for recognizing typable ML
expressions. Using let constructs nested to a depth of n [KM89) can
only specify trees of depth n. With a single, un-nested :fix we ate
able to specify trees of depth 2n. Thus, the :fix construct seems to
be much more powerful a means of introducing polymorphism than is
the let construct.

Proof: (sketch)

6

Given a PSPACE-bounded Alternating Turing Machine 1 M with
input x, we use the techniques of (CKS81] to deterministically simulate
its behavior. Our contribution is in showing that this simulation is
possible by the extended polymorphic unification of a graph 2 G whose
size is polynomial in the description of M and x and that represents
the type of a fix expression.

The simulation of (CKS81] organizes the configurations of Mon x
as nodes of a "computation tree" and assigns each a value such that
M accepts if and only if the root is assigned true 3. But, since M is
PSPACE-bounded, the depth of this tree can be as great as 2", where
n is the length of x. Therefore, the crux of our proof is in concisely
representing trees of depth 2" as the type of a fix expression.

The graph of Figure 1 compactly respresen ts a binary tree whose
nodes are instances of the graph contained in the circle (the "super­
node"). This super-node will contain many sub-graphs related to the
simulation, such as an encodings of configurations, Boolean functions,
and a "next-configuration" function that maps a configuration into its
successor configurations according to the next-state function of M.
We first concentrate on specifying the sub-graph that keeps count of
a node's depth with the computation tree.

Throughout our simulation, a Boolean variable v will be repre­
sented by four nodes vo, ... , v3. If vo = v1 (i.e., vo and v1 unify),
then we interpret v as having value true or l; if instead v2 = v3 , we
intepret v as having value false or 0. A single bit of the counter is
shown in Figure 2. It takes a bit i and a "gate" value g as inputs, and
produces o as output according to the rule o = (i + g) mod 2. That
is, the graph counts up when the gate value is true.

Now consider connecting n of these counters in series (with inputs
·O •n-1 t t O n-1 d t O n-1) d" 1 , ... , 1 1 ou pu s o , ... , o , an ga es g , ... , g accor mg
to the following equations:

1 Recall, EXPTIME = Alternating PSPA CE.
2 TYI~e expressions have a natural representation as graphs, which we use here for con­

venience. It. is equally possible to directly give an equivalent system of constraints on type
expressions.

3The root of this tree is the initial configuration and the children of a node are its im­
mediate successor configurations. Leaves are assigned Boolean values indicating whether
they are accepting configurations. Nodes that are universal (resp., existential) configura­
tions are assigned a value that is the conjuction (resp., disjunction) of the values assigned
to its children.

7

go = e
gj+l - e /1. ij

Then letting I denote the integer represented by the Boolean string
in-lin-

2

• • • i0 and O the integer with representation on-lin-

2

• • • o0 ,

we can prove that O = (I+ e) mod n. That is, setting e to 1 causes
the n-bit counter to be incremented.

Having shown that trees of depth 2n are constructible, we can
adapt the techniques of (DKM84] (DKS88] that give encodings of
Boolean functions as graphs. We can then embed a "next-configuration"
function within the super-node to ensure that the resulting tree is in
fact the computation tree of Mon input z. The technique of (KM89]
that computes values for nodes in a bottom-up manner can also be
adapted to assign values to the nodes of this "computation-tree". Fi­
nally, the results of (KM89] can be extended so as to extract an ML+
expression from our graph. I

8

References
(Cho86] C.-T. Chou. Relaxation Proce_,e.,: Theory, Ca.,e Studie11

and Application.,. PhD thesis, University of California at
Los Angeles, 1986.

(CKS81] A.K. Chandra, D.C. Kozen, and L.J. Stockmeyer. Alter­
nation. Journal of the ACM, 287(1):114-133, 1981.

[DKM84] C. Dwork, P. Kanellakis, and J. C. Mitchell. On the se­
quential nature of unification. Journal of Logic Program­
ming, 1:35-50, 1984.

