
Courant Computer Science Report #15

September 1979

Data Structure Choice /

Formal Differentiation

Two Papers on Very High

Level Program Optimization

Ssu-cheng Liu and Robert Paige

Courant Institute of

Mathematical Sciences

Computer Science Department

New York University

Report No. NSO-15 prepared under Grant No.

NSF-MCS-76-00116 from the National Science Foundation



COURANT COrCUTER SCIENCE PUBLICATIOKS

COURANT COt-EPUTER SCIENCE NOTES^

AlOl ABRAHAMS, P. The PL/I Prograiraning Language, 1979, 151 p,

C66 COCKE, J, & SCI-rWARTZ, J. Prograiraning Languages and Thair Compilers, 1970, 767 p.

D86 DAVIS, M. Computability , 1974, 248 p.

M72 MANACHER, G. ESPLr A Low-Level Language in the Style of Algol, 1971, 496 p.

M81 MUI.LISH, H, S GOLDSTEIN, M. A SETLB Primer, 1973, 201 p.

591 SCHWARTZ, J. On Programming: P^. Interim Report on the SETL Project.
Generalities; The SETL Language and Examples of Its Use. 1975, 675 p.

S99 SHAV;, P. GYVE A Programming Language for Protection and Control in a
Concurrent Processing Environment, 1978, 668 p.

SlOO SHAW, P. '• Vol. 2, 1979, 600 p.

W78 WHITEHEAD, E.G., Jr. Combinatorial Algorithms, 1973, 104 p.

COURANT COMPUTER SCIENCE REPORTS

1 WARREN, H. Jr. ASL: A Proposed Variant of SETL, 1973, 326 p.

2 HOBBS, J. R. A Metalanguage for Expressing Grammatical Restrictions in Nodal
Spans Parsing of Natural Language, 1974, 266 p.

3' TENENBAUM, A. Type Determination for Very High I-evel Languages, 1974, 171 p.

4 OWENS, P. A Comprehensive Survey of Parsing Algorithms for Programming
Languages, ... 652+ p.

5 GEWIRTZ, W. Investigations in the Theory of Descriptive Complexity, 1974, 60 p.

6 MARKSTEIN, P. Operating System Specification Using Very High Level Diction?,
1975, 152 p.

7 GRISHMAN, R. (ed.) Directions in Artificial .Intelligence: Natural Language
Processing, 1975, 107 p.

8 GRISHMAN, R. A Survey of Syntactic Analysis Procedures for Natural Language,
1975, 94 p.

9 WEIf-I/iN, CARL Scene Analysis: A Survey, 1975, 62 p.

10 RUBIN, N. A Hierarchical Technique for Mechanical Theorem Proving and Its
Application to Programming Language Design, 1975, 172 p.

11 HOBBS, J. P.. & ROSENSCHEIN, S.J. Making Computational Sense of Montague's
Intensional, Logic, 1977, 41 p.

12 DAVIS, M. & SCHWARTZ, J. Correct-Program Technology/Extensibility of Verifiers,
with an Appendix by E. Deak, 1977, 146 p.

13 SEMENIUK, C. Groups with Solvable VJord Problems, 1979, 77 p.

14 FABRI, J. Automatic Storage Optimization, 1979, 159 p. ..

15. LIU, S-C. & PAIGE, R. Data Structure Choice/Formal Dif jTerentiation.
Two Papers on Very High Level Program Optimization, 1979, 658 p.

16 GOLDBERG, A. T. On the Complexity of the Satisfiability Problem, 1979, 85 p.

Notes: Available from Department LN. Prices on request.
Peports: Available from Ms. Lenora Greene. Ncs , 1,3,4,6,7,8,10 available in xerox only.

COURAJIT INSTITUTE OF MATHEMJi.TICAL SCIENCES
251 Mercer Stress

New York, New York 10012



COURANT INSTITUTE OF MATHEMATICAL SCIENCES

Computer Science NSO-15

DATA STRUCTURE CHOICE / FORMAL DIFFERENTIATION

Ssu-cheng Liu and Robert Paige

September 1979

Report No. NSO-15 prepared under
Grant No. NSF-MCS-76-00116 from
the National Science Foundation





TABLE OF CONTENTS

Page

Automatic Data Structure Choice in SETL

by Ssu-cheng Liu

Expression Continuity and The Formal

Differentiation of Algorithms

by Robert Paige 269

111





AUTOMATIC DATA STRUCTURE CHOICE IN SETL

Ssu-cheng Liu

CONTENTS
Page

PREFACE 2

CHAPTER

1 INTRODUCTION 3

1.1 Automatic Data Structure Choice System 7

1.2 Related Work 10
1.3 Review of Salient Features of the SETL Language 13
1.4 Definitions 19

2 THE SETL BASING SYSTEM 22
2.1 The Notion of "Basing" 22
2.2 Data Structure for Based Representations 25
2 .

3

Bases 33
2.4 Details of the Basing Language 35
2.5 A Case Study on the Application of Basings 41

3 AUTOMATIC DATA STRUCTURE CHOICE SYSTEM 53
3.1 Essential Observation 53
3.2 Fundamental Idea 55
3.3 Overview of the System 58
3.4 Phase I: Base Generation 61
3.5 Phase II: Locate Emitting and Base Equivalencing 65
3.6 Phase III: Locate Insertion 71
3.7 Phase IV: Mode Determination 73
3.8 Phase V: Refinement 75
3.9 Supplementary Remarks 77

4 EXAMPLES 80
4.1 Example 1: Tree Traversal 81
4.2 Example 2: Spanning Tree 85
4.3 Example 3: Huffman Coding 9

4.4 Example 4: Maxim;im Flow 96
4.5 Example 5: Interval Analysis 101

5 CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS 105
5.1 Merging Rule 106
5.2 Conversion of Representation Structure 108
5.3 Conversion of Basings 108
5.4 Conversion of Sparse Objects 109
5.5 Multilevel Basings 110
5.6 Colinked Bases 111

6 SETL CODE FOR THE DATA STRUCTURE CHOICE ALGORITHM 112

APPENDIX

A PRIMITIVE SETL OPERATIONS 249
B ALPHABETICAL LISTING OF GLOBAL NAMES REFERENCED 2 52

BIBLIOGRAPHY 258



PREFACE
Abstract

SETL, like other very high level languages, emphasizes
the use of abstract data structures such as sets and maps.
Efficient data structuring of a SETL program is obtained by
supplying to the language processor detailed descriptions of
structural relations among program variables. These descrip-
tions center around the concept of 'basings'. The use of
basing declarations leads to efficient data layouts for the
abstract structures of SETL. The concept of basings suggests
techniques for choosing efficient data structures automati-
cally by means of program analysis. The basing notion thus
provides a unifying framework for automatic data structure
choice. This paper describes a design for a demonstration
system constructed within this framework. The manner in which
such a system would apply to typical examples is illustrated.
A SETL specification of the proposed automatic data structure
choice scheme is also presented.

Acknowledgements

I am truly grateful for the help and support of the SETL
project members and the Computer Science Department at New York
University. I would like to take this opportunity to express
my gratitude to all the following people who have helped in
the development of this thesis: Professor Edmond Schonberg,
who strongly influenced my ideas and provided valuable assist-
ance, particularly in the early stage of my research;
iMicha Sharir, who checked my algorithms and made many useful
comments; Arthur Grand, who constantly provided current infor-
mation on the state of the SETL system; and last, and most
important. Professor Jacob Schwartz, my advisor, without
whose enthusiasm and patience this thesis would not have been
finished.

My special thanks go to my wife, Ai-ju, for her encourage-
ment and patience during my graduate years. And apologies
are due to my son Oliver for my constant preoccupation with
study.



CHAPTER 1 : INTRODUCTION

Research in automatic programming has over the years

produced a number of increasingly pouerful tools for the

writers of software : symbolic assemblers, macro

assemblers, text editors, debugging systems and

algorithmic languages of greater and greater expressive

power and conciseness. Ongoing efforts to design very

high level languages, which incorporate pouerful

mathematical primitives and abstract information structure

e.g., sets and relations, are one of the most important

current aspects of this research. At the present time, a

number of compiler/interpreter systems for languages of

this level, such as PLANNER, MADCAP, VERS2, CONNIVER, LEAP

and SETL, have already been developed. Results so far

with such languages indicate that they do indeed greatly

reduce programming effort, allow the programmer to tackle

problems that would be intractable with lower level

languages, and simplify the production of software.

However, until now, most efforts in this area have

concentrated on language design and basic implementation ;

little has yet been done to achieve efficient program

execution. The inefficiency of existing implementations

of languages of this level has been severe enough to

restrict their use to a few research environments. This

inefficiency mainly arises from two sources : generation



of unoptimized code and use of ill-chosen data structures.

By providing powerful semantic primitives and a

comfortable syntax for combining tliese primitives, very

high level languages can tempt the user into a style of

programming which is highly inefficient if unoptimized.

For example, in SETL, the task of determining the number

of positive integers in a set S can be written :

N := t{ XGS I X>0 } ; ( 1 )

Taken literally, this involves the construction of a set

for the sole purpose of finding its cardinality. The loop

N := ; (Vxes I X>0) N :=N+ 1 ;; (2)

clearly achieves the same effect at a smaller cost. Yet a

case can be made that ( 1 ) , and the style of programming it

embodies, represents a good use of the language. The

intent of (1) is more apparent than that of (2); (1) is

expressed more concisely, and can in fact be viewed as a

specification for the 'lower-level' code fragment (2).

Similarly, SETL code to create the subset of positive

numbers and the subset of negative numbers in a set S

might be written as J

POS := { X€S I X>0} ; NEG := { Xes I X<0} ;

The set S has to be scanned over twice if the source cod(



is interpreted or compiled directly without optimisation ;

which is certainly more inefficient than the code written

in the lower level style :

POS := nl; NEG := nl ;

(VX€S) if X > then POS with X ;

elseif X < then NEG with X ; ; end VX ;

These two examples show that the realisation of a

program written in a style fully utilising a very high

level language can never achieve reasonable efficiency

without a powerful optimiser. The creation of redundant

objects and the redundant looping through composite

objects should in particular be avoided. Traditional code

optimisation techniques are in general useful for this

purpose. Some of the prior work in this area is briefly

reviewed in the section 2 of this chapter.

A second main source of inefficiency lies in the fact

that, at the implementation level, the run-time support

library, which realises the high level semantic constructs

of a very high level language, must use 'general'

structures, which can support, with roughly even

efficiency, all the various operations likely to be

applied to the data objects of the various types provided

by the language. Almost invariably, this general

structure will not be the best choice for a specific

application. SETL, for instance, realizes a set by a hash



table structure. Obviously, this is not the best

structure for sets uhich are only subject to algebraic

operations such as union and intersection. In this case,

the use of bit string structures uould be more

appropriate. It is clear that to overcome this difficulty

the language processor itself must have the capability of

choosing efficient data structures to represent the

abstract objects of the program and code sequences to

realize the abstract operations to be performed on these

objects. To accomplish this, we require a so-called

automatic data structure choice system (subsequently

denoted by 'ADSC system').

The research reported here is an attempt to

demonstrate the feasibility of building such an ADSC

system. We have designed a demonstration system, based on

the notion of 'basing' (to be explained in the next

chapter), to automatically choose data structures for

variables of SETL programs. Since our system utilizes the

information collected by other optimization techniques, it

was designed as the final phase of a powerful SETL

optimizer which incorporates a wide variety of useful, but

better-established, optimization techniques. Though we

have considered only a few abstract data structures which

are available in SETL, we believe that the techniques used

in the proposed ADSC system are generally applicable.



1 . 1 Automatic Data Structure Choice System

A reasonable approach to an ADSC system can be as

follows :

(1) First, ue have to choose a basic family of data

structures. In attempting to regularise the process of

data structure choice ue do not ask whether all, or even

many, of the data structures that might be used by an

experienced programmer can be duplicated automatically.

Rather, we try to find some narrow subfamily of the family

of all possible data structure choices, doing this in a

way which guarantees that some choice in our subfamily is

an adequate replacement for any choice which a programmer

is likely to make. There is no doubt that a poor initial

choice of subfamily may have a severely deleterious effect

on the execution efficiency of the operations defined in

the language. Choosing a proper family of data structures

is therefore quite important. In making this choice, we

must consider at least the operations to be applied to

each of our abstract structures, the relative frequencies

of these operations, and the relative importance of

conserving time versus space.

(2) Having chosen a basic family of data structures, we

can estimate the execution speed of each possible

operation on these different data structures. This



provides fundamental information about each individual

structure that is considered in the process of making an

eventual data structure choice. A difficulty in this

process arises from the fact that the execution speed of

an operation may be a function both of the data structures

of its operands and of the expected size of each operand.

These sizes are not deducible directly from the program

text. Inhomogeneity of the components of a composite

object also makes speed problems unsolvable in some cases.

Hence some kind of approximation has to be applied at this

step. However, this approximation should not blur our

analysis so much that we are not able to distinguish

betueen different data structures.

(3) Next, we have to construct a fact collector to

analyze source programs. The fact collector must be able

to derive the information which is relevant to the

structure choice algorithm that we intend to use.

Standard global program analysis techniques such as

interval analysis, data flow analysis, value flow analysis

and plausible relation deduction techniques, etc., are all

valuable here.

(4) As a final step, we must design a structure choice

algorithm. This is the heart of an ADSC system. Here,

the speed functions or tlie characteristics of data

structures developed in the previous step and gathered

8



'facts' concerning each individual program must be used in

order to minimize the total cost of running the program.

Of course, the design of such a decision-making algorithm

will be somuhat ad hoc due to the fact that the facts

which enter into good data structure choice are not all

accessible to a program analysis routine. We may have to

make some crudely empirical decisions, seeking guidance in

this by manually translating a representative variety of

algorithms written in source language into equivalent but

efficient codes in the target lower level language. If

such translation is done as systematically as possible and

in a highly 'self-conscious' way, then by noting the facts

which repeatedly appear relevant in the process reasonably

good mechanical data structure choice algorithms may be

achieved

.

During the design of our ADSC system, we have used

this approach. A first step in our approach was to

introduce a 'basing system', which in effect defines the

subfamily of data structures with which we work.

Initially, a declaration language which allows raannual

definitions of basings was provided ; see

Schwartzl 1971a, 1971b I and Schwartz [ 1 976a , 1 976b 1 . This

gave an extremely useful tool to experiment with data

structure choice and to explore various styles of choice.

Then, exploiting this experience, we have designed our

automatic basing choice system. Chapter 2 of this thesis



will present the 'basing system' on uhich our work rests,

while chapter 3 will describe the automatic data choice

algorithm.

The SETL optimizer has been assumed to be available as

the program analysis component of our system. This gives

us the global information required by our ADSC system. In

this thesis, no detailed discussion about the analysis

techniques used in this optimizer will be given, see

however Vanek I 1 976b ] , Sharirl 19771 and GrandM978).

1 .2 Related MorH

In this section we will review prior work related to

our research.

Tenenbauml 1 974 1 shows how to analyze SETL programs

automatically to determine the types of the variables used

in them. For this purpose, he builds a data type lattice

with 'conjunction' and 'disjunction' operations. A

revised version of this data type finder is described by

Vanek [ 1 976a 1 . The automatic data structure choice system

presented in this paper will utilize the information

provided by such an automatic 'type finder'.

The two part paper by Schwartz I 1 975c I introduces a

number of analysis and optimization techniques for general

10



very high level languages, in particular for SETL . One of

these techniques is value flow analysis, which generalizes

conventional data flow analysis to structured data

objects. A second technique introduced in this paper is

copy optimisation, which allows us to derive criteria

under which we can modify existing data objects in place

rather than generate new copies when they are logically

modified. A related copy optimization technique first

described by DewarI1977] has been implemented in the

current SETL optimizer. Finally, a technique of inclusion

and membership determination which can provide valuable

information to data structure choice was described.

Low[197'4] describes an interesting approach to

selection of representations for particular data types

within the framwork of a small set of pre-selected data

structure alternatives. The choice is made via a cost

analysis of each alternative for the operations actually

performed in the program. The cost of a program is

calculated in terms of execution time and required space.

Combinatorial explosion in the calculation of program cost

is avoided by insisting that all variables (of the same

type) subject to a single operation have the same

representation structure. Low[ 19781 enhances this idea

and gives an example and overview. A shortcoming in this

approach is that logical relationships among program

variables, which should play an important role in the

11



process to choose proper data structures for program

variables, are completely ignored.

Bruce[1976] describes an APL optimizer incorporating

various established optimisation techniques. The program

performance benefit of various possible transformations is

estimated. Determination of a realisation of the target

program which gains maximum benefit is attempted.

Combinatorial explosion difficulties in this process are

avoided by a look-ahead scheme. The uork of this

optimiser is structured to avoid the creation of uncessary

temporaries, in particular temporaries with large

aggregate values. Loop optimisation techniques such as

loop paralleling, loop switching and loop jamming are

employed. A simplified copy optimisation principle which

allows arrays to be used destructively is also included.

No attempt to select optimal data structures is made.

Rovner[1976] has extended Lou's work to finding

implementations for associative data structures and

accesses. Redundant representations for data structures

are allowed. Rovner uses Lou's hill climbing approach.

Some additional heuristics about cost trade-off are added

to the applicable conditions.

Kantl1977] describes a system LIBRA which aims to

identify an efficient set of implementations for abstract

12



constructs in a very high level program. The high level

constructs are realized by step-by-step refinement of

partially refined programs (called program descriptions).

Within this framuork, three basic issuses are addressed

picking a program description to refine, picking a

particular statement or group of statements to refine and

selecting a refinement for the chosen statement. At each

level of selection, a set of heuristic rules is applied

first, then follous a cost analysis. If the outcome of

cost analysis is not clear, seperate program descriptions

are set up to test several possibilities. The refinement

process continues until a program in the target language

is generated. In this system, multiple representations

and the use of different representations for a variable in

different parts of a program are allowed.

1 . 3 Review of Salient Features of the SETL Language

Before starting to describe our system, we shall

review some of the important features of the language,

SETL, that we are going to deal with. A general survey of

this language is given by Kennedy and Schwartz! 1 975 ] . For

a detailed account, see Schwartz I 1 97 3 1 . Several semantic

and syntatic changes made recently in the new version of

the language are summarized in Schonberg I 1 976 ] . For

complete language description and programming reference,

see Dewarl 1975]. Appendix A lists most of the primitive

13



operations of SETL, and shous the syntactic form in which

they are written.

SETL is a very high level, general purpose language

based upon the dictions and semantic notions of the theory

of sets. Both atomic and composite data types are

supported. Atomics include the data types commonly found

in most programming languages, such as integers, reals,

bit strings of which boolean values are a special case,

character strings, subroutines and functions.

Sets and tuples are two basic composite data types.

Sets are the important objects in the language, whose uses

characterize the semantics of the language. A set is an

unordered finite collection of distinct SETL objects, and

thys may contain atoms, tuples and other sets. Sets may

be formed by enumeration, e.g. {1,2,3}, or by using a

general set-former construction. The general set-former

has the form

{ EXP : RANGE I COND }

where EXP is a genral expression, RANGE describes the

iterative operation which calculates successive values of

EXP, and COND specifies which of these values shall

actually become members of the set being built.

A tuple is an ordered sequence of SETL objects. Two

14



tuples are equal if all their components are equal.

Tuples, like sets, are built by explicit enumeration or by

means of tuple-former expression,

[ EXP : RANGE I COND ]

which is analogous to a set-former expression. Sets and

tuples can be nested freely as components and members of

each other to any depth and can be entirely inhomogeneous

.

Maps, which are special types of sets, play a special

role. Maps are functions in the sense of set theory, i.e.

sets of ordered pairs [X,Y) (i.e. tuples of length of 2),

where X is an element of the domain of F, and Y is the

corresponding element in the range. SETL allows such sets

of pairs to be used as 'tabular functions' or relations.

Maps can be manipulated in terms of their set structure,

i.e. as sets of pairs. However, and most importantly,

functional retrieval and storage .operations can be applied

to them. If F is such a map, then F(X) yields the second

element of the unique pair in F, whose first element is X.

Maps need not be single-valued. A map may contain

several pairs which have the same first element, in which

case the map is called a multi-valued map. If F contains

both tX.Yl and [X.Zl, then the expression F(X) is

undefined. However, the set of all values into which a

map sends a given element X of its domain can be retrieved

15



by using the expression F{X}. In this case, F{X} yields

the set {Y,Z}. If F is single-valued at X, F{X} yields a

singleton set.

An additional range retrieval operation is provided

for maps. If F is a map and S is a set then the

expression FlS) is the set of images of elements of S

under F, i.e. denotes the set

{ Y : X€S,Y€F{X} }

Because of the essential role they play in SETL, sets and

maps are the central objects studied in this paper.

The undefined atom OM is a particular constant related

to various SETL operations. OM is not allowed to be a

member of any set but can be a component of a tuple. It

is invalid in most contexts within expressions but can

appear in an equality test. It is the valid result of

several operations on sets and tuples. In particular, (a)

if F is a map then the expression F(X) yields OM if F has

not been defined or is multiply defined on X, (b) it is

the value of an iterator variable at the end of an

iteration, and (c) it is obtained when extracting an

arbitrary element from the empty set.

The control structure of SETL is largely conventional

and tends to follow ALGOL 60. Conditional statements and

16



expressions are provided, as are if-then-else clause,

while-loops, cases, subprocedures and functions. 'quit'

and 'continue' statements are included for abnormal loop

control ; 'quit' causes control to leave the loop and

'continue* returns control to the beginning of the loop.

A quit or continue statement is applied to the innermost

loop with opening tokens matching the tokens following the

keyword 'quit' or 'continue'.

The least familar SETL control form is the

iterator-over-set, which is written as

( yxi€El , . . . .Xn€En I C ( X 1 , . . . , Xn ) ) block ; end V ;

Where El En are expressions with set values, C is a

boolean expression of XI,..., Xn, and 'block' is any

sequence of statements. This iterator expression executes

'block' repeatedly, once for each group X 1 , . . . , Xn of

variable values belonging to El,..., En respectively and

satisfying the boolean condition C ( X 1 , . . . , Xn) . Convenient

syntax to iterate over a map is also provided '• in the

iterator 'VY:=F(X)', X varies over the domain of the map

F, and 'i receives the corresponding range element.

Functions and subroutines can be recursive.

Parameters are passed by value without return, i.e., the

values of the actual arguments passed to a function or

subroutine are not changed in the calling routine. No

17



value can be returned from a subroutine. The value to be

returned from a function must be specified in a return

instruction.

Format is free, and statements are punctuated by

semicolons. The PL/1 comment convention is employed. The

abbreviated statement 'X op Y ;' stands for 'X = = X op Y ;'

A special primitive 'from', such that statement 'X from Y ;'

is synonymous with 'Y := arb S ; S less Y ;', is also

provided. A front-end macroprocessor is included as

a convience in the SETL compiler. Macro definitions have

the form

macro NAME (NAMLISTI ; NAnLIST2 ) text end NAME ;

Where NAMELIST1 contains the macro's arguments, and

NAMELIST2 is a list of names for uhich neu identifiers are

generated for corresponding names in the macro body. Both

namelists are optional.

A SETL program consists of a set of seperately

compiled 'modules', each of uhich contains a set of

functions and subprocedures . Variables are local by

default but may be declared global to a module. Global

variables may be made 'public', allouing them to be

included in other modules. A user can determine that

certain variables are stored statically uhile others are

stacked on entry to a routine.

13



Every program must contian a module called MAIN. Thi:

module should contain a block of instructions which forms

the main program. A simple form of initialisation block

is also implemented. Only static variables can be

initialized ; this intialisation is performed before the

start of execution.

1 . H Definitions

A number of terms which facilitate later discussion

are defined in this section.

Occurrences :

An occurrence is a use or definition of a program

variable

.

Ovariables •

An ©variable is an occurrence at which the variable is

assigned a new value.

Ivariables :

An ivariable is an occurrence at which the value of a

variable is retrieved. For example, in the instruction

'X:=X+1;', the X in the left hand side is an ©variable

while the X in the right hand side is an ivariable.

FFROn map ••

19



FFROM is one of our main data flow maps. FFROn{OI}

maps an occurrence 01 of a variable V to the set of

occurrences of V uhich can be reached from 01 throurh a

V-clear path, where a V-clear path means a path on uhich

there are no occurrences of V. Note that the transitive

closure of FFROM gives the traditional 'definition-use

chain '

.

BFROM map :

The map BFROM is the inverse of FFROM.

CRTHIS map :

This is a value flou mapping. CRTHIS{OI} maps a

variable occurrence 01 to its creation points, i.e., the

set of all ovariables uhose evaluation can create an

object uhich at some moment in the execution of the

program becomes the current value of 01. For example,

LI : Y := X + 1 ;

L2 : S with Y ;

L3 : Z from S ;

m : U := Z ;

If we use the notation Vi to denote the occurrence of the

variable V at the instruction I, then some of the

relations among the variable occurrences in these three

instructions will be

FFR0M{Y11 = {Y2}, FFR0M{S2} = {S3},

20



BFR0n{Y2} = {Y1},

Y1 € CRTHIS{U4}

BFR0M{S3} = {S2},

PS-CRTHIS map :

This is the value flow mapping to be used in our data

structure choice algorithm. PS-CRTHISCOI} maps a variable

occurrence 01 to the pseudo creation points of 01, i.e.,

the set of variable occurrences which are the ovariables

of value creation or value retrieval instructions and

uhose values can be transmitted to 01 through simple

assignment instructions. This map is similar to CRTHIS

map but it does not link the occurrences uhose values may

be transmitted from one to the other through a series of

value insertion into and value extraction from composite

objects. For example, in the above example, the pseudo

creation point of the U appearing at LM will be the Z

appearing at L3, while its creation point is the Y

appearing at LI.

21



CHAPTER 2 : THE SETL BASING SYSTEM

In our approach to an ADSC system, we have used the

semi-automatic data structuring system provided in the

presently implemented SETL language as a stepping stone.

In this SETL 'basing language', efficient data structures

for the objects of a SETL program are defined by supplying

the language processor with detailed declarations of

structural relations among these objects. We regard the

definition and implementation of this 'basing language' as

two essential preliminary steps to our ADSC system. These

tuo steps determine the basic family of data structures

which we must consider, and give us a systematic language

for characterizing data structures. Two succeeding steps

- designing a data structure choice algorithm and the fact

collector on which it rests then become the major issues

to be studied in designing our total system.

In this chapter, we will describe the basing system,

clarify the fundamental notions which it embedies, and

illustrate its application.

2 . 1 The Notion of 'Basing'

In the absence of user-supplied declarations, the SETL

processor chooses, for the sets and maps appearing in a

22



program, a default representation which is reasonably

efficient for most of the primitive set operations

commonly invoked. However, it is clear that very large

gains in efficiency can be obtained if program variables

are represented in a way which depends on the specific

operations into which they enter. To give an obvious

example, if sets SI and S2 are known to be subsets of some

other set B, then bit-vector representations for SI and S2

(where an on-bit position indicates the presence of a

given element of B in the corresponding subset) can be

very advantageous if the intersection operation, S1*S2, is

to be performed frequently.

Generalising the fundamental technique apparent here

we say that an object X is based on another one B, if X is

represented in some special, abbreviated form such that

the presence of B is required for the full description of

X. In this case B is said to be a 'base'.

In the present SETL system, two kinds of basings have

been introduced.

(1) Member Basings - This scheme enhances the efficiency

of SETL (which is a value language), by using pointer

mechanisms internally. Whenever the value V of a variable

X is known, either by declaration or by some decision made

by the optimizer, to be an element of another set B

(called the base), a pointer to the element of the same

23



value in B, instead of the value V itself, is kept in X.

This technique allows us to save substantial execution

time uhenever internal 'locate' operations are required in

the subsequent uses of the variable X. With such a

pointer available, an indirect reference can replace a

more expensive series of searches and equality tests.

This can be extremely significant, especially when the

value of X is a composite object.

(2) Domain Basings - When a set S is known to be a subset

of another set B (which again we call the base of S), it

can be represented by a collection of bits associated with

B, each indicating whether a particular element of B is in

is. These bits can be stored either locally with the

elements of B, or remotely, i.e., the whole collection of

bits can be stored as a bit string and each element of B

can be supplied with an index which can be used to address

all such 'remote bit strings'. A common advantage of this

kind of structure is that both the 'local bit' and the

'remote bit' representations can save substantial space.

Moreover, remote repres.ejitation can speed up boolean

operations on sets very greatly. The same approach can

also be extended to maps whose domains are known to be

subsets of the base. In this case, the collection of bits

is replaced by a collection of map value pointers.

In summary, 'basing' which introduces indexing and

pointer notions at the impelementation level of the SETL

24



system will play a central role in our approach

2 . 2 Data Structure for Based Representations

In order to make clear the efficiency gains obtainable

in the presence of basings, the concrete representations

used for based objects are discussed in this section.

In the absence of declarations, the fundamental

structure used to represent a set in SETL is a breathing

hash-table, i.e., a hash-table whose table size is

adjusted dynamically in order to keep the length of

clash-lists approximately constant, so as to guarantee

that the membership operation is aluays performed in a

time which is independent of the size of the set being

searched. Since in the standard SETL situation, map

retrieval, set union and intersection all involve internal

membership tests, a significant part of the execution cost

of an undeclared SETL program is roughly proportional to

the total number of hash-search operations performed (here

we disregard the overhead involved in reallocating

hash-tables). The efficiency advantage secured by the use

of based representation is therefore seen to result from

the possibility of replacing these hash-search operations

by simpler code sequences, typically involving only one or

two indexing operations, and from the possibility of using

bit-parallel operations in some favorable cases.

25



The possible candidates for an extended library of set

representations are numerous. The structures selected for

incorporation into our library reflect this potential

variety, but are compromised by the need to keep our

library down to a manageable size, and our subjective

judgement concerning the most important language

constructs to optimise. The most significant of the

structures ue use are as follous

.

If a map F is known to be based on B, and X is known

to be an element of B, then the value of F(X) may be

stored as part of the element block in B which represents

X. To do this, we allocate, in each base element block,

fields which will hold the values of some of the maps

which are defined on these elements. Successive fields in

this block correspond to various maps Fl,F2....Fn whose

domains are known to be subsets of B. When this

representation is used, retrieval or assignment of F(X)

becomes an indexing operation which uses an offset

associated with F (known at compile time) to access an

appropriate field in the element block for X. The

representation used for X must then contain a pointer to

the element block in B which represents X. Note, however,

that in dealing with elements not known to belong to B, we

must be able to locate them in B by using a standard

hash-search procedure. Therefore in most cases B must

have most of the hash-table structure of standard unbased

26



sets .

The map representation described above can be said to

be local : map values are directly attached to the

representation of elements of the map domain. This

representation optimizes retrieval operations, but is

awkward for global operations such as iteraton and

copying, because of the distributed nature of the

representation. An alternative representation, which is

equivalent in amount of storage used and only slightly

less efficient for retrievals, is available if we store

the range of a map as a tuple, and incorporate a single

index integer in each element of the map domain (i.e., of

the base), using this index to access, the tuple. The

index is incremented sequentially whenever a new value is

made an element of the base. Suppose the object X, XeS,

has index I. Then the value of F(X) is found by

retrieving TF(I), where TF is the tuple representing F.

This representation, which is a kind of dual to the local

representation described previously, is said to be

'remote', and F is said to be a 'remote map' based on B.

Similar local and remote representations exist for

subsets. If a set S is addressed only by insertions,

deletions, and cardinality checks, then it can

advantageously be represented by individual bits attached

to the elements of a base B. If X is an element of B,

27



then the test 'X in S' is performed by examining that

single bit in the element block of X which determines

membership in S. Since ue may want several subsets to be

represented in this fashion, each element block in a base

is allowed to contain a field whose i-th bit indicates

membership of the corresponding element of B in the i-th

subset based on B. Subsets represented in this way are

said to be local subsets.

Local subsets support efficient insertion, deletion,

membership test and cardinality check operations, but

global operations such as union and intersection are

inefficient uhen applied to local subsets. For such

operations, bit-vectors, which can make use of hardware

bit-parallel operations, are a more appropriate choice.

For sets with this representation, the index i attached to

element X of the base B (described above in connection

with remote maps) is also used to index the representing

bit-vector ; if bit i is on in the bit-vector

representation of S, it indicates that XeS. Membership

tests addressing such structures are slightly slower than

membership tests for local subsets, as one additional

indexing operation is involved.

The data structures described so far are in general

more compact than their unbased counterparts. There are

cases, however, in which they may lead to very inefficient

28



Q>

XI
«0

I/)

3:



~l



Local set header

Set specifier

S:set(EB)



Set specifier

S:set(eB)

Map specifier

m: map (eB)£B'

Remote set

Bit string Size

Value

t

t

Remote map

tt words

To template
-t*- in base

J

Tuple

Hash Size

To
base-a

Max.

index

Undefined value

Base array



storage uses. If a based map (on B) is defined over a

small subset SB of B , then *B-#SB uords (one of uhich is

allocated for each element block in B) will be wasted. In

this case, it can be preferable to represent F as a

standard hash-table, retaining houever the 'eB' mode for

the elements in its domain. This leads to so-called

sparse representation. The sparse representations are

still slightly more efficient than completely unbased

ones, in terms of accessing : if X is €B and F is a sparse

map domain based on B, then the hash-code for X is stored

in its element-block in B, and need not be recomputed to

access the hash-table for F when retrieving F(X) (this is

because the hash code of a value is defined in a

system-wide invariant way). The same technique can also

be applied to subsets. Sets represented in this fashion

are called sparse sets. The specific way a based object

is ultimately represented (locally, remotely or sparsely)

will be called the 'representation attribute' of the based

object

.

The considerations that we have just described lead to

the structures pictured in figures 1 to 4. Further details can

be found in Deuar et al[1977bl.

2 . 3 Bases

The data structures described in the previous section

33



derive their usefulness from the pointer and index

mechanisms which they implicitly make available. Houever,

use of these efficiency- oriented pointer mechanisms

creates the potential for conflict with the strict value

semantics of SETL. For example, if X has been declared

'€B', and F(X) has been given a value once, subsequent

deletion of X from B might be feared to have unanticipated

side- effects = should ue consider F(X) to still be

defined ? If a set S is based on B and an element X of B

uas in S, should we say that the domain basing of S on B

is invalid after X has been deleted from B ? To permit

such side-effects is unacceptable since it would imply

different semantics for progams, depending on whether

based representations had or had not been declared. To

avoid this, we insist that bases are not program

variables, i.e., they are not explicitly created or

modified by the user's code. The value of a base is

defined only by the collection of all objects based on it.

In a 'declared' program (i.e., one in which based

representaions have been declared for variables) bases are

built and updated in response to operations which create

objects declared to be based on them. For example, if the

declaration X€B has been supplied, then whenever X

receives a value which can not be determined a priori to

be already in B, a hash-search in B is performed, and if

the value of X is not already there, it is inserted into

B. This implies that in the absence of some compaction

34



mechanism, bases can only grou monotonically during

program execution. It also means that much of the cost of

using based representations is incurred in the build-up of

bases

.

Note that uhen a user introduces basing declarations

in his program, he uill define bases using names which are

distinct from any identifiers already present in his

program ; but these bases may actually turn out to be

identical in value to some actual program variables. For

example, the variable S may be declared to be domain based

on B, but it might be possible to ascertain that S=B,

because B receives elements only uhen elements are added

to S and no element is ever deleted from S. A SETL

compiler able to recognise this might choose to treat S

itself as a base. This illustrates a very general

principle of our basing system = the processor will use

pointer mechanisms as far as it safely can but the SETL

value semantics visible at the user level uill be

preserved faithfully.

2 . 4 Details of the Basing Language

We shall now describe the syntax and semantics of

basing declarations in more detail.

The generic term 'mode' is used in our system to refer

35



to the total information defining the data representation

of a program variable. For each of the modes which ue

admit, a symbolic notation is introduced. The family of

notations which thereby arise constitutes our data

structure representation language, or basing language.

Among these modes, the modes related to bases play the

most important roles, as explained above.

Each variable in a SETL program can be declared to

have a mode. A mode descriptor specifies the SETL type of

a variable, and in addition, gives complete or partial

structural information about it, e.g., its size and its

relationship to other variables. Once a variable is

declared, its mode stays static, i.e., can never be

changed. The modes of undeclared variables are determined

automatically by the language processor, but may be left

'general'. A related set of rules also determine the mode

of compiler-generated temporaries.

In general, mode descriptors can be classified into

four categories = 1) primitive modes, 2) bases, 3) derived

modes and M) composite modes.

2.4.1 Primitive Modes

Primitive modes correspond to the primitive types of

SETL : int, chars, bits, real and atom. An optional range

descriptor may be appended to the first three to indicate

36



minimum and maximum size of the corresponding object. For

example :

repr X,y,Z : int(0,1000) ;

CI .C2 : chars( 100) ;

R : real ;

end ;

As this illustrates, the range descriptor part of a

primitive mode has the form (n1,n2), where n1 and n2 are

integers. The range specifier (0,n2) can be abbreviated

(n2) .

2.4.2 Bases

The declaration 'base(M)' describes a base whose

elements have mode M. Bases must be declared before

appearing within other mode descriptors. To give a mode

descriptor for base elements is optional.

2.4.3 Derived Modes

Derived modes indicate relationships to a specific

base. The only mode descriptor belonging to this category

is the member basing mode (e.g., €B), which specifies

that the value of a program variable is an element of a

base B.

2.4.4 Composite Modes

37



Mode descriptors for sets, tuples and maps are

constructed recursively from other modes, using th

»

following construction :

n set(M)(SZ)

describes a set whose elements have mode M, and

whose expected size is SZ. Here, as elsewhere,

the size parameter is optional. If M is a mode of

the form €B, where B is a base, the attribute

keyword 'local' 'remote' or 'sparse' can be used

before the keyword 'set'. The altenative notation

{n}, which is equivalent to set(M), is allowed.

2D tuple (M) ( SZ ) describes a tuple whose components have

mode M and whose expected size is SZ.

3) tupleCMI ,n2, . . ,

)

describes a tuple of known length whose components

have the specified modes. Ml, M2,...,etc. The

alternative notation [M1,M2,...], which is

equivalent to tuple ( M 1 , M2 ,...) , is also allowed.

4) map(M1)M2

is the mode descriptor for a map from objects of

mode Ml to objects of mode M2, i.e. , the domain

and the range of the map have the mode (Mil and

{M2} respectively. If Ml is a mode of the form

€B, the keywords 'local', 'remote' and 'sparse*

38



can be used in the same uay as that of a domain

based set.

5) smap(M1)M2

is the mode descriptor for a single-valued map.

Nl and M2 have the same significance as for 'map'.

6) mmap{nilI12

is the mode descriptor for a multi-valued map, or

relation, whose domain is of mode {Ml}. Since the

set of images of any point X of its domain has

mode M2, M2 must be a designator for a set mode.

7) The three previous mode designators are extended to

multi-variate maps. For example, we can write

repr F : map ( eB , eB ) int ;

G : mmapC eB 1 , eB2 , eB3)tuple(chars ) ;

end ;

For variables the mode of whose value may vary during

program execution, the mode 'general' can be specified.

Whenever an object X of general mode is assigned to a

declared Y, the mode of X will be checked dynamically, and

its conformity with the mode of Y will be established. If

the modes are not compatible, the program terminates

immediately. In the reverse case, when Y is assigned to

X, X will inherit the mode of Y and no mode conversion is

39



required

.

It is somtimes convenient to bypass the basing

mechanism, and to specify that the representation of a

given object is to be disjoint from that of any other,

i.e., 'unbased'. If the mode 'unbased' is specified for

variable X, it means that if in the course of program

execution X receives a value whose representation was

based then this value uill be reconverted to an unbased

form before being assigned to X. Note that ue also allou

variables to be undeclared (rather than unbased). The

processor supplies a basing for undeclared variables,

consistent uith the ways in which such variables are used

and assigned.

Program variables may be declared to have multiple

modes. Tliis useful extension of the data representation

language allows the user to create multiple

representations of the same object. For example,

repr S = set(eBl), eB2 ; end repr ;

allows us to describe S as a domain based subset of Bl,

which is also to be considered as an element of the second

base B2. If this declaration is used then the maps based

on 31 can be accessed via elements of S, while the maps

defined on S can be based on B2 . Another example is

repr X : eBI, €B2, eB3 ; end repr ;

40



which specifies that the object X is to have three

simultaneous representations, as elements of each of the

bases B 1 ,B2 and B3.

A user can introduce new mode names with the

declarative statement :

mode MODENAME : mode-descriptor ;

The MODENAME can then be used subsequently in the program

as a valid mode descriptor. The only restriction is that

a mode name can be defined at most once and should be

different from language reserved words and program

variables

.

2 . 5 A Case Study of the Application of Basings

As an example illustrating the use of basings, ue

present a version of the interval analysis procedure

introduced by Cocke and Allen ; cf. Allenl1972],

Schaefer ( 1 973 1 . The original 'unbased' version of this

program is taken from Schwartz [ 1 973 ] , pp. 221-223. To

ease understandng , we shall first describe the logic of

this procedure informally. Then we give basing

declarations as well as program code, and analyse the

advantages obtained by the use of basings.

41



2.5.1 Procfram Logic

We assume a directed program graph G to be given as a

set NODES and a function CESOR which maps each NDeNODES

into the set CESOR(ND) of all its successors. One

particular member of nodes is assumed to be distinguished

as the entry node of G.

An interval in G is a set S of nodes, containing a

distinguished node X called the head of S, such that there

is no entry into S except through X, and other nodes in S

can be reached from X along a path wholly contained in S,

and such that when X is removed, S is free of loops (i.e.

of closed paths). It is a characteristic property of

intervals that their nodes can be enumerated in such an

order that, with the exception of branches terminating at

the interval head, all branches between nodes of the

interval are 'forward' branches, i.e., go from a node S to

a node Y having a larger serial number in the enumeration

of the interval. Such an enumeration of nodes is said to

be an enumeration in interval order. The interval of a

node X is the largest interval with X as head ; it may

consist of X only. The procedure INTERVAL shown below

determines the interval of a node X, and enumerates the

nodes of this interval in interval order.

An interval is called maximal if it is not contained

42



in any larger interval. It can be shown that every

program graph can be decomposed uniquely into a union of

maximal intervals, and that distinct maximal intervals are

disjoint. To find these maximal intervals, we proceed as

follows. Take the interval generated by the entry node of

the program graph ; this is a first maximal interval.

Then take any point X which is a successor of some point Y

belonging to an interval already formed, but which does

not itself belong to an interval already formed. Form the

interval of X ; this is a new maximal interval. The

routine INTERVALS given below realises this process. It

also associates, with each maximal interval INT, the set

FOLLOW(INT) of all nodes which are successors of a node of

INT but do not belong to INT ; and associates with each

node B of G the maximal interval INTOV(B) which contains

it.

The derived graph G* of a program graph is defined as

follows : the nodes of G' are the intervals of G ; the

successors of an interval INT are the intervals distinct

from it which contains successors of the nodes within INT

; the entry node of G' is the interval containing the

entry node of G. The derived graph of G is built up by

the routine DG given below.

A program graph in which there exists no interval

containing more than one node is called an irreducible

43



graph ; fortunately, such graphs arise only rarely in

connection with actual programs. In SETL, ue may urite

the condition of irreducibility very simply as

(ftNODES) = SINTERVALS(NODES)

.

By forming successive derived graphs G ' , (
G

' ) ' , e tc . of an

original graph G, ue obtain the derivation sequence of G.

In cases in uhich this sequence converges to a graph

consisting only of a single node, the interval-analysis

method uhich has just been outlined gives a decisive

account of program flow. In particular, it determines the

order in uhich many other optimization-related processes

should be applied to G and to the program P of uhich G is

the flow graph. The derived sequence of G is built up by

the main routine given belou.

2.5.2 The Interval Analysis Code

Nou ue present detailed code and basing declarations

for the algorithm described above.

module INT-ANALYSIS ;

$ First ue declare all global variables.

$ ALLNODES is a base on uhch other variables are based.

$ CESOR maps each node and interval into the set of its

$ successor nodes or intervals.

44



$ INTOV maps each node into the interval containing it.

$ NODES is the set of nodes in current graph.

$ FOLLOWERS is the set of all nodes uhich follow some node

$ of an interval I being constructed, but have not yet been

$ added to I.

$ INTS is the set of intervals in current graph.

$ FOLLOW maps each interval I into the nodes uhich follow

$ a node of I but do not belong to it.

$ ENTRYIHT is the entry node of a derived graph.

vars

ALLNODES, CESOR, INTOV,

NODES, FOLLOWERS, INTS, FOLLOW, ENTRYINT

end vars ;

$ We then declare based representations of these variables.

repr

ALLNODES : base ;

NODES, INTS : spar se { e ALLNODES } ;

CESOR, FOLLOW : local smap ( e ALLNODES ) sparse {€ ALLNODES} ;

INTOV : local smap(eALLNODES)eALLNODES ;

FOLLOWERS : spar se { e ALLNODES } ;

ENTRYINT : €ALLNODES ;

ENTRY : CALLNODES ;

SE2 : tuple(tuple(sparse{€ALLNODES} , GALLNODES) ) ;

end repr ;

$ This is the main routine which constructs the entire

45



$ derived sequence of a graph.

LO 1 : read CESOR ;

L02: read ENTRY ;

L03: NODES : = {N1: N2 := CESOR ( N 1) } + {N2: N2 := CESOR ( N 1 ) } ;

LOH: SEe := IINODES, ENTRY]] ;

L05: ( while #DG(ENTRY) < SNODE )

L06: SE2 11 [IINTS, ENTRYINT ] ] ;

L07: I NODES, ENTRY ] := [ INTS, ENTRYINT ] ;

end while ;

print SEB ;

proc DG(ENTRY) ;

$ This routine constructs the derived graph of a graph.

repr

ENTRY, I : eALLNODES ;

end repr ;

L08: INTS := INTERVALS ( ENTRY ) ;

L09: ENTRYINT := INTOV(ENTRY) ;

L10: ( V IGINTS )

L11: CESOR(I) := INTO V I FOLLOW ( I ) ] ;

end Vl ;

return INTS ;

end proc DG ;

proc INTERVALS(ENTRY) ;

46



$ This routine constructs all intervals of a graph.

$ SEEN is the set of all nodes which are successors of some

$ node in an interval already constructed but which have

$ not themselves been added into any interval.

repr

ENTRY, NODE, ND : eALLNODES ;

SEEN, HEADS : remote { GALLNODES } ;

J : tuple( eALLNODES) , eALLNODES ;

end repr ;

L12: INTS := nl ; FOLLOW := nl ; INTOV == nl ;

L13: SEEK := {ENTRY} ; HEADS := {ENTRY} ;

L14: ( while SEEN /= nl )

L15: NODE from SEEN ;

L16: HEADS with NODE ;

L17: INTS with ( J := INTERVAL ( NODE ) ) ;

L18: FOLLOW(J) := FOLLOWERS ;

L19: (VND := J(N)) INTOV(ND) := J ; end VND ;

L20: SEEN := SEEN + ( FOLLOWERS - HEADS) ;

end while ;

return INTS ;

end proc INTERVAL ;

proc INTERVAL(NODE) ;

$ This routine constructs the interval with NODE as

$ the head node

.

47



repr

KODE, X, Y, U : CflLLNODES ;

NPREDS, COUNT : local smap ( e ALLNODES ) int ;

NEWIN : sparse {CALLNODES} ;

Z : GALLNODES ;

INT : tuple(eALLNODES) ;

end repr ;

$ Count the number of predecessors of every node.

L21: (VXGNODES) NPREDS(X) := 0; COUNT(X) := 0; end VX ;

L22: (VXeNODES,YeCESOR(X) ) NPREDS ( Y )= =NPREDS ( Y )+ 1 ; end VX ;

$ Initialize the interval under construction to be null, and

$ set FOLLOWERS to be {NODE}.

