

t', we add the equation t = t'. Now, foI eveiy let- and fix-bound
variable z, labelled with the type variable t, and every occuuence of
that z, labelled with t', we collect all the >.-bound variables and their
type labels ti, ... , t,. in whose scope z occuis and add the subsump
tion inequality /(t, ti, ... , t,.) :5 /(t', ti, ... , t1c); heie / is any suitable
function symbol. The Iesulting system of equations and inequalities
has the piopeity that it is semi-unifiable if and only if the oiiginal
ML+ program is typable.

For the second reduction, (3) :::} (2), let
{ Mu = M121 ••• 1 M1c1 = M1c2,

Nu :5 N12, ... , N11 :5 N12}
be a system of equations and inequalities with variables z1,•••,z1c,
From [KM89] we know that every term can be encoded by Ux- and
let-free >.-expressions and that there is a >.-expression "=" that en
codes equality between teims. Similady, tuples [Li, ... , Lh] and tuple
selection functions 1([L1, .. ,,Lh]) = L; can be represented by stan
dard constructions. Now, the >.-expression

fix /. >.z1 ... z1c.
K[M1, ... , M1,J[>.y1 ... Y1c.i(/y1 ... Y1c) = N1, ... , AY1 ... Y1c-k(/111. · · Y1c) = N1c]

is typable if and only if the original system of equations and inequal-
ities is semi-unifiable.

5 Lower Bound
The main result of this section is the following.

Theorem 1 Recognizing typable ML+ expre.!.!ion.! i.5 hard for EXP
TIME.

By the equivalence results of the previous section, this demon
strates an EXPTIME lower bound for the semi-unification and poly
moiphic unification problems as well.

This result contrasts with the PSPACE lower bound and EXP
TIME upper bound derived by [KM89] for recognizing typable ML
expressions. Using let constructs nested to a depth of n [KM89) can
only specify trees of depth n. With a single, un-nested :fix we ate
able to specify trees of depth 2n. Thus, the :fix construct seems to
be much more powerful a means of introducing polymorphism than is
the let construct.

Proof: (sketch)

6

Given a PSPACE-bounded Alternating Turing Machine 1 M with
input x, we use the techniques of (CKS81] to deterministically simulate
its behavior. Our contribution is in showing that this simulation is
possible by the extended polymorphic unification of a graph 2 G whose
size is polynomial in the description of M and x and that represents
the type of a fix expression.

The simulation of (CKS81] organizes the configurations of Mon x
as nodes of a "computation tree" and assigns each a value such that
M accepts if and only if the root is assigned true 3. But, since M is
PSPACE-bounded, the depth of this tree can be as great as 2", where
n is the length of x. Therefore, the crux of our proof is in concisely
representing trees of depth 2" as the type of a fix expression.

The graph of Figure 1 compactly respresen ts a binary tree whose
nodes are instances of the graph contained in the circle (the "super
node"). This super-node will contain many sub-graphs related to the
simulation, such as an encodings of configurations, Boolean functions,
and a "next-configuration" function that maps a configuration into its
successor configurations according to the next-state function of M.
We first concentrate on specifying the sub-graph that keeps count of
a node's depth with the computation tree.

Throughout our simulation, a Boolean variable v will be repre
sented by four nodes vo, ... , v3. If vo = v1 (i.e., vo and v1 unify),
then we interpret v as having value true or l; if instead v2 = v3 , we
intepret v as having value false or 0. A single bit of the counter is
shown in Figure 2. It takes a bit i and a "gate" value g as inputs, and
produces o as output according to the rule o = (i + g) mod 2. That
is, the graph counts up when the gate value is true.

Now consider connecting n of these counters in series (with inputs
·O •n-1 t t O n-1 d t O n-1) d" 1 , ... , 1 1 ou pu s o , ... , o , an ga es g , ... , g accor mg
to the following equations:

1 Recall, EXPTIME = Alternating PSPA CE.
2 TYI~e expressions have a natural representation as graphs, which we use here for con

venience. It. is equally possible to directly give an equivalent system of constraints on type
expressions.

3The root of this tree is the initial configuration and the children of a node are its im
mediate successor configurations. Leaves are assigned Boolean values indicating whether
they are accepting configurations. Nodes that are universal (resp., existential) configura
tions are assigned a value that is the conjuction (resp., disjunction) of the values assigned
to its children.

7

go = e
gj+l - e /1. ij

Then letting I denote the integer represented by the Boolean string
in-lin-

2

• • • i0 and O the integer with representation on-lin-

2

• • • o0 ,

we can prove that O = (I+ e) mod n. That is, setting e to 1 causes
the n-bit counter to be incremented.