(DKS88] C. Dwork, P. Kanellakis, and L. Stockmeyer. Parallel al­
gorithms for term matching. SIAM Journal of Computing,
17(4):711-731, 1988.

(DM82] L. Damas and R. Milner. Principal type schemes for
functional programs. In Proc. 9th Annual A CM Symp.
on Principle., of Programming Language.,, pages 207-212,
Jan. 1982.

(GR88] P. Giannini and S. Ronchi Della Rocca. Characteriza­
tion of typings in polymorphic type discipline. In Proc.
Third Annual SympoJium on Logic in Computer Science,
pages 61-71, IEEE, 1988.

[Hen88] F. Henglein. Type inference and semi-unification. In Proc.
A CM SympoJium on LISP and Functional Programming,
page ? , ACM, 1988.

[KM89] P.C. Kanellakis and J.C. Mitchell. Polymorphic unifica­
tion and ML typing (extended abstract). In Proc. Six­
teenth A CM SympoJium on Principle., of Programming
Language.,, ACM, January 1989.

[KTU88a] A.J. Kfoury, J. Tiuryn, and P. Urzyczyn. ?? In Proc.
Third Annual SympoJium on Logic in Computer Science,
page??, ?, 1988.

[KTU88b] A.J. Kfoury, J. Tiuryn, and P. Urzyczyn. A proper ex­
tension of ml with effective type assignment. In Proc.
Fifteenth A CM SympoJium on Principle., of Programming
Language.,, pages 58-69, ACM, 1988.

9

[Mee83] L. Meerteens. Incremental polymorphic type checking in
B. In Proc. Tenth ACM Sympoaium on Principlea of Pro­
gramming Languagea, pages 265-275, ACM, 1983.

[Mil78] R. Milner. A theory of polymorphism in programming.
JCSS, 17:348-375, 1978.

[Mit88] J.C. Mitchell. Polymorphic type inference and contain­
ment. Information and Computation, 76(2/3):, 1988.

[Myc84] A. Mycroft. Polymorphic type schemes and recursive def­
initions. In M. Paul and B. Robinet, editors, Proc. In­
ternational Sympoaium on Programming, Lecture Notea in
Computer Science 167, pages 217-228, 1984.

[PM88] D.S. Parker and R.R. Muntz. A theory of directed logic
programs and streams. In Proc. Fifth Intemation Confer­
ence on Logic Programming, pages 620-650, MIT Press,
1988.

10

A ML+ Typing Rules
ML+ is an extended A-calculus. The type expressions are given by

T == t IT-. T

t := (type variables)
u :=TI Vt.u

Type expressions derived from T above a.re called monotypea and the
larger set o{ type expressions derived from " are polytype.!. A type
assignment is a. mapping from A-calculus variables to type expressions.
For detailed definitions o{ A-expressions, type expressions, and type
assignments we refer to [DM82] and [Myc84] or any number of other
papers on type theory.

The ca.nonical type inference system {or the ML+ (Myc84] is given
below. Let A range over type assignments, z over A-calculus vari­
ables, t over type variables, e and e' over expressions, T and T

1 over
monotypes, and " and u' over polytypes.

11

(TAUT) A{z: 11} :> z: 11

(INST) A ::, e : Vt.tr
A:> e: u(r/t]

(GEN) A::>e:11
{t not free in A)

A ::, e : Vt.tr

(APPL) A::>e:r 1 -+r
A:> e': r'
A::, (ee'): r

(ABS) A { z : r'} ::> e : r
A::> ,\z.e: r'-+ r

(LET) A:>e:u
A{z: 11} ::> e': u'
A ::> let z = e in e' : u'

(FIX-P) A{z: 11} ::> e: 11
A :> fix :z:.e: 11

12

'

I

B Figures

,,,,,-........ /-
"'\

I "\

(\ ,
\ I

\.. _....

Figure 1: Compact respresentation of a binary tree of "super-nodes"

The following relations hold among the nodes:
c; = i; j = O, ... , 3
a; = ic;+2)mod4 j = 0, • • •, 3

Figure 2: A single bit of the n-bit counter

•