L2 3: INT := nult ;

L24: FOLLOWERS := {NODE} ;

$ Set COUNT(NODE) equal to the number of predecessors of NODE

L25: COUNT(NODE) := NPREDS(NODE) ;

L26: (uhile NEWIN:

=

{YgfOLLOWERS 1 NPREDS ( Y ) =COUNT ( Y ) } /= nl

)

L27: (VZCNEWIN)

L28: INT II (Z 1 ;

L29: FOLLOWERS less Z ;

L30: (VU€CESOR(Z) I U /= NODE )

L31: COUNT(U) == COUNT(U) + 1 ;

L32: FOLLOWERS with U ;

end VU ;

48



end VZ ;

end uhile ;

return INT ;

end proc INTERVAL ;

end module INT-ANALYSIS ;

2.5.3 Efficiency Analysis

We nou analyze the effect of the basing choice

described above on the execution efficiency of this

program

.

L0 1 : Since CESOR is a map based on ALLNODES with images

also based on ALLNODES, each component of the

elements of CESOR (these elements are all pairs)

has to be inserted into ALLNODES if it has not been

in ALLNODES yet. This is the typical overhead

incurred when ue read a based object.

L02 : A base pointer has to be derived for ENTRY after

its value is read in.

L09 : No hash-search operation is required in performing

this assignment, because INTOV(I) is based on the

same base as ENTRY.

L10,L11 : The efficiency of this loop is considerably

improved by the basing declarations. Since I is

49



based on ALLNODES, no hash-search operation is

required to reach FOLLOW(I) and CESOR(I).

Similarly, no hash-search is required to compute

INTOV[FOLLOW{I) I .

L12 : Since FOLLOW and INTOV are based maps, it uill take

slightly longer to initialize their images than to

initialize a standard null set.

L 1 8 , L 1 9 , L2 1 , L22 , L2 3 : No hash-search or conversion

operations are required. Note that except for the

iteration over J in L19, uhich utlises the basing

' tuple(GALLNODES) ' , other occurrences of J use its

member basing.

L26 : NEWIN is created slightly more efficiently than if

it were unbased. This is because that the hash

code of Y is available uhen it is retrieved from

FOLLOWERS ; no hashing is required uhen Y is

inserted into NEWIN.

L29,L32 : No hashing of Z (or U) is necessary ; but

search for Z (or U) in the hash table representing

FOLLOWERS is still required.

L30 : The inequality test can be done by comparing the

basing pointers of U and NODE since both are based

on ALLNODES ; considerable advantage is achieved by

this, especially uhen processing derived graphs for

uhich each node is represented by a composite

50



object

.

L31 : No hash-search is required.

In summary, by basing the variables in this program ue

have eliminated most of the hash-search operations which

are otherwise required at run time. The cost ue pay for

this is that ue have to insert, into the base ALLNODES,

each interval J created at L17 and also each component of

the elements of CESOR read in from the input. Since the

cost of inserting an element into a base is roughly the

same as the cost of a hash-search opearation, we can

estimate the efficiency gain of our basing choice by

comparing the frequency of the insertion operations we

introduced versus the frequency of the hash-search

operations saved. Clearly, the former operations have

much lower total frequency than the latter opeations, and

therefore our basing choice is indeed advantageous.

2.5.4 Comments on the Forecroing Example

The example presented above shows that by properly

selecting the basing of each program variable, consistent

basing relations can be defined, eliminating most of the

hash-search operations tliat would otherwise be required,

especially in nested loops. Note that we use the term

'consistency of basings* to indicate that no or few

51



conversions are implied by value assignments. Achieving

this property is one of the major issues in devising

basings . When suitably high basing consistency is

achieved, the efficiency of SETL programs uill be improved

considerably

.

The selection of proijer basing modes for program

variables is not as simple as one might think. Basing

choices cannot be made simply by determining

inclusion/membership relations among variables. It uill

not always be appropriate to base a subset T of a set S on

S. As illustration of this, note that in the preceding

eKmple, FOLLOWERS is a subset of NODES but not based on

NODES. Attaining consistency of basings among program

variables is the most important issue involved in basing

choice. We hope to do this automatically in many cases,

but it appears that in some cases consistency can only be

achieved through an understanding of program logic. In

such cases, some (hopefully quite small) degree of program

reconstruction will be required.

52



CHAPTER 3 : AN AUTOMATIC DATA STRUCTURE CHOICE SYSTEM

The basing declaration language provides a flexible

tool which can alleviate much of the uork needed to

realize an algorithm efficiently. However, a substantial

effort is still required to choose good basings. Our long

range goal is to remove this burden from users of the SETL

system, i.e., to generate good basings without user

intervention. Me have attacked this goal empirically by

taking a representative variety of algorithms and making

the basing choices for them manually. By noting the facts

which repeatedly appear relevant in this process, we have

taken a first essential step toward mechanizing data

structure choice. The automatic system which we have

constructed can therefore be regarded as an embodiment of

various heuristic principles which grew out of our

systematized experience of manual basing choice.

3 . 1 Essential Observations

Based representations provide a systematic mechanism

for optimizing set-theoretic operations. The gain they

can provide is twofold.

A) If basings are properly chosen, operations on based

sets and maps can be performed without hash-table

searches. The hashing and clash-list scanning otherwise

53



required can be replaced by indexing operations.

B) If good basing choices succeed in simplifying SETL

operations sufficiently, the code for the remaining SETL

primitives can be emitted on-line, eliminating the

interpretive overhead imposed by the calls to off-line

hash-table accessing procedures.

The main costs involved in using based representations

are also twofold :

A) When based objects are generated, their bases are built

simultaneously behind the scenes. Inserting a neu element

into a set forces its parallel insertion into the

corresponding base, an operation slightly more expensive

than normal (unbased) set insertion, because an element

block, generally several words long, must be allocated.

B) Bases are bulky = each element block must accomodate

the value of all based functions that are defined on some

subsets of the base. If the domains of these functions

cover only a small portion of the base, the wasted space

can be considerable.

Leaving aside for now the question of storage

optimization, it is important to notice that both cost and

gains connected with the use of basings can be quantified

in terms of the number of insertion operations and

hash-searches performed. The generic term 'locate' is

54



henceforth used to denote this class of operations, i.e.,

insertion operations and hash-searches. Mote that the

cost of set insertion is itself the combination of a

hash-search and a storage request, and little will be lost

if ue disregard the latter. This means that we will

disregard the difference between an unbased set insertion,

and a base insertion. If we use this somewhat simplified

measure, the major goal of basing selection can be

characterised as that of reducing the number of locate

operations required during program execution.

3 . 2 Fundamental Idea

A locate operation can be avoided at a set or map

operation if the arguments of the operation are properly

based, i.e., if locate operations have been executed at

certain points before the current instruction is reached.

Thus the aim of basing choice may be defined as that of

moving locate operations from the points at which an

object is used to certain program points which follow the

point at which the value of the object is created but

precede its points of use. Such movement can reduce the

number of locates required during execution, and thus

increase execution efficiency, if the points at which

locate operations are executed have lower frequencies than

the instruction at which the object is subject to a set or

map operation. In manual use of the basing system, this

55



kind of movement of implicit locate operations is achieved

by imposing proper basings on variable occurrences. Our

basing selection must thus aim to uncover basings uhich

have this effect.

With this idea in mind, let us consider the following

example

.

LI : read NODES ;

L2: read FATHER ;

L3: ROOT -• = nl ;

LU: (V X€NODES )

L5: Y .-= X ;

L6: ( while FATHER(Y) /= Y )

L7: Y -•= FATHER(Y) ; end;

L8: ROOT(X) := Y ;

end ;

L9: print ROOT ;

Plainly, implicit locate operations will be required

at instructions L6, L7 and L8 if no basings are used.

These locate operations can be avoided by letting all the

variables be based on the same base and carrying out

locate operations during the read operations at Li and L2.

This basing choice is certainly profitable because L6, L7

and L8 will have substantially higher frequency than LI

and L2. But how can we make such a basing choice

56



systematically? The outline of a possible approach can be

put as follows :

We examine the instructions at which implicit locate

operations are required. For each of these instructions,

we consider how the locate operations which it contains

can be avoided. For exmple, at L6 and L7 , no locate

operation will be required if FATHER and Y are based on

the same base. In order to see how such a common basing

might be imposed with least expense, we consider the

points at which the values of FATHER and Y are created.

FATHER is created at L2 and Y is created at LI since Y is

an element of NODES. Thus we see that if NODES and FATHER

are properly based at LI and L2 then no locate operation

will be required at L6 provided X is also based on the

same base. This pattern of basings will be profitable

because LI and L2 have lower frequency than L6. We

therefore introduce a base B and force NODES and FATHER to

be based on B. Repeating the same procedure for L8, we

are led to conclude that ROOT and X should be based on the

same base. Since X is created at LI and NODES has been

determined to be based on B, we determine that ROOT is

also to be based on B. This process associates basings

with the objects at L1,L2 and L3 . Using value flow, we

can then propagate these basings to other variable

occurrences. For example, the X appearing at m and L5 is

given tlxe basing 'eB'. As a final step, we must choose

57



remote, local or sparse representation for certain

composite objects. In the above example, NODES, FATHER

and ROOT uill all be given local representations since

none of them are subject to global operations such as set

union or intersection.

This example illustrates our scheme for automatic

structure choice :

1

.

We examine the creation points of the values uhich

appear as arguments to operations for uhich

implicit locate operations are required.

2. We determine proper basings for the values created

at the points which have been found in step 1 .

3. We propagate these basings to other variables by

using value flow.

4. Finally, ue determine whether the composite objects

which have been based are to have local, remote or

sparse representation.

3 . 3 Overview of the System

Me shall now begin to outline an automatic data

sructure choice system uhich rests on the fundamental idea

explained above. The whole system consists of five

distinct phases.

58



Phase I introduces a base for each 'live period' of a

set or map. A 'live period' is used here to mean a set of

occurrences of a given variable, which are linked by the

data flow maps FFROn and BFROM. The purpose of this phase

is to simplify the processing needed in the subsequent

phases

.

Phase II merges the bases created in the preceding

phase, by equivalencing all imputed bases attached to

ivariables of a single instruction. In addition, this

phase emits the base insertion operations uhich enforce

the postulated basing relations of composite objects.

These insertion operations are generated by examining all

operations involving hashing ('with', map storage, etc)

and by declaring the incorporated item as being an element

of the corresponding base. For example, an appearance of

X in 'S with X' forces X to be member based on the base B

on which S is domain based.

Phase III optimizes the placement of the 'locate'

instructions generated in previous steps. This amounts to

performing a type of forward code motion on these

instructions. The need for such code motion is clear from

the following fragment •

(VXes) Y = Y + 1 ;

;

Z : = F( Y) ;

The appearance of Y in a map retrieval operation suggests

that Y should be an element of the domain base of F. A

59



'locate' instruction placed at the point of creation of Y

will however generate a number of useless basing pointers

because all of them (corresponding to successive values of

Y in the loop) except the last one are dead (i.e.,

redefined before they are used). Phase III moves locate

instructions out of such loops, and places them at the

lower frequency program points where they are actually

needed

.

Phase IV builds up a detailed description of the mode

of each variable occurrence. At this point, all useful

basing pointers will have been created at inserted locate

instructions. Every variable use which needs basing

pointers can count on receiving them without having to

execute any locate operations, as long as basing pointers

are properly propagated. A base on which only one

composite object is domain based is regarded useless

(since basing cannot reduce the number of locate

operations required during execution) and will therefore

be dropped. This phase mainly determines how these basing

pointers should be propagated.

Finally, phase V refines our basing choices, by

selecting local, remote or sparse representations for

based sets and maps .

After this general introduction, we now begin to

60



explain the detailed workings of each phase of our data

structure choice system.

3 . ^ Phase I : Base Generation

This is a preparatory phase, which generates a base

for each 'live period* of a set or map. A 'live period'

is used here to mean a set of occurrences of a given

variable, which are linked by the chaining functions FFROM

and BFROn. The purpose of this phase is to simplify the

processing needed in the subsquent phases.

In order to understand the purpose of this phase, let

us review the fundamental idea of our algorithm. Our

intent is to examine the creation points of the values of

the arguments of set and map operations, determine the

basings of the ovariables at these creation points and

then propagate these basings to other variable

occurrences. A difficulty in directly implementing this

idea is that the basing propagation process may be

somewhat complicated and inefficient. Since at an

occurrence of a composite object we may need to know

member basing pointers as well as domain basing and/or

type information, quite complex information may have to be

propagated. This can cause the basing propagation process

to be even more inefficient than the type finder

algorithm. Another difficulty is caused by the fact that

61



the type finding algorithm in the SETL optimiser may

determine that the types of certain variable occurrences

are indefinite, e.g., set-or-map. Due to the

incompatability betueen the based representations of

different types of composite objects, based

representations are unsuitable for the composite objects

of indefinite gross type. We to give such objects the

standard representations. Moreover, objects of this kind

can never carry basing pointers for their elements. This

fact makes it necessary to revise the ideal rule

specifying exclusive use of creation points to generate

basing pointers, since the basing pointers generated at

creation points may be lost during the path to set or map

operations. This is illustrated by the follouing example

LI : Y := Y + 1 ;

L2 •• S with Y ;

L3 : Z from S ;

L4 : U F(Z)

Suppose that F is a map and S is of indefinite type. In

this case, ue should not generate basing pointers at Li

even though Y is a creation point of the Z appearing at

m. Since S has standard representation, the Z appearing

62



at L3 can never be based in a uay which uill eliminate an

explicit locate operation, even though the Y inserted into

S at L2 is based. Thus ue uill need to generate basing

pointers at L3 after a value has been retrieved from S.

In order to overcome these difficulties, ue slightly

modify our fundamental idea by defining 'live periods' of

composite objects and using pseudo creation points instead

of creation points. A 'live period' is defined here to be

a set of occurrences of a given variable, uhich are linked

by the data flou maps FFROM and BFROM. Me treat the

domain basings of composite objects differently from

member basings. For each live period of a composite

object, if all the occurrences in it are of the same gross

type, ue introduce a base as its domain base. Houever, no

bases are introduced for the live periods uhich consist of

occurrences of indefinite gross types. Then at each set

or map operation ue impose the condition that the base of

the set or map be the member base of the element objects

uhich appear in the instruction. This information is

propagated to all of the pseudo creation points of these

element objects. A pseudo creation point of an occurrence

X is an occurrence uhich is the ovariable of a value

creation or value retrieval instruction and whose value

can be transmitted to X through simple assignment

instructions. All member basings transmitted to the same

pseudo creation point are then identified and explicit

63



locate instructions are emitted. However, uhen a pseudo

creation point X is the ovariable of a value retrieval

instruction in which the composite object Y from which a

value is to be retieved is domain based, the basing mode

of X is identified with the element mode of Y, but no

locate instruction is generated, since X will inherit a

basing point from Y. Finally, the member basings

postulated at pseudo creation points are propagated

through the program, and the bases of different composite

objects are suitably merged.

The basing propagation process in this modified

approach remains straightforward in view of the fact that

only member basings, instead of complete basings involving

complex type information, are propagated. The use of

pseudo creation points instead of creation points solves

the second difficulty mentioned above. Values retrieved

from composite objects of indefinite gross type are

treated as pseudo creation points for which explicit

locate instruction are generated, if necessary. Values

retrieved from composite objects of definite gross type

are assumed to inherit basing pointers, and therefore no

locate instructions are generated.

It should be pointed out that the introduction of a

base for each live period of a set or map implicitly

implies that structure conversion will never be required

64



for the occurrences of the same variable. This is because

two variable occurrences of composite objects which may

transmit values from one to the other or both can transmit

or receive values from a third variable occurrence uill

always have the same basings. We believe that even manual

data structure choice uill rarely require the type of

conversion that our system forbids and therefore that only

a very little amount of data structuring power uill be

lost due to this constraint. It should also be noted that

the reason we introduce a basing for each live period of a

variable having a composite value, rather than simply

associating a basing for each variable name* is that a

variable might be used for different purposes at different

points in a program.

To facilitate the adjustment of modes during phase V.

it is convenient to assume that tuples are also based*

i.e. that their components are elements of some base set.

Introduction of such bases is harmless, because if no

composite objects end up being based on them, they will be

dropped during subsequent phases.

3 . 5 Phase II : Locate Emission and Base Eguivalencing

This phase is central to our system. It secures

enforcement of the basings chosen in phase I, by

generating 'base insertion' ('locate') instructions for

65



all variable occurrences uhose values might be

incorporated into a composite object. For example, the

instruction :

SI := S with X;

leads to the basing relation •

X : eB ;

where B is the base previously assigned to the variable

occurrence of S. This basing relation for X is enforced

by emitting 'locate' instructions for the ovariable

occurrences belonging to the set PS-CRTHIS {X} . Here,

PS-CRTHIS {X} is the set of pseudo creation points of X,

i.e., occurrences which are the ovariables of value

creation or value retrieval instructions and whose values

can be trasmitted to X through simple assignment

instructions

.

A similar approach is taken to map retrieval and store

operations. If in phase I the map F has been assigned the

mode 'map( eB 1 ) eB2 ' , then the instruction

F(X) : = Y ;

will imply the basing relation

X : €B1 ;

Y : eB2 ;

66



In this case, locate instructions (into Bl and B2) are

emitted for the occurrences in PS-CRTHIS {X} and

PS-'CRTHIS{Y} , respectively.

Note that these 'locate' instructions are not directly

inserted into the code, but are kept in a temporary set,

for the follouing reasons :

A) The bases being used at this stage are not the actual

bases which will appear at run-time. Actual bases will be

determined subsequently by building up equivalence classes

of the base names introduced in phase I.

B) Some bases may eventually prove useless, because they

support only one composite object, in which case all

'locate' instructions which reference them must be

dropped

.

As we proceed in enforcing basing relations,

equivalence relations emerge among bases. Suppose that we

are in the process of generating a locate instruction to

insert the value appearing at a pseudo creation Y into the

base Bl of X. Then if Y is the ovariable of a value

retrieval instruction and the composite object from which

the value is to be retrieved has been domain based on a

base B2 (i.e., the composite object is of an unambiguous

type and a base has been introduced for it during the

phase I) so that Y can be expected to be member based on

67



B2, then ue just equivalence the bases B1 and B2 uithout

generating any locate instruction. Moreover, even if Y

cannot be expected to be member based but Y has already

been assigned a locate instruction which uill insert its

value into a base B3, ue do not generate a neu locate

instruction either, but just equivalence the bases B1 and

B3. Certain other instructions force similar base

equivalencing rather than generating locate instructions '•

e.g., set union and intersection force their arguments

have the same base.

The existence of an equivalence relation between tuo

bases B1 and B2 means that B1 and B2 are to be considered

as tuo names of the same actual base B, (which uill emerge

as the representative of the equivalence class to uhich Bl

and B2 belong) . The base equivalencing procedure is

carried out by using the compressed balanced tree

technique described by Hppcroft and Tarjan. Equivalence

classes of bases are represented by a forest of trees.

The root of each tree in this forest is the representative

(and is called the real base) of the bases in the tree.

Trees are structured using a map PARENT ; PARENT(B) points

to the parent node of B in the tree containing B if B is

not a root, otheruise PARENT(B) is undefined.

The process of base equivalencing and locate

generation just described is complicated by the existence

68



of procedure calls and the need to take variable and base

scopes into account. For a given variable occurrence VO,

±or which a base BO has been suggested, the following may

be the case •

A) VO is an occurrence of a global variable v. Then it is

reasonable to assign to all its occurrences the same

basing (or more precisely, to associate one global base

with each of its live periods. See above). The base

associated with such variables is therefore a global base.

B) VO is an occurrence of a formal parameter of the

procedure P. Then if a base exists for VO, this base is a

formal one ; each call to P will instantiate it, by

passing to P some actual base AB, (which will be the base

of the actual calling parameter AV, to which VO

corresponds). It is then reasonable to require that all

actual parameters at various points of call have the same

form as that chosen for VO, but the actual bases in each

case may be distinct and it would be unwise to eqijivalence

them (since equivalencing more bases than strictly

necessary may lead to the creation of very sparse

objects). But it is reasonable to equivalence all the

bases which may appear at a given point of call. This is

achieved by partitioning PS-CRTHIS { VO } according to the

point of call by which a given occurrence VOX becomes the

value of VO. Then the bases occurring in each such

partition can be equivalenced . The following example

69



illustrates this idea.

proc A ; proc B ;

XI := {U1, . . .} ;

Yl := {VI, . . .} ;

C(X1 , Y1 ) ;

X2 := {U2, . . . } ;

Y2 := {V2, . . .} ;

C(X2, Y2) ;

end proc A ; end proc B

proc C(X,Y) ;

X + Y ;

end proc C ;

In this case, the bases of XI and Yl are equi\ anced, and

the bases of X2 and Y2 are equivalenced but the bases of

XI and X2 are not equivalenced.

Note that if VO is not a formal parameter, but is

nevertheless linked to the formal parameters of P through

value-flou, then the preceeding remarks still apply : VO

may be based on a formal base, i.e. some base of the

formal parameters of P. In such cases, the same

partitioning of PS-CRTHIS according to points of call is

used .

C) Finally, VO may be local to P , i.e. it may be a local

variable uhose value is created only within P, and uhich

70



does not enter into any operation uhose other argument are

global or linked to points of call of P. In that case, VO

(and the other arguments of operations in which VO

appears), receives an actual local base.

3 . 6 Phase III • Locate Insertion

This phase moves 'locate' instructions out of loops.

This motion is performed whenever the basing pointer

generated by a 'locate' insruction is not actually used

within the loop. The following case is typical : a

variable X is known to be 'cb' and PS-CRTHIS{X} includes

the occurrences of X shown in the following text :

(VI := 1 . . . 100) X : = X + Y ; ;

Phase II will have hypothesised a locate instruction

initially taken to lie within the loop for the ovariable X

occuring therein. However, it is clearly unwise to

actually put this locate instruction within the loop,

because none of the values assigned to X (except the last

one) is used as a base element • the basing pointer is

dead within the loop. The proper place for the locate

instruction is, of course, the exit from the loop.

Generally speaking, a locate instruction can be moved out

of an interval if no use is made within the interval of

the basing pointer which it generates. This can be

ascertained by following FFROM of the (previously) located

71



variable. If ue reach an operation uhich uses the basing

pointer within the interval then the locate instruction

cannot be moved. If the use appears in some successor

interval then it is advantageous to move the locate

operation to the head of that interval.

The following procedure systemizes the process of

locate instruction motion. We scan the FFROM chain for

each occurrence 01 at uhich a locate instruction has been

suggested in phase II. The scanning procedure continues

until ue find all the places at uhich the basing pointer

created at 01 might potentially be used. The intervals

uhich contain these points are called the target intervals

of 01, and a map MOVETO summarizing this information is

generated. If one of the target intervals of 01 is the

interval in uhich 01 resides, MOVETOCOI} is defined as nl

.

Me use MOVETO to insert actual locate instructions as

follows. If riOVETO{OI} is nl then a locate operation is

inserted right after 01 is created. Otherwise, for each

interval INT in n0VET0{0I}, a locate operation is inserted

at the entry to the largest interval uhich includes INT

but not 01.

iJote that the procedure just descrioed is costly but

can hav( - ignif icunt advantages in some cases.

Nevertheless, a study of examples seems to indicate that

there are normally a very limited number of bases existing

72



in a program and very feu of them whose associated locate

instructions have to be moved. Overall, ue judge that

this locate movement procedure is marginal and might be

omitted if a period of experiment tests conforms the

judgement just stated.

3 . 7 Phase IV • Hode Determination

This phase completes building of the mode descriptor

for each variable occurrence.

It is important to note that a base is useful only if

at least tuo composite objects are based on it, because

then the basing pointers held by one can be used to access

the other- If a base is simply the domain of a map (and

nothing else) then nothing is gained by its existence,

because there is no uay to generate elements of that

domain without recalculating the corresponding basing

pointer. The same is true if the only objects supported

by a base are a set and its elements. In this case, the

map (or set) should be unbased.

In this phase, ue also determine whether member basing

and/or domain basing should be associated with the values

appearing at each variable occurrence. It is possible

that the values appearing at certain program points shoud

be given both member basing and domain basing, due to the

73



subsequent pattern of uses of the value. In this case,

multiple representations are constructed. This is

illustrated by the following example =

(1) (V S€U )

(2) (while. . .

)

(3) (VXes)

(U) Y := F(X) ;

end V ;

(5) if S in T then....;

end while ;

end V ;

The S in the first instruction should have a dual basing

because the member basing of S is useful in the fifth

instruction and the domain basing of S is also useful at

the third instruction as the X which retrieves value from

S is subsequently subject to a map value retrieval

operation at the fourth instruction. Accordingly, S is

assigned multiple representations, which have member

basing and domain basing, respectively.

This idea is implemented in three steps.

A) For composite objects and member based objects, ue

replace the member basings referencing dropped bases by

element mode of the dropped bases. For example, if (in

74



pahse I) a set S is tentatively doamin based on a base B1

whose elements are seen (in phase II) to have the mode

[€B2,€B2] and if B1 is subsequently dropped (because it

supports only single composite object) then S is

re-assiqned the mode ' set (

I

gB2 , eB2 I
)

' .

B) At each occurrence we determine whether domain basings

and/or member basings are useful by examining the

subsequent uses of the value appearing at this occurrence

C) We then propagate member basings, starting from locate

and value retrieval instructions, to other occurrences

which need basings. The propagation procedure ensures

that proper basings are carried along with variable

values

.

3 . 8 Phase V : Refinement

This phase refines the basing selection made by phase

I-IV, by associating the representation attributes,

•local', 'remote' or 'sparse' with set and map

representations. The manner in which this is done

reflects characteristics of the different representation

sructures implied by these keywords.

The advantage of local representation of a map over

remote representation lies in the fact that reference to a

locally stored map or set is somewhat faster than

75



reference to a remotely stored map or set, since at least

one level of indirection, and probably also an out-

of-bounds check, can be avoided. On the other hand, an

object having local representation cannot be shared but

must be copied at every point at which its share bit would

be set. Boolean operations such as =, +, etc., are also

relatively inefficient for the locally stored sets,

compared with the same operations on objects having the

remote set representations.

Another significant point concerns the iteration

operator in its relation to based representations. It is

clear that the linked hash-table used to represent unbased

sets supports iterations efficiently. Iterations over

sets having based representations, whether local or

remote, are more expensive, because they involve an

iteration over the base, and a series of tests for

membership in the based subset. The overhead incurred by

iterating over the base will be greater the sparser the

based object is. It is therefore necessary to review and

possibly to revise our primary basing selection for the

objects which are subject to iteration operations.

Moreover, proper choice among these three

representations depends not only on the kind of use made

of the based objects but also the frequencies of these

uses and the si:::e of the base. This is not something that

76



can be discerned statically and thus is information not

available from SETL optimizer. In the absence of such

information, ue adopt a very conservative approach. The

heuristics ue apply amount to the follouing '•

A) A based object should be sparse if it is to be iterated

upon, unless ue can shou that the object is actually

identical in value uith its base.

B) If no iteration over an object is performed, but it is

an argument to boolean operations (union, intersection,

etc) or is passed as a parameter, or is to be copied, or

inserted into a larger object, then it should be given

remote representation.

C) If only differential updating operations are applied to

an object, and it is never transmitted to another by

assignment, insertion or call, then it can have a local

representation.

3 . 9 Supplementary Remarks

Our main idea is to insert elements into a base B or

to locate elements in B along lou frequency paths and

carry along the basing pointers thus generated uhen values

are transmitted. This makes it possible to avoid locate

operations in high frequency regions. Our technique is

therefore a variant of code motion. Houever, the motion

77



of locate operations is somewhat different from the motion

of more general expressions. To handle more general

eKpressions, ue must deal with value preservation issues ;

while to handle locate operations ue have to deal uith

somewhat different issue of pointer preservation. The

basic idea in moving a general expression EXP is to

calculate the value of E-XP beforehand and then to use such

value without recalculation at the subsequent appearances

of EXP. This idea is applicable only if the value of EXP

will not be changed between its calculation and its

applications. Therefore, a general expression EXP can

only be moved without affecting the logic of the program

to which EXP belongs within a region in which none of the

arguments of EXP are re-defined. On the other hand, we

can move a locate operation by inserting a value V into a

base to derive a basing pointer and then can avoid

re-executing locate operations by utliaing the basing

pointer at subsequent applications of V. A variable X

which will only hold such 'based' values can therefore be

referenced without furtlier locate operations, as long as

the basing pointers of 'based' values are transmitted as

well as the values. Thus, motion of locate operations is

possible under weaker restrictions than code motion of

general expressions.

Unlike a manual basing declaration which assigns each

declared variable one or more basings, our automatic

73



basing choice system assigns each variable occurrence one

or more basings. This makes it possible for a variable to

have different representations at different program

points. The required representation conversions for a

variable are indicated by simple assignment instructions

from the variable to itself of uhich the ivariables have

the representation structures to be converted from and the

ovariables have the representation structures to be

converted to. This scheme can very often eliminate the

necessity to assign a variable multiple representations

throughout the whole program or to manually rename some

occurrences of a variable and assign a different

representation to the newly created variable. In case

that a variable does need multiple representations, our

algorithm will define the representation uhich should be

referenced at each ivariable occurrence and the

representation which should be updated at each ovariable

occurrence

.

79



CHAPTER 4 : EXAMPLES

In this chapter, ue illustrate the results potentially

obtainable by our automatic data structure choice system

by examining the way in which it would apply to a number

of programs written in SETL. Both the actions and the

results of our system are presented. Type information and

value flow chains are assumed to be available from the

SETL optimizer.

To avoid the special problems which would otherwise be

connected with input operations, we insert a set or tuple

former instruction after each 'read' statement, to make

the structure and the elements of the objects explicit.

For example, if the F of the statement 'read F' is known

to be of type 'map', we replace the original read

statement by the following two instructions.

read F' ;

F := { [EF1 := EF(1), EF2 := EF(2) 1, EF€F' } ;

Then we let F' to be unbased and try to choose proper

representation structure for F. Here, the assignments to

EF1 and EF2 are treated as value creations instead of

value retrievals. Although certain expansion instructions

of this type could be inserted by the SETL optimir:er as a

result of information obtained by 'backward type

analysis', we insert this code exlicitly in the following

80



examples in order to simplify our discussion. Note also

that the necessary insertions can be deduced from 'repr'

declarations, if we agree that such a declaration must be

given for every variable appearing in a 'read' statement.

As our automatic basing choice algorithm deals uith

variable occurrences and assigns each of them one or more

representation structures, it is impractical to describe

the effect of each phase of our algorithm on every

variable occurrence. To overcome this expository

difficulty, we will use each variable name to represent

all of its occurrences unless specified. The basing

choice resulting from our algorithm will then be described

by an equivalent manual declaration.

In presenting our examples, ue first briefly describe

the programs to be discussed and list the SETL code

analysed in each case. Then the action of our automatic

data structure choice algorithm is tracked phase by phase

; the result expected from each phase is outlined. The

final structure choice expected from our algorithm is

summarized at the end of each example.

^^ . 1 Example 1 Tree Traversal

As a first example, we study the postorder tree

traversal algorithm given by knuth[1968 1. The inputs to



this algorithm are the root of a tree and tuo maps

defining left and right links respectively. The function

of the algorithm is to give each node of tlie tree its

ordinal number in post order.

module TREE-TRAVEL ;

LI

L2

L3

L4

L5

L6

L7

L8

read ROOT , ILLINK , IRLINK ;

LLINK := { lLKl:=LK(n, LK2:=LK(2)1: LKCILLINK } ;

RLINK := { [RK1:=RK(1), RK2:=RK(2)]: RKCIRLINK } ;

POSTORDER := nl ;

STACK : = [ I ;

NODE := ROOT ;

ORDINAL := ;

GO-OH := TRUE ;

$ Initialize the map POSTORDER,

$ The stack is represented by

$ a tuple

.

L9: (while GO-ON )

L10: ( while NODE/=^M )

L11: STACK I I [ NODE 1 ; $ Push NODE into STACK.

L12t NODE := LLINK(NODE) ; $ Get left descendant

end while ;

L13:

LI 4:

LIS:

if STACK=l ] then GO-ON := FALSE ;

$ Check whether stack is empty

else * If not,

NODE := STACK(#STACK) ;

$ Pop out a node form STACK.

STACK •• = STACK( 1 :«STACK-1 ) ;

82



L16:

L17:

L18S

ORDINAL := ORDINAL + 1 ;

POSTORDER(NODE) := ORDINAL ;

$ Assign ordinal order to NODE.

NODE := RLINK(NODE) ; $ Get right descendant,

end if ;

end while ;

L19: print POSTORDER ;

end module TREE-TRAVEL ;

Four composite objects occurring in this algorithm

have to be processed = LLINK and RLINK are input maps,

POSTORDER is the output map and STACK is a work stack

represented by a tuple. Phase I introduces domain and

range bases for these objects.

LLINK : map(GBl)€B2 ;

RLINK : roap(eB3)eB4 ;

STACK •• tuple(GB5) ;

POSTORDER : map(€B6)GB7 ;

In phase II, ue eKamine the set, map and tuple operations

at L2,L3,L11 L 1 2 , L 1 4 , L 1 7 and L18. The pseudo creation

points of the occurrence NODE appearing at these

instructions are the NODE at L12, Lm and L18, and the

ROOT at LI. L2 and L3 suggest that the LK 1 , LK2, RK 1 and

RK2 are to be elements of the bases B1, B2, B3 and B4,

respectively. Other instructions contribute as follows.

83



L11 and L14 equivalences B2, B4 and B5 ; L12 equvalences

B1, B2 and B4 ; L17 equivalences B2, B'4 and B6 ; L8

equivalences B2, B3 and B4. The set of bases is therefore

partitioned into tuo equivalence classes

{Bl ,B2, B3, B4,B5,B6} and {B7}. Let the base name B

represent the first equivalence class. The base B7 is

dropped since only the range of POSTORDER is based on it.

Phase III physically inserts locate instructions at

LI, L2 and L3 ; these put ROOT, LK1, LK2, RK 1 and RK2 into

the base B. In phase IV, the references to B7, €B7, are

replaced by the mode of the element of B7 , uhich is known

to be integer. The basings of composite objects then

become

LLINK : map(€B)eB

RLIMK : map(eB)€B

STACK : tuple(€B)

POSTORDER : map(€B)int ;

Phase IV also determines the following basings for other

occurrences

.

ROOT, NODE : eB ;

ORDINAL : int ;

GO-ON •• bool ;

Finally, phase V decides that all the composite objects

should have local representations.

84



4 . 2 Example 2 : Spanniner Tree

The second example ue present here is the spanning

tree algorithm given by Lou[ 1974 1. This program computes

a spanning tree for a graph. The graph consists of a set

of nodes (NODES) and a set of undirected edges between

pairs of nodes (EDGES). The program assumes that there is

a path (through or more other nodes) between every pair

of nodes. A spanning tree for the graph consists of a

subgraph containing all the original nodes and a subset of

the edges of the original graph such that =

1) For any pair of distinct nodes there exists a unique

path between the nodes.

2) There is no path from a node to itself (the subgraph is

cycle- free ) .

module SPANTREE ;

vars NODES, EDGES, FATHER end vars ;

LI : read INODES, lEDGES ;

L2 : NODES := { ND : NDeiKODES } ;

L3 : EDGES: = { ED = = I ED 1 = = EDG ( 1 ) , ED 2 = =EDG ( 2 ) 1 : EDGeiEDGES } ;

L4 : (V XeNODES ) $ Initialize the map FATHER.

L5 : FATHER(X) == X ; ;

L6 : (V ECEDGES )

85



L7 : F := ECn ; $ F and S are the two end nodes

L8 •• S := E(2) ;

L9 : FG := GROUPOF(F) ; * FG and SG are the roots of th(

L10 : SG := GROUPOF(S) ; $ trees uhich contain F and S,

$ respectively.

L11 : if FG /= SG then $ If F and S are not in the sam(

$ tree then

L12 s TREESET with E ;

L13 : MERGE(FG , SG) ; $ their corresponding trees

$ are merged,

end if ;

end V ;

L14 : print TREESET ;

proc GROUPOF(HODE) ; $ To find the root of the tree

$ uhich contains node

.

LIS : while ( FATHER(KODE) /= NODE )

L16 : NODE := FATHER(NODE) ;

end while ;

L17 : return NODE ;

end proc GROUPOF ;

proc nERGE(G1,G2) ; $ To merge two trees.

L18 : FATHER(G2) := G1 ;

L19 : return ;

86



end proc MERGE ;

end module SPANTREE ;

In this module, we deal with six composite objects :

NODES is a set, EDGES and TREESET are sets of pairs,

FATHER is a single-valued map, and ED and E are tuples of

length 2. In phase I, ue introduce bases for these

variables

.

NODES •• set(€B1) ;

EDGES : set(eB2) ;

TREESET : set(€B3) ;

FATHER : smap(eBU)€B5 ;

ED : tuple(eB6, €B7) ;

E : tuple( €B8, CB9) ;

In phase II, ue examine all set, map and tuple operations.

The information contributed hy each instruction is as

follows

.

L2 : ND is identified as an element of B1.

L3 : EDI, ED2 and ED are identified as elements of

B6, B7 and B2 respectively. The mode of B2 becomes

'base(

I

GB6,€B7 1 ) ' .

L5 : The pseudo creation point of X is the X at L4 ;

this retrieves X from NODES which is a set based

on B1. The bases Bl, B4 and B5 are therefore

87



identified

.

L7, L8 The pseudo creation point of E is the E at L6

which is the ovariable of a value retrieval

instruction. The mode of E is identified with

the element mode of the base of EDGES. Since B2

already has the mode ' base ( I eB6 , eB7 1
)

' , B8 and

B9 are identified with B6 and B7 repectively.

L12 : The pseudo creation point of E is its occurrence

at L6. The node of E is identified with the

element mode of the base of EDGES, i.e., B2 and

B3 are equivalenced

.

L15,L16 : The pseudo creation points of NODE are the F

at L7, the S at L8 and the NODE at L16. At L7

and L8, the base B4 is equivalenced with B8 and

B9. At L16, the base B4 is equivalenced with

B5.

L18 • This instruction has the same effect as the

instructions L15 and L16 since the pseudo

creation points of G1 and G2 are the same as

those of NODE.

The equivalence relations just mentioned lead us to

identify the bases B1, B4, B5, B6, B7, B8 and B9 with each

other, and the bases B2 and B3 with each otlier.

Furthermore, B2 is known to be a base of elements



leBl,€Bl]. Phase III inserts explicit locate operations

for ND, EDI, ED2 and ED at L2 and L3. Phase IV propagates

the basings that have been derived to other variables.

This yields the following basings :

E : €B2, I GB1 ,£31 ] ; (at L5)

E : eB2 ; (at L12)

F, S, MODE, G 1 , G2 : eB 1 ;

Note that the tuple E at L6 is assigned the member basing

'eB2'in addition to the basing ' tuple ( €B 1 , eB 1
)

' uhich has

been assigned to E during phase I, i.e., E is given

multiple based representations. The occurrence of E

appearing at L7 and L8 will make use of the domain basing

and the E appearing at L12 will make use of the member

basing

.

Finally, noting that all the elements in B2 (i.e., ED

at L3) have been inserteid into the based subset EDGES of

B2, ue conclude that EDGES and B2 are identical (in

value). Therefore, phase V decides that EDGES as uell as

other maps and sets (except NODES) can be locally based,

even though EDGES is subject to iteration operations.

NODES is however given sparse structure because it is

subject to iteration operation and ue cannot identify it

uith its base.

The basings uhich result from these choices can be

89



summarized by an equivalent declaration as follows

B1 : base ;

B2 : base(

I

€B1 ,€811) ;

NODES : sparse set(eBI) ;

EDGES, TREESET : local set(€B2) ;

FATHER: local smap(€Bl)eBl ;

ED : tupleCeel , €B1 ) ;

E : eB2, tuple ( eB 1 , €B 1) ;

F, S, NODE, G1 ,G2 : eBl ;

H . 3 Example 3 = Huffman Codincr

The third example to be discussed is Huffman's data

compaction algorithm. This algorithm assigns a binary

code to each character in such a uay that most probable

characters receive short codes, uhile less probable

characters receive longer codes. Huffman's technique is

as follows : for a given set of characters, CHARS, which

we assume to be given along with their expected

frequencies, FRES, take the two characters CI and C2 of

smallest frequency, and hang them as left and right

branches from a newly created node N, whose heuristtic

meaning is 'either Cl or C2'. Then we remove CI and C2

from the set of characters and insert N, taking its

frequency to be the sum of that of CI and C2. Repeat this

operation until only a single character remains. This

90



process will grou a tree, the so-called Huffman tree of

the set of characters. The code for a character is then

its address as a tuig of this tree, where 'go doun to the

left' is represented by a binary 0, and 'go doun to the

right* is represented by a binary 1.

A code much like the following can be found in

Schuartz[ 1973 ], pp. 148-151,

module HUFFMAN ;

vars WORK, WFREQ, L, R end vars ;

LI : read CHARS, FREB ;

L2 5 WORK := { CHAR: CHARecHARS } ; $ Initialise workfile

L3 •• WFRE2 := { lWFl:=WF(1), WF2:=WF(2)1: WFeFREQ } ;

L4 : L : = nl ; R : = nl ; $ L and R are maps from a node to

$ its left and right descendants.

L5 s ( while tWORK > 1 )

L6 : WORK less ( Cl := GETMIH ( WORK ) ) ;

L7 : WORK less ( C2» == GETMIN(WORK) ) ;

$ Get the two nodes with minimal

$ frequencies.

L8 ! WORK with ( N := NEWAT ) ;$ Generate a new node.

L9 : LCN) := CI ; $ Build a subtree.

L10: R(N):=C2;

L11 : WFREe(N) := WFREQCCl) + WFREe(C2) ;

$ Define the frequency of the new

91



$ node to be the sum of the

$ frequencies of its descendants

end uhile ;

L12 : CODE := nl ;

L13 : SEe := NULB ;

Lm : WALK( TOP == arb MORK ) ;

L15 : print CODE ;

proc GETMIN(SET) ;

$ Get the node with minimal frequency.

L16 : [ KEEP, LEAST ] :=
I Y := arb SET , WFRESCY) 1 ;

L17 : ( V XeSET )

L18 : if WFREeCXXLEAST then I KEEP , LEAST J : = I X , WFRES ( X ) ] ;

end VX ;

L20 : return KEEP ;

end proc GETMIN ;

proc WALK(T) ;

$ To generate code for each node

L21 : if L(T) /= on then

L22 : SEe I I FALSE ; $ FALSE corresponds to left path,

L2 3 •• WALK(L(T)) ;

L24 : SEQ II TRUE ; $ TRUE corresponds to right path,

L25 : WALK(R(T)) ;

else

92



L26 : CODE(T) := SEQ ;

end if ;

L27 : SE2 := SE2( 1 : #SE2-1 ) ;

end proc WALK ;

end module HUFFMAN ;

The composite objects to be discussed in this example

include two sets (WORK, SET) and four maps (WFRE2, L, R,

CODE). In phase I, we introduce bases for these

variables

.

WORK : set(€B1) ;

SET : set(€B2) ;

WFREQ : smap(eB3)GB4 ;

L : smap(eB5)eB6 ;

R • smap(eB7)€B8 ;

CODE : smap( eB9 )eB10 ;

In phase II, we examine the set and map operations

appearing in this algorithm. The information contributed

by the various set and map instructions is as follows :

L2 CHAR is identified as an element of B1

L3 • WF1 and WF2 are identified as elements of 33 and

B4 respectively.

L6,L7 : Since the pseudo creation point of both Cl

93



and C2 is X at L17, the base Bl is identified

with the base B2

.

L8 : N is identified as an element of Bl. and a

locate instruction is emitted.

L9,L10 : The pseudo creation point of N is the N at

L8. Since a locate instruction has already been

generated for N at L8, the bases B5 and B7 are

equivalenced uith B1. The pseudo creation point

of CI and C2 is the X at L17 and hence B6 and B8

are equivalenced with B2.

L11 : B3 is equivalenced with Bl.

L16,L18 : B3 is equivalenced with B2.

L21,L23,L25 = B5 and B7 are equivalenced with Bl.

L26 : Since the pseudo creation point of T is the TOP

at Lm, B9 is equivalenced with Bl. Since the

pseudo creation points of SEQ are the SE2 at L13

and at L27, potential locate instructions are

generated for these points.

This leads us to realise that the bases

Bl ,B2, B3, B5,B6 ,B7 , B8 and B9 are all equivalent.

Provisional locate instructions are generated at Li, L2

and at L8, at which the insertion of a new atom iiito WORK

also forces the insertion of the same element into the

base Bl. The bases B^ and BIO can now be dropped because

94



they only support the range of UIFREQ and CODE

respectively. The range modes of WFRE2 and CODE are seen

to be elementary and appear as

WFREe •• smap( €B1 )real ;

CODE : smap( €B1 )bits ;

Phase III actually inserts the locate instructions noted

above. Phase IV propagates the basings assigned to the

fundamental objects CHAR, WFl, WF2 and N, and derives the

modes of all other variables, yielding

CI, C2, N, TOP, KEEP, X, T, NODE : €B1 ;

LEAST : real ;

SES : bits ;

Finally, phase V decides that WFREQ, L, R, and CODE should

be locally based, and that WORK and SET should be sparse

sets since SET is iterated over in L17.

The data structure choice resulting from our

algorithm can be summarized by an equivalent declaration

as follows .

B : base ;

WORK, set : sparse set(eB) ;

WFREe : local smap(eB)real ;

L, R : local smap(eB)eB ;

CODE : local smap(€B) bits ;

CI, C2, N, TOP, KEEP, X, Y, T, NODE

95

eB ;



LEAST : real ;

SEe : bits ;

4 . H Example ^4 • Maximum Flow

Our fourth example is the well-known algorithm for

maximum flou through a netuorkf justified by the so-called

max-flow min-cut theorem :

Given a network defined by a set of capacities C(P»6),

and given two points X and Y in the network, the maximum

value which any flow F from X to Y can have is at the same

time the minmum value of the expression

(+: C(P,e), PeS,2€S' I

where S ranges over all sets containing X but not Y, and

S' is the complement of S

.

The routine takes as arguments a graph defined by set

of pairs called GRB and a real-valued capacity function

FCAP defined for iP.Sl^GRB, and two distinct nodes X and Y

Its function is to find the possible maximum flow from

X to Y. For an earlier version of this routine and

further discussion concerning it, see Schwartz ( 1 97 3 ) ,

pp. 1 19-126 .

module MAXFLOW ;

96



vars GRB, FCAP, GRM, F end vars ;

macro START(RE) ; RE(2)(if RE(1) then lelse 2) ; endm ;

macro FINISH(RE) ; RE(2)(if RE(1) then 2 else 1) ; endm ;

LI : read IGRB, IFCAP, X, Y ;

L2 : GRB := { lEGR := [EG1:=EG(1), EG2 : = EG ( 2 ) ] = EG e IGRB } ;

$ graph

L3 : FCAP := { [EF1:=EF(1), EF2:=EF(2)]: EF€IFCAP } ;•

$ capacity function

m : GRn: = {[E( 1) , tTRUE.E 1 ] :EeGRB) + {I E(2) , (FALSE,E 1 I --EeGRB} ;

$ Map from each node to directed

$ edges

.