Having shown that trees of depth 2n are constructible, we can
adapt the techniques of (DKM84] (DKS88] that give encodings of
Boolean functions as graphs. We can then embed a "next-configuration"
function within the super-node to ensure that the resulting tree is in
fact the computation tree of Mon input z. The technique of (KM89]
that computes values for nodes in a bottom-up manner can also be
adapted to assign values to the nodes of this "computation-tree". Fi
nally, the results of (KM89] can be extended so as to extract an ML+
expression from our graph. I

8

References
(Cho86] C.-T. Chou. Relaxation Proce_,e.,: Theory, Ca.,e Studie11

and Application.,. PhD thesis, University of California at
Los Angeles, 1986.

(CKS81] A.K. Chandra, D.C. Kozen, and L.J. Stockmeyer. Alter
nation. Journal of the ACM, 287(1):114-133, 1981.

[DKM84] C. Dwork, P. Kanellakis, and J. C. Mitchell. On the se
quential nature of unification. Journal of Logic Program
ming, 1:35-50, 1984.

(DKS88] C. Dwork, P. Kanellakis, and L. Stockmeyer. Parallel al
gorithms for term matching. SIAM Journal of Computing,
17(4):711-731, 1988.

(DM82] L. Damas and R. Milner. Principal type schemes for
functional programs. In Proc. 9th Annual A CM Symp.
on Principle., of Programming Language.,, pages 207-212,
Jan. 1982.

(GR88] P. Giannini and S. Ronchi Della Rocca. Characteriza
tion of typings in polymorphic type discipline. In Proc.
Third Annual SympoJium on Logic in Computer Science,
pages 61-71, IEEE, 1988.

[Hen88] F. Henglein. Type inference and semi-unification. In Proc.
A CM SympoJium on LISP and Functional Programming,
page ? , ACM, 1988.

[KM89] P.C. Kanellakis and J.C. Mitchell. Polymorphic unifica
tion and ML typing (extended abstract). In Proc. Six
teenth A CM SympoJium on Principle., of Programming
Language.,, ACM, January 1989.

[KTU88a] A.J. Kfoury, J. Tiuryn, and P. Urzyczyn. ?? In Proc.
Third Annual SympoJium on Logic in Computer Science,
page??, ?, 1988.

[KTU88b] A.J. Kfoury, J. Tiuryn, and P. Urzyczyn. A proper ex
tension of ml with effective type assignment. In Proc.
Fifteenth A CM SympoJium on Principle., of Programming
Language.,, pages 58-69, ACM, 1988.

9

[Mee83] L. Meerteens. Incremental polymorphic type checking in
B. In Proc. Tenth ACM Sympoaium on Principlea of Pro
gramming Languagea, pages 265-275, ACM, 1983.

[Mil78] R. Milner. A theory of polymorphism in programming.
JCSS, 17:348-375, 1978.

[Mit88] J.C. Mitchell. Polymorphic type inference and contain
ment. Information and Computation, 76(2/3):, 1988.

[Myc84] A. Mycroft. Polymorphic type schemes and recursive def
initions. In M. Paul and B. Robinet, editors, Proc. In
ternational Sympoaium on Programming, Lecture Notea in
Computer Science 167, pages 217-228, 1984.

[PM88] D.S. Parker and R.R. Muntz. A theory of directed logic
programs and streams. In Proc. Fifth Intemation Confer
ence on Logic Programming, pages 620-650, MIT Press,
1988.

10

A ML+ Typing Rules
ML+ is an extended A-calculus. The type expressions are given by

T == t IT-. T

t := (type variables)
u :=TI Vt.u

Type expressions derived from T above a.re called monotypea and the
larger set o{ type expressions derived from " are polytype.!. A type
assignment is a. mapping from A-calculus variables to type expressions.
For detailed definitions o{ A-expressions, type expressions, and type
assignments we refer to [DM82] and [Myc84] or any number of other
papers on type theory.

The ca.nonical type inference system {or the ML+ (Myc84] is given
below. Let A range over type assignments, z over A-calculus vari
ables, t over type variables, e and e' over expressions, T and T

1 over
monotypes, and " and u' over polytypes.

11

(TAUT) A{z: 11} :> z: 11

(INST) A ::, e : Vt.tr
A:> e: u(r/t]

(GEN) A::>e:11
{t not free in A)

A ::, e : Vt.tr

(APPL) A::>e:r 1 -+r
A:> e': r'
A::, (ee'): r

(ABS) A { z : r'} ::> e : r
A::> ,\z.e: r'-+ r

(LET) A:>e:u
A{z: 11} ::> e': u'
A ::> let z = e in e' : u'

(FIX-P) A{z: 11} ::> e: 11
A :> fix :z:.e: 11

12

'

I

B Figures

,,,,,-........ /-
"'\

I "\

(\ ,
\ I

\.. _....

Figure 1: Compact respresentation of a binary tree of "super-nodes"

The following relations hold among the nodes:
c; = i; j = O, ... , 3
a; = ic;+2)mod4 j = 0, • • •, 3

Figure 2: A single bit of the n-bit counter

•