L5 : ( VEeGRB )

L6 : F(E) : = . ; ; $ flow function

L7 : ( uhile P:=PATH(X,Y) /= On )

L8 : AUXFLOWV := ( min : REeP ] CAP(RE) ;

L9 : (V lTVAL,E]eP )

L10: F(E) := F(E) + if TVAL then AUXFLOWV else -AUXFLOWV ;

end V ;

end uhile ;

L 1 1 : print F ;

proc CAP(RE) ;

L12 : return if RE(1) then FCAP ( RE( 2 )
) -F ( RE ( 2 ) ) else F(RE(2)) ;

97



end proc CAP ;

proc PATH(X.Y) ;

L13 : NEW := {X} ;

LT4 : SET := {X} ;

L15 : (while NEW /= nl doing NEW := NEWER )

L16 : NEWER : = nl ; $ new nodes to be processed

L17 '
( V V€NEW ) $ Look for next plausible node

L18 : ( V RECGRtKV} I FINISH(RE) == U notin SET

and CAP(RE) > )

L19 : PRE(U) := RE ;

L20 : if U=Y then quit while ;

L2 1 : SET with U ;

L22 : NEWER with U ;

end V RE ;

end V V ;

end while ;

L23 : if U/=Y then return ON ;

L24 : PTH := nl ;

L25 : PT := Y ;

L26 : (while RE:=PRE(PT) /= OM doing PT : =START ( RE ) )

L27 : PTH with RE ; * Construct the path,

end while ;

L28 : return PTH ;

98



end proc PATH ;

end module MAXFLOM ;

In this algorithm there occur six sets (GRB, P, PTH,

NEW, NEWER, SET), four maps (GRM, FCAP, F and PRE), and

two tuples (E, RE). We introduce bases for them as

follous :

GRB : set(eBI)

P : set(€B2)

PTH : set(€B3)

NEW : set(GB4)

NEWER : set(eB5)

SET : set(eB6)

GRM : mmap(€B7 )set(eB8) ;

FCAP : smap(GB9 ) eBlO ;

F : smap( CB 1 1 ) eB12 ;

PRE : smap(€B 1 3)eBl4 ;

E : tuple(€B15,eBl6) ;

RE : tuple(€B17, €B18) ;

Noting the operations at L2, L3, L6, L10, L12, L13, LIM,

L19, L20, L22, L23, L26 and L27, ue equivalence the bases

B1, B9, B11, B18 the bases B2, B3, B8, B14, and the bases

B4, B5, B6, B7, B13. The bases BIO, B12, B15, B16 and B17

are found to be useless and dropped. The basings for

composite objects then become

99



GRB : set(eBl) ;

P, PTH : set(eB2) ;

NEW, NEWER, set •• set(eB4) ;

GRM : mmap( eB4)set (eB2) ;

FCAP, F : smapC €B4)real ;

PRE : smapC eB4 ) eB2 ;

RE : tuple(bits, eBI ) ;

Locate instructions are inserted at LI to locate X and

Y into B4, at L2 to locate EGR into Bl and to locate EGl

and EG2 into B4, at L3 to locate EFl into B2, and at L4 to

locate [TRUE, El and [FALSE, El into B2. Since each EGR

inserted into Bl has the mode [eB4,eB4), the element mode

of Bl is found to be [€B4,€B'4], i.e., we have

' B 1 :base( [ eB4, eB4 ] ) '
. Similarly, the mode of B2 is found

to be ' base ([ bits , €B 1 ])' . The modes of other variables

are then determined as follows.

X, Y, EGl, EG2, EFl, U, V, PT : €B4 ;

E, EGR : €31 ;

RE : €B2 ;

AUXFLOWV : real ;

TVAL : bits ;

Note that the tuple RE at L18 is assigned the member

basing 'eB2' in addition to the basing ' tuple ( bit ,

e

b 1) '

which has been assigned to RE during phase I. The

occurrence of RE at L19 will use the domain basing

100



representation while the rest of the occurrences of RE

will make use of its tuple representation.

Finally, NEW, NEWER, P, PTH and each image of GRM are

given sparse structure while other composite objects are

given local structure. The final basing choice can then

be summarized as follows :

B4 : base ;

B1 : base( [ €Bf, eB4 ] ) ;

B2 : base ( I bits, eBI ) ) ;

GRB : local set(eBI) ;

P, PTH : sparse set(€B2) ;

NEW, NEWER : sparse set(eB4) ;

SET : local set(eB4) ;

GRM : local mmap(eB4) sparse set(€B2) ;

FCAP, F : local smap

(

€B4 ) real ;

PRE : local smap(€B4)€B2 ;

RE : tuple(bits, €B1 ) , eB2 ;

X, Y, EG1, EG2, EF1, U, V, PT : €B4 ;

E, EGR : €B1 ;

AUXFLOWV : real ;

TVAL : bits ;

4 . 5 Example 5 = Interval Analysis

As a final example, we apply our algorithm to the

101



interval analysis program dicussed in chapter 2, to see

uhether it can generate a basing choice that is compatible

to the manual basing choice described earlier. To clarify

the action of our algorithm in this case, ue first list

certain pseudo creation points uhich play important roles

during the processing-

ENTRY has its pseudo creation point at L02,

ENRYIKT has its pseudo creation point at L09,

J has its pseudo creation points (occurrences of IHTS)

at L12 and L17,

I has its pseudo creation point at L10,

NODE has its pseudo creation point at L15,

Z has its pseudo creation point at L27,

U has its pseudo creation point at L30.

Now let us proceed to track the action of our data

structure choice algorithm. In phase I and II, ue

introduce bases for composite objects and equivalence the

bases by eKamining set, map and tuple operations and the

pseudo creation points of their arguments. After phase

II, the resulting basing choice is as f ollous

.

NODES, INTS, FOLLOWERS, SEEN, HEADS, NEWIN

INTOV : smap(eB)€B ;

CESOR : smap(eB)set(€B) ;

FOLLOW : smap ( € B ) se t ( e B ) ;

NPREDS : smap(€B)int ;

COUNT •• smap(€B)int ;

102

set(eB) ;



J : tuple(€B) ;

SEB : tuple(set(€B) , EB) ;

Phase III inserts locate instructions at Li and L2 for the

elements of CESOR and ENTRY. Also, a locate operation is

inserted at L17 uhen J receives a value from the routine

INTERVAL. Phase IV then propagates the member basings

derived from such locate operations to other variables,

and yields the follouings '

ENTRY, ENTRYINT, I, NODE, ND, X, Y, Z, J : €B ;

At this point the tuple J which has been assigned the mode

'tuple(€B)' is also assigned the member basing 'eB'. The

analysis performed by phase IV indicates that the member

basing is useful for all the occurrences of J except the

occurrence at L19 which needs domain basing.

The final phase then determines representation

attributes in the manner already described, leading to the

following overall basing declaration

B : base ;

NODES, INTS, FOLLOWERS, NEWIN : sparse set(€B) ;

SEEN, HEADS : remote set(eB) ;

INTOV : local smap(€B)eB ;

CESOR, FOLLOW : local smap (€ B ) sparse set(€B) ;

NPREDS, COUNT : local smap(€:B)int ;

J : tuple(€B) , eB ;

103



SES : tuple( tuple(sparse set(GB),eB)) ;

Encouragingly, the result ue have just derived exactly

matches the manual choice which was presented in chapter 2

with B corresponding to ALLNODES.

104



CHAPTER 5 : CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

Basings incorporate pointer and indexing mechanisms

and reflect relations between the objects appearing in an

program. Using this notion, ue have explored a

demonstration system which we expect will be capable of

automating significant aspects of the data structure

choice process. Judging from various test examples, some

of which have been presented in the preceding chapter, our

system should perform well ; in general it seems to

produce a highly acceptable basing choice.

However, the system we have described is far from

complete. It utilizes only a small set of representation

structures. It incorporates certain systemised heuristics

drawn from manual exploration but does not use other more

sophisticated data structuring techniques. Much more will

need to be done in mastering the complicated problem of

automatic data structure choice.

Neverthless, we believe that the concept and the

system presented in this thesis have realized a first

essential step in automating the data structuring process.

Further improvement can certainly be achieved by pushing

this approach further. We shall now list some of the idea

that have occurred to us during our research in this area.

10'



as possible research topics for the future

5 . 1 Merging Rule

The base 'merging rule' described above is one of the

crucial parts of our system. It has been over-simplified

; suggested basings of a variable occurrence are merged

and identified unless they are radically different.

Several possible improvements of basing choice algorithm

can be realised by modifying the merging rule.

5.1.1 Parallel Member Basings
,

When more than one member basing is suggested for an

©variable it may not be necessary to identify these

basings. Rather, it may be desirable to keep more than

one basing with the vairable and to choose the most

advantageous basing for use at each appearance of the

variable. In particular, this is useful in the case of

tuo composite objects initialized with the same element

which then grow seperately and disjointly. For example,

51 := {X} ;

52 := {X} ;

(V0<Y<10) SI with Y ;

(V10<Y<20) S2 with Y ;

The current system would give Si and S2 the same basing ;

.1 06



this is certainly a poor choice because X is the only

element which is in both SI and S2 so that a common base

for them would be used sparsely. A better choice is to

let X carry two different basings and let SI and S2 based

on different objects.

5.1.2 Small Object Transmission

If we replace the first two instructions of the

preceding example by an equivalent pair of instructions

51 := {X} ;

52 : = SI J

a different consideration arises. In this case, our

present automatic structure choice system again proceeds

to identify the bases of Si and S2. However, this is not

what we would like to have, since SI and S2 overlap on X

only, A possible solution to this problem would be to

treat the assignment instruction 'S2:=S1' as a potential

point of conversion, in other words, to treat it as if it

read

S2 {Y,Yesl} ;

which would make it a value creation operation. In this

case, the bases of SI and S2 would not be identified.

However, in an approach like this it is not clear when

we should treat an assignment instruction as a potential

107



conversion and perform such a transformation . A

reasonable heuristic rule would be to perform this

transformation when the value to be transmitted is known

to be a 'small object'. By definition, a small object is

a null set or a composite object which is created by a set

former consisting of a finite number of explicitly listed

elements. A variable is a small-object variable if its

value is knouin to be a small-object value. This

definition allous 'small-object' to be regarded as a

static attribute of program variables such that a standard

attribute propagation algorithm can be applied to detect

these cases

.

5 . 2 Conversion of Representation Structure

Domain based objects are given unique representations

by the current basing selection system. On the other

handf it is clear from examples that appropriately

inserted representation conversion can achieve more

efficient execution. An important case is that in which

the uses of a variable in different regions of a program

suggest different representation attributes. It might be

profitable to convert variable representations at

'bottlenecks' between regions within which different

representation attributes are suggested.

5 . 3 Conversion of Basings

108



This is an even more complicated issue than conversion

of representation structure. It can be advantageous to

convert the basing of a based object, e.g., from being

based on one base to another base, or from being based to

being unbased. It is, however, unclear when this kind of

conversion will be most profitable and hou to detect

situations in which this kind of conversion is profitable

at all.

5 . 4 Conversion Of Sparse objects

We treat based objects over which iterations are

executed as potential sparse sets. Another possible

solution to the problem of how to handle iterations

efficiently is to convert the based set to have a list

structure before it is iterated over. Such a scheme can

be profitable if the necessary conversion can be moved out

of frequently executed loops. After conversion is

performed, two different representation structures of the

same value exist, and the list structure can support the

iteration efficiently. However, if a value being iterated

over is modified after conversion but before iteration,

both representations of the value must be updated, adding

to the expense of the scheme. A reasonable compromise

might be as follows. A conditional conversion is inserted

at the last point preceding the iteration over an object

which modifies the object. The density of the object (the

cardinality of the object and its base) is examined. If

102



the density is less than certain value (i.e., if the

object is sparse), a conversion is carried out. Since the

object is not subject to any modification before it is

iterated over, updating of the list created to support

iteration uill not be required.

5 . 5 Multi-level Basings

The basing system allows a declared base U to be based

on another base V. In such case, the base U is called an

intermediate base, and the associated relational structure

is said to involve multi-level basings. Conversely, if

there is no intermediate base in a relational structure it

is said to involve only simple basings.

While our system can only generate simple basings,

multi-level basings can be useful, particularly for sparse

sets. The introduction of an intermediate base B1 (a base

of elements of another btise B) can make a based set uhich

is sparse in the ground base B be dense on Bl. Change of

the density of based sets can significantly improve the

efficiency of algebraic operations as well as iteration

over based sets. However, extra locate operations are

required whenever an element of the intermediate base

references the ground base for the first time (after the

first such reference, a proper basing pointer can be kept

with the clement in the intermediate base). The cost of

element block allocation for the intermediate base can

110



also increase significantly.

5 , 6 Co-linked Bases

Use of co-linked bases may be regarded as a variation

of multi-level basing. Two bases are co-linked if each

one is declared to be a base of elements of the other. An

example is given by the legal declaration

repr B1 : base(€B2) ; B2 : base(eBl) ; end repr ;

After this declaration each element of B1 keeps a pointer

to the corresponding element of B2 and vice versa. A

basing pointer from an element XI in Bl to the

corresponding element X2 in B2 is established at the first

reference from XI to X2 and vice versa. After such a

pointer is established succeeding references from XI to X2

need no additional locate operations. If XI never

references the corresponding element of B2, a pointer from

XI of Bl to the corresponding element of B2 need never be

made available. Clearly, co-linked basing is more general

than strict multi-level basing in the sense that either

base can be regarded as an intermediate base of the other

111



CHAPTER 6 : SETL CODE FOR THE DATA STRUCTURE CHOICE ALGORITHM

module AUTO-DSTRUCT ;

$ Our data structure choice algorithm has been designed

$ to be compatible with the currently implemented SETL

$ optimizer, i.e., analytic information derived by the

$ SETL optimizer can directly be used by our algorithm.

$ For a detailed account of the SETL optimizer, see

$ Grand[1978]. The terms, variable names and data

$ structures used in tlie SETL optimizer are inherited by our

$ algorithm. Some of the utility macros and subroutines

$ defined in the SETL optimizer are also used by our

$ algorithm without modification.

* For this reason, ue shall nou summarize the

$ definitions, constructs and ouputs of the SETL optimizer

$ which are relevant to our subsequent discus ->n

.

* Symbols

* Each symbol corresponds to a resolved name in a SETL

$ source program or to a compiler generated temporary.

$ Symbols are represented as atoms which are elements of

$ the base SYMBOLS.

$ The Symbol Table

112



$ The 'symbol table' is a collection of maps on SYMBOLS.

$ These maps are:

vars

NAME,

VALUE,

IS-CONST.

IS-BASE,

IS-GLOBE

end vars ;

$ name of symbol

$ value of symbol

$ indicates constant

$ indicates base

$ indicates global variable

$ Procrr am

$ A program is divided into routines, basic blocks, and

$ instructions. Each instruction consists of an opcode and

* a tuple of arguments. All the inputs and outputs of an

$ instruction appear eKplicitly as arguments.

$ The instructions in each block are threaded into a

$ linked list. This is designed to allow maximum

$ flexibility in code insertion and deletion.

$ Maps on Instructions

vars

NEXT, $ next instruction in block

BLOCKOF, 4 gives block containing instruction

OPCODE, $ operation code

ARCS, * tuple of arguments

113



COPY^FLAG $ indicates what copy action should

$ be done

end vars ;

* Macros for Accessing Fields uithin Instructions

(Ml): macro ARGl(I); ARGS(I)(1) endm; $ ISt argument

(M2): macro ARG2(I); ARGS(I)(2) endm; $ 2nd argument

(M3): macro ARG3(I); ARGS(I)(3) endm; $ 3rd argument

$ Iteration over a Procrram

$ The following macro is used to iterate over the

$ instructions in a block.

(M4): macro FORALLCODE ( B , I);

init I:=FIRST(B); while I/=OM step I:=NEXT(I);

endm;

$ Iteration over the whole program is written :

* (V B e BLOCKS, FORALLCODECB, I))

$ Occurrences

$ An occurrence is a use or definition of a variable.

$ It is defined to be a pair

$ [instruction identifier, argument number].

S Occurences which are inputs are called ' ivar iables ' , and

114



$ occurrences which are outputs are called ' ovariables ' . An

$ occurrence may be both an i- and o-variable, for example'

$ 'F' in • F(X) := Y'

.

$ With the exception of the 'from' operator, ovariables

$ are always the first argument of their instruction.

$ Ivariables may appear in any argument position.

$ The 'from' operator has two arguments, both of which

$ are inputs and outputs

.

$ In order to speed up iterations and test the types of

$ occurrences we provide the following sets and macros •

vars

ALL-'OI, $ set of all occurrences

ALL-'O, $ set of all ovariables

ALL-I, $ set of all ivariables

ALL-'VARS $ set of all entries in symbol table

end vars ;

$ The following macros are used in connection with

$ occurrences :

(M5): macro INSTNO(OI); 01(1) endm;

$ the instruction which contains 01

(MS): macro ARGNO(OI); 01(2) endm;

$ the argument number of 01

115



(M7): macro OI^OP(OI); 0PC0DE(0I(1)) endm;

$ the operation code of the instruction

$ containing 01

(M8): macro OI-HAMECOI); ARGS(0I(1)) (01(2)) endm;

* the variable name of 01

(M9): macro OI-VALUE ( 01 ) ;

$ the value of 01

VALUECOI-NAMECOI) ) endm;

(mO): macro OI-INTOV(OI) ;

INTOV(BLOCKOF(INSTNO(OI) ) ) endm ;

$ the interval uhich contains 01

(Mil): macro IS-OVAR(OI); (01 in ALL-0) endm;

$ indicates whether 01 is an ovariable

(M12): macro IS-IVAR(OI); (01 in ALL-I) endm;

$ indicates whether 01 is an ivariable

(m3): macro IS-HASHED ( 01 ) ; OI-'OP(OI) in OPS-HASH endm;

$ indicates whether 01 is subject to an

S operation involving hashing

(ni4): macro IFROMOCO, N); (0(1), K+ 1 I endm ;

$ the N-th ivariable of the instruction

$ containing as the ovairalbe

(M15): macro OFROMKI); [1(1), 11 endm ;

$ the ovariable of the instruction containing

* the ivariable I

116



$ Opcodes

$ The set OPCODES defines all the operations in the

$ internal program representation. The follouing lists

$ the opcodes relevant to the subsequent discussion.

const OPCODES :=

{

$ Binary operators

ei-ADD, $ +

ei-DIV, $ /

ei-EXP, $ **

Q1-E2, $ eq

21-inP, $ imp

ei-IN, $ in

ei-INCS, $ incs

e 1 -'less , $ less

BI-lessF, $ Hessf

ei-noD, $ //

ei-nuLT, $ *

ei-HE, $ ne

21-notin, $ notin

ei-NPOU, $ npoM(n,set)

BI-SUB, $

ei-SUBSET, $ subset

Ql-uith, $ with

$ Unary operators

117



21-UMIN, $ unary minus

$ Miscellaneous

ei^SET, $ set former

21-SET1, $ set formed uith loop

21-TUP, $ tuple former

21-TUPl, $ tuple formed uith loop

S1-FR0M, $ A1 from A2;

$ Iterators

ei-NEXT, $ M := next element of A2

21-NEXTD, $ A1 := next element of domain A2

21-INEXT, * initialize next loop

ei-INEXTD, $ initialize nextd loop

$ Mappings

ei-OF, $ Al : = A2(A3)

ei^OFA, $ A1 = A2(A3}

Ql-OFB, $ A1 = A21 A3 1

B1-S0F, $ arg 1 ( arg2 ) =arg3

B1-S0FA, $ arg 1 {arg21 =arg3

ei-SOFB, $ A1 [ A2 1 : = A3;

$ Assignments - all assign arg2 to argi

21-'ARGIN, $ assign argumen^ to formal parameter

21^ARG0UT, $ return value from a function

ei-ASN, $ argi — arg2

118



ei-pusH,

ei-pop,

};

$ push element for set former

$ pop read only argument from stack

end const;

$ The opcodes are divided into several categories which are

$ represented as constant sets. These sets are used to

$ drive 'case' statements and as predicates on OPCODES.

$ The classes useful in our subsequent discussion include

const

(CI) 5 OPS-'ASN := $ assignment operators

{ el-ASN, ei-ARGIN, ei-ARGOUT, fil-PUSH, gl-POP } ;

(C2): OPS-HASH •= $ operations involving hashing

{ ei-WITH, ei-LESS. el-FROM, Q1-0F, ei-OFA 1 ;

(C3): OPS-RETRIEVE '• = $ value retrieval operators

{ ei-ARB, QI-FROM, SI-NEXT, BI-INEXT, ei-NEXTD,

ei-NEXTD, ei-INEXTD, el-OF, S1-0FA, ei-OFB } ;

(C4): OPS-CREATE := $ value creation operators

{ ei-ADD, 21-DIV, ei-EXP, Q1-LESS, 21-LESSF, Ql-MOD,

21-MULT, 21-NPOW, 21-SUB, 21-WITH, fil-UMIN, QI-SET,

21-SET1, 21-TUP, 21-TUP1 ,21-SOF, 21-SOFA,

21-SOFB 1 ;

end const;

119



$ RC-strinqs

$ In order to make inter procedural analysis precise, ue

$ allow the attributes of a variable occurrence 01 to vary

* depending upon hou the routine P in which 01 appears is

$ invoked. For example, X may be of type 'set' when P is

$ called form an instruction A, but of type 'tuple' when P

$ is called from another instruction B. For this reason

$ most of the attribute maps (e.g., type) used within the

$ SETL optimizer are defined on pairs of [OI,RCj where 01 is

$ a variable occurrence and RC is a so-called RC-string

$ (R-eturn C-all string), instead of being defined simply

$ on variable occurrences. Logically, a RC-string is the

$ concatenation of a series of return-call phrases.

* Each return-call phrase is a pair

$ tXXX, INSTl

$ where XXX is one of the constants RC-CALL or RC-RETN, and

$ INST is an instruction identifier. Intutively,

$ [RC-CALL,!] means 'by way of CALL at instruction I' and

$ IRC-'RETH,!] means 'by way of return to instruction I*.

$ An entire RC string is represented as a tuple of these

$ pairs.

$ Technically, when we analyze an attrbibute of an

$ occurrence 01 we store it as a pair (or set of pairs)

$ IRCS,ATTI where ATT is the attribute and RCS is the

S return-call path along which the attribute was created

120



$ When ue propagate an attribute (RCS.ATTi from an

$ occurrence 01 to some other occurrence I later in the

$ program, we must begin by finding the return-call path

$ RCS 1 which takes us from 01 to I. We then set the

S attribute of I to the pair [ ATT , RCS I I RCS 1 1 if this

S concatenation yields a valid RC-string and to Oti

$ otherwise

.

$ The operator 'A cc, B' returns the concatenation of

$ two RC-strings A and B j._ ^ - result is a valid string

$ and returns the constant ERROR--PATH otherwise. For

$ further detail about RC-strings, see Grand et all 1978 1.

$ The following constants are used for RC-strings =

const

(C5): RC-CALL; $ indicates CALL

(C6): RC-RETN; $ indicates return

(07): HULL-PATH == [ I; $ null return CALL path

(C8): ERROR-PATH; $ error path

end const;

$ Chaining Of occurrences

$ Certain central algorithms in the SETL optimizer are

S designed to build up a set of pairs [01,1 I where 01 and

S I are occurrences and there is a path with certain

$ properties from one to the other. We say that these

$ sets 'link' or 'chain' occurrences with certain

121



S properties.

$ When ue link tuo occurrences in different procedures,

$ ue keep track of the return-call path by which they are

$ linked.

$ The sets built by the various chaining algorithms

$ always have elements of the form:

$ [01, [P, IJ ]

$ where 01 and I are occurrences linked together along the

$ return- call path P.

$ Three of the most important link maps are

$ BFRond} ;

$ If I is an occurrence of some variable V then BFROMd}

$ is a set of pairs [P,OIJ where P is a return-call path

$ and 01 is an occurrence of V such that there is a

$ V-clear path along P from 01 to I.

$ FFROMfll :

$ This is essentially the inverse of BFROM. If I is an

S occurrence of V then FFROM{I} is a set of pairs IP, Oil

$ where P is a return-call path and 01 is an occurrence of

$ V such that there is a V-clear path along P from I to

$ 01.

$ PS-CRTHISCI} :

122



$ This is the value flou map used in our data structure

$ choice algorithm. If I is a variable occurrence then

$ PS-CRTHIS{I} is a set of pairs [P,OIl where P is a

$ return-call path and 01 is the ovariable occurrence of a

$ value creation or value retrieval instruction such that

$ the value of 01 can be transmitted to I through simple

* assignments (along the path P).

$ Type Finding

$ The SETL optimzer uses a modified version of the

$ Tennenbaura's type finder. This type finding algorithm

$ is interprocedural in nature. The type information it

$ develops gives us a first approximation to the

$ representation structure of each occurrence.

* The set of basic types form a Boolean lattice. A

$ point on this lattice is referred to as a gross type.

$ Intuitively the gross type of an object gives us

$ information about its top level structure.

* The type lattice is defined in terms of a set of

$ nodes, namely the gross types, and a MEET and JOIN

$ function. The gross types are represented as sets of

* atoms, and MEET and JOIN are represented as set union

$ and intersection.

const

(C9): TOM = { NEWAT } ; $ on

123



(CIO)

:

( C 1 1 )
••

( C 1 2 )
••

(C13)

:

(C14) :

(C15)

:

( C 1 6 ) :

(C17)

:

(C18) :

(C19)

:

(C20) ••

(C21 ) :

(C22) :

TSI

TLI

TR

TSC

TLC

TA

TL

TP

KNT

UNT

GMAP

GSET

TELMT

NEWAT

NEWAT

NEWAT

NEWAT

NEWAT

NEWAT

NEWAT

NEWAT

NEWAT

NEWAT

NEWAT

NEWAT

NEWAT}

$ short integer

$ long integer

$ real

$ short chars

$ long chars(C15)'-

$ atom

$ label

$ procedure

$ known length tuple

$ unknown length tuple

$ map

$ set

$ element

end const;

$ The following points in the type lattice are also given

$ names

:

const

(C23)

:

(C24)

:

(C25)

:

(C26)

:

(C27) :

(C28) :

(C29)

:

(C30)

:

TC :

TI :

TNUM :

TMTUP

THTUP

TTUP :

TSET :

TMAP :

TSC + TLC;

: TSI + TLI;

^ TI + TR;

= KNT;

= UNT;

KNT + UNT;

: GSET;

= GMAP;

$ characters

$ integers

$ numbers

$ tuples of know length

$ tuples of unknown length

$ tuples

$ sets

$ maps

(C31): TG •• = TOM + TA + TNUM + TC + TTUP + TSET + TMAP;

124



(C32) TZ := nl; $ zero element

(C33): TSTRUCT := TTUP + TSET + TMRP; $ any structured type

(C34): TZSTRUCT:= TG - TSTRUCT; $ zero for sublattice of

$ structures

(C35): MAPTUP

(C36 ) •• SETTUP

(C37) : MAPSET

end const;

= THAP + TTUP; $ nap or tuple

= TSET + TTUP; *• set or tuple

= THAP + TSET; S map or set

$ The following macros are used to access type lattice

$ elements

.

(M16)

(M17)

macro STRUCTPART ( G ) ; G * TSTRUCT

$ struture of type G

endm

;

macro IS-PRIM(G); STRUCTPART ( G ) = TZ endm;

$ indicate whether G is a primitive type

$ Note that the following two criteria are used to

$ regulate the degree to which minor type ambiguities can

$ impact our data stucture choice algorithm.

* (1) We assume that the object S appearing in an instruction

$ 'S with X* will be assigned the type TMAP because a map

$ cannot be defined on OM and the current type finder is

* unable to tell that whether the first component of X (if

$ it is a tuple) is OM

.

$ (2) We assume that the object T appearing in 'T(X)' will be

125



$ assigned the type TMTUP only if the value of X is knoun

$ at the compile time (i.e., OI-VALUE(X) is defined),

$ otherwise T should be assigned the type THTUP if it is

$ a tuple

.

$ Type Descriptors

$ A type descriptor is a complete description of an

$ object's type. If an object is primitive, it is

$ described by a pair [ GROSSTYP , On 1 uhere GROSSTYP is an

$ element of the type lattice indicating its gross type.

$ If an object is structured, its type is described as a

$ pair [ GROSSTYP, COMPTYP 1 uhere GROSSTYP is again an element

$ of the type lattice and COMPTYP is a type descriptor for

$ the components of the object.

* The use of COMPTYP varies slightly for each type of

S structured object.

$ A. Sets

$ GROSSTYP: TSET

* COMPTYP: type descriptor for elements

$ B. Homogeneous tuples of unknown length

* GROSSTYP: THTUP

$ COMPTYP: type descriptor for components

$ C. Mixed tuple of knoun length

126



* GROSSTYP: TMTUP

$ COMPTYP: tuple of type descriptors for components.

If T is a type descriptor for a known length

tuple, then CTYPH(T,N) is the type descriptor

for the N-th component of T, and LENTYP is the

length of the tuple of type descriptors, or

equivalently , the length of the tuple.

*

$

$

$

$ D. Map

* GROSSTYP: TMAP

$ COMPTYP: type descriptor for the element type of the map,

$ namely knoun tuple of length 2. If T is a type

$ descriptor for a map, then DOMTYP(T) is a type

* descriptor for the domain of T, and RANTYP(T)

* is a type descriptor for the range (i.e., F(X))

* of T.

* The output of the type finder is a map called TYPES.

$ If 01 is an occurrence and P is a return-call path, then

$ TYPES(OI,P) is a type descriptor giving the type of 01,

$ assuming that the program has proceeded along the

$ return-call path P.

$ The following macros are used for type descriptors :

(MIS): macro GROSSTYP(T); T(1) endm;

$ gross type of type descriptor T

127



(M19): macro COMPTYP(T); T(2) endm;

$ type of elements or components of T

(nZO): macro CTYPNCT, N); COMPTYP ( T ) ( N ) endm;

$ type of N-th component of T

(M21): macro LENTYP(T); (# COMPTYP(T)) endm;

$ length of type descriptor T

(M22): macro DOriTYP(T); CTYPNC COMPTYP ( T ) , 1) endm;

$ domain type of type descriptor T

(M23): macro RflNTYP(T); CTYPH( COMPTYP ( T ) , 2) endm;

$ range type of type descriptor T

$ Automatic Data Structure Choice

$ Our data structure choice algorithm utlises the

$ information derived by the SETL optimizer to determine

i the basing mode of variable occurrences. The inputs to

S our algorithm are :

$ 1 . The data flou maps BFROM and FFROM, and the value

* flow map PS-CRTHIS.

$ 2. The type map TYPES uhich gives the possible types

* of each occurrence.

$ The output from our algorithm is a map MODE uhich maps

$ each variable occurrence into an appropriate 'mode

$ descriptor'. In addition, 'locate' instructions, which

128



$ are designated by simple assignment instructions with

$ member basing modes for ©variables and non-member basing

$ modes for ivarables, are also inserted into program

$ code

.

i We allow unique representation structure for each

$ variable occurrence 01, regardless hou the routine in

$ which 01 appears is invoked. Unlike most of the other

$ attribute maps defined in the SETL optimizer, which map

$ variable occurrences to pairs I RC-STRING , ATTRIBUTE 1 , the

$ map MODE will map each variable occurrence into a single

* mode descriptor.

$ Mode Descriptor

$ A mode descriptor is a complete description of the

i representation structure of an object. It has a structure

$ similar to that of a type descriptor, but is represented

$ as a tuple of length four instead of a tuple of length

$ two. The detailed structure of a mode descriptor is

* [GROSSTYP, COMPTYP, BASENAM, REPRATT 1

* The first two fields GROSSTYP and COMPTYP have the same

$ meanings as they have in a type descriptor. However,

$ TEMLT which indicates member basing and TBASE which

$ indicates bases are introduced as new gross types . When

$ the GROSSTYP of a mode descriptor is TELMT, the BASENAM

$ field contains the name of its base. The last field

129



$ REPRRTT is used to describe the representation attribute

$ of domain based objects. The allowed representation

$ attributes are defined by

const

(C39): SPARSE

(C39): REMOTE

(C41): LOCAL

end const;

= { NEMAT }

= { NEWAT }

= { NEWAT }

$ sparse representation

$ remote representation

$ local representation

$ Particular examples of mode descriptors are s

$ 1. The mode '€B' is represented as

$ [TELMT, on, B, on].

$ 2. The mode 'local set(eB)' is represented as

* ITSET, ITELMT, OM, B, OM 1 , OM, LOCAL].

$ 3. The mode 'sparse smap ( €B 1 ) eB2 ' is represented as

$ [TMAP. ITMTUP. I [ TELMT, 0M.B1 , OM 1 , ( TELMT , OM , B2 , OM 1 1,0M,SPARSE 1

$ 4. The mode 'base(int)' is represented as

* [ TEASE, TI.OM.OM 1

.

$ Tuo macros, in addition to those defined on type

$ descriptors, are used to reference mode descriptors.

(M24): macro BASENAM(M) ; M(3) endm ;

$ base name of mode descriptor M

(M25): macro REPRATT(M) ; M ( 4 ) endm ;

$ representation attribute of mode

130



* descriptor M

* The following additional macros are used to manipulate

$ mode descriptors of variable occurrences.

(n26): macro MGTYPCVAR) ; GROSSTYP CnODE ( VAR ) ) endm ;

* gross type of a variable

$ occurrence

(M27)! macro GLTYP(VAR) ; LENTYP ( MODE( VAR) ) endra ;

$ length of a tuple

(n28): macro ELMBASECSET) ; BASENAN ( COMPTYP ( MODE ( SET )) ) endm ;

$ base of a based set

(n29)! macro DOMBASECriAP) ; BASENAn( DOMTYP ( MODE ( MAP )) ) endm ;

* base of the domain of a based

$ map

(M30): macro RANBASE(MAP) ; BASENAM ( RANTYP ( MODE (MAP )) ) endra ;

$ base of the range of a map

(M31): macro COMBASECTUP , N ) ; BASEMAMt CTYPNC MODE ( TUP ), N ) ) endm

$ base of the N-th component

$ of a tuple

* Global Variables

$ In addition to the global variables used in the SETL

$ optimizer, ue introduce the following global variables

$ in our algorithm.

131



vars

MODE , * map from occurrences to their mode

$ descriptors

LIVEPDS , $ set of live periods of variables

$ having composite object values

IS-'FORMAL , % map on bases to indicate that a

$ base only supports the formal

$ parameters of a procedure

NBASE , ' % map on real bases to count the

$ number of bases in the same

$ equivalence class

NBASEDON , $ map on bases to count the number

$ of sets and maps based on them

PARENT , $ map from bases to their preceding

$ nodes in the equivalence class tree

LCCIHS , $ set of possible 'locate'

$ instructions to be inserted

BASE-'ELMTS , $ set of occurrences which are known

$ to be elements of bases

ID-TO-BASE, $ map on variable occurences

$ indicating whether the occurrence

$ values are indentical with their

S bases

132



HASH-USE, $ map on variable occurrences

$ indicating whether the occurrence

$ values are subsequently subject to

$ operations involving hashing

NCN-HASH-USE $ map on variable occurrences

$ indicating whether the occurrence

$ values are subsequently subject to

$ operations not involving hashing

end vars ;

$ Useless Bases

* Our data structure choice algorithm first introduces a

$ base for each composite object and then equivalences

$ bases. After this equivalencing procedure, some bases

$ may eventually be found useless. A base is useful only

$ if at least tuo composite objects are based on it,

$ because then the basing pointers held by one can be used

$ to access the other. If a base is simply the domain of

$ a map (and nothing else) then nothing is gained by its

$ existence, because there is no way to generate elements

$ of that domain without recalculating the corresponding

$ basing pointer. The same is true if the only objects

$ supported by a base are a set and its elements. In this

$ case, the map (or set) should be unbased. Consequently,

$ any base which supports only a single composite object

133



$ is useless, unless the object is a formal parameter of a

$ procedure. To detect such a case, ue provide the

$ following macro.

(M32): macro CAN-DROP(B) ;

NBASEDON(B) = 1 and not IS-FORMRL ( B

)

endm ;

$ Representations for the Global Variables used

* Me nou declare the representations for the global

$ variables used by the SETL optimizer.

repr

$ Variables defined in the SETL optimizer

(VI): SYMBOLS : base ; $ base of symbols

(V2): NAME = smap ( €S YMBOLS ) char ;

$ name of a symbol

(V3): VALUE : smap ( eSYMBOLS ) real ;

$ value of a symbol

(V4): IS-CONST •• smap ( €S YMBOLS ) bool ;

$ indicates constant

(V5): IS-GLOB = smap (€ SYMBOLS ) bool ;

$ indicates global variable

(V6): OI-BASE = base ; $ base of ©variable occurrences

(V7): RC-BASE : base ; $ base of RC-strings

(V8): ALL-OI : se t ( e 01- B ASE ) ;

134



$ set of all variable

$ occurrences

(V9)-. ALL-0 : se t ( eOI-BASE ) ;

$ set of all ovariable

$ occurrences

(VIO): ALL-I : se t ( € OI-B ASE ) ;

$ set of all ivariable

$ occurrences

(VII): BFROM : mmap {€ oi-BASE } set ([ SRC- BASE ,€ 01- BASE 1 ) ;

$ data flow map

(V12): FFROn : mmap { eOI-B ASE } se t ( I € RC-B ASE , eoi-BASE ] ) ;

$ data flow map

(V13): PS-CRTHIS : mmap { € 01- B ASE } se t ( [ eRC-B ASE , €OI-B ASE 1 ) ;

$ value flou map

(V14): TYPE-BASE : base ;
*

$ base of type descriptors

(V15): TYPES : mmap { OI-BASE } se t ([ e CR-BASE ,€ TYPE-BASE 1) ;

$ possible types of variable

$ occurrences

(V16): INSTRS = base(int) ;

* base of instructions

(V17): BLOCK-BASE : base ;

$ base of code blocks and

$ intervals

(V18): OPCODES : base ; $ base of opcodes

(V19): NEXT : smap (€ INSTRS )£ INSTR ;

135



$ next instruction

(V20): BLOCKOF : smap ( eiNSTRS ) eBLOCK-BASE ;

$ code block containing the

* specified instruction

(V21): OPCODE : smap ( GINSTRS ) €OPCODES ;

$ operation code of an

$ instruction

(V22): ARCS : smap ( eiNSTRS ) tuple ( eoI-BASE , eoI-BASE , eOI-BASE

)

$ arguments of an instruction

$ variables particular to the data structure choice

$ algortihra

(V23)-- SB-BASE : base ; $ base of all generated bases

(V24): IS-FORMAL : smap ( eSB-BASE ) bool ;

* indicates whether a base is a

$ formal base

(V25); NBASES : smap ( eSB-BASE ) int ;

$ number of bases in the same

* equivalence class as a geven

$ base

(V26): NBASEDON : smap ( CSB-B ASE ) int ;

$ number of sets and maps based

$ on a base

(V27): BASE-ELMT = mmap { eSB-B ASE ) SET ( eOI-B ASE ) ;

$ occurrences inserted into a

$ base

(V28): MODE-BASE : base ; $ base of mode descriptors

136



(V29): BMODE : map ( eSB-BASE ) GMODE-B ASE ;

$ mode of a base

(V30): MODE : map ( €OI-BASE ) €MODE- BASE ;

$ basing modes of an occurrence

(V31): LPD-BASE : base ; $ base of live periods

(V32): LIVEPDS : set ( €LPD-BASE ) ;

$ set of live periods

(V33): HASH-USE = smap ( eOI-BASE ) bool ;

$ map on variable occurrences

$ indicating whether the

$ occurrence values are

$ subsequently subject to

$ operations involving hashing

(V3t|): NON-HASH-USE = smap ( €OI-BASE ) bool ;

$ map on variable occurrences

$ indicating whether the

$ occurrence values are

$ subsequently subject to

$ operations not involving

$ hashing

(V35): ID-TO-BASE : smap ( €OI-BASE ) bool ;

$ map on variable occurrences

$ indicating whether the

* occurrence values are

$ indentical with their bases

end repr •

137



$ Program Ortranization

$ To make it easier to understand the global structure

$ of our algorithm, ue outline its major subroutines in

$ their calling hierarchy.

$ (PI): GENBASE - generate bases

$ (P2): CONSTR-PS-CRTHIS - construct PS-CRTHIS map

$ (P3): GENLOCS - generate locate instructions

$ (PM): MERGEOBJ - process set algebraic operations

$ (P5): PROPELMT - process set insertion operations

* (P6)5 PROPOFHAP - process map retrieval operations

$ (P7): PROPSOFMAP - process map storage operations

$ (P8): PROPOFTUP - process tuple retrieval operations

$ (P9)s PROPSOFTUP - process tuple storage operations

$ (PIO): PROPSOFAMAP - process map range storage

$ - operations

$ (P11): MERGE - merge bases

* (P12): MERGE-INTO - merge the mode of an occurrence

* I
- Mith the element mode of a base

$ (P13): INSERTLOCS - insert locate instructions

$ (Pm): E2UIV - equivalence bases

$ (P15): REALB - find real bases

$ (P16): tlODEDIS. - calculate mode disjunction

* (P17): PARTITION - partition pseudo creation points

$ (P18): LASTCALL - find last calling point of

$ - a procedure

138



$ (P19): MOVELOCS - move locate instructions

$ (P20): UPDMODES - update occurrence modes

$ (P21)! nODECnPRS - compress mode descriptors

* (P22): SUBSTMD - substitute mode descriptors

$ (P23): USE-DETERM - determine uses of variable values

$ (P2'4): BASING-PROP - propagate basing mode

$ (P25): REFINE - refine occurrence modes

$ (P26): ID-BASE - verify occurrences identical

* - with bases

* (P27)! SETOF - find sets constructed by set

$ - formers

$ (P28): MAKE-REMOTE - choose remote representations

$ Cross-reference Listing of Global Names

$ For reference purpose, ue list in the appendix B all

$ global names used in our algorithm in their alphabetical

$ order

.

$ SETL code

$ Now we are ready to present the code.

proc AUTO-DATA public ;

$ This is the main routine of our algorithm.

$ Initialize global variables.

MODE := HBASES := LIVEPDS := LOGINS := NBASEDON := PARENT := nl ;

139



BASE-ELMTS : = IS-TO-^BASE == HASH-USE := NON-HASH-USE : = nl ;

GENBASEC )

;

GENLOCSC )

;

nOVELOCS();

UPDMODES( )

;

REFINEC )

;

end AUTO-DATA ;

$ invoke phase I

$ invoke phase II

$ invoke phase III

$ invoke phase IV

$ invoke phase V

proc GENBASE ;

$ The purpose of this procedure is to improve the efficiency

$ of the subsequent phases.

$ This procedure generates a base for each live period of a

$ composite object. A live period is used here to mean a

$ set of occurrences of a given variable, uhich are linked

$ by the chaining maps FFROM and BFROM and can therefore

$ be expected to have the same basing. However, bases are

$ generated only for the live periods in uhich all the-

* occurrences have the same gross type. No bases are

$ generated for the bases which consists of occurrences of

$ indefinite gross type (e.g., TSETTUP and TMAPTUP).

$ Objects of indefinite gross type can never be doamin

$ based. Each base generated in this phase initiate a

$ seperate equivalence class. Equivalence classes will be

$ merged in phase II.

140



$ To facilitate the adjustment of modes during phase V, it

$ is convenient to assume that tuples are also based,

$ i.e., that their components are also elements of some

* bases. Introduction of such bases is harmless, because

$ if no composite objects end up being based on them, they

$ Mill be dropped.

$ This routine is called by the main routine AUTO-DATA and

$ calls the routine CONSTR-PS-CRTHIS to construct

$ PS-CRTHIS map for subsequent use. This routine also

$ calls a utility routine DIS in the type finder to find

$ the disjunction of a set of type descriptors.

* The global variables referenced by this routine include

$ LIVEPDS - set of live periods

$ NBASES(B) - number of bases in the same equivalence

$ - class as B

$ NBASEDON(B) - number of sets and maps based on base B

$ IS-FORMAL(B) - indicates whether B is a formal base

$ All-'OI - all variable occurrences

$ nODECOI) - mode of occurrence 01

$ BFROM{OI} - occurrences to uhich 01 is directly

* - linked

$ FFROM{OI) - occurrences uhich are directly

$ - linked to 01

$ TYPES{OI} - possible types of occurrence 01

$ The macros used in this routine include

$ OI-NAMECOI) - name of occurrence 01, see (M8)

141



$

$

*

GROSSTYP(T)

LENTYP(T)

COnPTYP(II)

DOMTYP(M)

RAHTYP(M)

CTYPNCM.I)

- gross type of type descriptor T, see (MIS).

- length of type descriptor T, see (M21).

- elemeht mode of mode descriptor M. see (M19

- domain mode of mode descriptor M, see (M22)

- range mode of mode descriptor M, see (n23).

- I-th component mode of mode descriptor M,

- see (.mo ) .

$ The local variables defined in this routine are

repr

TODO : set( £OI-BRSE ) ; $ uorkpile of variable occurrengeg

WORK : set ( eoi-BASE ) ; $ uorkpile of variable occurrences

TPOfTYP.T ? ETYPE-BASE ; $ type descriptors

0I,WOI : egi-BASE ;

BASE • eSB-BASE ;

NEWM : enoDE-BASE ;

LPD : CLPD-BASE ;

L '• int ;

end repr ;

$ variable occurr@nQ@^

$ base

$ mode descriptor

$ live period

$ length of tuple

$ Initialize TODO to be the set of all variable occurrences

TODO := ALL-OI ;

$ An initial mode descriptor is assigned to each variable

$ occurrence

.

( while TODO /= nl )

01 := arb TODO ; $ Get an occurrence

142



T := DIS. / { TYP : [ - , TY P J € TYPES { 01 } } ;

$ Disjunction of all possible

$ types of 01.

$ If 01 is of primitive type, take its type as the

$ initial mode descriptor.

if IS-PRIM(T) then

riODE(OI) := T ;

TODD less 01 ;

continue while TODO ; $ Process next occurrence,

end if ;

$ Otherwise, 01 is a composite object. Construct the

$ live period containing 01.

WORK := {01} ; $ Initialize a workpile

(while WORK/=nl)

01 from WORK ;

T := DIS. / { TYP

MODE(OI) := T ;

TODO less 01 ;

LPD with 01 ;

$ Choose an arbitrary element from

$ WORK.

[-,TYP]GTYPES{OI} } ;

$ Disjunction of all possible

* types of 01.

$ Use type as initial mode.

$ 01 need not be processed any more

$ 01 is included into the current

$ live period.

$ Insert the occurrences which are linked to 01 and

143



$ have not been processed into the uorkpile WORK

WORK + {WOI : ( -,MOI l€(FFROri{Ol}+BFROM{OI} ) I WOI in TO]

end while WORK ;

$ LPD is a complete live period.

LIVEPDS with LPD ;

T := DIS. / { TYP [ -,TYP l€TYPES{OI} I 01 in LPD } ;

$ Disjunction of all possible

$ types of the occurrences in

$ LPD.

TPO •• = GROSSTYP(T) ; $ gross type of T

$ If all the occurrences in the live period LPD have the

$ same definite composite type, construct a domain

* basing mode for all of them. The gross type is

$ taken as the initial mode descriptor. This mode

$ descriptor will be completed subsequently.

NEWn := iTPOl ; $ template for mode descriptor

case TPO of

(TSET)

$ If every occurrence 01 in LPD is a set, generate a

* base for 01. Give 01 the mode setCcBASE) by

$ inserting the member basing eBASE into the mode

$ descriptor NEWn for the elements of 01. NEWM

144



$ will become I TSET , I TELMT , OM , BASE 1 ] .

COMPTYPCNEWM) := (TELMT, OM, B ASE •• =NEWAT 1 ;

$ Set NBASEDOM(BASE) == 1 to indicate that 01 is

$ domain based on BASE.

NBASEDON(BASE) : = 1 ;

$ Let BASE form an equivalence class.

NBASES(BASE) •• = 1 ;

$ Initialize the mode of BASE.

BMODE(BASE) := [ TB ASE , COMPTYP ( T ) 1 ;

$ Initialise BASE to be a formal base.

IS-FORMALCBASE) := TRUE ;

(TMAP)

$ If every occurrence 01 in LPD is a map, generate

$ tuo bases for 01 ; one for its aomain and the

$ other for its range. Give 01 the mode

* map( €BASE 1 ) £BASE2 by inserting the mode

$ ( €BASE1 , eBASE2 1 into the mode descriptor NEWM for

$ the elements of 01. NEWM will become

$ [TMAP, [TMTUP, ( [ TELMT, OM,B ASE 1 ], [ TELMT , OM , BASE 2 1 1 ] I

COMPTYPCNEWM) == [TMTUP, [II ;

DOMTYP(NEWM) := [TELMT, OM, BASE 1 : =NEWAT I ;

145



RANTYP(NEWM) := [TELMT, OH, B ASE 2 = =NEWAT 1 ;

$ Set NBASEDOM(BASEI) := 1 to indicate that 01 is

$ domain based on BASEl,

KBASEDON(BASE) := 1 ;

$ Let BASEl and BASE2 each form an equivalence

$ class.

NBASES(BASEI) := 1 ;

NBASES(BASE2) := 1 ;

$ Initialise the mode of BASEl and BASE2.

BMODE(BASEI) == [ TB ASE , DOMTYP ( T ) 1 ;

BM0DE(BASE2) := [ TB ASE , RANTYP ( T ) 1 ;

$ Initialise BASEl and BASE2 to be formal bases.

IS-F0RMAL(BASE1 ) := TRUE ;

IS-F0RnAL(BASE2) := TRUE ;

(THTUP)

$ If every occurrence 01 in LPD is a tuple of unkouin

$ length, generate a base on which all the

$ components of 01 to be based. Give 01 the mode

$ tuple(€BASE) by inserting the member basing

* €BASE into the mode descriptor HEWM for the

$ components of the tuple. NEUM will become

$ I THTUP, [ TELnT,On,BASE I 1

.

146



COMPTYP(NEWri) := (TELMT, OM, BASE : =NEWAT 1 ;

$ Let BASE form an equivalence class.

NBASES(BASE) := 1 ;

* Initialise the mode of base

.

BMODE(BASE) := ( TB ASE , COMPTYP ( T ) 1 ;

$ Initialize base to be a formal base.

IS-FORMAL(BASE) := TRUE ;

(TMTUP) :

* If every occurrence 01 in LPD is a tuple of known

$ length, generate a base for each component of 01

$ and let the component be based on this base.

L := LENTYP(T) ; * length of tuple 01

COMPTYP(NEWn) : = I 1 ;

(VI := 1...L)

$ Generate a base for the component and insert

$ the member basing eBASE into the mode

$ descriptor NEWn for the component. NEWM

$ will eventually become

$ [TMTUP, 11 TELriT,OM,BASE I. . . 1 ] .

CTYPNCNEWM, I) == [TELMT, OM, BASE -- NEWAT 1 ;

$ Let BASE form an equivalence class.

147



NBASES(BASE) := 1 ;

$ Initialise the mode of BASE.

BMODECBASE) := [ XBASE , CTYPMYP ( T , I) 1 ;

$ Initialise base to be a formal base

.

IS-FORMAL(BASE) := TRUE

end VI ;

else

$ Otherwise, at least one of the occurrences in LPD

$ is of indefinite gross type. In this case, no

* bases are generated.

continue uhile TODO ;

$ Process next occurrence.

end case ;

$ All occurrences in LPD have the same definite gross

* type. Assign the mode descriptor justed constructed

$ to all occurrences in LPD.

(VOI e LPD)

MODE(OI) := NEWM ; $ Assign 01 the mode descriptor NEWtl,

end V ;

end while TODO ;

$ Call the routine CONSTR-PS-CRTHIS to construct the map

148



$ PS-CRTHIS for subsequent use.

CONSTR-PS-CRTHISC ) ;

return ;

end proc GENBASE ;

proc COHSTR-PS-CRTHIS ;

$ This routine constructs PS-CRTHIS map. We start uith the

$ ©variables of value creation and value retrieval

$ instructions (these are the total set of pseudo creation

$ points in the whole program), and assign them as the

$ pseudo creation points of themselves. The pseudo

* creation map is then propagated through FFROM map and

$ simple assignment instructions ; a pseudo creation point

$ of an occurrence 01 must be a pseudo creation point of

* every occurrence in FFROM{OI} and a pseudo creation

$ point of the ivariable of a simple assignment

$ instruction must be a pseudo creation point of the

$ ©variable of the instruction.

$ The Morkpile WORK consists of elements having the format

$ [01, [P,POI ] ]

$ where POI is a pseudo creation point of 01 and P is the

$ path from POI to 01.

$ This routine is called by the routine GENBASE.

149



$ The global variables referenced by this routine include

$ BLOCKS - set of code blocks

$ OPCODE(I) - operation code of instruction I

* PS-CRTHIS{OI} - pseudo creation points of 01

$ FFROMCOI} - occurrences which are directly linked

$ - to 01

$ The macros used in this routine include

$ FORALLCODEC B, I) - for each instruction I in block B,

$ - see (M^)

.

$ IS-IVAR(OI) - indicates whether 01 is an ivariable,

$ - see (M12 )

.

$ OFROni(OI) - the ovariable in the same instruction

$ - as the ivariable 01, see (MIS).

$ The local variables defined in this routine are

repr

OVAR, 01 , POI , WOI : GOI-BASE ; $ variable occurrences

WORK : set ( eoi-BASE

)

; $ workpile of occurrences

I : eiNSTR ; * instruction

B : eBLOCK-BASE ; $ code block

P,NP,WP : cRC-BASE ; $ RC-strings

end repr ;

$ Assign the ©variables of value creation and value

% retrieval instructions as the pseudo creation points of

$ themselves and insert them into the workpile WORK.

150



(VBeBLOCKS, FORALLCODE C B , I ) I

OPCODE(I) in (OPS-CREATE + OPS-RETRIEVE)))

OVAR := ARGHI) ; $ ovariable of the instruction

PS-'CRTHIS{OVAR} 5= { [ NULL-PATH , OVAR 1 } ;

WORK with lOVAR, I NULL-PATH , OVAR ] ] ;

end VB ;

$ Process elements in WORK until WORK is emtpy.

(while WORK /= nl)

$ Retrieve an element from WORK.

lOI, [P,POIl] from WORK ;

$ POI is a pseudo creation point of 01 and P is the path

$ from POI to 01.

$ For each occurrence WOI in FFROM{OI} which can be

$ reached from POI, POI is a pseudo creation point of

$ WOI.

(V[WP,WOI ]€FFROM{OI} I

( NP : = P CC. WP ) /= ERROR-PATH )

$ NP is the path from POI to

$ WOI.

$ Insert [NP,POIl into PS-CRTHIS {WOI} if it has not

$ been inserted in PS-CRTHIS {WOI} yet.

if lNP,POI] notin PS-CRTHIS {WOI} then

151



PS-CRTHISCWOI} with lNP,POI] ;

WORK uith [UOI, [NP,POII! ;

end if ;

end V ;

$ If 01 is the ivariable of a simple assignment

* instruction the pseudo creation points of 01 are

$ also the pseudo creation points of the ovariable of

$ the instruction.

if IS-IVRR(OI) and OI-OP(OI) in OPS-ASN then

WOI := OFROni(OI) ; $ ovariable of the instruction

PS-CRTHIS{UOI} uith [P,POIl ;

WORK with I WOI, (P,POI]] ;

end if ;

end while WORK ;

return ;

end proc CONSTR-PS-CRTHIS ;

proc GENLOCS ;

$ This procedure enforces the basings chosen for composite

$ objects, by generating 'base insertion' ('locate')

$ instructions for all variable occurrences whose values

$ might be incorporated into a composite object. For

* example, the instruction =

152



* SI : = S with X ;

$ leads to the basing relation

* X : GB ;

$ where B is the base previously assigned to the variable

S occurrence of S. This basing relation for X is enforced

$ by emitting 'locate* instructions for the ovariable

$ occurrences belonging to the set PS-CRTHIS{X} (except in

$ certain cases discussed belou). Here, PS-CRTHIS{X} is

$ the set of pseudo creation points of X, i.e., the

$ occurrences which are the ovariables of value creation or

$ value retrieval instructions and whose values can be

$ trasmitted to X through simple assignment instructions.

$ A similar approach is taken to map retrieval and store

$ operations. If in phase I the map F has been assigned

$ the mode ' map ( eB 1

)

€B2 '
, then the instruction

* F(X) y ;

$ will imply the basing relation

$ X : €B1 ; Y : eB2 ;

$ In this case, locate instructions (into HI and B2) are

$ emitted for the occurrences in PS-CRTHIS{X} and

$ PS-CRTHIS{Y} , respectively.

$ Note that these 'locate' instructions are not directly

$ inserted into the code, but are kept in a temporary set,

153



$ for the following reasons :

$ A) The bases being used at this stage are not the actual

$ bases tahich will appear at run-time. Actual bases will

$ be determined subsequently by building up equivalence

$ classes of the base names introduced in phase I.

$ B) Some bases may eventually prove useless, because they

$ support only one composite object, in which case all

$ 'locate' instructions which reference them must be

$ dropped.

$ As we proceed in enforcing basing relations, equivalence

$ relations emerge among bases. When about to generate a

$ locate instruction to insert a pseudo creation point Y

$ into the base B1 of X, we check to see if Y is the

$ ©variable of a value retrieval instruction and if the

$ composite object S from which Y is retrieved has been

$ domain based on a base B2 (i.e., if S is of a definite

$ gross type and a base has been introduced for it during

$ phase I). In this case, Y will be member based on B2, and

$ we just equivalence t>ie bases B1 and B2 without

$ generating any locate instruction. Moreover, if the

$ above condition is not satisfied but if Y has already

$ been assigned a locate instruction which will insert Y

$ into a base B3, we still do not generate a new locate

$ instruction, but just equivalence the bases B1 and B3.

$ Certain other instructions force similar base

$ equivalencing rather than generating locate instructions

154



* 5 e.g., set union and intersection force their arguments

$ have the same base.

$ If ue have equivalenced two bases B1 and B2, then Bl and

$ B2 are considered as two names of the same actual base

$ B, (which Mill emerge subsequently as the representative

$ of the equivalence class to which Bl and B2 belong) .

$ The process of base equivalencing and locate generation

$ just described is complicated by the existence of

$ procedure calls and the need to take variable and base

$ scopes into account. For a given variable occurrence

$ VO, for which a base BO has been suggested, the

$ following may be the case :

$ A) VO is an occurrence of a global variable V. Then it is

$ reasonable to assign the same basing to all its

$ occurrences (or more precisely, to associate one global

$ base with each of its live periods. See above) . The

$ base associated witn such variables is therefore called

$ a global base.

$ B) VO is an occurrence of a formal parameter of the

$ procedure P. Then if a base exists for VO, this base is

$ a formal one ; each call to P will instantiate it, by

$ passing to P some actual base AB, (which will be the

$ base of the actual calling parameter AV, to which VO

$ corresponds). It is then reasonable to require that all

$ actual parameters at various points of call have the same

155



$ form as that chosen for VO, but in each case ue allow

$ the actual bases to be distinct. It uould be unwise to

$ equivalence these bases (since equivalencing more bases

$ than strictly necessary may lead to the creation of very

$ sparse objects), but it is reasonable to equivalence all

$ the bases which may appear at a given point of call.

$ This is achieved by partitioning PS-CRTHIS { VO} according

$ to the points-of-call by which a given occurrence VOX

$ becomes the value of VO. Then the bases occurring in

$ each such partition can be equivalenced

.

$ Note that if VO is not a formal parameter, but is

$ nevertheless linked to the formal parameters of P

$ through value-flow, then the preceding remarks still

$ apply : VO may be based on a formal base, i.e. some base

$ of the formal parameters of P. In such cases, the same

$ partitioning of PS-CRTHIS according to points-of-call is

$ used.

$ C) Finally, VO may be local to P, i.e., it may be a local

$ variable whose value is created only within P, and which

$ does not enter into any operation whose other arguments

$ are global or linked to points of call of P. In that

$ case, VO (and the other arguments of operations in which

$ VO appears), receives an actual local base.

$ In order to simplify the mode adjustment phase, the

$ arbitrary basings chosen for tuple components and for

$ the range of maps in the preceding phase, are propagated

156



$ during the present phase, in the same way as the basings

* of set elements. Operations of incorporation, i.e.,

$ tuple assignments, are treated as map stores and the

$ same base equivalencing procedure is used in all cases.

$ Base equivalencing is carried out by using a compressed

$ balanced tree technique. Equivalence classes of bases

$ are represented by a forest of trees. The toot of each

$ such tree is the representative (and is called the real

$ base) of the bases in the tree. Trees are structured by

$ map PARENT ; PARENT(B) points to the parent node of B in

$ the tree containing B if B is not a root, otherwise

$ PARENT(B) is undefined.

$ This routine is called by the main routine AUTO-DATA and

$ calls the folouing routines NERGEOBJ, PROPELnT,

$ PROPOFMAP, PROPOFTUP, PROPSOFMAP, PROPSOFTUP and

$ PROPSOFAMAP. All of these routines perform similar

$ functions, namely generate locate instructions and merge

$ bases, in a manner depending on the operation of the

$ instruction being processed.

$ The global variables referenced by this routine include

$ BLOCKS - set of code blocks

$ ARGS(I) - arguments of instruction I

$ OPCODE(I) - operation code of instruction I

$ PS-CRTHISlQI} - pseudo creation points of 01

$ The macros used in this routine include

157



$ FORRLLCODECB, I) - for each instruction I in block B,

$ - see (n^) .

$ MGTYP(OI) - gross type of occurrence 01, see (M26).

* IS-PRIM(M) - indicates whether M is a primitive mode,

$ - see (M17)

.

$ The local variables defined in this routine are

repr

IV1,IV2,0V : eoi-BASE ; $ variable occurrences

B : €BLOCK-BASE ; $ code block

end repr ;

* Iterate through each instruction of the program.

(VBeBLOCKS, FORALLCODE( B , I)

)

[OV, IVI, IV2 1 = ARGS(I) ; $ Unpack instruction

case OPCODE(I) of

$ For a comparison operation = e<juivalence the bases

$ of the ivariables if they are composite objects. ^

(el-EQ, el-NE, S1-INCS) !

if not IS-PRinCtlGTYPCIVl ) ) then

MERGEOBJCIVl , PS-CRTHIS { I V 1 } , I V 2 , PS -CRTHIS { I V2 1 ) }

end if ;

$ For a simple assignment ' equivalence the bases of the

$ ivariables and the ©variable if they are composite

158



$ objects.

(21-ASH, ei-ARGIN, 21-PUSH, SI-POP) :

if not IS-PRII1(NGTYP(IV1 ) ) then

MERGEOBJ(OV,PS-CRTHIS{OV} .IV1,PS-CRTHIS{IV1} ) ;

end if ;

$ For an algebraic operation : equivalence the bases of

$ the iuariables and the ovariable if they are

$ composite objects.

(Bl-ADD. ei-suB, ei-nuLT> gi-noD) :

if not IS-PRIM(MGTYP(IV1 ) ) then

MERGEOBJCIVI ,PS-CRTHIS{IV1} ,IV2,PS-'CRTHIS{IV2} ) ;

nERGEOBJ(OV,PS-CRTHIS{OV} ,IV1 ,PS-CRTHIS{IV1} ) ;

end if ;

% For a set or tuple insertion or deletion operation :

$ equivalence the bases of the ovariable and the first

$ argument, and generate locate instructions for the

$ second argument.

(el-WITH, ei-LESS) :

if MGTYPCIVI )=TSET or MGTYP ( IV 1 ) =THTUP then

MERGEOBJ(OV,PS-CRTHIS{OV} ,IV1 ,PS-CRTHIS{IV1} ) ;

PROPELMTCIVl ,PS-CRTHIS{IV1 } ,IV2,PS-'CRTHIS{IV2} ) ;

end if ;

$ For a membership operation : generate locate

S instructions for the first argument.

159



Cei-IN, ei-NOTIN) :

if MGTYP(IV2)=TSET or MGTYP ( IV2 ) =THTUP then

PR0PELnT(IV2 , t'S-CRTHIS{IV2} ,IV1 , PS-CRTHIS ( IV 1 } ) ;

end if ;

$ For a set or tuple former = generate locate

$ instructions for each component.

(ei-SET, ei-SETl, el-TUP, QI-TUPD :

if nGTYP(OV)=TSET or NGTYP ( OV ) =THTUP then

PROPELMTCOV, PS-CRTHIS { OV } , I V 1 , CRTHIS { IV 1 } ) ;

end if ;

$ For a map or tuple retrieval operation ' generate

$ locate instructions for the index variable.

(21-OF, 21-OFA, ei-OFB) :

if MGTYPCIVI )=TMAP then * IV 1 is a map.

PROPOFMAPdVI ,PS-'CRTHIS{IV1},IV2.PS^CRTHIS{IV2}) ;

elseif TTUP incl riGTYPdVl) then $ IV1 is a tuple.

PROPOFTUPCIVI , PS-CRTHIS{IV1 } , IV2 ) ;

end if ;

$ For a single-valued storage operation of map or tuple

$ •• generate locate instructions for the ivariables .

(el-SOF, 21-LESSF) :

if MGTYPCIVI )=TnAP then $ IVl is a map.

PROPSOFnAP(OV,PS--CRTHIS{OV} ,IVl,PS-'CRTHIS{IVll,IV2

PS-CRTHIS{IV2} ) ;

160



elseif TTUP incl MGTYPdvn then $ IV1 is a tuple.

PROPSOFTUP(OV,PS-CRTHIS{OV} ,IV1,IV2,PS-CRTHIS{IV2})

end if ;

$ For a multi-valued storage operation : F{X} := S ,

$ treat the right-hand side differently, and invoke a.

$ seperate routine.

Cei-SOFA) : PROPSOFAMAP(OV,PS-CRTHIS{OV} ,IV1 .PS-CRTHISdVl}

IV2, PS-CRTHISdva} ) ;

else $ Other opcodes are not examined.

continue V ;

end case ;

nd VB;

return ;

end proc GENLOCS ;

$ Nou follows a family of routines all of uhich perform

$ similar functions, namely equivalencing bases and

$ inserting locate instructions, but for different kinds

$ of operations. This family consists of the routines

$ MERGEOBJ, PROPELHT, PROPOFHAP, PROPOFTUP, PROPSOFMAP,

$ PROPSOFTUP and PROPSOFAMAP . Because of their

$ similarities detailed documentation is provided only in

$ the routine MERGEOBJ. Please make reference to this

$ routine wherever a lack of documentations is sensed in

$ the other routines of this group.

161



proc MERGE0BJ(V1, CR1, V2, CR2) ;

$ This procedure equivalences the bases of composite objects

$ which are arguments of the same instruction. However,

$ no equivalencing is performed if VI and V2 are of

$ different gross types. CR1 and CR2 must be the pseudo

$ creation points of VI and V2, respectively.

$ In order to take inter procedural calls into account, this

$ routine calls the routine PARTITION to partition CR1 and

$ CR2 according to the points from which the routine

$ containing VI and V2 is called. The values PCR1 and

$ PCR2 returned by the routine PARTITION are the mappings

* which map the points, from which the routine containing

$ VI and V2 is called, to the pseudo creation points in CRI

$ and CR2 . Elements in the image sets of PCR1 and PCR2

$ are then equivalenced

.

$ This routine is called by the routine GENLOC and calls the

$ routine MERGE and the routine PARTITION.

$ The global variables referenced by this routine include

$ IS-GLOB(V) - indicates whether V is a global variable

* IS-FORMAL(B) - indicates whether B is a formal base

$ The macros used in this routine include

* MGTYP(OI) - gross type of occurrence 01, see (M26).

$ OI-NAMECOI) - name of occurrence 01, see (MS).

$ ELMBASE(OI) - base of the elements of occurrence 01,

$ - see (ri28) .

162



$ The local variables defined in this routine are

repr

VI, V2. OBJ, 01 : eoi-BASE ; $ variable occurrences

CR1,CR2 : set(

(

GRC-BASE.eOI-BASE I) ;

$ pseudo creation points

VS1.VS2 : setCeoi-BASE) ; $ set of variable occurrences

CALL : €RC-BASE ; $ RC-string

PCR1,PCR2 s mmap(€RC-'BASE)set(€OI^BASE) ;

$ maps from RC-strings to sets

$ of 01 ; generated by the

$ routine PARTITION

CL : set(€0I-BASE) ; $ set of variable occurrences

end repr ;

if MGTYP(VI) /= riGTYP(V2) then

$ Return if VI and V2 are of different gross types.

return ;

end if *

if IS-GL0B(0I-NAnE(V1 ) ) or IS-GLOB ( OI-NAMEC V2 ) ) then

$ If either VI or V2 is a global variable then turn off

$ IS-FORMAL flags for the bases of VI and V2.

IS-'FORnAL(ELriBASE( VI ) ) == FALSE ;

IS-FORnflL(ELnBASE( V2) ) == FALSE ;

$ Merge the bases of VI, V2 and the occurrences in CR1

$ and CR2.

163



VS1 : = (01, I -,oi ]€CR1 } ;

VS2 := {01, I-,0Il€CR2} ;

HERGEC (VS1+VS2) uith V2, VI) ;

else

$ OtheruisG, VI and V2 are argument variables or

$ variables local to a procedure.

$ Partition CR1 and CR2 into equivalence classes,

* according to the points-of -call through uhich they

$ transmit their values to VI and V2. In the case of

$ very local variables, only one partition is

* produced, because all RC-strings in PS-CRTHIS are

$ empty (values are generated uithin the procedure

$ itself) ,

PCR1 ••= PARTITI0N(CR1 ) ;

PCR2 := PARTITI0N(CR2) ;

* Check to see if both variables are very local. If so,

S their bases are not formal. Note that VI (or V2) is

$ very local if and only if PCRl (or PCR2 ) is only

$ definea on the NULL-PATH.

if DOMAIN PCR1={NULL-PATH} and DOMAIN PCR2 = {NULL-PATH } then

IS-'FORMAL(ELnBASE(V n ) == FALSE ;

IS-FORMAL(ELMBASE( V2)

)

== FALSE ;

end if ;

$ Nou merge the bases appearing in each class of pseudo

164



$ creation points.

(V CL := PCRKCALL} )

$ CALL is a point-of -call

.

if CALL = NULL^PATH then

$ For pseudo creation points in the routine

$ containing VI and V2, merge the bases

$ appearing in the pseudo creation points and

$ the bases of VI and V2.

I1ERGE( (CL + PCR2{NULL-PATH} ) with V2, VI) ;

else

$ For pseudo creation points uhich are in the

$ different routine from VI, merge the bases

$ appearing in pseudo creation points

$ according to their points-of -call

.

$ Choose an element having the same gross type

$ as VI as the representative of its class.

if 3 OBjeCL I MGTYP ( 01 ) =MGTYP ( V 1 ) then

MERGE(CL+PCR2 {CALL} , OBJ) ;

end if ;

end W CL ;

end if IS-GLOB;

return ;

165



end proc MERGEOBJ ;

proc PROPELMKVI, CR1, V2, CR2 ) ;

$ This procedure handles set insertion and membership

$ operations. VI is a composite object, and V2 must be an

$ element of its base. We generate locate instructions

$ for elements of CR2, and merge the elements of CR1 as in

$ the previous procedure.

$ This routine is called by the routine GENLOC and calls the

$ routines MERGE, PARTITION and INSERTLOCS.

$ The global variables referenced by this routine include

$ IS-GLOB(V) - indicates whether V is a global variable

$ IS-FORMALCB) - indicates whether B is a formal base

$ MODE(OI) - mode of occurrence 01

$ The macros used in this routine include

$ MGTYP(OI) - gross type of occurrence 01, see (M26).

$ OI-NAMECOI) - name of occurrence 01, see (MS).

$ COMPTYP(M) - element mode of mode descriptor M, see ( M 1 9

)

$ ELMBASE(OI) - base of the elements of occurrence 01,

$ - see (n28)

.

$ The local variables defined in this routine are

repr

VI, V2, OBJ, 01 : eOI-BASE ; $ variable occurrences

CR1,CR2 : set( I CRC-BASE, eoI-BASE 1 ) :

166



$ pseudo creation points

VS1,VS2 : set

(

eoi-BASE) ; $ set of variable occurrences

CALL : eRC-BASE ; $ RC-string

PCR1,PCR2 : mmap(€RC-'BASE)set( eoi-BASE) ;

$ maps from RC-strings to sets

$ of 01 ; generated by the

$ routine PARTITION

CL : set ( eOI-BASE ) ; $ set of variable occurrences

end repr ;

$ Assign V2 the element mode of VI.

M0DE(V2) •• = COriPTYP(MODE( VI ) ) ;

if IS^GL0B(0I-NAME(V1 ) ) or IS-GLOB ( OI^NAME ( V2 ) ) then

$ If either VI or V2 is a global variable then turn

S off IS-FORHAL flags for the bases of VI.

IS-FORnAL(ELMBASE( VI ) ) == FALSE ;

$ Generate locate instructions to insert the elements of

$ CR2 into the base of VI.

VS2 := {01, I-,0I]€CR2} ;

INSERTL0CS(VS2, ELMBASECVD) ;

$ Merge the base of VI and the bases of the occurrences

$ in CRT

.

VS1 := {01, [-.OIlGCRll ;

167



MERGE(VS1, VI) ;

else

$ Partition CRl and CR2 into equivalence classes,

$ according to points-of-call

.

PCR1 := PARTITIOKCCRl) ;

PCR2 := PARTITI0N(CR2) ;

$ Check to see if both variables are very local. If so,

$ their bases are not formal. Note that VI (or V2) is

$ very local if and only if PCR1 (or PCR2) is only

$ defined on the NULL-PATH.

if DOMAIN PCR1={NULL-PATH] and DOMAIN PCR2 = {NULL-PATH} then

IS-FORMAL( ELMBASE( V 1 )

)

== FALSE ;

IS-'F0RMAL(ELMBASE(V2) ) := FALSE ;

end if ;

$ Merge the bases and generate locate instructions

$ according to the relevant points-of-call

.

(VCL := PCRUCALLl ")

if CALL=NULL-PATH then

* For pseudo creation points of V2 uhich are in

$ the same routine as VI, generate locate

$ instructions to insert the created values

$ into the base of the elements of VI.

INSERTL0CS(PCR2{CALL} , ELMBASE ( V 1 ) ) ;

168



* Merge the domain bases of pseudo creation

$ points of VI and the domain base of VI.

MERGECCL, VI ) ;

else

* For pseudo creation points which are in the

$ different routine from VI, choose an element

$ of the same gross type as VI as the

$ representative of the class, and perform

$ locate generation and base merging.

if 3 OBJ € CL I nGTYPC0BJ)=MGTYP(V1) then

INSERTL0CS(PCR2{CALL}, ELMBASE ( OB J ) )

MERGECCL, OBJ) ;

end if ;

end if CALL ;

end VCL ;

end if IS-GLOB;

return ;

end proc PROPELMT ;

proc PROPOFMAPCVI, CR1, V2. CR2 ) ;

$ This procedure processes a map retrieval operation

$ Y : = F(X) ;

169



$ VI is the map F, and V2 the logical index X. We generate

$ 'locate' instructions to insert the occurrences

$ appearing in CR2 into tlie doamin base of VI, and merge

$ the bases of all occurrences appearing in CRI. The code

$ for this procedure is identical to that for PROPELMT,

$ except for the use of the domain base of VI, instead of

$ the element base which appears in the set case.

$ This routine is called by the routine GENLOC and calls the

* routines MERGE, PARTITION and INSERTLOCS.

$ The global variables referenced by this routine include

$ nODE(OI) - mode of occurrence 01

* IS-GLOBCV) - indicates whether V is a global variable

* IS-FORMALC B ) - indicates whether B is a formal base

* The macros used in this routine include

$ nGTYP(OI) - gross type of occurrence 01, see (n26).

* OI-NAME(OI) - name of occurrence 01, see (M8).

* DOMTYPCM) - domain mode of mode descriptor M, see (M22)

* DOriBASE(OI) - domain base of occurrence 01, see (n29).

* RANBASE(OI) - range base of occurrence 01, see (ri30).

$ The local variables defined in this routine are

repr

VI, V2, OBJ, 01 : GOI-BASE ; $ variable occurrences

CR1,CR2 -• set( I eRC-BASE, €OI-BASE I) ;

$ pseudo creation points

V51,VS2 : set( eoi-BASE) ; $ set of variable occurrences

170



CALL : GRC-BASE ; $ RC-string

PCR1,PCR2 : mmapCeRC-BASEisetCcoi-BASE) ;

$ maps from RC-strings to sets

* of 01 ; generated by the

$ routine PARTITION

CL : set(€Ol-BASE) ; $ set of variable occurrences

end repr ;

$ Assign V2 the element mode of the domain of VI.

r!0DE(V2) := DOMTYP(MODE( VI ) ) ;

if IS-GLOBCOI-^NAMEtVD) or IS-GLOB ( OI-NAME ( V2 ) ) then

* If either VI or V2 is a global variable then turn

$ off IS-FORMAL flags for the domain base and the range

$ base of VI.

IS-FORMAL(DOnBASE(Vm := FALSE ;

IS-FORMAL(RANBASE( VI ) ) := FALSE ;

« Generate locate instructions to insert the elements of

$ CR2 into the base of V 1

.

VS2 := {01, l-,0I]ecR2} ;

INSERTL0CS(VS2, DOMBASE(VI)) ;

$ Merge the base of VI and the bases of the occurrences

$ in CR 1 .

171



VS1 := {01, [-,0I]€CR1} ;

MERGECVSI, VI) ;

else

$ Otherwise, VI and V2 are argument variables or

$ variables local to a procedure.

$ Partition CRI and CR2 into equivalence classes,

$ according to points-o±-call

.

PCR1 := PARTITIONCCRI ) ;

PCR2 := PARTITI0N(CR2) ;

$ Check to see if both variables are very local. If so,

$ their bases are not formal. Note that VI (or V2) is

$ very local if and only if PCR1 (or PCR2 ) is only

$ defined on the NULL-PATH.

if DOMAIN PCR1= {NULL-PATH} and DOMAIN PCR2 = {NULL-PATH } then

IS-'FORMAL(DOnBASE( VI ) ) := FALSE ;

IS-FORMAL(RANBASE( VI ) ) •• = FALSE ;

end if ;

$ Merge the bases and generate locate instructions

$ according to points-of -call

.

(VCL := PCRUCALLl)

if CALL=NULL-PATH then

$ For pseudo creation points of V2 which are in

$ the same routine as VI, generate locate

172



$ instructions to insert them into the domain

$ base of VI.

INSERTL0CS(PCR2{CALL} ,DOMBASE( VI ) ) ;

$ Merge the domain bases of pseudo creation

$ points and the domain base of VI.

MERGECCL, VI ) ;

else

$ For pseudo creation points uhich are in the

$ different routine from VI, choose an element

$ of the same gross type as VI as the

$ representative of the class, and perform

$ locate generation and base merging.

if 3 OBJ € CL I MGTYP(0BJ)=I1GTYP( VI ) then

INSERTL0CS(PCR2{CALL} , DOMBASE ( OB J ) ) ;

MERGECCL.* OBJ) ;

end if ;

end if ;

end VCL ;

end if IS-GLOB ;

return ;

end proc PROPOFHAP ;

proc PROPSOFMAP( VO, CRO , VI, CR1, V2. CR2) ;

173



$ This procedure processes the instruction =

$ F(X) : = Y ;

$ VO, VI and V2 correspond to F, X and Y respectively.

$ As before, locate instructions into the base of VO are

$ generated for all occurrences in CRI. In addition,

$ locate intructions into the range base of VO are

$ generated for all objects in CR2 . The bases of the

$ occurrences appearing in CRO are also merged with the

$ base of VO.

$ This routine is called by the routine GENLOC and calls the

$ routines MERGE, PARTITION and INSERTLOCS.

$ The global variables referenced by this routine include

$ IS-GLOBCV) - true if V is a global variable

$ IS-FORMAL(B) - true if B is a formal base

$ The macros used in this routine include

$ nGTYP(OI) - gross type of occurrence 01, see (M26).

* OI-NAME(OI) - name of occurrence 01, see (M8).

$ COMPTYPCM) - element mode of mode descriptor M , see (M19)

* DOMTYP(tl) - domain mode of mode descriptor M , see (M22).

$ RANTYP(M) - range mode of mode descriptor M, see (M23).

$ The local variables defined in this routine are

repr

V0,V1,V2,0BJ : eoi-BASE $ variable occurrence

174



CR0,CR1,CR2 : se t ( I € RC- B ASE , e OI-B A SE ] ) ;

$ pseudo creation points

VS0,VS1,VS2 : setCeoi-BASE) ;

$ set of variable occurrences

CALL : eRC-BASE ; $ RC-string

PCR1,PCR2 : mnap( eRC-BRSE)set( GOI-BASE) ;

$ maps from RC-strings to sets

$ of 01 ; generated by the

$ routine PARTITION

CL : set ( eOI-BASE ) ; $ set of variable occurrences

end repr ;

$ Assign X and Y the element mode of the domain and the

S element mode of the range of VO , respectively.

M0DE(V1) := DOMTYP(nODE(VO) ) ;

M0DE(V2) := RANTYPCnODEC VO) ) ;

if IS-GLOBCOI-NAMECVO) ) or IS-GLOB ( OI-NAME ( V 1) ) then

$ If either VO or VI is a global variable then turn

$ off IS-FORMAL flags of the domain base and the range

$ base of VO.

IS-FORMAL(DOMBASE( VO) ) := FALSE ;

IS-FORnAL(RANBASE( VO) ) • = FALSE ;

$ Generate locate instructions to insert the occurrences

$ in CRT and CR2 into the bases of the domain and the

$ base of the range of VO, respectively.

175



VS1 := {01, (-,0Il€CR1} ;

INSERTLOCSC VS1 , DOMBflSE(VO)) ;

VS2 := {01, [-,OIl€CR^} ;

INSERTL0CS(VS2, RANBASE(VO)) ;

$ Merge the base of VO and the bases of the occurrences

$ in CRO.

VSO := {01, [-,OI]€CRO} ;

MERGE(VSO, VO) ;

else

$ Otherwise, VI and V2 are argument variables or

$ variables local to a procedure.

$ Partition CRO, CR1 and CR2 into equivalence classes,

$ according to points-of -call

.

PCRO := PARTITION(CRO)

PCR1 := PARTITIONCCRI

)

PCR2 := PARTITI0N(CR2)

$ Check to see if both variables are very local. If so,

S their bases are not formal. Uote that VI ( or V2 )

S is very local if and only if PCR1 ( or PCR2 ) is only

i defined on the NULL-PATH.

if DOMAIN PCRO= {HULL-PATH} and DOMAIN PCR2 = {NULL-PATH 1 then

IS-FORMAL(DOMBASE( VO) ) := FALSE ;

IS-FORMAL( RAHBASEC VO) ) := FALSE ;

end if ;

176



$ Merge the bases and generate locate instructions

$ according to points-of -call

.

(VCL := PCRO{CALL})

if CALL=NULL-PflTH then

$ Generate locate instructions for the pseudo

$ creation points of VI and V2 uhich are in

$ the same routine as VO, to insert them into

$ the domain base and the range base of VO.

INSERTL0CS(PCR1 {CALL} ,DOnBASE(VO) ) ;

INSERTL0CS(PCR2{CALLl ,RANBASE(VO) ) ;

$ Merge the doimain base of VO with the domain

* bases of the pseudo creation points of VO

$ uhich are in the same routine as VO.

MERGE(CL,VO) ;

else

$ For pseudo creation points uhich are in the

$ different routine from VO, choose an element

$ of the same gross type as VO as the

$ representative of the class, and perform

$ locate generation and base merging.

if 3 OBJ e CL | MGTYP ( OB J ) =MGTYP ( VO ) then

INSERTLOCSCPCRI (CALL) , DOMB ASE ( OB J ) ) ;

INSERTL0CS(PCR2{CALL} , RANB ASE ( OB J ) ) ;

177



MERGE(CL, OBJ) ;

end if ;

end if ;

end VCL ;

end if IS-GLOB ;

return ;

end proc PROPSOFMAP ;

proc PR0P0FTUP(V1 , CRI, V2) ;

$ This procedure processes a tuple retrieval operation

* Y := T(I) ;

$ VI corresponds the tuple T, and V2 the index. We merge

$ the bases of all occurrences in CRI and VI.

$ This routine is called by the routine GENLOC.

$ This routine calls the routines MERGE, PARTITION and

$ INSERTLOCS.

$ The global variables referenced by this routine include

* IS-GLOBCV) - true if V is a global variable

$ IS-FORMALCB) - true if B is a formal base

$ The macros used in this routine include

$ MGTYr(OI) - gross type of occurrence 01, see (MZG)

$ OI-HAtlE(OI) - name of occurrence 01, see (HS).

178



$ ELMBASE(OI) - base of the elements of occurrence 01,

* - see (ri28) .

$ COHBASECOI.n) - base of the n-th component of 01, see (MSI

$ GLTYP(OI) - length of occurrence 01, see (ri27).

$ The local variables defined in this routin e are

repr

V1,V2,0BJ : eOI-BASE $ variable occurrence

CR1 : set( [ GRC-BASE. GOI-BASE 1) ;

$ pseudo creation points

VSI : set( eOI-BASE) ; $ set of variable occurrences

CALL : eRC-BASE ; $ RC-string

PCR1 : mmap(€RC-BASE)set(€OI-BASE) ;

$ maps from rc-^strings to sets

$ of 01 ; generated by the

$ routine PARTITION

CL : set( eOI-BASE ) ; $ set of variable occurrences

end repr ;

case MGTYP(VI) of

(THTUP) S VI is a tuple of unknown length.

if IS-GLOB(OI-NAME( VI) ) then

$ If V1 is a global variable then turn off IS-FORMAL

$ flag for V 1 .

IS-FORMAL(ELnBASE(vn ) := FALSE ;

179



$ Merge the base of VI and the bases of the occurrences

$ in CRl.

VS1 := {01, 1-,0I]€CR1} ;

MERGECVSI, VI) ;

else

$ Partition CRl into equivalence classes, according to

$ points-of-call

.

PCR1 := PARTITI0N(CR1 ) ;

$ If VI is a local variable, its base is not formal.

if DOHAIN PCR1 = {NULL-PATH} then

IS-FORMALCELMBASEC VI ) ) := FALSE ;

end if ;

$ Merge bases according to points-of -call

.

(VCL := PCRHCALL} )'

if CALL=NULL-PATH then

$ For the pseudo creation points of VI which are

$ in the same routine as VI, merge their bases

$ with the base of VI.

MERGE(CL,V1) ;

elne

$ For pseudo creation points which are in the

180



$ different routine from VI, choose an element

$ of the same gross type as VI as the

$ representative of the class, and perform

$ base merging

.

if 3 OBJ € CL I MGTYP(OBJ)=nGTYP( VI ) then

MERGECCL, OBJ) ;

end if ;

end if ;

end VCL ;

end if IS-GLOB;

(TMTUP) : $ VI is a tuple of knoun length,

if IS-GL0B(0I-NAnE(V1 ) ) then

(VIX := 1 .

.

.GLTYPCVI )

)

$ If VI is a global variable, the bases of its

$ components are not formal.

IS-FORMAL(COMBASE( V 1 ,IX) ) := FALSE ;

end V ;

$ Merge the bases of the components of VI and the bases

$ of the occurrences in CR1.

VS1 := {01, [-,0IlecR1} ;

MERGEC VS 1 , VI ) ;

else

* Partition CR1 into equivalence classes, according to

181



$ points-of-call

.

PCRT •• = PARTITI0N(CR1 ) ;

$ If VI is a local variable, its base is not formal.

if DOMAIN PCR1 = INULL-PATH} then

(VIX ••= 1 . . .GLTYPC VI ) ) IS-FORMAL(COMBASE( VI , IX)) := NO;

end if ;

$ Merge bases according to points-of -call

.

(VCL := PCRUCALL} )

if CALL=NULL-PATH then

$ For the pseudo creation points of V2 which are

$ in the same routine as VI, merge their bases

$ with the base of VI.

MERGE(CL,V1) ;

else

$ For pseudo creation points which are in the

$ different routine from VI, choose an element

$ of the same gross type as VI as the

$ representative of the class, and perform

$ base merging.

if 3 OBJ € CL I MGTYP(OBJ)=MGTYP(V 1 ) then

MERGECCL, OBJ) ;

end if ;

182



end if ;

end VCL ;

end if IS-GLOB ;

end case ;

return ;

end proc PP.OPOFTUP ;

proc PROPSOFTUP( VO, CRO, VI, V2, CR2) ;

$ This procedure handles tuple assignments. If a tuple is

$ homogeneous, the process used is identical to that for set

$ insertion, and the procedure PROPELMT is invoked.

$ Otherwise, the integer value of the index VI is known,

$ and the corresponding base of VO must be used to locate

$ occurences in CR2

.

$ This routine is called by the routine GENLOC.

$ This routine calls the routines MERGE, PROPELMT, PARTITION

$ and INSERTLOCS.

$ The global variables referenced by this routine include

* MODE(OI) - mode of occurrence 01

$ IS-GLOB(V) - true if V is a global variable

$ IS-FORMALCB) - true if B is a formal base

$ The macros used in this routine include

^ MGTYP(OI) - gross type of occurrence 01, see (M26).

183



* OI-NMIE(OI) - name of occurrence 01, see (MS).

* OI-VALUE(OI) - value of occurrence 01, see (M9).

$ CTYPHCM,!) - I-th component mode of mode descriptor M, see

$ - (M20).

$ COMBASE(OI,N) - base of the H-th component of 01, see (M31

* GLTYP(OI) - length of occurrence 01, see (M27).

$ COriPTYP(M) - element mode of mode descriptor M, see (M19).

* RAKTYP(M) - range mode of mode descriptor M, see (M23).

$ The local variables defined in this routine are

repr

V0,V1,V2,0BJ : GQI-BASE $ variable occurrence

CR0,CR2 : set( [ eRC-BASE.eoi-BASE 1 ) ;

$ pseudo creation points

VS0,VS2 : set ( €0I-BASE) ; 5 set of variable occurrences

CALL : eRC-BASE ; $ RC-string

PCR0,PCR2 : mmap( eRC-BASE)set( coi-BASE) ;

$ maps from RC-strings to sets

$ of 01 ; generated by the

$ routine PARTITION

CL : set( eOI-BASE) ; $ set of variable occurrences

end repr ;

$ If VO is a tuple of unknown length, invoke the routine

$ PROPELMT and return,

if MGTYPC VO )=THTUP then PROPELMT ( CO , CRO , V2 , CR2 ) ; return ; end;

184



INDEX := OI-VALUEC VI ) ; $ value of VI

$ Assign V2 the mode of the Vl-th component of VO.

M0DE(V2) := CTYPNCMODECVO) , INDEX) ;

if IS-GLOBCOI-NAnECVO) ) then

( VIX : = 1 . . .GLTYPC VO)

)

* If VO is a global variable, the bases of its

$ components are not formal.

IS-FORNAL(C0MBASE(VO,IX) ) := FALSE ;

end V ;

$ Generate locate instructions to insert the occurrences

$ in CR2 into the proper base of VO.

VS2 := {01, [-,0I]€CR2} ;

INSERTLOCSC VS2 , COMBASECVO, INDEX)) ;

$ Herge the base of VO and the bases of the occurrences

$ in CRO.
*

VSO := {01, [-,OIj€CRO) ;

NERGE(VSO, VO) ;

else

* Partition CRO and CR2 into equivalence classes,

$ according to points-of -call .

PCRO := PARTITION(CRO)
;

185



PCR2 := PARTITI0N(CR2) ;

$ Check to see if both variables are very local. If so,

$ their bases are not formal.

if DOMAIN PCRO = {NULL-PATH} then

(VIX: = 1 . . .GLTYP(VO) ) IS-FORMAL ( COHB ASE ( VO , IX)) := FALSE;;
I

end if ;

$ Merge bases and generate locate instructions according

$ to points-of-call

.

(VCL := PCROCCALL})

if CALL=NULL-PATH then

$ For the pseudo creation points of V2 uhich are

$ in the same routine as VO, generate locate

$ instructions to insert them into the base of

$ the components of VO.

INSERTL0CS(PCR2{CALL} ,COMBASE(VO, INDEX)) ;

$ Merge the domain bases of pseudo creation

$ points and the domain base of VO.

MERGE(CL,VO) ;

else

$ For pseudo creation points uhich are in the

$ different routine from VO, choose an element

S of the same gross type as VO as the

186



$ representative of the class, and perform

$ locate generation and base merging.

if 3 OBJ € CL I HGTYPCOBJ )=MGTYP( V1 ) then

INSERTL0CS(PCR2{CALL} , COMBASECOBJ, INDEX)) ;

MERGECCL, OBJ) ;

end if ;

end if ;

end V CL ;

end if IS-GLOB ;

return ;

end proc PROPSOFTUP ;

proc PROPSOFAMAPCVO, CRO, VI, CRI, V2 , CR2 ) ;

* This procedure handles the instruction

$ F{X} := S ;

$ Tuo cases arise :

$ A) S is of type 'set' Then it is a subset of the range

S of F, and its base must be merged with the range base of

$ F. In this case, X is handled in tlie same fashion as in

$ the single-valued storage case.

S B) S is of type 'map'. This will be the case uhen F is

$ actually a function of tuo variables, whose mode will

187



$ emerge as

$ mmap{€B}map(€B2 )*

i The range base of F therefore contains maps, and S is an

$ element of it (instead of being a subset, as in the

$ preceding case). S must therefore be 'located' in the

$ range base of F. The instruction is treated in much the

$ same uay as a single-valued storage operation.

$ This routine is called by the routine GENLOC.

4 This routine calls the routines MERGE, EgUIV, PROPSOFMAP,

$ PARTITION and IHSERTLOCS.

$ The global variables referenced by this routine include

$ MODE(OI) - mode of occurrence 01

* IS-GLOBtV) - true if V is a global variable

$ IS-FORMALCB) - true if B is a formal base

$ The macros used in this routine include

$ MGTYPCOI) - gross type of occurrence 01, see (n26).

* OI-NAME(OI) - name of occurrence 01, see (N8).

$ ELMBASECOI) - base of the elements of occurrence 01,

* - see (M28)

.

* DOMBASE(OI) - domain base of occurrence 01, see (M29).

$ RAHBASE(OI) - range base of occurrence 01, see (M30).

$ COnPTYP(M) - element mode of mode descriptor M, see (M19)

$ DOnTYP(M) - domain mode of mode descriptor M. see (n22).

« RANTYP(M) - range mode of mode descriptor M, see (M23).

188



S The local variables defined in this routine are

repr

V0,V1,V2,0BJ : eOI-^BASE $ variable occurrence

VS0,VS1,VS2 : se t ( € 01- B AS E ) ;

$ set of variable occurrences

CR0,CR1,CR2 : se t ( ( € RC- B ASE , e 01- B ASE 1) ;

$ psseudo creation points

CALL : eRC-BASE ; $ RC-string

PCRCPCRI ,PCR2 : mmap ( eRC-B ASE ) se t ( e 01- B ASE ) ;

$ maps from rc-strings to sets

$ of 01 ; generated by the

* routine PARTITION

CL : set(€OI-BASE) ; $ set of variable occurrences

end repr ;

$ If V2 is a map, call the routine PROPSOFHAP and return.

if MGTYP(V2)=TriAP then

PROPSOFMAPCCO, CRO, VI, CR1, V2, CR2 ) ;

return ;

end if ;

$ Otherwise, assign VI the mode of the elements of the

$ domain of VO

.

MODECVI) := D0t1TYP(M0DE( VO) ) ;

$ Equivalence the range base of VO and the domain base of

$ V2 .

189



EeUIV(RANBASE( VO) , ELMB ASE ( V2 ) ) ;

i± IS-GLOBtOI-NAMECVO) ) then

$ If VO is a global variable, its domain base and range

$ base are not formal.

IS-FORnAL(DOnBASE( VO) ) == FALSE ;

IS-FORnAL(RANBASE( VO) ) := FALSE ;

$ Generate locate instructions to insert the occurrences

$ in CR1 into the domain base of VO.

VS1 := {01, (-,0I]€CR1} ;

INSERTL0CS(VS1 , DOMBASE(VO)) ;

$ Merge the base of VO and the bases of the occurrences

$ in CRO.

VSO := {01, [-,OI]€CRO} ;

MERGECVSO, VO) ;

* Merge the base of V2 and the bases of the occurrences

$ in CR2.

V52 := {01, [-,0IleCR2} ;

MERGE(VS2, V2) ;

else

$ Partition CRO, CR1 and CR2 into equivalence classes,

$ according to points-of -call

.

190



PCRO := PARTITION(CRO)

PCR1 := PARTITIONCCRI )

PCR2 := PARTITIONC CR2

)

* Clieck to see if both variables are very local. If so,

$ their bases are not formal.

if DOMAIN PCRO={NULL-'PATH} and DOMAIN PCR2 = { NULL--PATH } then

IS-FORMAL(DOMBASE( VO)

)

:= FALSE ;

IS-FORriAL(RANBASE( VO) ) := FALSE ;

end if ;

$ Merge the bases and generate locate instructions

$ according to points-of -call

.

(VCL := PCROCCALL})

if CALL = NULL-PATH tlien

INSERTLOCSCPCRI {CALL} , DOMBASE(VO)) ;

MERGE(CL, VO) ;

MERGE(PCR2{CALL} , V2) ;

else

INSERTLOCSCPCRI {CALL} , DOMB ASE ( OB JO ) ) ;

if 30BJ0 I MGTYP(OBJO)=MGTYP(VO) then

MERGECCL, OBJO) ;

end if ;

if 30BJ2 I MGTYP(OBJ2)=MGTYP(V2) then

MERGE(PCR2{CALL} , 0BJ2) ;

end if ;

end if ;

191



end V CL;

end if IS-GLOB ;

return ;

end proc PROPSOFAMAP ;

proc MERGECVARSET, OBJ) ;

$ This procedure equivalences the bases of the objects in

* VARSET, uhich have the same gross type as OBJ, to the

$ corresponding bases of OBJ. OBJ is aluays a composite

$ object. The bases of the objects in VARSET uhich have

$ different gross type from OBJ are not equivalenced with

$ the base of OBJ. If OBJ is a set or a tuple of known

$ length, a single base from each object is involved. If it

* is a map, then domain and range bases are equivalenced

$ seperately. For known length mixed tuples, one base per

$ component is involved.

$ This routine is called by the routines MERGEOBJ, PROPELMT,

$ PROPOFMAP, PROPOFTUP, PROPSOFHAP, PROPSOFTUP and

$ PROPSOFAMAP.

$ This routine calls the routine EBUIV.

$ The macros used in this routine include

* MGTYP(OI) - gross type of occurrence 01, see (M26).

$ ELMBASE(OI) - base of the elements of occurrence 01,

* - see (n28)

.

192



$ DOnBASE(OI) - domain base of occurrence 01, see (1129).

* RANBASE(OI) - range base of occurrence 01, see (MBO).

* COMBASE(OI,N) - base of the N-th component of 01. see (n31

$ GLTYP(Oi; - length of occurrence 01, see (n27).

$ The local variables defined in this routine are

repr

CRSET : set( ( eRC-BASE, eoi-BASE ] ) ;

$ pseudo creation points

VARSET : se t ( e 01 - B ASE ) ; $ set of variable occurrences

01, OBJ, IV : €OI-BASE ; $ variable occurrence

end repr ;

$ For sets and tuples of unknown length •

if MGTYPCOBJ) e {TSET, THTUP} then

(Vol € VARSET)

$ If 01 and OBJ are of the same type, equivalence

$ the element bases of 01 and OBJ.

if MGTYP(OI)=nGTYP(OBJ) then

EeUIV( ELMBASE(OI) . ELMB ASE ( OB J ) ) ;

S If 01 is an ovariable uhich receives a

$ retrieved value form IV, merge the mode of

$ 01 with the element mode of the base of IV.

if IS-OVAR(OI) and OP-CODE(OI) in OPS-RETRIEVE

and MGTYPdV : =IFROri(OI, 1 ) ) in

193



{TSET,TnAP,THTUP,TnTUP) then

MERGE-INTO(OI,IV) ;

end if IS-OVAR ;

end if MGTYP ;

end V ;

$ For maps :

elseif nGTYP(OBJ)=TMAP then

(VOI e VARSET)

if MGTYP(OI)=TnAP then

$ Equivalence the domain bases and the range

$ bases of 01 and OBJ, respectively.

EeUIV(DOnBASE(OI) , DOMBASECOBJ) ) ;

EeUIV(RANBASE(OI) , RANB AS E ( OB J ) ) ;

$ If 01 is an ©variable which receives a

$ retrieved value form IV, merge the mode of

$ 01 with the element mode of the base of IV.

if IS-OVAR(OI) and OP-CODE(OI) in OPS-RETRIEVE

and MGTYPdV: =IFROM(OI, n ) in

{TSET.TMAP,THTUP,TnTUPl then

MERGE-IHTO(OI,IV) ;

end if IS-OVAR ;

end if MGTYP ;

end W ;

194



$ For tuples of known length •

elseif MGTYPCOBJ) = TMTUP then

CVOI € VARSET)

if MGTYP(OI)=TMTUP then

$ Equivalence the bases of each corresponding

$ component of 01 and OBJ.

(V IX := 1 . . .GLTYP(OBJ)

)

£eUIV(COnBASE(OI, IX), COnBASECOBJ, IX)) ;

end V ;

$ If 01 is an ovariable which receives a

$ retrieved value from IV, merge the mode of

$ 01 with the element mode of the base of IV.

if IS-OVARCOI) and OP-CODE(OI) in OPS-RETRIEVE

and MGTYPCIV: =IFROM(OI, 1 ) ) in

{TSET,TMAP,THTUP, TMTUP} then

MERGE-INTO(OI,IV) ,

end if IS-OVAR ;

end if MGTYP ;

end V ;

end if nCTYP ;

end proc MERGE ;

195



proc nERGE-INTO(OV,IV) ;

$ This routine merges the mode of OV with the el'ement mode

$ of the base of IV. This routine is called uhen an

$ occurrence OV receiving a retrieved value from IV is

$ determined to be domain based and hence the elements of

$ the base of IV must be given the same mode as OV.

$ This routine is called by the routines MERGE and calls the

$ routine MODEDIS.

$ The global variables referenced by this routine include

* BtlODE(B) - mode of base B

$ MODE(OI) - mode of occurrence 01

$ The macros used in this routine include

* MGTYPCOI) - gross type of occurrence 01, see (M26).

$ C0nBASE(0I,N) - base of the N-th component of 01, see (ri3

* GLTYP(OI) - length of occurrence 01, see (M27).

$ COnPTYP(M) - element mode of mode descriptor M, see (n19)

* OI-OP(OI) - opcode of the instruction containing 01,

$ - see .(M7) .

$ The local variables defined in this routine are

repr

OV.IV : eoi-BASE ;

end repr ;

$ variable occurrence

case OI-OP(OV) of

196



(el-ARB, el-FROM, ei-NEXT, el-INEXT) :

$ If this is an extraction from or iteration over a set,

* merge the mode of OV with the element mode of the

$ base of IV.

if riGTYP(IV) = TSET then

COMPTYP(BMODE(ELMBASE(IV) ) ) MODEDIS . MODE(OV) ;

end if ;

(el-NEXTD, ei-INEXTD) :

$ If this is an iteration over a map, merge the mode of

$ OV uith the element mode of the range base of IV.

if tlGTYPdV) = TNAP then

COnPTYP(BnODE(RANBASE(IV) ) ) MODEDIS . MODE(OV) ;

end if ;

(el-OF) :

case MGTYP(IV) of

(THTUP) :

$ If this is a value retrieval from a tuple of

$ unknoun length, merge the mode of OV uith the

$ element mode of the base of IV.

COMPTYPCBMODECELMBASECIV) ) ) MODEDIS. MODE(OV) ;

(TMAP) ••

197



$ If this is a value retrieval from a map, merge the

$ mode of OV uith the element mode of the range

$ base of IV.

COriPTYP(EriODE(RANBASE(IV) ) ) MODEDIS. MODE(OV) ;

(THTUP) :

$ If this is a value retrieval from a tuple of knoun

$ length, merge the mode of OV with the element

$ mode of the proper component base of IV.

IX := OI-VALUE(IFROMO(OV, 2) ) ;

COMPTYP(BnODE(COMBASE(IV,IX) ) ) MODEDIS. MODE(OV) ;

end case MGTYP ;

(ei-OFB) :

$ If this is a range retrival from a map, merge the mode

$ of OV uith the range mode of IV.

if MGTYPdV) = TMAP then

COMPTYP(BMODE(RANBASE(IV) ) ) MODEDIS. COMPTYP ( MODE ( OV ) ) ;

end if ;

end case OI-OP ;

return ;

end proc MERGE-INTO ;

proc EQUIVCBI, B2) ;

198



$ This routine equivalences the bases B1 and B2 by using the

$ compressed balanced tree technique. Equivalence classes

* are represented by a forest of trees. The root of a

$ tree is the representative (called the real base of the

$ tree) of all the bases in the tree. Trees are

$ structured by the map PARENT ; PARENT(B) points to the

$ preceding node of B in the tree if B is not a root,

$ otherwise PARENT(B) is undefined.

$ When ue equivalence tuo bases Bl and B2, ue first find the

$ roots R1 and R2 of the trees containing Bl and 32

$ respectively. If Rl and R2 are the same (i.e., Bl and

$ B2 are in the same tree), nothing has to be done.

$ Otheruise, ue link that one of R1 or R2, uhose tree has

$ fewer nodes, to the other as a subtree.

$ Four global maps are defined on the roots of trees to

$ describe the properties of the corresponding real bases.

$ IS-FORMAL(B) - indicates whether B is a formal base

$ NBASES(B) - number of bases in the same class of B

$ NBASEDON(B) - number of the sets and maps based on B

$ BnODE(B) - mode of base B

* PARENT is another global map defined on bases to point to

$ the preceding nodes in the tree.

$ This routine is called by the routine MERGE and

$ INSERTLOCS. It calls the routine REALB and MODEDIS.

199



$ The local variables defined in this routine are

REPR

B1 ,B2 ,RB1 ,RB2 : eSB-BASES ; * bases

end repr ;

$ If the roots R1 and R2 of the trees <^ontaining Bl and 32

$ are tlie same, then return.

if (RBI

:

=RERLB(B1 ) ) = ( RB2 : = RE ALB ( B2 ) ) then

return ;

else

if NBASES(RBI) < NBASES(RB2) then

$ If the tree containing RBI has fewer nodes than

$ the tree containing RB2 then link RBI as a

$ substree of RB2.

PARENT(RBI) := RB2 ;

$ Update NBASES and NBASEDON of the new tree.

NBASES(RB2) + NBASES(RBl) ;

NBASEDONCRBZ) + NB ASEDON ( RB 1 ) ;

$ The new tree is a formal one if the original trees

$ of RBI and RB2 both are formal.

IS-FORnALCRBZ) := IS-FORM AL ( RB 2 ) and IS-FORMAL ( RB 1 ) ;

* The mode of the new tree is the disjunction of the

200



$ modes of the original tr ees .

BnODE(RB2) := BMODECRBZ) MODEDIS . BMODE(RBI) ;

else

$ If the tree containing RB2 has fewer nodes than

$ the tree containing RBI then link RB2 as a

$ substree of RBI.

PARENT(RB2) : = RBI ;

$ Update KBASES and NBflSEDON of the new tree.

NBASES(RBI) + NBASES(RB2) ;

NBASEDON(RBI) + NBASEDON ( RB2 ) ;

$ The neu tree is a formal one if the original trees

$ of RB2 and RBI both are formal.

IS-FORMALC RBI ) == IS- FORM AL ( RB 1 ) and IS-FORMAL ( RB2 ) ;

$ The mode of the neu tree is the disjunction of the

$ modes of the original trees,

BMODE(RBI) := BMODECRBD nODEDIS . BriODE(RB2) ;

end if NBASES ;

end if (RBI ;

return ;

end proc ECUIV ;

201



proc REALB(B) ;

$ This routine finds the real base of B. This is achieved

$ by following the map PARENT until ue reach a node of

$ which PARENT is undefined. As a side effect, the tree

$ is compressed. All the nodes R1 on the path from B to

$ the root R2 , except the node which is an immediate

$ descendant of the root, are re-linked to the root as

* immediate descendants, i.e., PARENT(RI) is set to point to

$ R2. This compression procedure reduces the depth of the

$ tree and makes subsequent root finding procedures more

$ efficient.

$ This routine is called by the routine E2UIV.

$ The only global variable referenced by this routine is

* PARENT(B) - preceding node of B in the tree

$ The local variables defined in this routine are

repr

B,R1,R2,R3 : €SB-BASE ; $ bases

WORK : set( esB-BASE) ; $ uorkpile of bases

end repr ;

$ Initialize uorkpile.

WORK : = nl ;

$ Let R1 point to B.

R1 := B ;

202



$ If B is a root, then return

$ the preceding node of R1.

if (R2 •• =PARENT(R1 ) ) = OH then

return ;

end if ;

Otherwise, let R2 point to

$ While R2 is not a root, insert R1 into WORK and let R2

$ point to the preceding node of R1,

(while R3-- =PflRENT(R2) /= OM)

WORK with R1 ;

R1 := R2 ;

R2 := R3 ;

end while ;

$ Compress the tree by re-linking the nodes in WORK to R2

(V R1 € WORK)

PARENT(RI) := R2 ;

end V ;

return R2 ;

end proc REALB ;

proc INSERTLOCS(VARSET, BASE) ;

$ This procedure ensures the variable occurrences appearing

$ in VARSET to be elements of the base BASE by either

$ merging the bases of the occurrences appearing in VARSET

$ wxth BASE or generating locate instructions to insert

203



$ the occurrences in VARSET into BASE. If an occurrence X

$ in VARSET is the ©variable of a value retrieval

$ instruction of uhich the composite object, from which the

$ value is retrieved, has been domain based on a base B,

$ then B is equivalenced with BASE. If an occurrence X in

$ VARSET has already received a 'locate' instruction to

$ insert its value into a base B, then B is equivalenced

$ uith BASE in the same uay as in the previous case. For

$ other occurrences in VARSET, locate instructions are

$ generated to insert their values into BASE. Generated

$ locate instrcuctions are collected into the global map

$ LOGINS. LOGINS maps each occurrence to the bases into

$ which the occurrence is to be inserted.

$ This routine is called by the routines NERGEOBJ, PROPELMT,

$ PROPOFMAP, PROPOFTUP, PROPSOFMAP, PROPSOFTUP and

$ PROPSOFAMAP.

$ This routine calls the routine EeuiV.

$ The only global variable referenced by this routine is

$ LOCINS(OI) - the base into which 01 is inserted

$ The local variables used in this routine are

repr

VARSET

01, OBJ

end repr ;

set( eOI-'BASE) ; $ set of variable occurrences

eoi-'BASE ; $ variable occurrence

204



(Vol e VARSET)

if IS-OVARCOI) and OP-CODE(OI) in OPS-RETRIEVE

and MGTYPCIV :=IFROM(OI, 1 ) ) in {TSET , TMAP , THTUP , XnXUP } the

$ If 01 is the ovariable of a value retrieval

$ instruction, equivalence BASE uith the base of

$ the ivariable.

case OI-OPCOI) of

(el-ARB, 2l-FR0t1, ei-'NEXT, SI-INEST) :

if nCTYPdV) = TSET then

EeUIV(BASE,ELMBASE(IV) ) ;

end if ;

(el-NEXTD, el-INEXTD) =

if riGTYP(IV) = TMAP then

ESUIVCBASE, DOMBASE(IV) ) ;

end if ;

(el-OF) :

case MGTYPCIV) of

(THTUP) :

E2UIV(BASE, ELMBASE(IV) ) ;

(TMAP) :

E2UIV(BASE,RANBASE(IV) ) ;

205



(TMTUP) :

IX := OI-VALUE(IFROnO(OI, 2 ) ) ;

EeUIV(BASE,COriBASE(IV,IX) ) ;

end case MGTYP ;

end case OI-OP ;

$ Update the element mode of BASE to indicate that

$ 01 is an element of BASE.

COnPTYP(BnODE(BASE) ) MODEDIS. MODE(OI) ;

elseif LOCINS(OI) /= OH then

$ If 01 has been inserted into a base, then

$ equivalence this base uith BASE.

E2UIV(BASE, LOCINS(OI)) ;

else

$ Otherwise, insert 01 into BASE.

LOCINS(OI) := BASE ;

$ Update the element mode of BASE to indicate that

$ 01 is an element of BASE.

COMPTYP(BMODE(BASE) ) MODEDIS. MODECOI) ;

end if ;

end V ;

return ;

206



end proc INSERTLOCS ;

proc nl nODEDIS. HZ ;

$ This procedure evaluates the disjunction of tuo mode

* descriptors. It differs from the disjunction routine in

$ the SETL typefinder, in that it handles element-of -base

$ descriptors

.

$ The rules for disjunction of modes are as follows •

$ A) The disjunction of different gross types yields

$ • general ' .

$ B) The disjunction of two element-of -base modes yields an

$ element mode, and has the side-effect of equivalencing

$ the two bases

.

$ C) The disjunction of two sets yields a set whose elements

$ are the disjunction of the respective element

$ descriptors of the two sets.

$ D) The disjunction of two maps yields a map whose domain

$ and range modes are the disjunction of the domain modes

$ and the range modes of the two maps

.

S E) The disjunction of two tuples yields a tuple whose

$ component modes are the disjunction of the corresponding

$ component modes of the two tuples.

207



$ This recursive routine is called by the routine

$ HERGE-INTO, INSERTLOCS and E2UIV . It calls the routine

* EQUIV.

* The macros used in this routine include

* GROSSTYP(M) - gross type of mode M, see Cm9).

* IS-PRin(ri) - true if M is a primitive mode, see (Ml?).

$ BASENAM(M) - base name of mode descritor M, see (M24).

* COriPTYP(n) - element mode of mode descriptor M , see (1119)

* DOnTYP(II) - domain mode of mode descriptor M , see (M22).

* RANTYP(II) - range mode of mode descriptor M , see (M23).

$ CTYPN(n,I) - I-th component mode of mode descriptor t1,

* - see (n20 )

.

* LENTYP(M) - length of mode descrptor M, see (M21).

$ The local variables defined in this routine are

repr

n^ , nz, dism : cmode-base ;

B1, B2 : eSB-BASE ;

end repr ;

$ mode desciptors

$ bases

$ If m is of zero type, the disjunction is n2

if GROSSTYP(MI) = TZ then

return M2 ;

$ If M2 is of zero type, the disjunction is Ml

elseif GR0SSTYP(M2) = TZ then

208



return M1 ;

$ If Ml and M2 are of different gross types, their

$ disjunction is a 'general' type.

elseif GROSSTYP(MI) /= GR0SSTYP(M2) then return TGEN ;

$ If Ml and M2 are of the same primitive modes, then their

$ disjunction is Ml.

elseif IS-PRIM(GR0SSTYP(M1 ) ) then return Ml ;

elseif GR0SSTYP(M1 )=TELMT then

$ If Ml and M2 are member basing modes, equivalence

$ their bases and return Ml.

EBUIVCBASENAMCMI) , BASENAM(M2)) ;

return Ml ;

else

$ Otherwise, Ml and M2 are composite modes. Construct a

$ template for the disjunction mode descriptor.

DISM := [ GROSSTYPCMI ) ) ;

$ Construct the element mode of DISM by recursively

$ invoking this routine to derive the disjunction of

$ the element modes of Ml and M2

.

case GROSSTYP(MI) of

(TSET, THTUP)

209



COnPTYP(DISM) := COHPTYPCm) MODEDIS. COMPTYPCMZ) ;

(TMAP) :

COMPTYPCDISM) := [THTUP. [11 ;

DOnTYP(DISn) := DOtlTYP(m) nODEDIS. D0nTYP(n2) ;

RANTYP(DISM) := RANTYPCMI) HODEDIS. RANTYP(ri2) ;

(TMTUP) •

(ViX := 1 . . .LENTYP(MI)

)

CTYPNCDISM,IX) : =CTYPN(I11 ,IX) MODEDIS. CTYPN(M2,IX)

end ViX;

end case;

return DISM ;

end if ;

end proc MODEDIS. ;

proc PARTITION(CRSET) ;

$ This procedure takes an attribute set and partitions it

$ according to points-of -call through which attributes

$ were propagated. The RC-string which accompanies each

$ member of the set is scanned backwards, skipping over

$ completed calls until a call without a return is found.

$ These call instructions serve to partition the attribute

$ set. The procedure returns a map on call instructions.

210



$ This routine is called by the routines MERGEOBJ,

$ PROPOFnAP, PROPOFTUP, PROPSOFMAP, PROPSOFTUP and

$ PROPSOFAMAP. It calls the routine LASTCALi..

$ The lot^al variables defined in this routine are

repr

CLASSES : mmap ( €RC-BASE ) set ( eoI-BASE ) ;

$ map RC-string into set of

$ occurrences

CRSET : set(

I

€RC-BASE,€OI-BASE 1)

;

$ pseudo creation points

P : CRC-BASE ; $ RC-string

01 : coi-BASE ; $ variable occurrence

end repr ;

CLASSES : = nl ;

(VIP, Oil € CRSET) CLASSES{LASTCALL(P) } with 01 ;;

return CLASSES ;

end proc PARTITION ;

proc LASTCALL(RC-STRING) ;

$ This procedure scans RC-STRING backwards until it

$ encounters a call not matched by a return. If RC-STRING

$ is a NULL-PATH, then it returns NULL-PATH, otherwise it

$ returns the RC-CALL found. However, if RC-STRING is

$ incomplete or no such call is found, it also returns

211



$ NULL-PATH.

$ This routine is called by the routine PARTITION.

$ The local variables defined in this routine are

repr

RC-STRING •• €RC-BASE ; $ RC-string

I : int ; * length of RC-string

CALLCOUNT = int ; $ count

end repr ;

$ If RC-STRING is a NULL-PATH, returns NULL-PATH,

if RC-STRING =NULL-PATH then return NULL-PATH ;

else

I = # RC-STRING ;

CALLCOUNT = ;

$ Scan RC-STRING backuards

.

(uhile CALLCOUNT<=0 and I> 1 DOING I := 1-1 ;)

if RC-STRING(I) ( 1 )=RC-CALL then

$ If the i-th component is a call, then

$ increment count by one.

CALLCOUNT — CALLCOUNT +1 ;

else

$ Otherwise, it is a return and therefore count

212



$ is decremented by one.

CALLCOUNT := CALLCOUNT - 1 ;

end if ;

end while ;

if CALLCOUNT <= and 1=1 the n

$ If RC-STRING is incomplete or no such call is

$ found, return NULL-PATH.

return NULL-PATH ;

else

$ Otherwise, return the call found

return RC-STRING(I) ;

end if CALLCOUNT ;

end if RC-STRING ;

end proc LASTCALL ;

proc MOVELOCS ;

$ This procedure moves a 'locate' instruction out of a loop

$ whenever the basing pointer which it generates is not

$ actually used within the loop. The following case is

$ typical : a variable X is known to be '€B' ;

$ PS-CRTHISlX} includes the following occurrence of X ••

$ (VI := 1..100) X := X + Y ;;

213



$ The procedure GENLOCS will have provisionally inserted a

$ locate instruction within the loop, for the ovariable X

$ therein. This is clearly inappropriate, because no such

$ value of X, (except the last one is used as a base

$ element) . The proper place for the locate instruction

$ is at exit from the loop or from some containing loop.

$ The procedure shown below systematizes the process of

$ 'locate motion'. A 'locate' instruction can be moved

$ out of an interval if no use is made of the basing

$ pointer which it generates, within the interval. This

$ can be ascertained by following the FFROM map of the

$ (provisionally) located variable. If we reach an

$ operation which uses the basing pointer within the

$ interval then the 'locate' cannot be moved. If the use

$ appears in some successor interval, then it will be

$ advantageous to move the 'locate' operation to the head

$ of that interval.

$ The following procedure systemizes the process of

$ locate instruction motion. We scan the FFROM chain for

$ each occurrence 01 at which a locate instruction has been

$ suggested in phase II. The scanning procedure continues

* until we find all the places at which the basing pointer

$ created at 01 might potentially be used. The intervals

$ which contain these points are called the target intervals

$ of 01, and a map MOVETO summarising this information is

$ generated. If one of the target intervals of 01 is the

$ interval in which 01 resides, MOVETO{OI} is defined as nl.

214



$ We use MOVETO to insert actual locate instructions as

S follous. If n0VET0{0I} is' nl then a locate operation is

$ inserted right after 01 is created. Otherwise, for each

$ interval INT in MOVETO{OI}, a locate operation is inserted

$ at the entry to the largest interval which includes INT

$ but not 01.

$ This routine is called by the main routine AUTO-'DATA.

$ This routine calls the routines INTMAX, INS-AFTER and

$ INS-TARG.

$ The global variables referenced by this routine include

* LOCINS(OI) - the base into which 01 is inserted

* MODE(OI) - mode of occurrence 01

$ BASE-'ELMTS - sets of occurrences which have been

$ - known to be elements of bases

$ The macros used in this routine include

* IS-OVARCOI) - true if occurrence 01 is an ovariable,

$ - see (Mil).

$ IS-HASHED(OI) - true if 01 is subject to operations

$ - involving hashing* see (nl3).

* OFROMKOI) - the ovariable in the same instruction

* - as the ivariable 01, see (MIS).

$ The local variables defined in this routine are

repr

WORK : set(€OI-BASE) ; $ workpile of occurrences

215



01, WOI, U, NU, NEUOVAR, NEWIVAR : eoI^BASE ;

$ variable occurrences

USES : set( I GRC-BASE, eOI-BASE ] ) ;

$ uorkpile

P, NP, NNP : €RC-BASE ; $ RC-strings

I, NEMI : int ; $ instruction identifiers

MOVETO J inmap(€OI-'BASE)set( I CRC-BASE, eoi-BASE 1 ) ;

$ map occurrences to target

$ intervals

BASE : €SB-BASE ; $ base

end repr ;

$ Initialize base-'elmts

.

BASE-ELHTS := nl ;

$ For all occurrences to be inserted into bases

(VlOI, BASEl € LOGINS I not CAN-DROP ( BASE ) )

WORK •• = {01} ; $ uorkpile

(while WORK/=nl)

WOI from WORK ;

USES := FFROtltWOI} ;

$ Me follow FFROM until we pass out of the

$ interval, or until we find a hashing use of the

$ variable.

(while USES /=nl)

IP, UJ from USES ;

216



$ If the interval containing U is different from

$ the interval containing WOI, then prepare to

* move locate instruction from WOI toward U.

if OI-INTOV(U)/=0I-INT0V( WOI) then

nOVETO{WOI} with [P, Ul ;

$ If U is subject to an instruction involving

$ hashing operation, locate instruction can

$ not be moved

.

elseif IS-HASHEDCU) then

MOVETO{WOI} := nl ;

continue V ;

$ If the occurrence 01 ue are tracing is

$ assigned to another, ue must also trace the

$ target of the assignment, for possible use

$ of the basing pointer thus transmitted.

elseif OI-OP(U) in OPS-ASN then

NEWUSES := FFROM{OFROMI(U) } + FFROM{U} ;

else $ Continue chaining.

NEWUSES := FFROM{U} ;

end if ;

$ The elements in NEWUSES, uhich are actually

$ chained to the original variable must be

$ processed.

217



USES + { INNP, NU J : [ NP , NU ) e NEUUSES I

(NNP := P CC. NP)/= ERROR-PATH } ;

end while USES;

end while WORK ;

end V[OI ;

$ Nou perform code insertion. First process the 'locate'

$ instructions which were not moved. The insertion to be

$ performed is indicated by an assignment statement, from

$ an occurrence having primitive mode, to an occurrence

$ having member basing mode.

(VtOI, BASEl € LOGINS 1 MOVETO {01} =nl and not CAN-DROP ( BASE ) )

I := INSTNO(OI) ;

$ Physically insert a locate insruction after

$ instruction I.

NEWARGS := [ OI-HAME ( 01 ) , OI-NAHECOI)] ;

NEWI := INS-AFTER(I, Sl-ASN, NEWARGS) ;

NEWOVAR •= IHEWI, 1 1 ;

HENIVAR := [NEWI, 2 J ;

$ Assign proper modes to the variable occurrences in

$ this new instruction.

MODE(NEWOVAR) := ITELMT, NULL-PATH, BASEl ;

MODE(NEWIVAR) := MODE(OI) ;

$ Update the set BASE-ELMTS.

218



BASE-ELMTS with I NEWOVAR , B ASE ] ;

$ Update BFROM and FFROM.

FFROrUNEWOVAR} := FFROn{OI} ;

FFROn{OI} := { INULL-PATH.NEWIVAR 1 } ;

BFROM{NEWIVAR} == { [ NULL-PATH , 01 1 } ;

end V ;

$ Nou process the occurrences in MOVETO. The optimal point

$ for inserting the neu instruction is the head of the

$ largest interval which contains the target occurrence,

$ and which does not contain the original occurrence

$ (whose locate has been moved). The problem of finding

$ such an interval also arises in relation with copy

$ optimization. Here we use several utility procedures

$ taken from that module :

$ INTMAX : finds the largest interval in a geven sequence of

$ derived intervals which does not contain a given

$ variable occurrence.

$ INS-TARG : inserts a new instruction in the target block

$ of the chosen interval, and returns nl if such an

$ instruction is already in the target block.

(VVARSET := nOVETO{OI} )

BASE := LOCINS(OI) ;

(VI P, V ) € VARSET)

219



$ Calculate intervals of the derived sequence which

$ contain V.

INTSE2 — lID = ID: =OI-INTOV( V) while ID /= OH

doing ID : =INTOV ( ID ) 1 ;

$ Find the target block of the last interval of

$ INTSEQ.

TARG := INTMAXCOI, P. ftlNTSEQ+l. INTSEB) J

$ Insert a locate instruction into this target

$ block.

I:=INS--TARG(INTSE2(TARG) , 2 1 - ASN , [ OI-NAME ( V ) , OI-NAHE ( V ) 1);

$ Once the instruction is successfully inserted, set

$ proper mode of new occurrecnes to indicate the

$ locate operation to to performed.

if I /= on then

NEWOVAR := 11,11 ; * ovariable

NEWIVAR := ll,2] ; * ivariable

MODE(NEWOVAR) == I TELMT , OM , BASE) ;

riODE(NEWIVAR) := MODECOI) ;

$ Indicate that the new ovariable has element

$ basing.

BASE-ELMTS with I NEWOVAR , BASE 1 ;

end if ;

end V[P ;

220



end WARSET ;

return ;

end proc MOVELOCS ;

proc UPDnODES ;

$ This constitutes the fourth phase of the data structure

$ choice algorithm. We adjust the modes of occurrences in

$ three steps •

$ A) For composite objects and member based objects, ue

$ adjust their modes using the procdure SUBSTMD, to

$ replace references to dropped bases by the mode of their

$ elements and also replace references to non-real bases

$ by references to real bases.

$ B) At each occurrence ue determine uhether member basings

$ and type information (possibly involving domain basings)

$ are useful by examining the subsequent uses of the value

$ appearing at this occurrence. Two indicators

$ NON-HASH-USE and HASH-USE are generated for this

$ purpose

.

$ C) We then propagate member basing pointers from locate

$ and value retrieval instructions to other occurrences

$ which need basings. The propagation procedure ensures

$ that proper basings are carried with the variable

S values

.

221



$ This routine is called by the main routine AUTO-DATA. It

$ calls the routines MODECMPRS. USE-DETERn and

$ BASING-PROP.

MODECOnPRSC) ;

USE-DETERNC ) ;

BASIHG-PROPO ;

return ;

end proc UPDMODES ;

proc riODECOMPRS ;

$ This procedure adjusts the basing mode of variable

$ occurrences, using the procedure SUBSTMD. Basings

$ referencing non-real bases are adjusted to reference

$ real bases. Basings referencing bases dropped are

$ replaced by references to the element modes of the

$ bases.

$ The purpose of introducing dummy bases for tuples and for

$ the range of maps uas to use these bases as markers for

$ possibly complex structures which may themselves be

$ based. These markers are replaced by the corresponding

$ structures by means of procedure SUBSTMD described

$ above. A frequent and important case uhere this

$ mechanism is useful is that of multivariate maps. The

$ operation =

222



$ F(X, Y) := Z ;

$ expands into the following sequence of univariate

S retrievals and storages,

$ T := f{X} ;

$ T( Y) : = Z ;

$ F{X} : = T ;

$ These generate the following basings '•

$ F : inap{€Bl}€B2

$ T •• inap(€B3)€B4

$ Our system will also produce locate instructions '

$ B2 with T ;

$ B3 with Y ;

$ 64 with Z ;

$ If F is only used as a bivariate map, then B2 will

$ eventually be recognized to be useless, and after

$ determining that the mode of B2 is ' map ( €B3 ) €B4 ' , the

$ final mode for F will be :

$ F : map{eBl )map(€B3)eB4 ;

$ which is the desired descriptor.

$ In general there will be fewer modes to adjust than

$ variable occurences. It is therefore economical to map

$ modes themselves into their final forms, and then to use

223



$ this map to update the modes of variables.

$ This routine is called by the routine UPDMODES and calls

$ the routine SUBSTHD.

$ The global variables referenced by this routine include

$ ALL-OI - all variable occurrences

$ IIODE(OI) - mode of occurrence 01

$ The macros used in this routine include

$ MGTYPCOI) - gross type of occurrence 01, see (1126).

$ IS-PRIIKM) - true if M is a primitive mode, see (M17).

$ The local variables defined in this routine are

repr

NEWMODE : smap ( CHDOE-B ASE ) €MODE-B ASE ;

$ temporary map from mode

$ descriptor to mode descriptor

01 : eoi^BASE ; $ variable occurrence

n •• enODE-BflSE ; $ mode descriptor

end repr ;

$ Initialise NEWnODE.

NEWnODE : = NL ;

$ Update non-primitive mode descriptors.

(Vn € RANGE MODE I not IS-PRin ( GROSSTYP ( H ) )

)

NEWnODE(n) := SUBSTMD(M) ;

224



end V ;

$ Update the non-primitive modes of variable occurrences

(VOI € ALL-OI I not IS-PRIM(MGTYP ( 01) )

nODE(OI) := NEWnODECNODECOI) ) ;

end V ;

return ;

end proc tlODECOMPRS ;

proc SUBSTriDCM) ;

4 This procedure updates mode descriptors, by replacing

$ references to dropped bases by the mode descriptors for

$ the corresponding base elements. It also replaces base

$ names by the names of their representatives, so that the

$ updated mode contains only references to real bases .

$ As a side-effect, the modes of real bases are also updated

$ when they are referenced for the first time. For

$ example, when ue update a mode '€B1' where the real base

$ of B1 is B2 whose mode was ' base (

[

eB3 , bool 1
)

' and where

$ B3, whose mode was 'base(int)', is dropped, this routine

* updates the mode of B2 to be ' base ( I int , bool 1
)

' and then

$ replaces the mode '€B1' by '€B2'. This base mode

$ updating procedure makes subsequent mode updating

$ procedures more efficient, especially when they reference

$ to the bases which have been referenced before.

225



$ This recursive routine is called by the routine MODECMPRS

$ The global variables referenced by this routine include

$ REALB(B) - representative of the equivalence class

* CAH-DROPCB) - true if base B can be dropped

$ The macros used in this routine include

$

*

$

$

$

$

GROSSTYP(M) - gross type of mode t1, see (M19).

IS-PRIIKM) - true if M is a primitive mode, see (M17).

- base name of mode descritor M , see (M2M).

- element mode of mode descriptor M, see (M19)

- domain mode of mode descriptor n, see (1122).

- I-th component mode of mode descriptor t1,

- see (M20)

.

- range mode of mode descriptor n, see (n23).

- length of mode descrptor M» see (t121).

BASENAM(M)

COMPTYPCM)

DOMTYP(n)

CTYPN(n,I)

RANTYP(n)

LENTYPCM)

$ The local variables defined in this routine are

repr

B : CSB-BASE ;

n •• enODE-BASE ;

IX : int ;

end repr ;

$ base

$ mode descriptor

$ index

* If M is a primitive mode, then return M

if IS^PRIM(GROSSTYP(M) ) then return M ;

else case GROSSTYP(n) of

226



$ For a member basing mode t1 , update the mode of the

$ real base B of M . If B can be dropped then

$ re-assign M the mode of the elements of B, otherwise

* complete the BASENAM component of t1

.

(TELMT) :

B •- = REALB(BRSENAN(M) ) ;

COnPTYP(BnODE(B) ) •• = SUBSTI1D(COnPTYP(BnODE(B) ) ;

if CAN-DROP(B) then

M := COMPTYPCBMODECB) ) ;

else

BASEHAMCn) := B ;

end if ;

$ For other composite modes, update the element mode of

$ n by recursively invoking this routine.

(TBASE, TSET, THTUP) : COnPTYP(n) == SUBSTMD ( COHPTYP ( n ) ) ;

(TNAP) : DOnTYP(n) := SUBSTMD ( DOMTYP ( n ) ) ;

RANTYP(M) := SUBSTtID ( RANTYP ( M) ) ;

(TUTUP) :

( VIX : =1 . . .LENTYP(M)

)

CTYPNCM, IX) := SUBSTHD ( CT YPN ( M , IX)) ;

end V ;

end case

return M ;

end if ;

227



end proc SUBSTMD ;

proc USE-DETERM ;

$ This procedure determines whether member basing and/or

S domain basing should be carried at variable occurrences.

$ If the value flow shows that the value of an occurrence

$ will subsequently be subject to membership test

$ (explicitly or implicitly), member basing pointers

$ should be kept ; this is flagged by setting HASH-USE

$ equal to true. Similarly, if the value flow shows that

$ the type information or domain basing is useful in the

$ subsequent uses, type information (with domain basing)

$ should be kept ; this is flagged by setting NON-HASH-USE

$ true. Note that both types of information might be

$ carried along with certain occurrences.

$ This routine is called by the routine UPDMODES.

$ The global variables referenced by this routine include

$ ALL-IVAR - all ivariables

* BFROnCOI} - occurrences to which 01 is directly linked

$ HASH-USE(OI) - true if member basing should be kept for

$ - occurrence 01

$ NON-'HASH-'USE(OI) - true if domain basing should be kept for

$ - occurrence 01

$ The macros used in this routine include

$ !1GTYP(0I) - gross type of occurrence 01, see (t126)

228



$ IS-OVAR(OI) - true if occurrence 01 is an ovariable,

$ - see (nil).

* OI-OP(OI) - opcode of the instruction which contains

$ — occurrence 01, see (M7).

$ IFROno(OV,I) - I-th ivariable of the instruction which

$ - contains ovariable OV, see (M15).

$ The local variables defined in this routine are

repr

WORK : setCeoi-BASE) * uorkpile of occurrences

IV, 01 : €OI-BASE ; $ variable occurrences

POI : I eRC-'BASE,€OI-BASE ] ;

$ pair of RC-string and occurrenc

P : GRC-BASE ; $ RC-string

end repr ;

CONST U-nEMB.U-TYPE ; end ;

$ usage information to be propagated

$ Initialize WORK, HASH-USE and NON-HASH-USE

.

WORK : = NL ;

HASH-USE : = NL ;

NON-HASH-USE = = NL ;

( V IV € ALL-IVAR )

$ The ivariables which need member basing pointers

$ have been assigned TELMT mode.

229



if MGTYP(IV) = TELMT then

HASH-USE(IV) := TRUE ;

$ Prepare to propagate information backwards through

$ the BFROn chain.

WORK + { lPOI,U-riEriB 1 : POI e B FROM { I V } } ;

$ Otherwise, IV must be subject to an operation

$ involving global structure iteration, unless this is

$ an assignment instruction. In such a case, type

$ information Cpossibly involving domain basing) is

$ generally useful.

elseif OI-OP notin OPS-ASN then

NON-HASH-USECIV) == TRUE ;

$ Prepare to propagate information backwards through

$ the BFROM chain.

WORK + { [POI,U-TYPEl : POie BFROM { IV } } ;

end if ;

end V ; v

$ Usage infromation is then propagated backward through

$ BFROM chain and assignment instructions.

( while WORK /= NL )

l[P,OIl,USEl from WORK ;

230



$ Determine usage information for the ovariables and

$ the ivariables of assignment instructions.

if IS-OVAR(OI) or OI-OP(OI) in OPS-ASN then

case USE of

(U-MEHB) :

$ If HASH-USE flag of 01 is already on then 01

$ need not be processed, otherwise turn on the

$ flag.

if HASH-USECOI) then

continue uhile ;

else

HASH-USE(OI) := TRUE ;

end if ;

(U-TYPE) :

$ If NON-HASH-USE flag of 01 is already on then

S 01 need not be processed, otherwise turn on

$ the flag.

if NON-HASH-USECOI) then

continue uhile ;

else

NON-HASH-USECOI) := TRUE ;

end if ;

end case ;

231



$ Propagate through assignment instructions.

if IS-OVARCOI) and OI-OP(OI) in OPS-ASN then

WORK uith ( [ P,IFROnO(OI, 1 ) ] ,USE ) ;

end if IS-OVAR ;

end if IS-OVAR ;

* Propagate backward through BFROM chain

WORK + { HP, 01], USE] : [ P , 01 ] € BFROM { 01 1 ;

I if USE = U-'riEMB then not HASH-USE(OI)

elseif USE = U-TYPE then not NON-HASH-USE ( 01) } ;

end while ;

return ;

end proc USE-DETERM ;

proc BASING-PROP ;

$ This procedure propagates member basing pointers from

$ inserted locate instructions and value retrieval

$ instructions to other variable occurrences, wherever

$ necessary. In order to allow multiple representations

$ for a variable occurrence, the map MODE is used as a

$ multi-valued map.

$ This routine is called by the routine UPDMODES.

$ The GLOBAL variables referenced by this routine include

232



$ BLOCKS

$ nODEtOIl

* ARG(I)

- set of code blocks

- modes of occurrence 01

- arguments of instruction I

$ The macros used in this routine include

$ FORALLCODECB, I) - for each instruction I in block B,

$ - see (n4).

$ MGTYPCOI) - gross type of occurrence 01, see (M26).

$ COriPTYP(M) - element mode of mode descriptor 11, see (M19)

$ DOnXYPdl) - domain mode of mode descriptor M, see (tl22).

$ RANTYP(M) - range mode of mode descriptor M, see (n23).

$ CTYPNCM.I) - I-th component mode of mode descriptor f1

,

- see (n20)

.

$ OI-VALUECOI) - value of occurrence 01, see (M9).

$ The local variables defined in this routine are

repr

I : int ; $ instruction identifier

OV, IV1, IV2 : €0I-BASE ; $ variable occurrences

DONE : set( I eoi-BASE, etlODE-BASE 1 ) ;

$ occurrences which have been

$ processed

WORK : setC I €OI-BASE, etlODE-BASE ] ) ;

$ uorkpile of occurrences with

S member basings

M, MD : CMODE-BASE ; $ mode descriptors

end repr ;

233



WORK := NL ; $ Initialize uorkpile

$ For each instruction

( V BeBLOCKS,FORALLCODE(B,I) )

[0V,IV1,IV2] := ARG(I) ; $ Unpack arguments.

* If this instrution has no ovariable then continue

$ processing next instruction.

if OV = on then continue V ;

$ At this point, the ©variables of inserted locate

$ instructions will have been assigned member basing

$ modes, and these are the only ovariable occurrences

$ uhich have been assigned such modes (by MODE map).

$ The mode map of all other ovariable occurrences will

i contain domain basings.

M := OM ;

if MGTYP(OV)=TELMT then

$ Insert [ OV , MODE( 01 ) 1 into uorkpile to indicate

$ that OV has member basing pointer.

WORK with IOV,MODE(OV) 1 ;

$ If OV also needs domain basing, then OV is

$ assigned multiple basings by absorbing the mode

* of its ivariable.

234



if NON-HASH-USE(OV) then

MODE{OV) + MODEdVI} ;

end if ;

else

$ Member basing pointers can also be transmitted by

$ value retrieval operations.

case OPCODE(I) of

(ei^ARB,21^FR0ri,el-'NEy.T,ei-INEXT) :

if MGTYP(IVI) = TSET and ELMBASECIVI) /= OM then

$ For a value retrieval from a based set :

n •= COMPTYPCMODEdVI ) ) ;

end if ;

(QI-NEXTD.QI-INEXTD) :

if MGTYPCIvn = THAP and DOMBASE(IVl) /= OM then

$ For an iteration over a based map :

M := DOMTYPCMODECIVI ) ) ;

end if ;

(ei-OF) :

case MGTYPCIV 1 ) of

(TMAP) :

235



if DOMBASE(IVI) /= OM then

$ For a value retrieval from a based map

$ :

n := RANTYP(nODE(IV1 ) ) ;

end if ;

(THTUP)

if ELMBASEdvn /= OM then

$ For a value retrieval from a based

$ tuple of knoun length =

M := C0MPTYP(M0DE(IV1 ) ) ;

end if ;

(iriTUP) :

if ELMBASECIVI) /= OM then

$ For a value retrieval from a based

$ tuple of unknown length •

M := CTYPNCMODEdVl ) ,0I-VALUE(IV2) ) ;

end if ;

end case MGTYP ;

end case OPCODE ;

$ If M is not undefined then insert (OV.M) into

$ uorkpile to indicate that member basing M is

236



$ available at OV.

if M /= OM then WORK uith lOV,ri] ; end if ;

end if MGTYP ;

end V ;

$ Propagate member basings through FFROM chain and

$ assignment instructions.

DONE •= NL ;

$ Work contains the occurrences uith member basings.

( uhile WORK /= NL )

I OI,ri I from WORK ;

$ Assign proper mode to 01 according to HASH-USE(OI)

$ and NON-HASH-USECOI)

.

if HASH-USE(OI) then

if NON-HASH-USECOI) then

$ If both HASH-USE(OI) and NON-HASH-USEC 01 ) are

$ true, then assign 01 member basing in

$ addition to domain basing.

M0DE{0I} uith M ;

else

237



$ If only HASn-USE(OI) is true, then assign OV

$ member basing only.

nODE{OI} := {n} ;

end if KON-HASH-USE ;

$ Indicate 01 has been processed and insert the

$ occurrences which are linked to 01 and have not

$ been processed into the uorkpile .

DONE uith IOI,M 1 ;

MORK + { [ WOI,n ] , [-, WOI leFFROM{OI} I [WOI,Ml notin DONE }

S If 01 is the ivariable of an assignment

$ instruction, then insert the ©variable into work

$ if it has not been processed.

if OI-OPCOI) in OPS-ASN and IS-IVAR(OI)

and I(OV := OFROMI ( 01 ) ) , H ] notin DONE then

WORK with [OV,n] ;

end if OI-OP ;

end if ;HASH-USE ;

$ Otherwise, NON-HASH-USE ( 01 ) must be true and 01

$ already has domain basing. Nothing has to be done.

end while WORK ;

return ;

end BASING-PROP ;

238



proc REFINE ;

$ This procedure applies the heuristics explained in an

$ earlier chapter to choose between local, remote and

$ sparse representation for based objects. These

$ heuristics amount to the follouing '•

$ A) A based object should be sparse if it is to be iterated

$ over, unless ue can show that the object is actually

$ identical with its base. The routine ID-BASE will spot

$ such identities in a few potentially useful cases.

$ B) If no iteration is performed on an object, but it is

$ subject to algebraic operations (union, intersection,

$ etc) or is passed as a parameter, assigned and used

$ destructively, or inserted into a larger object, then it

$ should be remote.

$ C) If only differential updating operations are applied to

$ an object, and it is never transmitted to another by

* assignment, insertion or call, then it can have a local

$ representation.

$ This routine is called by the main routine AUTO-DATA. It

$ calls the routines ID-BASE and nAKE-REHOTE.

$ The global variables referenced by this routine include

$ LIVEPDS - the set of live periods

$ MODElOI} - modes of occurrence 01

$ The macros used in this routine include

239



$

GROSSTYP(ri)

REPRATT(n)

Ol-OPtOI)

- gross type of mode M, see ( M 1 9 )

.

- representation attribute of domain basing M,

- see (M25)

.

- opcode of the instruction uhich contains

- occurrence 01, see (M?).

$ The local variables defined in this routine are

repr

LPD : GLPD-BASE ;

ATTRIB : ATOM ;

01 : eoI-'BASE ;

MD : €MODE-BASE ;

end repr ;

$ live period

$ representation attribute

$ variable occurrence

$ mode descriptors

$ Find the occurrences uhich are identical in value with

$ their bases

.

ID-BASEC )

;

S For each live period of composite objects uhich are domain

$ based

(VLPD €LIVEPDS I (3MDenODE{arb LPD} I GROSSTYPCHD) in {THAP.TSET}

$ tlD is the domain basing of a set or map.

if MD = CM then continue ; ;

$ If tliere is an occurrence in the live period subject

$ to iteration operations and not identical uith its

240



$ base, then all the occurrences in the live period

$ are assigned sparse representations.

if (3 01 € LPD I (OI-OPCOI) in {ei-NEXT, Ql-NEXTDl

and not ID-TO-BASEC 01 ) ) ) then

ATTRIB := SPARSE ;

$ If any occurrence in the live period should have

$ remote representation, all the occurrences in this

$ live period are assigned remote representations.

elseif 301 e LPD I MAKE-REMOTE ( 01 ) then

ATTRIB := REMOTE ;

else

ATTRIB := LOCAL ;

end if ;

* Assign the calculated attribute to the mode of each

$ occurrence in the live period.

(VOI e LPD I (3 MD€MODE{OI} I GROSSTYP(MD) in {TMAP,TSET}) )

REPRATT(MD) := ATTRIB ; ;

end Vol ;

end VLPD ;

end proc REFINE ;

proc ID-BASE() ;

241



$ This routine identifies a potentially important situation

$ in which the value of a variable occurrence is identical

$ (in value) with its base. If all the elements X of a

S base B are inserted into B by tlie operation of a set

$ former instruction uhich generates a set S, then S and B

$ will be identical collections. This ID-TO-BASE property

* can be propagated from S to other occurrences uhich are

S linked and only linked to S.

S This routine is called by the routine REFIME and calls the

$ routine SETOF.

$ The global variables referenced by this routine include

$ BASE-ELMTS {b} - sets of occurrences uhich have been

S - knoun to be elements of base B

$ ID-TO-BASECOI) - true if occurrence 01 is

$ - identical in value with its base

$ BFROM{OI} - occurrences to uhich 01 is directly

$ - linked

$ FFROM{OI} - occurrences uhich are directly

$ - linked to 01

$ The macros used in this routine include

$ OFROMKOI) - the ovariable of the instruction

4 - containing the ivariable 01

$ OI-OPCOI) - opcode of the instruction containing 01;

$ - see (M7 )

.

$ The local variables defined in this routine are

242



repr

01, WOI, SOI : eOI-BASE ;

WORK : set(€OI-BASE) ;

end repr ;

$ variable occurrences

$ uorkpile of occurrences

$ For each base whose elements are inserted at only one

* place

(V BASE € DOMAIN BASE-ELMTS I #BASE-ELMT { B ASE } = 1 )

$ Find the variable occurrence inserted into the base.

WOI := arb BASE-ELMTS { BASE} ;

$ If WOI is not an argument of a set former, bypass the

$ base. The value SOI returned from the routine SETOF

$ is the set being constructed if WOI is an argument

* of a set former, otherwise undefined.

if (SOI := SETOF(WOI)) = OM then continue V ;

$ Otherwise, the ovariable of the set former instruction

$ is identical in value to its base.

ID-TO-BASECSOI) := TRUE ;

$ Propagate the property ID-TO-BASE of SOI to the

$ occurrences which are linked to SOI and only to SOI.

WORK := {01, [ -,0I l€FFROM{SOI) I #BFR0M{0I} = 1 } ;

( while WORK /= NL )

243



01 from WORK ;

ID-TO-BASE(OI) := TRUE ;

$ Propagate through assignment instructions.

if OI-OP(Oi: in OPS-ASN and IS-IVARCOI)

and not ID-TO-BflSE (OV = =OFROMI ( 01 ) ) then

WORK uith OV ;

;

$ Propagate through FFROM chain.

WORK := {WOI, I -, WOI l€FFROM{OI} I # BFROM { WOI } = 1

and not ID-TO-BASE ( 01 ) } ;

end while ;

end V BASE ;

return ;

end proc ID-BASE ;

proc SETOF(OI) ;

$ This routine returns OM unless 01 is an argument of a set

$ former instruction. In this case, the set generated by

$ the instruction is returned. Since set former

$ instructions in SETL source programs will have been

$ expanded into series of instructions, a number of

$ instructions must be examined to detect set formers. This

$ routine is therefore compiler dependent and must be

$ updated whenever the compiler is modified. If the

$ compiler could leave an explicit syntatic indication of

244



$ set former instruction, this routine could then be

$ replaced by a macro which simply detects the indicator.

$ This routine is called by the routine ID-BASE.

S The global variables referenced by this routine include

$ BFROlKOIl - occurrences to which 01 is directly

$ - linked

$ FFROn{OI} - occurrences which are directly

$ - linked to 01

S The macros used in this routine include

$ OFROMI(OI) - the ovariable of the instruction

S - containing the ivariable 01

S The local variables defined in this routine are

repr

01, WOI, NOI : eoi-BASE ; $ variable occurrences

WORK : set(€0I-BASE) ; $ temporary set of occurrences

end repr ;

$ If 01 is an argument of a set former then it will link to

$ and only to an occurrence which is pushed into a stack

$ which is then subject to a el-SETl operation. The

$ following code detects this case.

* If 01 links to more than one occurrence we do not have the

$ configuration that we are looking for.

if tCUORK := {UOI, I
- , UOI ] eFFRON { 01 } I «BFR0n{0I} = 1 } ) = 1 then

245



$ WOI is the occurrence linked to 01.

WOI := arb WORK ;

$ WOI should be pusl\ed into a stack.

if OI-OPCWOD/^ei-PUSH then return OM ;

else

$ NOI is the stack.

NOI := OFROni(WOI) ;

if #(WORK: = {WOI, [ -,WOI lcFFROn{OI} I #BFROM { 01 } = 1 } ) = 1 then

$ The stack should be subject to a ei-SET1

$ operation.

WOI := arb WORK ;

if OI-OP(WOI) /= elesETl then return OM ;

else return OFROMKWOI) ;

end if OI-OP ;

else

return CM ;

end if # ;

end if OI-OP ;

else

return OM ;

end if # ;

end proc SETOF ;

246



proc MAKE-REMOTEtOI) ;

$ This boolean procedure determines whether an occurrence 01

$ should have a remote representation, hy detecting its

$ appearance as an argument of operations which are

$ particularly inefficient for local representations.

$ This routine is called by the routine REFINE.

$ The global variables referenced by this routine include

$ COPY-FLAGCOI) - true if 01 cannot be used destructively

$ The macros used in this routine include

$ OI-OP(OI) - opcode of the instruction which contains

i - occurrence 01, see (m7).

$ ARGHO(OI) - argument number of occurrence 01, see (M6)

$ The local variables defined in this routine are

repr

01 ' eoi-BASE ;

OP : €OPCODES ;

end repr ;

$ variable occurrence

$ opcode

OP := OI-OP(OI) ;

$ If 01 is an argument of an algebraic or boolean operation

if ( OP e (el-ADD, 21-SUB, 21-MULT, 21-MOD, 21-INC, Sl-ES, el-'NE}

$ Or 01 is the ©variable of a retrieval operation

or ( ARGN0(0I)=1 and OP in {QI-OF, el-ARB, ei-FROM} )

247



$ Or 01 is the input argument of a set of tuple former

or ( ARGN0(0I)=2 and OP in (BI-PUSH, ei-POPl )

$ Or 01 is the input argument of an incorporation

$ operation

or ( ARGN0C0I)=3 and OP in {Cl-SOF, el-MITH} )

4 Or 01 cannot be used destructively

or COPY-FLAG(OI)

$ Or 01 is formal parameter or an actual argument of a

* procedure,

or ( OP in {21-ARGIN, ei-ARGOUT} )

then

$ Then 01 should have remote representation.

return TRUE;

else

return FALSE ;

end if ;

end proc MAKE-REMOTE ;

end AUTO-DSTRUCT ;

248



APPENDIX A : PRIMITIVE SETL OPERATIONS

Operation Remnrks

X + Y integer and real addition, set union, character

string and tuple concatenation

X - Y integer and real subtraction, set difference

X * Y integer and real multiplication, set intersection,

tuple and character string repetition

X / Y integer and real division, set symmetric difference

X // Y arithmetic remainder function

S ** Y arithmetic exponentiation

X and Y boolean and

X or Y boolean or

X implies Y boolean implies

not X boolean negation

S = Y equality comparison

X /= Y inequality comparison

X > y, X < Y etc .

arithmetic comparisons

X : = Y simple assignment

#x cardinality of set, lenth of tuple and string

arb X select arbitrary element of set

X uith Y set extension, equivalent to X + {Y}

X less Y set contraction, equivalent to X - {Y}

X in Y, X notin Y

set membership tests

249



Operation Remarks

X incs Y

set inclusion test

pow(X) power set

{X,Y,...} set with specified elements

[K,y,...l tuple with specified elements

F(X) function or subprocedure call, indexing to component

of tuple or string. If F is a map, F(X) is the

unique Y such that (X,Yl in F, if such exists ;

otherwise F(X) is undefined.

F(X1 , . . ,Xn)

function or subprocedure call. If F is a set,

F(X1,..,Xn) is the unique Y such that

[XI,.., Xn] in F, if such exists ; otherwise

F(X1,..,Xn) is undefined.

F{X1 , . .Xn}

F must be a map ; F{X1,..,Xn} is the set of all

Y such that [X1,..,Xn,Y) in F.

F[X1, . , ,Xnl

F must be a map ; F[X1,..Xnl is the set of all

Y for which there exist Z 1 , . . Zn with Z1 in XI,

. . . , Zn in Xn and (Z1,..,Zn,Yl in F.

F(x:y) extract subpart of length Y starting at component

X of string or tuple F.

F(X):=Y assignment operation corresponding to retrieval

operator F( X )

.

250



Operation Remarks

F(X1 , . .Xn) := Y ;

assignment operator corresponding to retrieval

operator F(X1,..,Xn).

251



APPENDIX B : ALPHABETICAL LISTIKG OF GLOBAL NAMES REFERENCED

ALL-,! - variable, see (VIO).

;VI.I,,0 - variable, see (V9).

ALL-OI ~ variable, see (V8).

ARGNO ~ macro, see (M6).

j^RGS ~ variable, see (V22).

ARGI ~ macro, see (Ml).

ARG2 ~ macro, see (112).

ARG3 ~ macro, see (M3).

BASE-ELMT - variable, see (V27).

BASENAM - macro, see (M2H).

BASING-PROP - procedure, see (P24).

BFROM ~ variable, see (VII).

BLOCK-BASE - base, see (V17).

BLOCKOF

BMODE

- variable, see (V20).

- variable, see (V29).

CAN-DROP - macro, see (M32).

COMBASE - macro, see (MBl).

COMPTYP - macro, see (M19).

CONSTR-PS-CRTHIS - procedure, see (P2).

CTYPN ~ macro, see (M20).

DOMBASE - macro, see (N29).

DOtlTYP ~ macro, see (n22).

ELMBASE - macro, see (M28).

£2UIV ~ procedure, see ( P 1 4 )

ERROR-PATH " constant, see (C8).

252



FFROM

FORALLCODE

GENBASE

GENLOCS

GLTYP

GMAP

GROSSTYP

GSET

HASH-USE

ID-BASE

ID-TO-BASE

IFROMO

INSERTLOCS

INSTNO

INSTRS

IS-COHST

IS-FORMAL

IS-GLOB

IS-HASHED

IS-IVAR

IS-OVAR

IS-PRIM

KNT

LASTCALL

LENTYP

LIVEPDS

LOCAL

variable, see (V12).

macro , see (N4 )

.

procedure, see (PI),

procedure, see (P3).

macro , see (ri27 ) .

constant, see (C20).

macro , see (M18 )

.

constant, see (C21).

variable, see (V33).

procedure, see (P26)

variable, see (V35).

macro , see ( M 1 4 )

.

procedure, see (P13)

macro , see ( MS )

.

base , see ( V 1 6 ) .

variable, see (74).

variable, see (V24).

variable, see (V5).

macro, see (M13).

macro , see ( M 1 2 )

.

macro , see (Mil),

macro, see (1117).

constant, see (CIS),

procedure, see (P18)

macro , see (M2 1 )

.

variable, see (V32).

constant, see (C41).

253



LPD-BASE - base, see (V31).

MAKE-REMOTE - procedure, see (P28)

MAPSET - constant, see (C38).

MAPTUP - constant, see (C36).

MERGE - procedure, see (P11)

MERGE-INTO - procedure, see (P12)

MERGEOBJ - procedure, see (PU).

MGTYP - macro, see (M26).

MODE - variable, see (V30).

MODE-BASE - base, see (V28).

MODECMPRS - procedure, see (P21)

MODEDIS - procedure, see (P16)

MOVELOCS - procedure, see (P19)

NAME - variable, see (V2).

NBASEDOK - variable, see (V26).

NBASES - variable, see (V25).

NEXT - variable, see (V19).

NON-HASH-USE - variable, see (Vi^).

NULL-PATH - constant, see (C7).

OFROMI - macro, see (M15).

OI-BASE - base, see (V6).

OI-INTOV - macro, see (M10).

OI-NAME - macro, see (M8).

OI-OP - macro, see (M7).

OI-VALUE - macro, see (M9).

OPCODE - variable, see (V21).

OPCODES - base, see (V18).

254



OPS-ASN

OPS-CREATE

OPS-HASH

OPS-RETRIEVE

PARTITION

PROPELHT

PROPOFHAP

PROPOFTUP

PROPSOFAMAP

PROPSOFMAP

PROPSOFTUP

PS-CRTHIS

RANBASE

RANTYP

RC-BASE

RC-CALL

RC-RETN

REALB

REFINE

REMOTE

REPRATT

SB-BASE

SETOF

SETTUP

SPARSE

STRUCTPART

SUBSTHD

constant, see (CI),

constant, see (C4).

constant, see (C2).

constant, see (C3).

procedure, see (P17).

procedure, see (P5).

procedure, see (P6).

procedure, see (P8).

procedure, see (P10).

procedure, see ( P7 )

.

procedure, see (P9).

variable, see (V13).

macro , see ( M30 )

.

macro , see ( n23 )

.

base , see ( V7 ) .

constant, see (C5).

constant, see (C6).

procedure, see (P15)

procedure, see (P25)

constant, see (C40).

macro , see (n25 ) .

base . see ( V23) .

procedure, see (P27)

constant, see (C37).

constant, see (C39).

macro , see ( M 1 6 ) .

procedure, see (P22)

255



SYMBOLS

TA

TBASE

TC

TELMT

TG

THTUP

TI

TL

TLC

TLI

TMAP

TMTUP

TNUM

TOM

TP

TR

TSC

TSET

TSI

TSTRUCT

TTUP

TYPE-BASE

TYPES

TZ

TZSTRUCT

UNT

base, see



UPDMODES

USE-DETERM

VALUE

- procedure, see (P20)

- procedure, see (P23)

- variable, see (V3).

257



BIBLIOGRAPHY

Allen, F.E. [19721

A Catalog of Optimizing Transformations , in

Design and Optimisation of Compilers (R. Rustin ed.)

Prentice Hall publishing co.

Englewood Cliffs, N.J.

Allen, F.E. I 1974

]

Interprocedural Data Flou Analysis

Proc. IFIP conference 74

North Holland publishing co.

Amsterdam, Holland

Brent, R. [ 1973 J

Reducing the Retrieval Time of Scatter Storage Techniques

CACM, Vol. 19, No.

2

Bruce . J . [ 1976 ]

An APL Optimizer

Ph.D. thesis

M . I . T .

Cambridge, Mass.

Cocke, J. and Schwartz , J . T . [1970]

Programming Languages and Their Compilers

Courant Inst. Math. Sci., Neu York Univ.

New York, N.Y.

258



Codd.E. [ 1970 1

A Relational Nodel of Data for Large Shared Data Bank

CACN, Vol. 13, No.

6

Crick, «. and Symonds,A. 119701

A Software Associative Memory for Complex Data Structures

IBM Cambridge Sci. Center.

Research report No. G320-2060

Derksen, J. [ 1972 1

The eA4 Primer

Stanford Research Inst.

Stanford, Calif.

Deuar ,R. [ 1977a )

Copy Optimization in SETL

SETL newsletter No. 164

Comp. Sci. Dept., Courant Inst. Math. Sci., New York Univ.

New York, N.Y.

Dewar,R., Grand, A., Schwartz , J . T . and Schonberg.E. {1977bl

SETL Data Structures

SETL newsletter No. 189

Comp. Sci. Dept., Courant Inst. Math. Sci., New York Univ

New York, N.Y.

Dewar ,R. ( 1978 I

The SETL Programming Language

Comp. Sci. Dept., Courant Inst. Math. Sci., New York Univ

New York, N.Y.

259



in preparation

Earley, J. [ 1971 1

Toward an Understanding of Data Structures

CACM Vol. 14, No. 10

Earley, J. [ 1973a]

ReLational Level Data Structures for Programming languages

Comp . Sci. Dept.

Univ. of Calif., Berkeley.

Berkeley, Calif.

Earley, J. t 1973b]

An Overview of the VERS2 Project

Memo ERL-nme

Electronics research laboratory, college of engineering,

Univ. of Calif, Berkeley.

Berkeley, Calif.

Earley, J. I 1974a]

High Level Iterators and a Method of Automatically Designing

Data Structure Representations

Electronics research laboratory, college of engineering,

Univ. of Calif., Berkeley.

Berkeley, Calif.

Earley, J. [ 1974b ]

High Level Operations in Automatic Programming

ACM, SIGPLAN notices, Vol.9, No .

4

260



Feldman, J. [ 1972 ]

Automatic Programming

Tech. Report CS-255,

Comp . Sci. Dept., Standford Univ.

Stanford, Calif.

Grand, A. I 1978]

The SETL Optimizer

Comp. Sci. Dept., Courant Inst. Math. Sci., New York Univ.

New York, N.Y.

in preparation

Guttag, J. V. I 1975

1

The Specification and Application to Programming of Abstract

Data Types

Tech. Report CSRG-59

Dept. of Comp. Sci.

Univ. of Toronto

Toronto, Canada

Kant,E. [ 1977 ]

The Selection of Efficient Implementations for a High-Level

Language

ACM, SIGPLAN Vol.12, No . 8

August, 1977.

Kenendy,K. and Schwartz , J . T . [19751

An Introduction to the Set Theoretical Language SETL

Jour, computers and mathematics with application

261



Vol.1, pp. 87-119

Knuth,D. [ 1968 1

Fundamental Algorithms: the Art of Computer Programming Vol 1

Addison-Wesley publishing co.

Reading , Mass

.

Knuth, D . [1973 1

Sorting and Searching: the Art of Computer Programming Vol 3

Addison-Wesley publishing co.

Reading , Mass

.

Liu.S.C. and Schonberg,E. [1977]

Uncovering Profitable Basing Relations

SETL newsletter No. 180

Comp. Sci. Dept., Courant Inst. Math. Sci . , New York Univ.

Neu York, N.Y.

Lou, J . R. [ 1974 1

Automatic Coding : Choice of Data Structures

Ph.D. thesis

Comp. Sci. Dept. Memo STAN-CS-74-452

Stanford Univ.

Stanford, Calif.

Lou, J . R. [ 1978 1

Automatic Data Structure Selection : An Example and Overvieu

CACn Vol. 2 1, No.

5

Mcdermott,D. and Sussman G. [1972 1

262



The CONNIVER Reference Manual

AI memo No. 259

M.I.T.

Cambridge, Mass.

Morris, J . I 1973

1

a Comparison of MADCAP and SETL

Univ. of Calif., Los Alamos Sci. Lab.

Stanford, Calif.

Rovner ,P. ( 1976

]

Automatic Representation Selection for Associative Data

Structures

Comp . Sci. Dept. TRIO

Univ. of Rochester

Rochester, N.Y.

Schaefer ,M. ( 1973 1

A Mathematical Therory of Global Program Optimisation

Prentice Hall publishing co.

Engleuood cliffs, N.J.

Schonberg, E. , Deuar,R., Vanek.L. and Grand, A. [1976]

Some Changes to the SETL Language in Preparation for the

Optimizer implementation

SETL neuletter 169

Comp. Sci. Dept., Courant Inst. Math. Sci., New York Univ

Neu York, N.Y.

Schonberg, E. and Liu,S.C. (1977 1

263



Manual and Automatic Data Structuring in SETL

Implementation and Design of Algorithmic Languages

Proceedings of the 5th Annual iii Conference

Guidel, France

Schuartz, J .T. [1971al

An Additional Preliminary Remark on the Importance of 'Object

Type' for SETL, with Some Reflections on the Motion of 'Data

Structure Language

'

SETL neuletter 31

Comp. Sci. Dept., Courant Inst. Math. Sci., New York Univ.

Neu York, N.Y.

Schwartz, J .T. 11971b]

More Detailed Suggestions Concerning 'Data Strategy'

SETL newletter 39

Comp. Sci. Dept., Courant Inst. Math. Sci., New York Univ.

Neu York, N.Y.

Schuartz, J .T. I 1973 J

On Programming: an Interim Report on the SETL Project.

Installment 1= Generalities.

Installment 2= The SETL Language and Examples of Its Use.

Courant Inst. Math. Sci., Neu York Univ.

Neu York, N.Y.

Schuartz, . T. M974al

Automatic and Semiautomatic Optimization of SETL.

ACM, SIGPLAN notices, Vol.9, No. 4, pp. 43 ff.

264



Schuarts, J .T. and Paige, R. [1974bl

On Jay Earley's Method of Iterator Inversion

SETL newsletter 138

Comp . Sci. Dept., Courant Inst, Math. Sci., New York Univ.

New York, N.Y.

Schwartz, J. T. [ 1975a J

Automatic Data Structure Choice in a Language of Very High

Level

CACM, Vol.18, No. 12, pp. 722-728

Schwartz, J. T. [ 1975b 1

Optimization Of Very High Level Languages - I •

Value Transmission and Its Corollaries

Journal of computer languages

Vol. 1 , No. 1 , pp. 161-19^

Schwartz, J. T. [1975c]

Optimization Of Very High Level Languages - II :

Deducing Relationships of Inclusion and Membership

Journal of computer languages

Vol. 1 , No. 2, pp. 197-2 18

Schwartz, J . T . , Dewar,R. and Schonberg,E. [1976aJ

More on Basings

SETL newletter 171

.

Comp. Sci. Dept., Courant Inst. Math. Sci., New York Univ.

New York, N.Y.

Schwartz , J . T . and Dewar,R. [1976bl

265



Basing Semantics Revisited

SETL neuletter 171a.

Comp. Sci. Dept., Courant Inst. Math. Sci., Hbu York Univ.

New York, N.Y.

Sharir ,M. I 1977 1

An Algorithm for Copy Optimisation

SETL newsletter No. 195

Comp. Sci. Dept., Courant Inst. Math. Sci., Neu York Univ.

New York, N.Y.

Sharir ,M. I 1978a]

Simplified Approach to Automatic Data STruture Choice

SETL newsletter No. 203

Comp. Sci. Dept., Courant Inst. Math. Sci., Neu York Univ.

New York, N.Y.

Sharir, M. I 1978b]

Second Simplified Approach to Automatic Data Structure Choice

SETL newsletter No. 207

Comp. Sci. Dept., Courant Inst. Hath. Sci., New York Univ.

Neu York, N. Y. . .

Sussman.G., Minograd,T. and Charniak,E. [1970]

Micro-PLANNER Reference Manual

AI memo No. 9 203, project MAC

M.I.T.

Cambridge, Mass.

Tenenbaum, A.M. [1974]

266



Type Determination for Very High Level Languages.

Ph.D. thesis

Research rep. NSO-3

Comp. Sci. Dept., Courant Inst. Math. Sci., New York Univ

New York, N.Y.

Tompa,F . W. I 1974

]

Evaluating the Efficiency of Storage Structures

Research report CS-75-16

Dept. of Comp. Sci.

Univ. of uaterloo

Tsui,w.h. [19771

A Ref ormxilation of Value-Flou Analysis

SETL newsletter Ho. 181

Comp. Sci. Dept., Courant Inst. Nath. Sci., New York Univ

New York, N.Y.

Ullman, J . D. [ 1975

]

Data Flow Analysis

Tech. Rep. 179

Dept. of Elec. Eng . , Comp. Sci. Lab.,

Princeton Univ.

Princeton, N.J.

VanLehn,K. I 1973 ]

SAIL User Manual

Stanford Comp. Sci. Tech. Report STAN-CS-9 3-37

3

Stanford Univ.

267



Stanford, Calif.

Vanek,L I 1976a ]

Simplifying and Extending the SETL Type Calculus

SETL neuletter 173.

Comp. Sci. Dept., Courant Inst. Math. Sci., Neu York Univ.

New York, N.Y.

Vanek,L I 1976b ]

Global Analysis Techniques for the Optimizing SETL Compiler

Proceedings of the September 1976 MOSCOW conference on very

High Level Languages

Comp. Sci. Dept., Courant Inst. Math. Sci., Neu York Univ.

New York, N.Y.

Wegbreit,B. [ 1973

1

The Treatment of Data Types in ELI

Harvard Univ.

Cambridge, Mass.

Zilles.S.N. [ 1975

1

Data Algebra = a Specification Technique for Data Structure

Ph.D. thesis

268



EXPRESSION CONTINUITY AND THE F0RI4AL DIFFERENTATION

OF ALGORITHMS

Robert Paige

CONTENTS
Page

PREFACE 27

I. INTRODUCTION 272

II. BASIC CONCEPTS AND EXAMPLES 285

A. Preliminaries 285
B. Initial Examples 286
C. Formal Differentiation of Set Theoretical

Expressions Continuous in All of Their Parameters 29 3

D. Differentiation of Expressions Containing
Parameters on which They Depend Discontinuously 315

III. AN IMPLEMENTATION DESIGN OF FORMAL DIFFERENTIATION
OF EXPRESSIONS CONTINUOUS IN ALL OF THEIR PARAMETERS 364

A. Overview and System Design 364
B. System Description 368
C. Computing the Formal Derivative 386

IV. IMPLEMENTATION DESIGN FOR FORT^IAL DIFFERENTIATION OF
EXPRESSIONS CONTINUOUS IN SOME OF THEIR PARAMETERS 422

A. Introduction 422
B. Semiautomatic Formal Differentiation of

Discontinuous Expressions 42 3

C. Implementation Design for SETL 453
D. Applications to Algorithm Derivation 464
E. Conclusion 491

APPENDIX

A. SETL and SUBSETL 521

B. Predicting Speedup for Rule 1 536

C. Formal Differentiation Tables 538

D. Various Elementary and Compound Set Theoretic
Transformations 575

E. Assorted Utility Routines for a Source to Source
Transformational Implementation 599

F. Additional Case Studies 619

BIBLIOGRAPHY 6 54

269



PREFACE
Abstract

Formal differentiation is a program optimization technique
which generalizes John Cocke's method of strength reduction and
provides a convenient framework with which to implement a host
of program transformations including Jay Farley's 'iterator
inversion'. This technique captures a commonly occurring yet
distinctive mechanism of program construction in which succinct
algorithms involving costly repeated calculations are transformed
into more efficient incremental versions.

The basic formal idea of this technique can be put as
follows. Suppose that an expression C = f (x-^ , . . , , Xj^) will be
used repeatedly in a a program region R, but that its calcula-
tion cannot be moved outside R because its paramete.rs x-^, . . . ,x^
are modified within R. If we make C available on each entry to
R (by calculating it before entry) and keep C available within
R by recalculating it each time one of its parameters is modified,
then we may be able to avoid all full calculations of C within R.

For this approach to be reasonable we require the follow-
ing heuristic condition to hold: Within R, for each redefini-
tion X- = Aj^. to a parameter x^ , there should exist code which
can be inserted immediately before and after the redefini-
tion point p and which serves to keep C available within R.
We refer to this inserted code as the pre and post derivative
code of f with respect to the change x. = Ax-;. We require
this code as well as all code necessary-^ to maintain available
expressions on which it depends to consist of "easy" calcula-
tions relative to the cost of a fresh calculation of f (i.e.
operations heuristically less costly in time). If this is
the case, then we say (suggestively though only heuristically
and, of course, not in the standard technical sense) that the
expression f is continuous in its parameters relative to the
modifications occurring within R. If we cannot demonstrate
that f is continuous with respect to a particular parameter
change, we will say that f is discontinuous in that parameter
change

.

Up until Farley's discovery of iterator inversion the
preceding idea was applied at the Fortran level for expressions
continuous in all of their parameters. Application of this
idea in a set theoretic context was introduced by Jay Farley
with his discovery of 'iterator inversion'. Moreover, Farley's
transformations could handle expressions involved in
discontinuity parameters. However, Farley lacked an imple-
mentation design.

In the present paper we unify the technique of Cocke and
Farley, and provide algorithms which can implement these
formal differentiation transformations both automatically and
semiautomatically for programming languages ranging from
Fortran to SETL. However, we find that success is best achieved
in the case of SETL. Thus, we study set theoretic formal
differentiation in depth and present a comprehensive semi-
automatic implementation design for a restricted version of
SETL called Subsetl. We show that the expected speedup due to

270



transformations applied by our proposed systa~ can be as
great as an order of magnitude. In particular we regard
differentiation of general set forirer5

C = {x G s
I

K(x,t,,...,t )} as being of primary importance.

We estimate that the cost of executing a calculation C

repeatedly in a loop L is proportional to N x (#S) x Cost(K)
where N is the iteration count of L. The formal
differentiation transformations applied by our system will
keep the value of C available in either (N + #S) x Cost(K)
or (N + (#S) X log(#S)) x Cost(K) elementary steps; and
this will usually imply a speedup.

VJe illustrate our proposed system by considering and
improving eight sample Subsetl programs. We feel that these
initial case studies lend strong support to further efforts
to fully automate and incorporate set theoretic formal differ-
entiation as part of an optimizing compiler.

Acknowledgements

I thank all the people of the Courant Institute who read
through sections of my original draft of this paper and
offered helpful corrections and improvements. In this regard
I appreciate the attention of Janet Fabri , Shaye Koenig,
Ed Schoenberg, and Len Vanek. I am especially grateful to

my advisor. Jack Schwartz, who made important initial contri-
butions to my work, guided me along the way, and offered
valuable recommendations for improving my expository style.
Finally, I thank Connie Engle, the extraordinary typist of

the Courant Institute who typed my paper with the same care
that she has sent so many other manuscripts to press.

271



I. INTRODUCTION

Continued development of very high level languages

depends in part on our ability to recognize common major

aspects of programming style as resulting from the applica-

tion of some standard technique of program improvement to an

underlying program prototype. A technique of program improve-

ment that we are able to perceive as general can become the

basis for a general optimization method; and once this method

is in hand, we can safely write programs in relatively simple

unoptimized forms, since their more complex optimized forms

will be seen as obvious improvements, derivable mechanically

or semimechanically from these simple forms.

This thesis describes an optimization method, formal

differentiation, which generalizes the classical method of

'reduction in operator strength'. The method captures a

commonly occuring yet distinctive mechanism of program

construction in which succinct algorithms involving costly

repeated calculations are transformed into more efficient

incremental versions. When applied to set theoretic dictions

as found in a language such as SETL (cf. Appendix A for SETL

description) , this technique can transform algorithms from

high level concise but inefficient problem statements into

more complex but efficient program versions.

Much of our work is based on Jay Earley's technique of

'iterator inversion' which was applied in the set theoretic

context of his proposed language VERS2 [El,E2]. The current

272



thesis will view 'iterator inversion' along with its

generalizations as a kind of 'formal differentiation'

of algorithms. Although the idea of formal differentiation

can be applied independently of semantic level, it is

particularly well suited to very high level languages.

Thus, we will describe an implementation design for an

interactive semiautomatic system which would facilitate the

application of this technique to algorithms written in

SETL. We give pragmatic rules for the recognition and treat-

ment of reasonably general cases in which this optimization

is applicable, and consider some of the problems which arise

in actually attempting to install this optimization as part

of a compiling system.

Before presenting a formal description of our method,

we trace through its origins. Historically, similar trans-

formations have been used in numerical techniques to tabulate

values of mathematical functions; e.g., using the compound

growth formula,

(1) f{t) = P * (1 + I)^

for a given initial value P and growth rate I, we can

calculate the sequence f (0) , f (1) , f (2) , . . . by first computing

f(0) = P and then generating each successive entry f(t)

from the previous entry f(t - 1) by applying the identity

f(t) - f(t - 1) * (1 + I) . The computational cost of this

method is usually much less than the cost of repeated

calculations of (1)

.

273



Charles Babbage ' s analytic difference engine further

illustrates this idea [Gl]. Babbage ' s early computer could

perform only one arithmetical operation, addition, but by

use of difference polynomials he could program his machine

to calculate tables for polynomials efficiently. We can see

how to do this by noting that for a given polynomial p(x)

of degree n and an increment A , the first difference poly-

nomial P-, (x) = p(x + A) - p(x) is of degree n-1 or less, the

second difference polynomial P2 (x) = p., (x + A) - p-|^(x) is

of degree n-2 or less, ..., and finally P„(x) must be a

constant. Thus, in order to generate a sequence of polynomial

values p(Xq), p(Xq + A), p(Xq+ 2A) , ..., we can do the

following

:

1. Calculate initial values for p (Xq) ,p, (x^) , . . .p (Xq)

which are stored in components t (1) , t ( 2) , . . . , t (n+1) of an

n+] -tuple t.

2. Generate the desired polynomial table by iterating

over the code block below,

PRINT X, t(l); /* PRINT x and p(x) */

X := X + A; /* increment x */

t(l) := t{l)+t(2); /* place new values for */

t(2) :=t(2)+t(3); /* p (x) ,p^ (x) , . . . , p^_ ^^
(x) into*/

t(n)':= t(n)+t (n+1) ;
/* t ( 1) , t ( 2) , . . . , t (n ) */

In the 1960 's John Cocke emphasized the general signi-

ficance of an optimization method he called 'reduction in

operator strength' which incorporates the ideas just

mentioned and applies them to Fortran level code [SchV].

274



Cocke's original techniques have since been generalized and

implemented with various improvements (for which see Al , Cl,

C2, K1-K5) . We illustrate his method with the following

simple example. Suppose that an expression i * c occurring

in a strongly connected region R cannot be moved out of R

because of redefinitions to i. (We assume here that c is

a region constant of R.) Suppose also that the variable i

is defined before each entry to R and that all redefinitions

to i within R are of the form i = i + A v/here A is a region

constant of R. Then we can use the following idea to move

all calculations of i * c out of R. Since i is defined on

entrance to R, we can insert an assignment T = i * c to a

unique compiler generated variable T just prior to each

entry point of R. Within R immediately before each redefi-

nition i = i + A to i we can preserve the value of i * c in T

by executing the update assignment T = T + A * c (whose form

follows from the distributive law) . Note that A * c is

invariant, and its calculation can be moved out of R. Finally,

we see that all calculations of i * c are redundant in R

and can be replaced by uses of T.

A slightly more complicated example will serve to

illustrate the deeper problems which can arise in applying

reduction in strength when data values must be traced from

one variable to another. Consider the last example once

more, but now permit redefinitions to i within R of the

forms i=-k, i=-k+£ and i = k + £ where k and i

are either region constants or variables. In such a case

27 5



we can sometimes still reduce the multiplication i * c to

successive additions and copy operations. After inserting

the initial assignments T = i * c , as before, we can keep

the value of i * c current in T by inserting the following

code just prior to each redefinition to i

,

redefinition update code

i = -k T = -k*c
i = -k + £ T = -k*c+)l*c
i = k+ £ T = k*c+£*c

Any product i * c or c * i introduced as part of the update

code can be replaced by T. All region constant products can

be moved out of R. Common subexpressions introduced by this

transformation can be eliminated. Finally, for i * c to be

reduced in strength, all remaining products occurring within

the update code must be reducible in strength. If this

condition is satisfied and if the time cost of the addition

operations inserted into R by strength reduction is less

than the cost of the multiplications i * c removed from the

original text, then a constant factor improvement in running

time should be obtained.

The program transformations described above represent

a most basic kind of 'formal differentiation' which we

believe is a term more descriptive of the process being

applied than Cocke's term 'reduction in strength'. Note,

also, that the phrase, 'reduction in strength' has been

applied to other optimization techniques which replace a

costly operation with a less expensive one (e.g., peephole

276



optimizations such as the string concatenation removal

length (STRINGl II STRING2) =* length (STRINGl) + length (STRING2) )

For systematic discussion of the notion of formal differ-

entiation, it is convenient to introduce some definitions

and notational devices. We will sometimes use the notation

C = f(x, ,...,x ) to associate a text expression f with a

unique compiler generated variable C. We will assume that

whenever f is executed, its value calculated from the values

of its free variables x , . . . ,x and constants, is placed in C.in ' r-

We will say that C is available on exit from a program point

p if C is equal to the value which the expression f would

have if evaluated immediately after the statement at p is

executed; C is available on entvanoe to p if C is available

on exit from all predecessor points of p. If C is available

on entrance to p, and if C is not available on exit from p

(which will happen when execution of the statement at p

changes the value of a parameter x. upon which the value of

f depends), then we say that C is spoiled at p. C is avail-

able on entrance to a program region R if it is available

on entrance to each entry point of R.

As Schwartz notes in [C2], reduction in strength (which

we shall call formal differentiation) is a very general and

powerful optimization method applicable to a wide class of

operations. The basic formal idea of this technique can be

put as follows. Suppose that an expression C = f (x^^ , . . . ,x^)

will be used repeatedly in a program region R, but that its

calculation cannot be moved outside R because its parameters

277



X, ,...,x are modified within R. If we make C available onIn
each entry to R (by calculating it before entry) and keep

C available within R by recalculating it each time one of

its parameters is modified, then we may be able to avoid

all full calculations of C within R.

For this approach to be reasonable, there must be some

way of vecalaulating C more easily after its parameters are

modified than by calculating C afresh each time it is required.

For this to be the case, we are likely to require three

conditions which can be stated heuristically as follows:

(a) Each free variable x ,...,x on which f depends must

be defined on entrance to R. This insures that initial

calculations to make C available on entrance to R are possible,

(b) Within R, for each redefinition x. = A to a parameter
D X.

X. , there should exist code which can be inserted immedi-

ately before and after the redefinition point p and which

serves to keep C available within R (except possibly at

points of the update code itself) . We refer to this inserted

code as the pre and post derivative code of f with respect to

the change x. := A . We require this code as well as all
-^

1

code necessary to maintain available expressions on which

it depends to consist of 'easy' calculations relative to f

(i.e. operations heuristically less costly in time). If

this is the case, then we say (suggestively though only

heuristically and, of course, not in the standard technical

sense) that the expression f is continuous in its parameters

relative to the modifications occuring within R. If we cannot

278



demonstrate that f is continuous with respect to a particular

parameter change, we will say that f is discontinuous

in that parameter change.

(c) No modification to an argument of f(x, ,...,x ) may

occur in a strongly connected subregion Q of R since it is

likely that any update code inserted into Q would be executed

much more frequently than at program points in R - Q, and

hence could cost much more in running time than the original

calculation f (x, , . . . ,x ) .

An implementation method for formal differentiation

must include the following steps: 1. find reduction candidates;

2. test for the enabling conditions above; 3. provide rules

for generating pre and post derivatives; 4. transform the

original code by successive applications of the strength

reduction method, possibly in several ways; 5. select the

most profitable of the transformed program versions.

Using the general framework above it is possible to

methodically reduce classes of expressions built up from

rather complicated operations and data.

Although Earley was the first to describe formal differ-

entiation in a set theoretic context [El] , an implementation

design for set expressions was first provided by Fong and

Oilman [Fl,F2] . They propose to reduce binary set operations

such as union, intersection, and set difference as well as

more complicated expressions. They provide a straightforward

mechanism for detecting and reducing such expressions, and

within their model they predict possible program speedup by

279



as much as an order of magnitude, while also guaranteeing

a constant bounded space and work overhead. Instead of

maintaining the full value of a candidate expression within

a program region R, their method keeps the small variation

in value of this expression available in R. They emphasize

that aside from the nature of specific operations, the

control flow structure is an important factor in determining

reduction in strength capabilities. Drawing on control flow

considerations, they demonstrate that certain 'induction'

variables on which reduction candidate expressions depend

may be redefined in R by reassignment to 'induction' expres-

sions as well as by differential modifications.

However, the work of Jay Earley is of central importance

to the present thesis. In [El] he describes an interesting

data choice optimization for the high level set theoretical

language VERS2 [E2] . Earley notes that his optimizations

will apply to any language of about the same level as VERS2,

and since SETL is roughly of this level, SETL dictions

define a convenient context for study of the Earley optimi-

zations, cf. [El,Sl,Schl-6] . Earley calls his optimization

method 'iterator inversion', and thinks of it as a way of

automatically choosing a representation of a set or sequence

being iterated over, which minimizes the number of opera-

tions necessary for a VERS2 iterator to produce its stream

of values. Ideally, iterator inversion will produce an

iterator's stream of values (in the correct order) directly.

For example, an iterator x e s
|
K(x) produces the stream

280



of all elements in the set s satisfying the Boolean sub-

expression K(x). Iterator inversion, in Earley's sense,

will replace an iterator x e s
|
K(x) by a simpler iterator

X G s' where s' represents the set {x s s
|
K(x) }. (Note

that s must not be free in K.) The iterator x e s' avoids

the computation of K(x) for all elements x in s . Earley

shows how to keep s' available in a program region R by

means of incremental update rules, e.g., just before a

slight change s := s u {a} which adds the element a to s

we can execute the following code,

if K(a) then s':= s'u {a}.

He also discusses setformer expressions

(2) {x e s
I

f (x) = q}

whose value is the set of all elements x of the set s

in which the value of the map f applied to the bound

variable x equals the free variable q. To handle (2) effi-

ciently, he constructs the map T(q) - {x ^ s
|

f(x) = q}

defined over all values that q can have in a program region

R containing ( 2) . He indicates that the entire map T can

be kept available in R whenever all changes to s in R are

only element additions or deletions and all redefinitions

of the map f change only one range value of f at a particular

domain point. We will not describe his rules fully, since

in the next chapter we intend to describe our own similar

but more powerful transformations in a formal style.

In exploring a way to fit Earley's techniques into a

281



general framework , Schwartz noted that to reduce expressions

such as (2J , it is necessary to deal with parameters such as

q upon which expressions do not depend continuously [Sch 7J

.

The present thesis develops the concept of formal differen-

tiation further and applies it to a wider class of expres-

sions under broader conditions than have been considered.

In rudimentary form our idea which extends the basic

notions previously described (cf. p-278) may be stated in

the following way. We consider as reduction candidates

those expressions

(3) C = f (Xj_, ...,x^)

in a strongly connected region R which are continuous with

respect to redefinitions to some of their parameters x, ,...,x,

and discontinuous relative to changes to the others,

X, ,,,..., X . Our formal differentiation method draws on thek+l n

fact that if the final group of parameters is given constant

values, then the expression f = f (x, , . . , ,x, ,q, , , . . . ,q )

is continuous in its remaining parameters. To reduce (3)

we can therefore use a 'memo' function C which keeps several

values C(q^^^, . . . ,q^) = f (x^ , . . . , Xj^,qj^^^ , . . . ,q^) of f avail-

able in R. This makes it possible to avoid redundant

calculations of (3) by replacing each such use by a retrieval

operation C(x,^,,...,x ). The actual reduction transformation

is sketched below:

i. On entrance to R initialize the mapping C by performing

C := nutlset ;

282



ii. Whenever any argument x, ,...,x, is varied inside R,

then the pre and post derivative operations necessary to

keep each stored value C(q, ,,..., q ) available in R must

be performed.

iii. When one of the variables x, ,-,,... ,x changes inside R,
k+1 n ^

no calculations need be made.

iv. Replace each calculation f(x, ,...,x ) in R by code

which either retrieves a stored value C(x, ,,..., x )k+1 n

(if [x, ,,,..., X ] is in the domain of C) or else calculates
k+1 n

f(x, ,...,x ) and records this value in C. This code is

roughly as follows:

(4) if [Xj^^-^, . . .,x^] e PROJECT (n-k,C)

/* PROJECT returns the domain of C */

then C (x, ,,,..., x )k+1 n

else C (Xj^_|_^, . . . ,x^) := f(x^,...,x^)

/* use of an assignment side effect within

an expression */

The PROJECT function used in (4) is a projection operator

on maps, and has the following simple SETL definition:

DEFINEF PROJECT(m, MAP)

;

/* if MAP is an n-ary SETL map viewed as a set of n+1-tuples,

then when m <_ n+1, PROJECT returns the set of m-tuples

matching the first m component values of n+1-tuples in

MAP */

RETURN {x(l:m), x e MAP }

;

END;

2 83



The approach sketched above accepts the expense of

map retrieval operations (iv) and incremental update code (ii)

in order to eliminate redundant calculations of (3) in R.

Note, however, that when the domain of C is large, then the

cost of performing pre and post derivatives of f with

respect to changes x. := A (for j <^ k) may make formal

differentiation unprofitable. For those fortunate cases

in which the domain of C is small, or when we can guarantee

that the derivative calculations can be limited to a small

portion of the domain of C, we will say that the disconti-

nuity parameters x, ,,,... ,x of (3) are 'removable' and
-^ '^ k+1 n

that the map C is continuous in the continuity parameters

of f relative to the modifications occurring in R.

Chapter two develops the ideas outlined in the

preceding discussion, and gives numerous examples and case

studies of their application. Chapter three sketches an

implementation design for a basic formal differentiation

system which only handles expressions continuous in all

of their parameters. Chapter four extends the initial

design to one which can handle most of the examples presented

in Chapter two that are not handled by the simpler system.

Chapter four also considers various time and space improve-

ments which could be incorporated in this extended design,

and it concludes with some remarks proposing directions in

future research.

284



II. BASIC CONCEPTS AND SET THEORETIC EXAMPLES

A. Preliminaries

Application of the idea of formal differentiation in

a set-theoretic context was initiated by Earley and has

been pushed further by Pong and Ullman [Fl] who made the

interesting observation that formal differentiation in a

set-theoretic milieu could actually improve the asymptotic

behavior of an algorithm and that this fact could be used

to develop a theoretical characteriziation of the situa-

tions in which this technique applied. In the discussion

which follows, we shall pursue Earley ' s idea in a less

formal sense than that of Fong and Ullman, aiming to state

pragmatic rules for the discovery and treatment of reasonably

general cases in which formal differentiation can be

applied. (Of course, any reasonable criterion for evaluat-

ing the utility of formal differentiation must rest on some

notion of expected efficiency, albeit only a heuristic one.

Such an informal complexity measure must at the very least

distinguish between 'easy' and 'complicated' operators.)

In this chapter, we will be concerned principally

with general sets and with mappings represented by sets of

tuples. Unless otherwise specified, we assume a hash table

implementation for sets in which entries are linked within

a two way list, thus permitting a unit time membership test

and a linear time search through sets. Moreover, if element

addition and deletion can be performed directly on the body

285



of a set without copying, then these operations can also

be done in unit time. We also assume a similar hashed

implementation for maps in which various kinds of functional

application and change are done in time proportional to a

map's arity, and iteration through a map's domain takes

linear time [AHUl, DGSl , PI, Schl] . In particular, the

data structure for SETL maps described in DGSl correspond

to our assumptions.

B. Initial Examples

In SETL the computations s := s + {x} and s := s - {x}

respectively add and delete the value of the element x

from the set s. Both operations change s only 'slightly'.

Similarly, if s and A are sets and the number of elements

of A, #A, is much smaller than #s, then modifications of

the form s = s + A, represent 'slight' changes to s.

We expect that such changes can be performed destructively

at a cost proportional to #A by the obvious technique which

is written in SETL as follows:

(Vx € A) /* linear time search through A */

s := s + {x};; /* destructive unit time assignment*/

If f is a set of pairs used as a SETL mapping, then the

operation f(x) = z, which replaces all pairs whose first

element is x by the pair [x,z] causes f to change slightly.

If f is a set of (n+1) -tuples used as a multiparameter

mapping, then the indexed assignment f(x, ,...,x ) := z

alters f only slightly.

286



The informal notion of 'slight' changes to a set

can be used to illustrate the notion of expression

'continuity'. Examples of SETL expressions continuous in

differential changes to all of their parameters are: set

union s +t,set intersection, s * t, and set difference s - t,

Consider the set difference operation

(1) C = s - t .

If the value currently available for C is spoiled by a

differential change s := s + A to s at a program point p,

the value C of s - t can be restored on exit from p by

executing the corresponding update code.

(2) C := C + (A - t) , or C := C - A

immediately prior to p . We will say concisely that the

update code (2) gives a 'prederivative ' of the expression

(1) with respect to the change s := s + A or s := s - A.

Both redefinitions in (2) are slight changes to C and can

usually be performed at less expense than the full calcula-

tion (1) . Note that if (1) is performed in the obvious way,

we can expect its running time to be proportional to #s,

while the execution of each slight change in (2) will

require time °c #a as realized by the following obvious

implementation

:

(3) (Vx G A)

if X ^ t then C := C + {x}; ENDIF;

END^;

287



similarly, we see that (1) is continuous with respect to

small changes t := t + A. The prederivative code is simply

(4) C := C - A or C := C + (A * s) .

These are both slight modifications to C and can be performed

in 0(#A) expected steps.

Next consider the set union operation

(5) C = s + t

in which s and t can have overlapping values. The obvious

implementation of this will run in 0(#s + #t) time. The

prederivatives of (5) with respect to changes s := s + A

are

(6) C := C + A or C := C - (A - t)

each of which will execute in time 0(#A) . Set intersection,

(7) C = s * t

has an obvious implementation requiring 0(#s) steps. The

prederivatives of (7) with respect to the slight changes

s := s + A are

(8) C := C + A * t or C := C - A

each of which has been seen to run in 0(#A) steps.

If f is a 1-ary function, then the SETL range function

(range of f on a set s) , written as

(9) C = f [s]

is continuous with respect to s := s + A, and its

prederivative code is:

28 8



(10) C := C + f[A] .

The obvious implementation of (9) would take 0(#s) element-

ary steps in contrast to the approximately 0{#A) steps

needed to perform (10). Note, however, that (9) is discon-

tinuous with respect to s := s - A and with respect to

indexed assignments such as f (y) := z .

The inverse image f [s] can be written in SETL using

a set former expression

(11) C = {x G DOM f
I

f(x) e s}

where DOM f is the set of first components of pairs in f

(if f has an arity of one then DOM f is the domain of f )

.

Expression (11) is continuous in f, and for changes

f (x) := y, its prederivative code is

(12) C := C - (if f(x) e s then {x} else nullset)

+ (if y G s then {x} else nullset) .

The expected computational cost of an assignment (11)

is 0(#f). Clearly the prederivative (12) should execute

in essentially constant time. Note, however that the C

of (11) is discontinuous in s.

The operation f[s] may be continuous in s := s + A

even if f is a programmed function. The conditional expres-

sion 'if a then s else s^ ' is continuous in s^ and s^ ,

but is, of course, discontinuous in its boolean parameter a.

As Earley has emphasized, expressions involving set-

formers provide more interesting examples of this phenomenon

of 'continuity' . The SETL expression

289



(13) C = {x G s
I

f(x) = q}

which computes the set of all values of the set s such that

the boolean valued subexpression f (x) = q holds, is a proto-

typical example. This expression is continuous in s and f,

but discontinuous in q . If s is varied slightly by s :- s+A

then C can be updated by executing the prederivative

(14) C := C + {x G A
I

f(x) = q}

which represents a small change in C. When f is changed by

executing the indexed assignment fCy^) '= z» then C can be

updated by executing

(15) C := if y- e s then C - (if f(yQ) = q then {y } else

nullset) + if z = q then (yp.) else nullset;

just before the assignment f (yr,) := z-

More insight is gained by writing (15) as

(16) C := C - {xe{uGs|u = yQ}|f(x) - q j+{x6 {uGs | u=yQ }
| z = q};

since (16) begins to suggest a rule for updating more general

set-theoretical expressions than (13). For example, before

changing f by f(yQ) '•- z the set

(IV) C^ = {x e s
I

g(f (x) ) = q}

can be updated by executing

(18) C^ := C^- {x G {u e s
I

u = y^} ]

g(f(x))= q}

+ {x G {u G s
I

u = y^}! g(z) = q};

Note, however that for (16) and (18) to be 'easy' calculations

relative to (13) and (17) we require that each computation

290



of {uG s
I

u=y^} occurring in this update code must be

'easy'. Of course, the automatic local transformation

turning {u e s
|
u - y»} into the equivalent and inexpen-

sive operations

(19) if Y^ ^ s then {y/^} else nullset

applies to the examples above.

The setformer

(20) C2 = {x e s
I

f (g(x) ) = q}

which can be updated by executing

(21) C2 :- C2 - (x G {u G s
I

g(u) = y^} ]
f(g(x)) = q}

+ {x G {u G s
I

g(u) = y^} |

z = q};

can be handled by a combination of the transformations

already mentioned. For C„ to be continuous in s and f

(relative to modifications s := s + A and ^(Yq) '- z

occurring in a strongly connected region R) all prederi-

vative code and all other attendant code necessary to

maintain available expressions on which the prederivatives

depend must consist of 'easy' calculations relative to C^-

Since by (13) and (14) we know that when g and y^ are

invariant in R, the costly subexpression {u g s
|

g(u) = Yq^

of (21) can be made available throughout R by inexpensive

operations, C is seen to be continuous in its parameters

s and f. All the updating operations (16), (18) and (21)

are to be performed just prior to the change f (Yq) '•- ^

for which they compensate.

291



Next consider the case of a set-theoretic expression

in whose defining condition f appears twice with different

arguments, as for example

(22) C3 = {x G s
I

f(g(x)) = f(h(x))}

or

(23) C^ = {x e s
I

f (f (x) ) = q} .

Before changing f by ^(Yn) •= z, we can update such sets

by computing a set s. of all those elements of s over

which the boolean condition appearing in the setformer (22)

or (23) can change value as a result of the indexed assign-

ment to f. Then after the change to f we can adjust the

value of the setformer for those points of s„. In the case

of C^ and C^ this leads us to the following prederivative

and postderivative updating operations

:

(24) Sq := {x e s
I

g(x) = y^ or h(x) = y^};

fCVg) := z;

(Vx e Sq)

if f (g(x) ) = f (h(x) ) then

C-, := C^ + {xl; else

C^ := C^ - {x};

endif;

end V ;

and
(25) Sq := {x e s

I

f(x) = y^ or X = y^j

f(yQ) := z;

(Vx e Sq)

292



i/ f (f (x) ) = q then

C. := C. + {x}; else

C4 :- C^ - {x};

endif;

end V

;

In both (24) and (25) et. ^ setformer s„ must be

continuous in its parameters for C^ and C. to be continuous.

If, for example, (23) occurs in a strongly connected region

R and within R all redefinitions to s and f are slight,

if the free variable q of (23) is invariant and each para-

meter y of an indexed assignment f(y) := z appearing in R

is also invariant, then the auxiliary set Sq can be made

available within R at small cost. Moreover, although s.

depends continuously on f , it is interesting to note that

s^ is not spoiled by f(Yf^) := z in either of the code

sequences (24) or (25); this observation facilitates our

method of keeping s„ available in R.

C. Formal Differentiation of Set Theoretical Expressions

Continuous in All of Their Parameters

We now formulate a few general rules concerning the

formal differentiation of set theoretical expressions

continuous in all of their free parameters. It must be

observed that none of the transformations which we are study-

ing can safely be applied to expressions containing opera-

tions which cause side effects for which reason we shall

293



always assume such operations to be absent in the expres-

sions we treat. We also assume that typefinding is applied

prior to any attempt to optimize by formal differentiation

so that object types are known during the analysis of a program

for reduction (cf.,(Tl) for a method of type analysis for SETL) .

Consider the set-theoretic expression

(1) C = {x e s
I

K(x) }

in which K(x) is any boolean-valued subexpression contain-

ing only free occurrences of the bound variable x, and

containing no free instance of the set, s. Recall that

a full calculation of (1) as performed by the following

standard procedure for set formers

,

(2) C := null set;

(Vx e s) / linear time search /

if K(x) then C:=C+{x}; / execute K(x) /

endif;

end V ;

can take 0(#s x cost(K(x))) steps. An expression (1) is

continuous with respect to slight changes s := s + A to s

since the prederivatives of (1) with respect to these changes

are also 'easy' calculations,

(3) C := C + ^^x G A
I

K(x) } .

Suppose that the expression (1) is used in a strongly

connected region R and that the following conditions hold:

(i) Inside R, s is only changed by slight modifica-

tions of the form s := s + A, where A is a small set in

294



comparison with s.

(ii) The set valued variable s is defined on entrance

to R.

(iii) Aside from s all other parameters on which (1)

depends are region constants of R.

Then we can formally differentiate the expression (1) in R.

If all these conditions apply, then formal differentiation

of (1) is accomplished by applying the following rule.

Rule 1. We begin by making (1) available on entrance to R.

This is done by inserting the assignment C := {x e s
|

K(x)}

into R's initialization block. Then, at each point p

inside R where the value of s changes by s := s + A, the

value of C (which could be spoiled at p) is updated by

inserting the prederivative code (3) . All calculations (1)

are redundant in R and can be replaced by uses of the

variable C.

We remark here that the rule just described is

complex enough to illustrate the difficulties bound to be

encountered in any serious effort to automatically guarantee

improvement in running time by formal differentiation.

Several pragmatic and simplifying assumptions are implicit

in our expectation that formal differentiation of (1) is

worthwhile:

(i) We only consider the cost of destructive assignments to

the set C as when C undergoes slight modifications within (2)

295



and (3); we ignore the costs of making fresh copies of C on

occasions when only nondestructive assignments are possible.

(ii) We pay no attention to the cost of rehashing elements

of C when C grows too large.

(iii) We do not figure the cost of increased garbage collec-

tion which might be required after formal differentiation,

since extra space is required to store the values of avail-

able expressions possibly over large program regions.

If these assumptions fail, the actual effect on a program's

running time of applying Rule 1 may be undesirable. (This

effect depends on such facts as frequency information and

relative sizes of sets, undecidable at compile time.)

Moreover, to replace these assumptions and restrictions by

others may lock us into an unrealistic model of limited

utility. (For further discussion of this point refer to

Appendix B.)

Rule 1 can be used to derive another more comprehensive

rule for formal differentiation of expressions like (1).

Suppose that the boolean subexpression K of (1) contains

m free occurrences of the n-ary mapping symbol f . Suppose
,

also that these m occurrences of f appear in r different

terms

,

f (Pj^^(x) , . . . /P3_j^(x) ) ,f (p2-,^ (x) , , . . ,P2j^(x) ) , . . .f (Pj-i (x) . . •Pj-n(x) )

where p^ .
(x) represents the j-th parameter expression

(involving x which is the bound variable of the set former)

of the i-th term. Then as derivatives of (1) with respect

296



to indexed assignments f(yw.../Y ) :== z we can use

either of the following code sequences

Relative Position Derivative Code

(5) p-2 Sq := {x e s
i

pj^^(x)=y^&. . .&p^^(x) = y^

or . . . or

p^i(x) = y^&...& Pj,j^(y) = y^};

p-1 C := C - {x e Sq
I

K(x) };

f (y^^, . . . ,y^) := z;

p+1 C := C + {x e s„
I

K(x) };

or

(5') p-1 Sq := {x G s
I

p^j^(x)=y^&. . .&p^^(x) = y^

or . . . or

Pj.3^(x) = y^&...& Pj.n(x) = y^};

p f (y-|_, . . . ,y^) := z;

p+1 (Vx G s ) if K(x) then C := C+{x}; else C := C-{x};

endif;

end V ;

It is not difficult to see that (5') has the same

effect as (5) . Moreover, it can be shown that the validity

of (5) is a corollary of rule 1. To see this, consider

the set D^ = { [p . , (x) . . . . ,p . (x) ] I x g s} . Let p . be

the mapping whose domain is s and where p . (x) = [p . , (x) , . , , ,p . (x) ]

297



The n for any n-tuple [y, , . . . ,y ] , we have

P^ (y^,...,y^) = {x G s
I

p^-,^(x) = y^ &...& Pj^^(x) = y^}.

If s changes by deletion of p. iy-, i • • • lY ), then D^
i

changes by deletion of the n-tuple [y-|/...,y ]• Moreover
^ -1 ""

if s is modified by deletion of u p. (y , ,..,y ), then
i=l "'"

the n-tuple [yw...,y ] is removed from the domain of all

the f terms occurring in (1) . Next we observe that if C

is available on entrance to p (i.e., is available just

prior to the modification to f by the indexed assignment
r

f {y-|^, . . . ,y^) := z) , and if [y-, , . • . ,Yj^] ^ u d^ just
i=l i

before point p, then the statement f(y, ,...,y ) :- z does

not change any of the occurrences of f in (1) . Consequently,

C is not spoiled by the indexed assignment, and it remains

available

.

Suppose now that in expression (1) C is available on

entrance to the program point p. Then we would proceed as

follows: (1) at p-3, put s equal to the set
^ -1
'-' P^ (yw---/y ), (2) at p- 1 delete s_ from s; (3) at p-

2

i=l 1 -L n U

update C in accordance with rule 1, (4) at p+2 add s_ back

to s; and (5) at p+1, use rule 1 again to update C. This

would give us the following code:

298



p-3 Sq := {x e s
I
p-^^(x)=Y^&.. .&p^^(x) = y^

or ... or

Prl^^^ = y^ &...& Prn^^^ " ^n^

p-2 C := C - {x e s
i

K(x) }

(6) p-1 s := s - s

p f (y.,^/ • • • fY^) •'= z

p+1 C := C + {x e Sq
I

K(x) }

p+2 s := s + s

_

In this code C is not spoiled by the statement

f(y,,...,y ) := z. Hence, if C is available upon entrance

to p-3, then by rule 1 we know that C remains available

on exit from p+2. And now finally, since in (6) the value

of the set s is the same before p-1 as after p+2, and

because s is not used between p-1 and p+2, the code (6)

is equivalent to that shown in (5). The assumption that

at least one of the parameters in each f term in K involves

x (the bound variable of the set former) will usually cause

the set s„ to be small in comparison with s.

To show that (1) is continuous relative to differential

modifications of the form s := s + A (where A is small in

comparison with s) and also relative to indexed assignments

f(y-|'--'/y ) := z occurring in a strongly connected region R,

we want to insure that the pre and post derivative code in (5)

299



and (5') can be made to consist of 'easy' calculations. For

this to be the case, the setformer

(7) Sq = {x e s|pj^^{x) = Y^ &...& P^n^^^ "^

^n

or ... or

Pj,l(x) = Y^ &...& Pj.j^(x) = y^}

occurring at points p-2 of (5) and p-1 of (5') must be

profitably reducible; and this will be true if (7) is

continuous in s and f. By Rule 1 we know that (7) is contin-

uous in s . We shall see that (7) is also continuous with

respect to indexed assignments f (w, , . . . ,w ) :- v occurring

in R if for every such assignment each parameter expression

w. ,...,w is a region constant of R.in ^

Before exhibiting actual inexpensive update code

supporting this claim, it is useful to look at the situa-

tion from a somewhat different point of view. Let d be the

maximum depth of nesting of f terms contained within other

f terms in the boolean subpart K of (1) (e.g., the depth of

the term f (g (f (x + f (0) ) ) ) is 3). Then (7) has a maximum

nesting depth of d-1. We will show inductively that for •

d = 1,2,... (7) is continuous in f. For d = 1 (7) contains

no f terms and is trivially continuous. If d = 2 is the

nesting of (1) then the depth of (7) is 1, and (7) can be

reduced economically using either rules (5) or (5') and

Rule 1. Next assume that any expression (7) which has

depth d-1 less than or equal to k-1 is continuous in f,

and consider the case d == k + 1 . Since the depth of (7) is d,

300



application of rules (5) or (5') to (7) will produce an

expression s' which is of the same form as (7) but with a

depth d-1. By hypothesis, s' is continuous in f. Thus, we

can conclude that (1) is continuous in f and s for any

depth d.

The previous remarks suggest that the derivative of

(1) with respect to f should be realized by first applying

rules (5) or (5') to (1); this gives rise to an expression

s, of the same form as (7). Then either (5) or (5') can

be applied to s^ and to each successive s. , j = 2,..., d-1

emerging by use of (5) or (5') until the d-l'st derivative

is applied. The final expression s,_-| produced by this

process will have zero depth and can be reduced by Rule 1.

This approach will often be feasible, but in general

it is not easy to say whether the d different auxiliary sets

which must be kept available in R as a result of the trans-

formations sketched above will overlap strongly and, hence,

require excessive space. Nor in general can we say how much

of an improvement in speed (if any) is gained by maintaining

all these sets in addition to (1) by incremental calculations,

Fortunately we can suggest a much more attractive

transformation which introduces fewer auxiliary calculations.

Suppose that the expression (1) is used in a strongly

connected region R and that the following conditions hold:

(i) The boolean valued subexpression K(x) contains m

free occurrences of an n-ary mapping f (in which each such

occurrence has at least 1 parameter expression involving x,

301



the bound variable of the set former) ; all other free

variables occurring in K are loop invariant.

(ii) The m occurrences of f in K begin r distinguishable

f terms, f
(p^^-j^

(x) ,... ,p^^ (x) ),..., f (p^^ (x) ,.., ,p^^ (x) ) .

(iii) Inside R, s is only changed by slight modifica-

tions of the form s := s + A, where A is a small set in

comparison with s, and f is only changed by indexed assign-

ments of the form

(8) f (yj^/y2' • • • 'Y^) = z •

Then we can formally differentiate the expression (1) in

the region R. The differentiation rule is as follows:

Rule 2. (There are two cases to consider.)

Case 1. Consider the class of expressions (1) in

which for i = l,...,r and j = l,...,n each parameter expres-

sion p. . (x) either does not involve x or does involve x

and can be symbolically transformed into a linear factor

of the forms x*a+b. For any expression (1) in this class

(e.g., expressions (13) and (17) of section B) , we can use

an inexpensive variant of (5) to update (1) with respect

to indexed assignments (8), even when the parameters y, , . . . ,y

appearing in (8) are not region constants. This variant

of (5) is obtained if we simplify the setformer (7) used

at point p-2 of (5) into the following efficient form,

302



n-1
(9) if q, G s & t, . = t, . then {q., } else nullset

-*-

j = l ^ ^
+ . . . +

n-1
ifq Ss & t.=t. then {q } else nullset.

j = l

in which q . , t . . , and t . . for i = 1 , . . . , r and j = 1 , . . . , n

are meta symbols denoting computed expressions.

We derive (9) from (7) by the following straightforward

manipulation. Expand (7) into a union of setformers
n n

{x e s
I

& (Pt .(x) = y.)} + . . . + {x e s
|

& (p^^ (x) - y.)}
j = l

^^ ^
j = l ""^ ^

By assumption we know that within each set former,
n

ixSs| & (p..(x)=y.)}, i=l,...,r there must be
j = l ^^ =>

a parameter expression, say p.,(x), which involves x. Hence,

we can transform the equality p.,(x) = y, into the form x = q^
n

and rewrite each conjunction & (p. . (x) = y.) as
n j=l ^^ ^

X = q. & (p. . (q.) = y.) which involves only one occurrence

of X. If we now make the substitution t. ._-, for Pj^-; ("^-i
)

and t! . , for y. , i = l,...,r, j = 2,...,n, each resulting
ID -L D n-1

setformer {xes|x=q. & (t..=t..)} may be simplified
1

-j = i
ID ID

to the following conditional expression,
n-1

D^

Case 2. To reduce more general expressions whose depth

^f q.e s & (t. . = t. .) then {q. } else nullset.
1 = 1

of nesting in f terms is greater than 1 (e.g., (20), (22),

and (23) of the last section) , we must use a different method.

We will at first consider only situations in which each

parameter y-,/...,y of indexed assignments f (y^^ , . . . ,y^) := z

occurring in R is a region constant of R. In the next section,

however, this restriction will be cast off.

303



Suppose that R contains t different indexed assignments

to f which we denote by f (y -,-./.. ,y j^]^)
:= z, , . . . ,

f(y ,...,y ) :- z . Then on entrance to R, we must

insert the following initializing code,

(10) C := {x S s|k(x)}; /* expression (1) */

(^)
r n

s^ ' := {x e s
I

or ( & p. . (x) = y •
-,

) 1 ; /* set former (7) */
" i=l j=l ^^ ^

(2)
r n

s := {x e s| or ( & P- -(x) = Y^o)^;^
i=l j=l ^^ ^

(t)
' r n

si := {x £ s| or ( & p^ ^ (x) = ym.)K" /* based on */or { Si p. . (x) = y-. ) i ; /* based on *,

i=l 1 = 1 ^^ ^t
/* f(yit"--ynt^-^t */

Whenever s is modified in R, we then apply Rule 1 to update

C, s- ,s» ,...,s^ . At each program point in R at which

f is changed, we keep C, s„ i^n /•••»Sj, available by

executing either of the following code sequences, which are

based on (5) and (5').

(11) s^^^ := s^^^ - (x e s^^^
I

or ( & p . . (x) = y,-,));^ u ^ i=l j=i 13 3^

Sq . Sq tX Sq or ( & p. . (x) = y . ) }

;

i=l j=l ^J ^^
C := C - {x e S(5^^ |k(x) };

f(y, p,...,y „) := z ; /* all s„ sets are updated
XX. nx- U

f \

(0) except Sf. */
C := C + {x e s^^ |k(x) };

"

Sq •
.

Sq + IX fc Sq or ( & p. . (x) = y ., ) };

i=l j = l -> ^

(t) * (t) f n ,
^ n

^0 '-^ ^0 + ^^ ^ s^^^
I

or(( & p (X) = Y.^)}>
^ i=l j = l ^^ -'

304



or

(Vx e s^^^

if K(x) then C := C + {x}; else C := C-{x}; endif;

if Ir ( & p..(x) = y.^) then s^^^ := s^^^-{x};
i=l j=i 13 Jl u u

eZse Sj^ := s^^ +{x}; endif;

\ /* all sets s. except s^ are updated */
' r n

if or ( & p..(x) = y ) then s^^^ := s^^^-{x};
i=l i = l ^3 J>- u u

eZ-se s„ := s„ +{x) ; endzf;

end V;

This keeps C available throughout R, so that all calcula-

tions (1) can be replaced by uses of C.

It is easy to see that (11') computes the same thing

as (11) . To justify the code sequence (11) , we need to

(£)substantiate two claims: (1) s^. cannot be spoiled by

assignments f (y, „ , . . . ,y „ ) := z „ ; and (2) for any m, 1
f_

m ^t

and m 7^ £, the derivative code shown in (11) for s^

is correct.

To justify claim (1) , we consider the predicates
n

Q.(x)= & p..(x)=y..,i=l,...,r. Letwbean element

(£,)
3~-^

of s' just prior to the program point p at which

f(yiji'---/y j) == 2„ occurs. Then for some k, 1 f.
k <_ r,

Q, (w) must hold before p. Moreover, we can choose k in

such a way that among those predicates Q, (w) , . . . ,Q (w)

that hold before p, Q, (w) has a minimal depth d of nesting

30 5



in f terms. Consequently, Qj^(w) must hold after p and w

must be an element of Sq after p. For otherwise, an f

term occurring in Q, (w) would be spoiled at p. And this

implies that a predxcate Q^(w), v 7^ k , with a smaller

nesting depth than Q, (w) would hold just before p — a

contradiction.

In proving claim (2) it is useful to organize the

r different f terms occurring in (1) as follows: Let

f (p,
T
(x) , . . . ,p, (x) ) , k = 1, . . . ,q be all those f terms

K J- riTi

which never occur within any of the f terms of(l). (These

(m)
are all the f terms which also have no occurrences in s^ ,

m = l,...,t.) Then application of the transformation (5]

to update s^"^^ , 1 1 rn ^ t and m 7^ £ in a manner compensating

for the change f(y ,,..., y ) := z to f results in the

following code:

n
s

=q+i j

(m) -- .i^) . {X e s
I

Ir ( & p (x

i=l i = l -^

. := {x e s| or ( & P--(x) = y. ) }

;

" i=q+i i = l -> -'

Sq-' := Sq-- - ix t s^lor (8. p. . ix, = y.J};

f (y-,^^, . . . ,y^^) : z^;

-0"^ := s(-) + i.e SqI L (^ p (x) = y )}.
1=1 j = l -^

But since s„ c Sq , it follows from the proof of (5)

{cf. discussion of (6)) that we can replace occurrences

of s„ by s) in the code just above.

306



The code generated by rule 2 can be improved by

eliminating redundancies in the expression {x e s-|K(x)}

which appears at locations p-1 and p+1 of (5). Suppose
r

we know that s„ = u R. , where R, ,...,R are disjoint
.

_i
1 1 r -

sets. Then {x e s„|K(x)} can be rewritten as
r
u {x 6 R.|K(x)}. Suppose also that in each set
i=l ^

{x s R. |k(x)}, K{x) can be transformed (by elimination of

redundant operations) into an equivalent but easier to

evaluate expression K. (x) . Then it may be worthwhile to

work with the partition {R.} of s„ instead of s„ and

to rewrite

r
{x e s |k(x)} as u {x e R^|k^(x)}.

i=l

As an example of this, observe that if we let
i-1

R = {x e (s - u R^) |p^^(x) = y^ &...& P^^U) = Y^}

,

k=0
where R- - 0, then R, ,...,R form a partition of s^.

Moreover, on the set R. we can replace the term

f (p . , (x) , . . . ,p . (x) ) which appears in the expression K at

location p-1 of the code generated by rule 2 by f(y,,...,y^)

(cf . (5) above) . This can lead to a version of line p-1

of (5) which is relatively easy to evaluate, and it is

therefore tempting to apply the same transformation to line

p+1 of (5). However, at location p+1 we cannot, even after
r

breaking up {x e s-|K(x)} into u (xS R.|k(x)}, simply
^

i=l
replace each term f (p . , (x) , . . . ,p . (x) ) in K by z. This is

because the indexed assignment appearing in line p of (5)

changes f and may therefore cause some parameter p. . (x)

307



appearing in {x ^ R. |K(x)} within (5) and containing an

occurrence of f to have a value different from y . . When

dealing with cases complicated enough for this problem to

arise, we can make use of a second, finer, partition

R,,..-,R of s„ defined as follows: First set R„ :- as
1 r

before. Next find all f terms f. ,...,f. whose parameter

expressions involve no f term, and put

R^ := {x G s
I p^ -|^(x) = y^ &...& p^ ^(x) - y^} ,

R2 := {x t (s-Rp |p^ -|^(x) = y^ &...& p^ ^(x) = y^} , ...,

rg-l
R^ := {x e (s- U Rj^) |p^ ^{x) = y &...& p^ ^(x) = y^}.

k=0 rQ rQ

After this, find all f terms f. , f- ,...,f. which
rg+1 rQ+2 r^

do not belong to the set F, ={f. ,...,f. } but whose

parameter expressions only contain f terms which do belong

to F, . Define sets R ,, ,...,R by writing
1

-"^n
r, -^ ^

R := {x e (s- u r') Ip (x) = y &...& p (x) = y }.

Iterating this procedure sufficiently often we will obtain

a partition {R, ,...,R } which can be used to eliminate

redundant calculations of f (p . , (x) , . . . ,p . (x) ) at both p-1

and p+1. More specifically, if we let K(x) [t, ,...t ]

denote the result of substituting the terms t, ,...,t for^ In
the terms s,,...,s occurring in K(x), we can replace the

code occurring at location p-1 (in rule 2) by

308



r
u
1=1 '^il '^in
,_, i' 'p. , (x) , . . . ,p (x) '-^1' '-^n-*

and the code occurring at p+1 by

r
C:=C+ u {xeR'|(K(x),, ,, ,,,IZ] ,, ,,

(Note that the immediately preceding formula describes two

successive steps of substitution.)

This general method allows the code used to reduce

various set former expressions in examples (20) -(25) of

Section B above to be generated automatically.

As an example of the redundancy elimination method

just outlined, consider the following expression

(12) C = {x e s|f(f(f(x+l) + D) = f(f(x+l) + 1)}.

Suppose that the mapping f is changed slightly by an indexed

assignment, f (y^) = Z which occurs at a program point p.

Then to update the value of (12) we proceed as follows.

First a partition R, ,R ,R- is computed. Observe that this

partition contains three sets because only three different

f terms occur in the boolean subexpression in (12) : these

are f(x + 1), f(f(x+l) + 1), and f(f(f(x+l) + 1)). Since

f(x+l) is the only f term of (12) whose parameter expression

involves no f term, we put R, := {x es| (x+1) = Yq}-

Since the parameter part of f(f(x+l) + 1) involves f(x+l),

309



we set

R^ :- {x e (s-Rj^)
I

f (x+1) + 1 = Yg } and

R3 = {x e (s-(R^+R2)) |f (f (x+1) + 1) = Yq}.

The code generated to update (12) is then as follows

(13) R^ := {x e s|x + 1 = Yq);

^2 {x e (s-R^) |f (x+1) + 1 = Yq};

R3 :- {x G (s-(R^+R2)) |f(f(x+l) + 1) = Yq);

:= C - {x e R^|f(f(f(YQ) + D) = f(f(Yo) + 1)>

- {x e R2|f (f (Yq)) = f (Yq^^

- {x e R3|f (Yq) = Yoh

f(Yo) := Z;

C := C + {x e R^|f(f(Z+l)) = f(Z+l)}

+ {x e R2|f(Z) = Z} + {x e R3IZ = y^};

We note that the set former expressions defining R, , R^

and R3 in (13) are continuous in all parameters with the

exception of y (which we temporarilY require to be a

region constant) , so that theY can be made available in

R economicallY using techniques alreadY described.

As noted by Earley, the method of formal differentia-

tion which has been described can be extended in a useful

way to apply to various SETL expressions that implicitly

contain set formers. Among these are the forall iterator

310



(i.e., (Vx G s|k(x)) block), the existential and universal

quantifiers (i.e., 3x g s|k(x) and Vx e s|K(x)), and the

compound operator (i.e.,

[<binop>: x e s
]
K(x)J e(x) ).

To formally differentiate these expressions, we rewrite them

by replacing the implicit set former subpart, x G s|K(x),

which they contain with x e {u G s|K(u)}. The set former

subexpressions thus exposed can then be differentiated

using rules 1 and 2.

Let us now consider more closely the SETL compound

operation

(14) C]_ ^ [binop: x G c] e(x) ,

an illustrative example of which [+: x G c] e(x) calculates

the value J e(x). In general, [binop: x € C] e(x) means
xGC

e(x,) binop .. .binop e(x ) where C - {x,,...,x }. For the
1 "^ '^ n in

general case in which the binary operation binop has an

appropriate inverse, inverse binop (e.g. arithmetic binary

+ with - as its inverse) , we note that (14) is continuous

relative to slight changes in C; i.e., before an occurrence

of the code C := C + A, C, can be updated by an appropriate

inexpensive change, either

(15) C, := C, binoplbinop: x G (A - C) ] e (x)

;

or

(15') C := C-, inverse binop [binop: x (A*C) ] e(x);

311



Applying the heuristic rule 'continuous functions of contin-

uous functions are continuous' to C, of (15) and C of (1)

yields update identities for a more general compound

operation form

(16) C = [binop: x G s
|
K(x)] e (x) .

In order to formally differentiate the expression (16) in a

strongly connected region R, we require all the conditions

imposed on (1) to hold, and also require that neither the

set s nor the n-ary mapping symbol f occurring in K should

appear in the subexpression e of (16) . If all these

conditions are met, we differentiate (16) by first making

it available on entrance to R. This is accomplished by

inserting the assignment (16) into R's initialization block.

Next, within R at each point p where C can be spoiled by

'slight' modifications to the variables s or f, we can apply

the following continuity rules for (16) that parallel rules

1 and 2:

Rule 3: where s is modified in R by the code s = s + A,

the value of (16) can be maintained in C by executing

(17) C := C binop [bin op: x e (A - s)
|
K(x)J e(x)

or

(17') C := C inverse binop [binop i x e A * s|k(x)] e (x)

respectively.

A similar rule analogous to rule 2 can be stated to

cover the case of changes to f.

312



Rule 4. Suppose that the Boolean expression K(x) of (1)

contains m free occurrences of the n-ary mapping f. Use

the same notation and enabling conditions explained in

connection with Rule 2. Then at each point p in the

region R at which f is changed by an indexed assignment,

the following code transformation should also be made:

Relative Position Derivative Code

p-2 Sq := {xes|p^j^(x) =
y^^

&...& P^n^^^" ^n

or ... or

p , (x) = y, &...& p (x) = y };
•^rl -^1 '^rn -^n

p-1 C := C inverse binop [binop :x G(s«*s)

|

K(x)] e(x)

p f (y^, . . . ,y^) := Z;

p+1 C := C<binop> [<binop> : xe (s -s) | K (x) ] e (x)

It is easily seen that Rule 4 follows from Rule 3 in much

the same way that Rule 2 follows from Rule 1.

These rules imply continuity properties for many other

high level SETL operations. The counting operation applied

to a set former; i.e., #{x g s
|
K(x)} can be treated as

[+: x G s
I

K(x)] 1. When side effects of the existential

and universal quantifiers can be ignored, then the corres-

ponding SETL forms 3x G s
|
K(x) and Vx G s

|
K(x) can be

rewritten as [+: x g s
|
K(x) ] 1 n= and [+: x G s

|

nK(x)] 1

= respectively. Set inclusion (the predicate R 3 S)

is continuous in both S and R since in SETL, R incs S can

be handled as [+: x G s
|
x ^ R] 1 = .

313



Although iterative operations formed using range

iterators, e.g., LO £ n < Hl|K(n) can be differentiated

using the techniques already mentioned, range iterators

are frequently amenable to other reduction methods discussed

by Schwartz [Schb]. Consider as an example the following

existential quantifier,

(18) 3 LO <^ n < HI
|
K(n)

where K does not depend on the integer valued variables

LO or HI. In this case, rather than differentiating the

full expression (18) we can reduce one or both range

boundaries so as to limit the size of the search which

implements (18).

In particular, if we want to reduce the lower boundary

of (18), we can rewrite (18) as

(19) [min: LO < n < HI
|
K(n)]n n= ^

allowing the compound min operation to be differentiated.

The prederivative of C = [min: LO £ n < Hl|K(n)]n with

respect to LO := LO - A is described by the following

update code

,

(20) if A > then

IF 3 LO - A ^ n < LO|K(n) then C := n;

END IF;

else C := [min: LO-A ^ n < Hl|K(n)]n;

ENDIF;

314



If an n-ary map f occurs in r distinguishable terms of K

and each such term depends on n, we can apply a rule

analogous to Rule 2 to differentiate C with respect to

indexed assignments, f(y, ,...,y ) := z. The update code

is

r n
(21) T :- [LO < n < C| or { & P- -(n) - y^)];

i-1 j-1 ^ ^

f iYl' ' ' ' >Y^) := Z;

if 3n e T
|
K{n) then C := n;

eZ.se if ~\K{C) then C := [min: C+1 <_ n < HI |k (n) ] n;

ENDIF;

It is not difficult to see that the technique described

above can also be applied to other SETL operations such as

universal quantifiers V LO £ n < HI | K (n) , tuple formers

[LO ^ n < Hl|K(n)J, and forall iterators

(V LO <_ n < Hl|K(n)) bioak, all these operations depending

on range iterators

.

D. Differentiation of Expressions Containing Parameters

on which They Depend Discontinuously

.

Most SETL expressions are not continuous in all the

parameters on which they depend. For example, the set

former

(1) C = {x e s
I

f(x,q) > q}

is continuous in the set s and the mapping f, but it is

discontinuous relative to changes in the free variable q.

315



Suppose that the expression (1) occurs in a strongly

connected region R, and suppose also that all changes to s

and f are slight within R. In this situation the diffi-

culties caused by the discontinuous dependence of (1) on q

can be overcome, and the computation (1) can be moved out

of R by applying the general formal differentiation scheme

sketched in the introduction to the present thesis. That is,

we can perform the following steps:

i. Define an initial mapping C := nullset on entrance to R.

ii. Replace all computations (1) in R by the expression

if q ^ BOM C then C(q) else C(q) := {x e s|f(x,q) > q}

which either retrieves the value of a stored calculation

of (1) from C if such a value exists or else computes (1)

and records this value into the memo function C (q) for

possible future use.

iii. Whenever differential changes to s or f occur in R,

modify each stored set C{q) according to rules 1 and 2

(cf. section C) for all values q G DOM C; i.e., execute

the following prederivative code just before s := s + A:

(2) (Vq G DOM C) C (q) := C(q) + {x e A|f(x,q) > q};

The basic pre and postderivatives which keep C available

on exit from indexed assignments f{x^,x_) := Z are

as follows:

316



(3) (Vq e DOM C) SQ(q) := (x e s|x - x^ & q - X2};

C(q) := C(q) - {x e SQ(q)|f(x,q) > q} ;

end V ;

f(x,,X2) := Z

(Vq G DOM C) C(q) :- C(q) + {x £ Sq (q) |f (x,q) > q}

end V ;

The case (1) deserves special treatment, since the sets

s_ (q) appearing in (3) can be calculated by (9) of Section (C);

i.e., Sp.(q) := if X, G s & q = x^ then {x, } else nultset

where x, and x^ need not be region constants. As a result,

(3) can be transformed into a speedier equivalent version,

(3') i/ X, G s & X G DOM C & f(x ,X2) > X2 then

C{x^) := C(x^) - {x^};

endif;

f(x^,X2) := Z;

if x, G s & x^ e DOM C & Z > x_ then•^12 2

C(X2) := C(X2) + ix^}',

endif;

XV. For changes of q in R nothing more is needed.

The approach described by (i)-(iv) above will be

profitable when the execution frequency of the code

inserted by (ii) is great enough and when the maximum

number #C of calculations that need to be stored in C

is small enough. But if #C is large three major objec-

tions which can easily make this approach infeasible arise;

317



(a) storage of all the sets C(q) may be too expensive;

(b) updating all the sets C(q) when a parameter upon

which C depends continuously is modified may waste

more time than is saved by avoiding the calculation

of C;

(c) storage of the domain DOM C of C may be too expensive.

Example (1) illustrates these three potential objec-

tions. For a 'randomly' chosen f some large percentage

of all the x e s will belong to the set (1) for many q.

Hence, the sets C(q) will be large for many q. These sets

will often overlap and when #C is large storing them will

undoubtedly require much more space than is required by s.

It is not difficult to surmise that in those contexts

where objection (a) arises objection (b) will also cause

trouble. Although the update code (3') and the computa-

tions introduced in step ii above are inexpensive, the

work involved in computing the derivative (2) is directly

proportional to #C and can exceed the cost of the original

calculation (1) for large #C. The third objection (c) will

arise when excessive space is needed for storing the

domain of C and when q is a set or tuple valued variable

occurring in (1).

If we consider a general expression

C = E (x , . . . ,x, ,x, , , . . . ,x ) that depends discontinuously

in R on changes to its free variables x, -, , . . . ,x then

objections (a) , (b) and (c) can be extremely difficult to

overcome. The basic formal differentiation method sketched

318



in the Introduction requires that we use a map C to store

separate values of expressions E' instantiating E in

appropriately chosen values of x, , , . , . ,x . If for

i = k+l,...,n we let D refer to the range of values that
1

X. can have in R, then the maximiam number of stored calcula-

tions in C is ] f #D . Even if each discontinuity
i=k+l ^i

parameter x. is boolean valued, C can come to store as many

n-k
as 2 different calculations.

One possible way of diminishing the number of values

that need to be stored in such cases is to group the

parameters x, ,,,..., x into subexpressions e of E which^ k+1 n '^

depend only on x, ^,...,x . The advantage of this rests on
^ ^ k+1 n

an elementary property of finite mappings: the cardinality

of the range of such a mapping never exceeds the size of

its domain. We can use this approach when each subexpression

e of E behaves like a finite map; i.e., when E is

appliaative

.

As an example of this, note that in dealing with an

expression

(4) C = {x G s|f(x + q^) = (f(qj_ + g(q2)) + ^3)^ '

we can reduce the number of values of C that need to be

stored by using a map C^(q^,f(q-,_ + g(q2)) + q3) instead

of c^ (f
,g,q-L,q2'q3)

•

To reduce (4) to the map C, , we can take the follow-

ing steps:

319



(i) On entrance to R, perform the initialization

C := nul tset

.

(ii) Within R replace all calculations of C by uses of the

expression

if [b-^,b2] := [q3 , f (q-^+g (q2) ) +q3] ^ PR0JECT{2,C)

then C (b, ,b„

)

else C(b^,b2) :== (x 6 s|f{x + b^) = b^} .

(iii) At each program point in R at which s undergoes a

'slight' change s := s + A , execute the following

prederivative code,

(5) (V[bj^,b2] € PR0JECT(2,C) ) C(b^,b2) := C{h^,h^)

+ {x e A|f (X + bj_) = b2};

END V;

which is justified by Rule 1. Note that (5) can be

rewritten in an efficient form as follows:

(5') (VxG(A * s), b^ e DOM C|b2 := f(x+b ) € DOM C{b })

C(b^,b2) :- C(b^,b2) + {x};

END V;

The cost of (5) is directly proportional to #Cx#A while

the cost of (5') is 0{^DOM Cx#A) where DOM C is the set

of first parameter values of C.

(iv) Whenever an indexed assignment f(y) := Z occurs in R,

we can keep C available by use of Rule 2; which is to say

by executing the following code:

320



(6) (V[b^,b2] e PR0JECT(2,C) ) SQ(bj^,b2) :- (x^s
|
x+b^=y } ;

C(b^,b2) := C(b^,b2)

- {x e SQ(b^,b2) |f (x+b^) - b2};

END V;

f(Y) := Z;

(V [b^,b2]ePROJECT(2,C) )C(b^,b2) := C (b^ ,b2) +{xesQ (b^ ,b2)

f(x+b^) = b^};

END V;

This can be further optimized to yield the following code,

(6'
) (Vb e DOM C)

if y-b e s & b := f (y) e dOM C{b^}

then C(b,,b2) := C(b,,b2) - {y-b,};

endif

end V ;

f(y) := Z;

(Vb e DOM C)

if y-b G s & Z G DOM C{b^}

then C(bj^,Z) := C(b^,Z) + {y-b^};

endif

end V ;

It is easy to see that the computational cost of (6') is

proportional to %DOM C. Note that y need not be a region

constant in (6
' )

•

(v) In keeping C available in R, we can ignore all modifi-

321



cations to the map g or to the free variables q , q , or q^

of (4) . We note that by making use of a map C, instead

of the more straightforward C„ to reduce (4), the method

of parameter regrouping just described excludes values

of the sets f and g which are part of the domain of C^

from the domain of C, and thereby ameliorates objection (c)

as well as objections (a) and (b)

.

Although the last example illustrates some advantages

of 'regrouping', the transformations of (5) to (5") and

(6) to (6') go beyond 'regrouping' and illustrate more

powerful improvement techniques. In the remainder of this

section we will utilize these techniques systematically to

extend Rules 1 and 2 to additional methods for reducing

generalized set formers

(7) C = {x G s
I

K(x,q^,q2, . . . ,qj^) } .

This expression depends continuously on differential changes

to s and on indexed assignments to mappings f occurring

in K (provided that at least one such occurrence of each

such f contains a parameter expression involving the bound

variable x) . However, (7) depends discontinuously on

changes in the free variables q,,...,q .

Suppose that we want to reduce (7) in a strongly

connected region R, and suppose that values of (7) are

stored in a map C(qw...,q )• Then within R, and for all

changes of s by the operation s := s + A , the following

prederivative code can be generated by a straightforward

322



application of Rule 1:

(8) (V [q^, . . . ,q^] e PROJECT(n,C)

)

C(q^,..,,q^) := C (q.^^ , . . . ,q^) + {xGA
|
K (x ,q^ , . . .q^) } ;

END V;

Inspection of (8) leads us to anticipate a time cost directly

proportional to #Cx#AxCost (K (x,q, , . . . ,q )). To update (7)

at indexed assignments f(y, ,...,y ) := Z for which the f

terms involved in x and occurring in K are

f (p^^ (x,q-|^, . . . ,qj^) , . . . ,p^^(x,q^, . . , ,q^) ) for i = l,...,r

the pre and post derivative code generated by extending the

rule (5) of section C (i.e., the rule from which Rule 2 is

derived) would be as follows:

(9) (V[q ,...,q ]
e PROJECT(n,C)

)

r m

^0 (q ,...,q^) := {xSs | OR ( & P^ (x, q^ , . . . ,q^) =y )

}

i=l j=l J J

C(q^,...,q^) := C (q^ , . . . , q^) -{xGSq (q^^ , . . .q^) |

K(x,q^, . . . ,q^) };

END V;

f (y-^, . . . ,y^) := Z;

(V [q^, . . . ,q^] e PROJECT(n,C)

)

C(q^, . . . ,qj^) := C (q^^ , . . . ,qj^) +{xesQ (q^ , . . . ,q^) |

K(x,q^, . . . ,q^) };

END V;

This code can sometimes be modified in the manner described

in the last section (cf. 2.C Ex. (9) -(11)) to yield code

which keeps s„ available in R via incremental 'easy' calcula-

tions. 323



It is not difficult to see that computation of (8)

or (9) can be unacceptably expensive due to objections (a)

and (b) . We also note that simple regrouping of disconti-

nuity parameters need not always remove these objections

successfully.

Nevertheless, these problems can be overcome in

cases in which s_ and C are continuous relative to differ-

ential changes in the continuity parameters of (7).

Fortunately, this holds for a few special cases of common

occurrence in SETL programs. These special cases which

may be said to involve 'removable' discontinuities include

set formers based on the elementary forms,

{x e s
I

f(x)}, {x e s
I

f(x) = q}, {x e s
|

f(x) s Q},

(x e s
I

f(x) f Q}, (x e s
I
q e f(x)}, and

(x e s
I

f(x) <relop> q} (where <relop> can be

</ f^ , >f ^) . Set formers involving boolean valued

subexpressions which include terms q ^ f(x) and f(x) 1= q

are not directly susceptible to reduction.

In the following discussion we will show how to

reduce the basic set formers above and more general set

expressions built up from these by combining boolean

valued subexpressions of these elementary forms using the

logical connectives &, ov , and ~1
. We will also present

techniques for handling still more general set formers

containing unfavorable relational operations within their

boolean subexpressions.

A most important special case is

.3 24



(10) C = {x e s
I

f(x) = t} .

To differentiate (10) , where we assume that the values of

(10) are stored in a map C(t) , we can apply Rule 1 and

are led to the prederivative

(11) (Vq G DOM C) C(q) := C (q) + {x 6 A
|

f (x) = q};

END V;

of (10) with respect to s := s + A.

We know from the preceding discussion of objection

(b) that if ^DOM C is too large the computation (11)

will be costlier than a full recalculation of (10) . However,

it is actually only necessary to apply Rule 1 to those sets

C(q) that actually change. But C(q) will not change if

{x e A
I

f (x) = q} is empty. Thus, the set DOM C appearing

in (11) can be replaced by

(12) {q e DOM C
I

(3x G A
I

f (x) = q) }

which is usually a smaller set than DOM C. (But (12) may be

costlier to compute.) Moreover, (12) can be transformed

into an 'easier' calculation:

(12') {f(x): X G A
I

f(x) G BOM C}

which computes the same set as (12) but in 0(#A) time.

Also, since redundant calculations C(q) := C (q) +{xGA | f (x) =q}

of (11) can be introduced without invalidating (11) , the

set (12') need never be computed at all; we can simply

rewrite (11) as

325



(13) (Vx 6 A|f(x) e BOM C) C(f(x)) :=

C(f (x)) ± {y e A|f (y) = f (x) }

;

END V;

Finally after transforming the repeated assignment in (13)

to the equivalent

(14) (Vy 6 A|f(y) - f(x)) C(f(x)) :- C(f(x)) + {y};

END V;

and jamming the iterator of (14) with (13) we arrive at a

highly efficient prederivative

(15) (Vx G A|f(x) e DOM C) C(f(x)) :- C(f(x)) + {x};

END V;

equivalent to (13) but requiring only 0(#A) elementary steps.

Note here that we have demonstrated the correctness of (15)

informally by first noting a conceptually easy but ineffi-

cient metatransformation (8) and then by passing to (11) as

a particular but still inefficient instance of (8) . The form

(15) is then derived easily using simplifying transformations,

We will use this approach repeatedly throughout this chapter.

If the map f of (10) is changed within L by an indexed

assignment f(y) := Z then since the f depth of (10) is 1

and because the boolean subpart of s = {x e s | x = y } is

linear in x, and does not depend on t, the general derivative

computation (9) leads to the following version of Rule 2:

326



(16) (Vqe DOM C)

Sq :== (y} * s;

C(q) := C(q) - {x e Sq
|
f (x) = q};

END V;

f(y) :- Z;

(Vq G DOW C) C(q) := C(q) + {x S SQ|f(x) = q};

END V;

Since in (16) s. is a compiler generated variable used

only once, since the expression {y} * s is invariant in

(16) , and since s. will be useless on exit from (16) , we

can remove the single assignment to s_ and replace all

uses of s_ in (16) by occurrences of {y} * s. We can

also apply the chain of transformations (11) -(15) to the

iterators in (16) . This leads to the following improved

code :

(16') (Vx e {y} * s
I

f(x) e dom C)

C(f (x)) := C(f (x)) - {x};

END V;

f(y) := Z;

(Vx e {y} * s
I

f (x) e DOM C)

C(f (x)) := C(f (x)) + {x};

END V;

We can also rearrange the iterators in (16') into the form

(Vx G {y}|x G s & f(x) G DOM C)<BLOCK(x)> which simplifies

immediately to if y g s & f (y) G DOM C then <BLOCK(y)>.

327



Our final Rule 2 variant is then

(16") if Y e s & f(y) e DOM C then C{f(y)) := C(f{y))-{y};

endif;

f{y) := Z;

^/ y € s & f{y) e z)OM C then C(f(y)) := C(f(y))+{y};

endif;

which can be computed in essentially constant time.

According to our standard method, we can differentiate

an expression (10) in a region R by inserting the code (15)

and (16") at appropriate program points within R, insert-

ing C := nullset on entrance to R, and replacing uses of

(10) in R by

(17) i/ t e DOM C then C(t) else C(t) := {xGs|f(x) = t}.

But special characteristics of (10) can sometimes be

exploited to obtain several further improvements. It is

instructive to note that if we could determine at compile

time the range D of values that the discontinuity parameter

t can have in R, then on entrance to R we could store values

of (10) in C for all values of t in D . This could be done

by using the following efficient code
,

(18) (Vq e D^) C(q) := nullset; end V

;

(Vx e s
I

f (x) e d^)

C(f (x)) := C(f (x)) + {x};

end V

;

which computes the same thing as

328



C := nutlset;

(Vq e D^) C(q) := {x e s
|

f (x) = q};

end V ;

Consequently uses of (10) in R could be replaced by the

simple retrieval operation C(t).

Since the method just described does not involve a

'memo' function, its overall computational cost is easy to

predict. Only the inexpensive calculations (15) and (16")

are introduced into R, while the cost of (18) is about the

same as (10) which we eliminate from R. Thus, we expect

a speedup considerably greater than that attained by the

previous method which was complicated by overhead in memo

function maintenance operations such as (17).

Unfortunately, the method we have just described is

not generally applicable since it requires determination

of the set D , undecidable at compile time. Nevertheless,

there is another similar approach which offers similar

speedup advantages over the standard method, but does not

depend on any difficult analysis. This new approach

essentially replaces D^^ by the image set f[s] (image of f

restricted to s) ; this set includes all values of q for

which C(q) = {x G s|f (x) - ql is nonnull. Whenever f [s]

is spoiled by changes in f and s, C can record new values

in memo function fashion, and it can also undergo differ-

ential modifications within derivative code. Consequently

we are able to remove all calculations of (10) from R and

329



replace them by if t & DOM C then C(t) else nullset.

The following additional steps describe this method more

fully.

i. On entrance to R, initialize C by executing

(19) C := nullset;

(Vx G s) if f (x) e DOM C then

C(f(x)) :- C(f(x)) + {x}; else;

C(f (x) ) := {x}; endif;

which costs about the same as (10) to execute.

ii. Instead of (15), use the following variants.

(20) /* for s := s + A */

(Vx G (A - s)) if f(x) G BOM C then

C(f (x) ) := C(f (x)) + {x}; else

C(f(x)) :- {x};;;

and

(20-
) /* for s := s - A */

(Vx G (A * s) |f (x) G DOM C)

C(f (X)) := C(f (x)) - {x};;

respectively as prederivatives of (10) relative to s :- s+A

.

Note that DOM C can change in (20) and (20').

iii. After inserting into (16") code which updates DOM C,

we can use the following derivative for ^indexed assignments

to f,

330



(21) if yGs & f(y)ez?OW C then C(f{y)) := C(f(y))-{Y};

endif;

f(y) := z

i/ y G s then

if f(y) e Z)OM C t/ien C(f(y)) := C(f(y)) + {y} else

C(f (y)) := {y};

endif',

endif',

It should be clear that the transformations just

described can attain greater speedup than the standard

technique. What's more, when #D is large, a better

utilization of space is also achieved.

The preceding results apply in an interesting way to

a class of set formers typified by
»

(22) C = {x G s
I

f(x) € q} ,

where the free variable q is a set. Recall from section (C

)

that (22) is continuous relative to small changes in s and

to indexed assignments to f . If q is changed by a computa-

tion q = q + A where #A << #q, then the corresponding

prederivative

(23) C = C + {x e s
I

f (x) e A}

will often represent a small change to C. However, because

(23) still requires an iteration over s, this update compu-

tation will often be too expensive to allow profitable

331



reduction of (22) ,

For this reason, it is appropriate in handling (22)

to use the identity

{x e s
I

f (x) e A} = u {x e s
I

f (x) = b} .

be A

The expressions C = {x & s
|

f (x) = b} which then appear

can be differentiated by the methods sketched earlier in

the present section; i.e., by using the following code as

a first prederivative of (22) with respect to q := q + A,

(24) (Vy e A, w e {u e s
I

f (u) = y})

C := C + {w};

end V; '

But to handle (24) efficiently we must formally differen-

tiate C = {u e s
I

f (u) = y} and store its values as
_ I

a map C (y)

.

Set formers like

(25) C - {x e s
I

f (x) ^ q}

can be treated similarly. A prederivative of (25) with

respect to q := q + A is '

.

(26) C := C + {x e s
I

f (x) G A}

which leads at once to a more efficient prederivative

(26*) (Vy e A, w G {u G s
I

f(u) = y})

C := C + {w};

END V;

332



Formula (26') can then be improved in much the same way

as (24).

Set formers involving boolean valued subexpressions

based on comparison operations such as

(27) C^ = {x G s
I

f(x) < q}

can be treated as special cases of (22) . To see this, let

M be the largest q value that needs to be considered, and

let m be the minimum value of {f (x) , x G s} over all f

and s that can appear. Putting sq := {b, m <_ b < q}, we

see that (27) is equivalent to {x e s
|

f (x) G sq}.

If for A > 0, q changes slightly by q := q + A, then

sq changes, also slightly, by

sq := sq +{b: q £ b < q + A) /* for q := q + A */

or by

sq := sq - {b: q - A _< b < q} /* for q := q-A */

Thus, to update C, we can simply execute the prederivative

code

(28) (Vq ^ y < q+A , w e {u G s|f(u) = y}) /* for q:=q+A */

C^ := C^ + { w};

end V ;

or

(Vq > y > q-A, w G {u G s|f (u) = y}) /* for q:=q-A */

C^ := C^ - {w};

end V ;

?33



which can be further improved by differentiating the

set formers C (y) = {u s s|f(u) = y} as in the last two

examples

.

However, the total ordering T = (< , DOM C ) can be

exploited to further optimize the iteration that appears

within (28) by techniques not generally applicable to (24)

To do this, on entrance to R we sort DOM C' in ascending

order and produce the predecessor and successor maps,

pred and suae, on T (where pred(n) is the maximum element

of DOM C'). Next, we make the assignment i

k := [min : w e DOM C ' p ( w < q) J w. Then we can keep C, ,

pred, suaa , and k available collectively in R by efficient

incremental calculations. Thus, whenever q is changed

'slightly' by q := q + A, the following efficient prederi-

vatives can be executed,

(28') {while k < q+A) /* for q := q+A */

C^ := C^ + C' (k) ;

k := suaa {k) ;

end while;

and

(28") {while pred(k;> q-A) /* for q := q-A */

k := pred (k)

;

C^:= C^ - C' (k) ;

end while',

Note that (28') and (28") can run considerably faster than

(28) when DOM C' is sparse in the interval [m,M] . Whenever

3 34



s undergoes a change s := s + A , and if DOM C' is

maintained as a balanced tree, then the appropriate inser-

tions and deletions necessary to maintain pred, suae, and k,

require #Axiog {^DOM c') steps.

Another class of special cases derives from

(29) C = {x e s
I

q G f (x)

}

a set former which despite its close resemblance to (22)

must be handled very differently. While (22) is continuous

in all of its parameters, (29) is discontinuous in q. Thus

we must save the value of C in a map C(q). Fortunately,

however, the discontinuity which appears here is removable.

If we apply the general rule (8) to (29) we obtain prederi-

vative code

(30) (Vt e DOM C) C(t) := C(t) + {x G A
|

t G f(x)}; end V;

for modifications s := s + A. This code can be improved by

extending the iteration not over all of DOM C but over

the smaller set

C = {t G BOM C
I

(3x G A
I

t G f(x))}

which can be written equivalently as

C = [+: X G A] f (x) * DOM C .

Further symbolic manipulation of (30) leads to the follow-

ing prederivative ,

335



(30') (Vx e A, t e f (x) * DOM C) C(t) := C(t) + {x}; end V;

which is generally preferable to (30) (especially when

#f (x) << iDOM C)

.

If f undergoes a change f (y) := Z, then since

s„ = {x e s|x = y} does not depend on q and can be

calculated efficiently on-the-fly, the general derivative

formula (9) realizes the following Rule 2 update computa-

tion ,

(31) Sq := -i/ y s s then {y} else nullset;

(Vt e DOM C)

C(t) := C(t) - {x G Sglt e f(x)};

END V;

f(y) := Z;

(Vt e DOM C) C(t) := C(t) + {x G so|t G f(x)}

END V;

However, it is not difficult to see that (31) can be

rewritten more efficiently as

(31') i/ y G s then (Vu G f (y) * BOM C)

C(u) := C(u) - {y}; end V

;

endif;

f(y) := z

if Y & s then (Vu G z * DOM C)

C(u) := C(u) + {y}; end V ;

endif',

3 36



Finally, note that a suitable prederivative of (29) with

respect to the change f (y) := f (y) + A of f is given by

the following special case of (31'):

(32) i/ y e s then (Vu e A * DOM C)

C(u) :- C(u) + {yl; end V;

endif;

Since the derivative rules (30'), (31') and (32)

conform to our standard reduction method, in order to

differentiate (29) fully we only need to initialize C

on entrance to R by executing C := nullset and to replace

all uses of (29) in R by the calculation,

(33) if q ^ DOM C then C(q) else C(q) := {x^s
|

qef(x)}.

However, by introducing (33), we fail to eliminate all cal-

culations of (29) from R; this imperils our chance of

attaining a worthwhile speedup. Nevertheless, we can improve

the handling of the memo function C for (29) as we did in

the previous special case (10), and can effectively eliminate

all uses of (29) from R.

To do this, note first of all that values of (29) stored

in C(q) are only meaningful (i.e. nonnull) when q is in the range

Q = U f(x) of f. Thus, by keeping the restriction of C
xG s

to Q available in R we can replace all uses of (29) by the

conditional expression, if q ^ DOM C then C(q) else nullset.

The following steps achieve this result:

337



i. On entrance to R execute

C := nullset',

(Vx e s, t G f (x))

if t & DOM C then C(t) := C(t) + {x};

else C (t) := {x}

;

endif;

end V;

which takes 0(#f) steps to compute but does the same thing

as

C := nullset;

(Vx G s, t e f(x)) C(t) := (y G s|t G f(y)};

end V ;

ii. At points in R where s changes, execute the appropriate

prederivative , which will be either

(Vx G (A - s) , t G f(x)) /* for s := s+A */

if t e DOM C then C(t) := C(t) + {x};

else C(t) := {x};

endif;

end V;

or

/* for s := s -A */

(Vx G (A * s) , t G (f(x) * DOM C)) C(t) := C(t) - {x};

end V;

(This is based on (30').) When, #f(x) is uniformly bounded

by 6, and when 6 << #s, then the cost of these last

338



calculations is 0(6x#A) which we expect to be inexpensive

relative to (29)

.

iii. For changes f(y) := Z, we can use the following deriva-

tive code

.

if Y e s then (Vu e f (y) * DOM C)

C{u) := C(u) - {y};

end V ;

endif;

f(y) := Z;

i/ y e z then (Vu e Z) if u e DOM C then

C(u) := C(u) + {y}; else

C(u) := {y}; endif;

end V

;

endif;

which executes in no more than 0(6) elementary steps.

iv. The rule corresponding to (32) for updating C with

respect to f (y) := f (y) + A is

/* for f(y) := f (y) + A */

if Y s s then (Vu G (A - f(y))) if u & DOM C then

C(u) := C(u) + {y}; else

C(u) := {y}; endif;

end V ;

endif

;

and

339



/* for f(y) := f(y) - A */

t/ y e s then (Vu e (A* f (y) * DOM C)

)

C(u) :- C(u) - {y};

end V

;

endif;

both of these requiring only 0(#A) steps.

It is not difficult to predict with some assurance that

the method just proposed offers a better chance of speedup

than does the standard method.

The two expressions C, = {x e s|f{x)n= q} and

C„ := {x G s|q ^ f (x) } can be handled by transforming them

into the more convenient forms,

s - {x G s
I

f (x) = q}}

and

s - {x e s
I
q e f (x)

}

respectively. The setformers {x g s|f(x) = q} and

{x G s|q G f(x)} thus exposed can usually be reduced profit-

ably by methods previously described.

Each of these examples (10), (22), (25), (27), and (29)

typifies the treatment of a broad class of expressions that

can often be differentiated profitably. Within the class

associated with (10) we consider the set formers

(34) C = {x G s
I

K^(x) - K2(qj_, . . . ,q^) } ,

where q,,...,q are free variables upon which C depends

discontinuously. We assume that K of (34) is a subexpression

340



only involving x, parameters upon which (34) depends

continuously, and maps f. upon which C can depend discon-

tinuously but whose occurrences in K, all have parameters

depending on x. K_ of (34) is assumed to be a subexpression

only involving the parameters q, , . . . ,q on which C depends

discontinuously , and the maps f..

We can treat (34) easily if we recognize that it is

constructed from (10) by a composition in which K, replaces

f and K (q, , . . . ,q ) replaces t. To formally differentiate

(34) in a program region R we can store separate calculations

(34) in a map C (K„ (q, , . . . ,q )) proceeding in the following

steps

:

i. On entrance to R perform

C := null set;

(Vx e s) if K (x) G DOM C then

C(K^(x)) := C(K^(x))+ {x}; else

C(K^(x) ) := {x};

endif;

end V;

(This is based on (19)).

ii. Whenever s changes by s := s + A, execute the corres-

ponding prederivative code,

(35) (Vx e (A - s)) if K^(x) G BOM C then

C(K-|^(x)) := C(K^(x))+ {x}; else

C(K^(x)) := {x};

endif

;

end V ;

341



for s := s + A and

(35') (Vx G (A * s) |K^(x) e dOM C)

C(Kj_(x)) := C(K^(x) )
- {x};

end V ;

for s := s - A. (Both (35) and (35') can be derived

from (20) and (20') by substituting K, for f.)

iii. Modifications (in R) of q, , . . . ,q or any map f.

occurring in K_ (but not in K, of (34)) do not require

insertion of update code.

iv. Replace all occurrences of (34) in R by occurrences of

if K (q,,...,q ) e DOM C then C(K-(q ,...,q )) else nullset.

In constructing a derivative of (34) with respect to

indexed assignments f(y, ,...,y ) := Z, we cannot simply

make use of the update code (21) used for example (10),

because in deriving (21) we make use of characteristics of

(10) absent in (34). In fact, we cannot easily overcome

the inadequacies of our current formulation of Rule 2 to

make it apply usefully here. Hence, before giving the desired

derivative code for (34), we must iron out the lingering

difficulties of Rule 2. This we will do shortly, after first

studying the continuity properties of an important generali-

zation of (34)

.

It is possible to differentiate more general set formers

than the elementary ones just described by combining the

boolean subparts of these forms using logical connectives

342



&, or, ~1
. Consider, as an example, the following setformer,

m
(36) {x e s| & (K^(x) = K^(q^,. .. ,q^) ) & K^^^ (x)

}

i=l

in which for i = l,...,m+l the terms K. are restricted in

the same way as K, of (34) and for i = l,...,m the terms K^

are defined similarly to K^ of (34) . If we use a map

C(KJ (q^, . . . ,q^) , . . . ,K^(q-,^, . . . ,q^) ) to store the values of

(36) , and if we treat C in a manner similar to the improved

techniques used for handling (34) , then the prederivatives

of C with respect to the changes s := s + A can be written as

(37) (Vx G (A - s) |\+i(x)) /* for s := s+A */

if [K (x) , . . . ,K^(x) ] e PROJECT(m,C) then

C(K^(x) ,...,K^(x)) := C{K^(x) ,...,K^(x))+{x};

else C(K^(x) , . . . ,K^(x) ) := {x};

endif;

end V ;

and

/* for s := s - A */

(37') (Vx G (A * s)|Kj^^^(x) & [K-^(x) ,...,K^(x)]ePROJECT(m,C))

C(K^(x) ,.. .,K^(x)) := C(K^(x) ,...,Kj^(x)) -{x};

end V;

which generalize (35) and (35'). Note that if we consider

the set t to be initially null then the prederivative code

(37) of {x G t| & (K^(x) - K^(q-^,...,q^)) & K^+i(^)> ^^^h
i=l

respect to a change t := t + s gives the appropriate code

343



which, on entry to R stores initial values of (36) in C.

Observe that if disjunctions rather than conjunctions

occur in (36) then continuity will ordinarily fail. However,

one important exception (cf. (7) of Section C)

r ra

(38) i (y ,...,y ) = {x G s\or{ & p..(x) = y )}

deserves special attention. In this case we can show that

if the setformer (38) is continuous in all of its parameters

except y-i f • • wY ^ then s„ is continuous in all of its

parameters

.

To differentiate (38) we take the following steps:

i. On entrance to R execute

3„ := nullset -

(Vx € s, 1 1 i 1 J^)

i/[p. (x) , . . . ,p. (x) ] e PROJECT(r,SQ) then

iQ(p^^(x) , . . . ,p^^(x) ) := Sq(p^j^(x) , . . . ,p^^(x))

+ {x}; else

Sq (p^-,^ (x) , . . . ,p^^(x) ) := {x};

endif;

end V;

(This is based on (37) and a kind of 'redundant discontinuity

parameter elimination'.) The cost of (39) is essentially the

same as the cost of computing the set former (38)

.

ii. Within R, whenever s changes by s := s + A execute the

prederivatives

,

3 44



(40) (Vx e (A-s) / 1 1 i 1 r) /* for s :- s+A "/

•z:/[p. ^ (x) , . . . ,p. ^ (x) ]
G PROJECT(r,s ) then

Sq (Pj^-j^ (x) , . . . ,p^^ (x) ) := Sq (p^^ (x) , . . . ,p^^ (x) )+{x} ;eZse

Sq(p^-j^ (x) , . . . ,p^^(x) ) := {x};

endif;

end V ;

and

(40') (Vxe (A * s), l<i<r|[p^^(x),...,p.^(x) ]GPROJECT (r

,

SqI

iQ(p^^(x) , . . . ,p^^(x) ) := Sq(p^^(x) , . . . ,p^^(x) )-{x};

end V

;

(These are similar to (37) and (37').) Note that the compu-

tational cost of either (40) or (40') is 0(#Axr) steps,

inexpensive relative to a calculation of the setformer (38)

.

iii. The following variant of (11) of Section C is a deriva-

tive of (38) with respect to indexed assignments to f:

(41) (VxeiQ(y^,...,y^) , l<i<r
1

[b^,...,bj^] := Ip^j^ (x) , . . . ,p^^(x) J n= [yi'---'YmJ

& [h^, . . . ,h^\ G PROJECT (m,SQ)

)

Sq (bj^, . . . ,b^) := Sq (b^, . . . ,b^) - {x};

end V ;

f (y^/ • • • /Yj^) := Z;

(VxSSq (y^, . . .y^) ,lliir I

[b^, . . .b^^] •=[V^i (x) , . . .p^j,(x) ]

n= [y^' • • • /Y^,] )

if Lb, , . . . ,b ] e PROJECT (m,SQ) then

Sq (b^, . . . ,b^) := Sq (b^, . . . ,b^) + {x}; else

in lb, , . . . ,b_) := {x};
J . V. 1 m

end V

;

345



If there exists a bound 6 on the sizes of sets s_(y, ,...,y )

1 m

wnich is small relative to #s, then the cost of (41) which

is proportional to 6xr will be inexpensive relative to (38).

iv. Suppose that an n-ary mapping g which undergoes indexed

assignments in R (and only such assignments) occurs in t

different terms in (38j, g iq-^j^ (x) , . . . ,qj^^ (x) ) ,g (q^^ (x) , . . .q^^ (x) )

Then the derivative code ( whicn keeps s» current in R)

associated with indexed assignments to g, is as follows,

l42) (Vx6hQ(Vj_, . . . ,v^) , l^i^r
I

[p^^(x) , . . . /P^^^Cx) JePROJECT (m, s^)

)

Sq(Pj^_,^(xJ ,. . . ,p^j^(x) ) := Sq(p^^(x) , .. . ,p^^lx) )-{x};

end V;

g (v^, . . . ,v^) := Z;

^Vx e Hq (v^, . . . ,v^; , 1 <^ i <_ r)

if [p. , vx) , . . . ,p (x)] € PROJECT(m,s ) then

Sy (p^3^(x) , . . . ,p^j^(x) ) := Sq(p^j^(x) , . . .p^^(x) )+{x};

else Sq (p^^ (x) , . . . ,p^j^(x) ) := {x};

endif'i

end V ;

t n
where h- (w ,...,w ) = {xs s| or ( & q..(x) =w.)}

1=1 1 = 1 -'
-"

is an auxiliary expression which must be differentiated in

R .1.1 the same manner as (38) . Note that (42) , like (41)

consists of 'easy' calculations.

The method just presented leads in an obvious way to

inexpensive derivatives for expressions like (1) of Sec-

tion C, and also for (34) and (36) of the present section.

In fact, it supports a reformulation of Rule 2 which is both

346



more general and more efficient than that previously given

(cf . (10) and (11) of Section C) . This rule is stated as

follows.

Rule 2. Consider general set formers (7) satisfying the

following two conditions:

Condition 1. The discontinuity parameters q^ • . . /q

of (7) must be removable in the derivative (8); i.e., the

size of the iteration in (8) must be bounded independently

of #C, C being the mapping which stores separate values of (7)

Condition 2. Suppose that f,,...,f are all those maps

which change in R and which also begin occurrences of map

retrieval terms involving x within the boolean subpart of (7)

.

Then we require that for i = l,...,z, each change to f.

within R must be an indexed assignment and each f . term

which involves x within (7) must not also involve q./.-./q •

For k = l,...,z, we will denote the r distinguishable

f, terms satisfying Condition 2 above by

fk^Pil(^) Pirn, (^)) ^k^Pr.l^^) Pr,m (^)) •

K K K K

Then to keep (7) available in R in the presence of indexed

assignments to f,,...,f and small changes to s, we must

keep the auxiliary maps

-k -k ^
Sv(yi ' • • wY^ ) = (x e s

I

or { & p..(x) = y )}
k 1 m^ ^^^ j^-L

i: 3

k = l,...,z available also. Since these auxiliary maps

are of the same form as (38) , they can each be initialized

on entrance to R by executing the code (39) . They can also

347



be updated efficiently whenever s changes by using rules

(40) or (40')- Finally, at indexed assignments

fj(v, ,...,v ) := W we can combine the techniques of (41)

and (42) to obtain the following derivative which updates

s, ,...,s , C collectively

(42') (Vx e s. (v^ ,...,v^ ))Aim
(VI < i < r^l [p1;^(x) ,. .

.,pI^
]GPROJECT(m^,Sj^) )

s^(p^-^(x) , .. . ,p^j^ (x)) := s^(p^-,^(x) , . . .p^^ (x))

- {x};

end V

;

(Vl<iir^|ly^ Yj,^] ••= [pj^(x),...,pj^^(x)]

e PROJECT (mj^,s^)

& [Yi / • • wy_ ] ^ [v, , . . . ,v ] )

^£(Pil^^^ "^L^^""^^
''= ^£<Pil(^)"--Pim^(^^^

- {x};

end V

;

(VI < i < r I [p. , (x) , . . . ,p ]
G PROJECT(m ,s ))

z

S2(p-l(x),...,p^^ (X)) := s^(p^^(x),...p.^ (X))
z z

- {x};

/* INSERT derivative code at this point for */

/* updating C with respect to s := s - {x} */

end V ;

f jj(v^, . . . ,Vj^) := W;

348



(Vx G S^(V^,...,V^^))

(VI ^ i < r^)

if [p\iM ' • ' • 'pI^
(x)] ^ PROJECT (m^,s^) then

- 1 '"1
s^(p^j^(x) , . . . ,p^^(x) ) :-

s. (p]^^(x) , . . . ,p]^j^
(x) ) + {x}; else

s^{p^^(x) , . .

.

,p^^{x)) := {x};

endif;

end V;

(VI £ i <_ r^l [p^^(x) ,'--.p\^ (x) J ^ [v^,...,v^ ])

if [p^T (x) ,...,pf^ (x)] e PROJECT(m ,s ) then

s^(p^^(x),...,pj^^) :=

i„ (pj^^(x) ,...,pjj^ (X)) + {x}; else
I

£"" "s„ (p^^ (x) , . . . ,p^j^ ) := {x};

endif',

end V ;

(VI ^ i < r^)

)^ (x) 1 e PROJECT (m_,s_) t/tenif [p^3^(x) ,pr^ (x)] e PROJECT (m^,s^.

Z 2
s^(p^j^(x) , . .. ,p^^ (x)) :

=

S^(p^^(x),...,p?j^ )) + (x); else

i^(p^^(x),...,p^j^ (x)) := {x};

endif;

end V ;

/* INSERT derivative code here for '*/

/* updating C with respect to x :== s + {x} */

end V;

349



Note that we can further optimize (42') by removing code

which updates any map s, , k = l,...,z which does not

depend on f.. At worst, the cost of (42') will be
z

^

0(zx6( y r.)) where 6 is a bound on the cardinality of
i=l /

the sets
^k ^^i ' • • • ' Vj^ )' ^ ~ l,...,z.

k
The preceding reformulation of Rule 2 finally puts

this rule into a viable form. In part, this is due to the

fact that we can lift the previous restriction that all of

the parameters v , ...,v of the indexed assignment

f , (v, , , . . ,v, ) := W in (42') must be region constants.

Perhaps more importantly, it is a result of establishing

a greater coordination between application of Rule 1 (or

its extension, (8)) and 2. Since we derived Rule 2 from

the more basic Rule 1, it is not surprising that in all

examples presented in this thesis, whenever Rule 2's

enabling condition 1 (which pertains to Rule 1) holds, so

does condition 2 (which is more directly related to Rule 2)

.

It is not unreasonable, therefore, to expect that the effi-

cient reformulated Rule 2 can be applied in the same contexts

in which we can differentiate the setfo] mer (7) with a fast

variant of Rule 1. Therefore, in the rest of this chapter, we will

deal mainly with formal differentiation rules based on Rule 1.

Next, consider

m
(43) {xesl & (K^(q^,...,q^) € K^ (x) ) & K^^^ (x ,b-^ , . . . , b^) }

in which K ,k' ...,K ,k' , and K ^, are restricted as before.11 mm m+1

Then to compensate for a redefinition s := s + A of s.

350



we can execute the following prederivative

,

(44) (VxeA, [bj^,...,b^] G PROJECT(t,C) ,

d^ e kJ(x) * DOM C{bj^, . . . ,b^}, ...

dj^ G Kj^(x) * DOM C{h^,... ,h^,<i^,...,d^_-^}
I

^m+l^^'^l'-'-'^t^^

C (b-j^, . . . ,b^,d^, . . . ,d^) := C (b, , . . . ,b^ ,d^ , . . . ,d^) +{x} ;

end V ;

Note that the boolean subparts of (36) and (4 3) can be

conjoined within a new setformer which can then be differ-

entiated with respect to s := s + A by using rules (37)

,

(37') and (44) together in an obvious way. However,

replacing any of these conjunctions with a disjunction will

usually prevent any profitable formal differentiation.

Two more examples worth considering are

(45) C^ = {xGs| ( [+: 1 1 i 1 m|K^(x) ^ Q^]l) =

^ ^m+1^^'^1 \^ ^^ Km+2(^'^t+l"--'^v^^

and

(45') C^ = {xGs| ([+: 1 1 i 1 m|K^(x) e Q^]l) =

^ ^m+l^^'^l'-'-'^'t^ ^"^ Km+2(^'\+l'--"^v^^

whose continuity properties we can exploit in order to handle

the setformers

m
{xes| & (K^(x) e Q^) & ^j^+i^^'^i' - ' '^t^ °^ ^m+2^^'^t+i' • • •'^v^

^

i=l
and

m
{xes| & (K^(x) ^ Q^) & Kj^+i(X'b^, . .. ,b^) or Kj^+2

^^'"^t+l " * "^v^
^

i=l

351



respectively equivalent to (45) and (45'). To reduce

(45) and (45')/ we must first reduce their compound

operator subexpressions

COUNTl (x) = [+: 1 1 i 1 m
|

K. (x) ^ Q. ] 1 and

C0UNT2 (x) = l+: 1 1 i 1 m
|

K. (x) e Q.Jl ,

both of which are defined on the domain s. Once this

has been done, we can reduce (45) and (45') to maps

C, (b, ,...,b ) and C2 (b, , . . . ,b ). The prederivatives of

COUNTl and C, corresponding to modifications Q. := Q. + A

are given by

(46) (Vq e (A * Q ), X e (w e s
I

K (w) = q},

[b^,...,b^] e PROJECT (v,Cj^)
I
K^^^(x,bj^, .. .,b^)

^ ^^m+2(^'\+l ^v^)

COUNTl (x) := COUNTl(x) + 1

;

if COUNTl (x) = 2 *^^"

C^(b^, . . . ,b^) := Cj^(b^, . . . ,b^)+{x};

endif;

end V

;

The prederivatives of COUNT:^ and C„ are

(46') (Vq e (A * Q.) , x e {w e s
|

K. (w) = q},

[b^,...,b^] G PR0JECT(v,C2) |Kj^^^(x,b^, . . . ,b^)

^ "^^+2^^' \+i ^))

C0UNT2(x) := C0UNT2 (x) + 1;

if C0UNT2(x) =
J

then

C,(b , ...,b ) := C., (b, , . . . ,b )+{x};
endif: ^ ^ ^ ^ ^

end V;

352



Note that in both (46) and (46'), {w e s|k.(w) = q}

can be differentiated efficiently using methods presented

earlier (cf. discussion of (34)).

The techniques used to handle (45) and (45') also

apply to

(47) C^ = {xSsI ([+: 1 1 i i m | K^ (x)eQ^] 1) n=

& K^+;L(x,b^, . . . ,b^) or K^+2 ^^'^t+1 ' * ' * '^v^
^

and

(47-) C^= {xGsl ( [+: 1 1 i i m| K^ (x)^Q^] 1) ~\=

^ ^m+1^^'^1 \^ '''' ^m+2^^'\+l ^v^^

which are equivalent to

m
{xGs|( or (K^(x) ^ Q^)) & K^^^(x,b^, . . . ,b^)

i=l
or V2(^'bt+i'--"bv^^

and

m
{xes|( or (K^(x) ^ Q^) ) & ^j^+l'^^'^l' " "^t^

or K^+2^^'Vl ''v^^

As in the previous examples, we make use of maps C0UNT2 and

COUNTl in order to reduce (47) and (47') to maps C^ (b-^^ , . . . ,b^)

and C.(b, ,...,b ). The prederivative code sequences analogous

to (46) and (46') for updating C0UNT2 , COUNTl, C^ and C^

relative to changes Q. '= Q^ ± ^ a^e

353



(48) (Vqe (A *Q.), xe {we s |
K.(w) =q},

[bj_,...,b^] e PROJECT (v,C3)
I

Kj^_^^(x,bj^,... ,iD^)

& ^K^^^{x,b^ b^))

C0UNT2(x) := C0UNT2(x) + 1;

if C0UNT2(xj =
J

then C^ (b^ , . . . ,b^)

:= C^ (b^, . . , ,b ) + {x};

ENDIF;

end V;

for C-, and

(48') (Vqfc(A*Q.), xe{wes|K. (w)=q} , [b^ , . . . ,b^J GPROJECT (v,C )

COUNTl(x) := COUNTl(x) + i ;

if COUNTl(x) =
J

then C^(b,,...,b ) :=

C^ (bj^, . . . ,b^) + {x};

ENDIF;

END V;

for C .

.

4

Note that whenever the formula K , (x,b, , . . . ,b.

)

^ ~'^m+2 ^^'^t+1' • • •

''^v^
appearing in (46), (46'), (48),

and (48') can be simplified to conjunctions of terms of

the form K(x) , K(x) = K' (q^, . . . ,q^) , or K' (q^, . .

.

,q^) e T,

we can use various optimization techniques introduced

earlier in this chapter to speed up the iterations within

(46), (46'), (48), and (48'). Note also that set formers

354



C^ = {xes|K^(x) e Q^ & K2(x,bj^, . . . ,b^) or K^ (x,b^_|_^ , . . . ,b^) }

and

Cg = {xes|Kj^(x) ^ Qj^ & K2(x,b^, . . . ,b^) or K^ lx,b^_^^ , . . . ,b^) }

are degenerate forms of (45), t46j and (45'), (46*) and

can be differentiated directly without using the auxiliary

maps COUNTl and C0UNT2

.

As an illustrative example, consider

(49) {xGs|(K^(x) n= K|(q^,. . . ,q^) ) or (K^ (q^ , . . . ,q^)^K^ (x)

)

or K^(x) ov K^(x) ^ Q & K^ (x) = K^ (q^ , . . . ,q^)

& Kg(q^,. . . ,q^) G K^ (x) & K^ (x)

}

We can reduce (49) by storing its values in a map

C(K2 (q-,^, . . • ,q^) , Kg (q^^, . . . ,q^) , K^ (q^^ , . . . ,q^) , K^ (q^ , . . . ,q^) )

which is continuous with respect to changes Q := Q + A to Q.

The following code is a fairly efficient prederivative of (49)

(50) (VqGA, xG{w€s1k^(w) = q}, b^^ G K2 (x) * DOM C,

b2 G Kg(x) * DOM C{b^}
I

'^Yi^U) & K^(x) &

[K (x) ,K (x) ] G PR0JECT(2, C{b^,b2}))

C(b^,b2,K^(x) ,K^(x) ) := C (b^ ,b2 ,K^ (x) ,K^ (x) ) + {x};

END V;

This can be further improved by reduction of {wGs|K. (w) = q}.

We note in regard to the last several examples that

quantifiers appearing in the boolean subpart of setformers

can be rewritten as finite disjunctions and conjunctions.

Thus, in addition to the direct methods we have already

mentioned for handling quantifiers, we can also make use of

355



the techniques for differentiating general setformers (36),

(43) , (45) , (45-) , (47) and (47') .

The techniques and concepts described in this section

can be used to extend the basic continuity Rules 1 and 2 to

generalized set formers involving multiple iterators, i.e.

(51) C= {[x^,...,x ]: x^Gt^, x^et^{x^) , . . . ,x^t ix^, . . .X ^^)

I

K(x, , . . . ,x ) } .

"^ q

Here we assume that K does not contain any free occurrences

of any free parameters appearing in the set expressions

t, ,...,t . In order to reduce the total expression (51),

we must first be able to reduce all the subexpressions t.

upon which (51) depends. Let us suppose for the sake of

simplicity that each expression t. in (51) is continuous in

all of its parameters other than x, ,...,x._, (which we will

treat as 'discontinuity parameters'.) Then if the parameters

on which t . depends continuously undergo only small changes

in R, we know from preceding analysis that t. is reducible;

to reduce it we store its values as a map t.(x, ,...,x. -,) .

D 1 D-l

Since for 2 <^ j £ q, the range of values of x. depends on

the values of x,,...,x._, , it is convenient to consider

the set

°[x^,...,x._^] ^ ^f^l ^i-l^= x^et^,...,x._^et._^(x^,...x._2)}

as the domain of the map t . (x , . . . ,x
.

_, ) . Whenever a parameter

in which t. is continuous changes differentially, the values

of t . (x^ , . . . ,x
.

_, ) must be updated for all necessary values

356



of [x , . . . ,x. , ] e D

p

. (these sets of values are
i ll [X,...,X._,J

defined by rules like those discussed earlier in the present

section) ; the actual update operations to be employed will

be defined by rules like those of Section C. Moreover,

since any change to t . (x, , . . . ,x
.

_, ) can also change the

domains D. , for j > i, and in particular can cause
Lx, / . . . ,x.j

them to increase, it will sometimes be necessary to calculate

additional map values t ., (x, ,... ,x .),... t (x, ,... ,x^^)

when t . (x-j , . . . ,x . _-, ) changes. Once the t, , . . . t (x, , . . . ,x ^^)

are known to be reducible, then (51) can be reduced by

replacing the subexpressions t,,...,t (x, , . . . ,x , ) by the

maps t-|,...,t (x, , . . . ,x _, ) and evaluating the result on

entrance to loop R. Then directly after any of the maps

t . (x, , . . . ,x . t) are updated within R we can insert code
1 1 1-1 "^

(derived in part from the code to update t.) which updates (51)

As an example, suppose that t ,...,t (x, , . . . ,x , ) are

all reducible to maps t, ,...,t (x, , . . . ,x _-,) r all these maps

having domains as described just above, and suppose that

a particular set expression t has the form

{x G s
I

K' (x,x, , . . . ,x j_^) } .

If s is changed slightly within R by an assignment s := s - A,

then the appropriate prederivative is

(52) (Vx^etj^, . . . 'Vx-[-_i^tj_j^(x^, . . . ,Xj_2) )tj(x^, . . . ,Xj_^)

= tj (x^, . . . ,Xj_j^)-{xGA |k' (x,x^, , . . /Xj_-|^) } ; ;

C := C-{[x ,...,x J : X Gt^, . . . ,x , Gtj_^ (Xj^, . . . ,Xj_2) /

x^G{xeA |K' (x,x , . . . ,Xj_^)
''^i +i^^j+i (^1' ,Xj) , . . . ,

X Gt (Xw . . . ,x ,)
I

K(Xw...,x )};
q q 1 q-1 1 q

357



However in the case of a differential modification s:=s+A

of s, the situation is not so fortunate. In this case the

necessary update operations are described by the following

much more complicated nested loop which updates old values

of t^ and calculates new values of t^ ,-,,... ,t .

I I +1 ' ' q

(53) (Vx^et^, . . .
,Xj_^Gt^_^ (x^, . . . ,Xj_2) ) t^ (x^ , . . . ,x^_^) :=

tj (x , . . . ,Xj_^) + {x e A |k' (x,x , . . . ,Xj_j^) ) }

(Vx^ e A|k' (x,x-|^, . . . ,Xj_^) ) tj^^ (x^, . . . ,x^) :
=

t_I \X-i I • • • /X / ;

VVX-p-.^u— ,-| \X-| / • • • /X-pJ ) L.-p,« '^i ' " • • '^Tj_"] ' •

U-|-
, p V^l / • • • f^T I 1 ' / • • • /

(VXq_3^ e tg_^(x^ Xg_2)) tg(x^ x^,^) :
=

tg(x^, . . . ,Xg_j^)

end Vx, , . . . , end Vx _,

;

*— ' ~ ^ "*~ iLX-./,,,^ X J Z X^'^U-j f • • • ^X-p^-.^'C-j-^i \X-. f • • • f Kj ^r^ } t

X^efxGA |K'(x,X-|^,...,Xj_^)}, ^1 + 1^^1+ 1 (^1 f . . • /Xj) , . . .

X Gt (x^, . . . ,x ^^) I

K(Xj^,...,x ) ;

Despite the complexity of (53), it is not difficult to

see that the work implied by the differential update calcula-

tions (52) and (53) is much less than the work necessary

to perform the total calculation (51)

.

Thus we see that (51) is continuous in the collective

differential changes to every value that the map t (x , ...x ,)

can take over its domain D, , ; and since the
LX-. / • • • ,x^^-| J

expression t is continuous in differential changes to all

of its parameters except for x, , . . . ^x , , we can conclude

358



that (51) is continous relative to all of the continuity-

variables of t .

As a final remark concerning examples (52) and (53)

,

we note that even when some or all of the computed set

expressions t. of (51) cannot be reduced profitably (because

the space required by the maps t. is excessive), we can

sometimes reduce (51) without reducing the maps t . . This

is done by replacing (52) and/or (53) by the code

(54) C := C + {[x^,...,x ], x^Gt^, . . . ,Xj_^etj_-^(Xj^, . . . ,Xj_2) ,

x^elxeAJK' (x,Xj^, . . . ,Xj^^) , Xj^^€tj^^(x^, . . . ,Xj) , . . . ,

X G t (x^,.,.,x ^^) I

K(x^, . . . ,x ) }

;

to be executed within L after s := s + A. Note that this

code will often be inferior to (52) and/or (53) for cases

in which (52)/ (53) can be used, since in (54) the expression

t. must be recalculated repeatedly; however, since the set

{x G A
I

K' (x,x , . . . ,Xj_^) } will generally be much smaller

and easier to calculate than {x G s
|
K ' (x,x^ , . . . ,Xj_^}

/

the update operation (54) may be much less burdensome than

the full calculation (51)

.

Rule 2 generalizes to (51) much more smoothly than Rule 1,

Whenever an n-ary map f (all of whose occurrences in K of (51)

have at least one parameter involving a bound variable x^)

is changed within R by an indexed assignment f (y-j^ , • • • /y^^) = Zf

the code required to update the value of (51) is

359



(55) s = {[x ,...,x ]: x,Gt ,..., X et (x ,...,x ,)
2 1 qil <3"3l <g~l

I

p^^(Xj^, . . . ,x^) = y^ &...& p^^(x^, . . . ,x^) - y^ or

... or p^^(x^,.
. . ,Xg) = y^ &...& Pj-n^^l' • • • '^q^ " ^n^'

C := C - { lx(l) , . . . ,x(q) ] : x G s^
|

K (x (1) , . . . , x (q) ) } ;

f (y^/ . • • 'Y^) := z;

C := C + {[x(l) , . .

.

,x(q)] : x S S2 | K (x (1) , . . . , x (q) ) }

;

where the notation used is like that which we have employed

in the preceding discussion of Rule 2.

One last example,

(56) C = {e(x) : x G s
|
K(x) }

will illustrate reduction techniques somewhat different

from those already mentioned. Expression (56) is continuous

with regard to changes s := s + A in s, and it has the

prederivative

(57) C := C + {e(x): x G A
|
K(x)} .

However, Rule 1 does not generalize easily to give a

prederivative for (56) with respect to changes s :== s - A.

One way of handling this difficulty is to transform (56)

to the form

(58) C = {e(x): x G {w G s
|
K(w)}}

and then reduce {w G s
|

K (w) } . Another more powerful method

begins by representing (56) as a multiset; i.e., by making

use of an auxiliary map

360



COUNT(q) = [+: X G s
I

e(x) = q & K(x)]l

we can rewrite (56) by an equivalent setformer

C-, = {e(x) : X e s |COUNT(e (x) ) n= 0} which is easier to

handle. C, can be differentiated profitably with respect

to the changes s := s + A using the following prederi-

vative code

,

(59) (Vx e (A * s) , e(x) e DOM COUNT
|

K(x))

COUNT (e(x)) = COUNT (e(x)) + 1

;

END V;

C, = C, + { e (x) : X e A
I

COUNT ( e (x) )

^~
}

;

To deal with more general set formers than those

already considered, we propose to transform them into

expressions involving conveniently dif ferentiable subexpres-

sions on the one hand and on the other hand subexpressions

which are not amenable to reduction. Chapter 3 describes

a semiautomatic source to source interactive transformational

system which can assist this process of program restructuring.

We have now given quite a number of illustrative

examples, and can move ahead to our next chapter which

will discuss implementation algorithms and general applica-

tions. However, before doing this, we shall pause momentarily

and note that there exists a whole class of transitive

closure algorithms which are amenable to improvement by our

transformations. The main part of such transitive closure

algorithms typically consist of while loops which iterate

361



a block of code until an existential quantifier becomes

false, i.e., have the following general form:

/* initialize variables */

(60) (while 3x6 s
|
K(x)

)

<BLOCK> (x)

END while

where <BLOCK> involves redefinitions s := s + A to s,

indexed assignments f(y^,...,y ) :- z to a map f which

also has occurrences in K, and perhaps other kinds of

changes to variables on which K depends (we also assume

that <BLOCK> contains uses of x) . The techniques presented

in this chapter indicate that (60) can often be transformed

by formal differentiation to yield a faster 'workset' version,

(61) /* initialize variables */

workset := {x s s
|
K(x)}

(while 3x G workset)

<BLOCK'> (x)

END while

where <BLOCK'> is formed from <BLOCK> by insertion of

derivative code to keep WORKSET available. Still more

generally, there ^ill exist situations in which

{x € s|k(x)} involves discontinuity parameters q , . . . ,q

so that a map workset (q, ,... ,q ) is necessary to store

separate values of {x e s|k(x)} within the loop of (61),

362



Many sorting, parsing, graph, and general problem solving

algorithms can be written in the form (60) . Some of these

algorithms will be found in Appendix F.

The formal differentiation techniques we have

described allow algorithms to be written in a 'high style'

in which complicated manipulation of worksets can be avoided

at no cost since these methods can directly generate faster

algorithms from these 'high style' versions. The perfection

of our methods will therefore enable programmers to use

powerful high level dictions to write clear high level

programs which can be transformed routinely into more

efficient low level versions (cf. Schl-Schl2 for a compre-

hensive discussion of this idea; cf. Schll, Schl2, Sch2 for

particular high level dictions optimizable by formal differ-

entiation) . Among other things this will facilitate correct-

ness proofs of programs, since, e.g., we can expect to

prove undifferentiated programs of the form (60) correct

more easily than their more complicated workset versions (61)

(cf. Sch 10 for further elaboration of this thought).

363



Ill . An Implementation Design of Formal Differentiation of

Expressions Continuous in All of Their Parameters

A. Overview and System Design

We shall now present a design for a system supporting

semiautomatic formal differentiation of expressions contin-

uous in all of their parameters. The design to be presented

is a first step toward a much larger task -- i.e. an

interactive program transformation system which supports

formal differentiation of arbitrary expressions as well as

other related program transformations such as recursion

elimination. Practical implementation of such a project

would require development of a large system incorporating

strategies which choose between speedup goals and storage

limitations. In the present chapter we concentrate exclu-

sively on formal differentiation mechanisms which might be

included in such a system, and in fact will only deal with

expressions continuous in all of their parameters. This

design will then be used to suggest extensions which would

allow discontinuous cases to be handled.

The diagram below (Figure 1) gives an overview of our

proposed system. A system user is assumed to issue instruc-

tions via an interactive terminal to a command processor

which first validates his commands and then either performs

them or passes them on to an appropriate supporting routine.

The command processor signals successful or unsuccessful

364



SOURCE PROGRAM IN

PARSE TREE FORM

(PARSED IN)

j<

SOURCE

PROGRAM

TEXT

TRANSFORMATION

LIBRARY

(TRANSLIB)

/transformation

i generators j

-'.

COMMAND
PROCESSOR

t

USER SYSTEM

COMMANDS RESPONSE

^'

UNPARSER

SOURCE

PROGRAM

TEXT

FIGURE 1. SYSTEM OVERVIEW,

365



completion of tasks at the user's terminal. System

utilities include the following: 1. A parser reads a

source program text, parses it, and outputs an annotated

parse tree form of the text in a file called PARSEDIN

for subsequent transformational manipulation.

2. An unparser reads PARSEDIN, unparses it, and

outputs the resulting formatted program with statement

numbers at the user's terminal; this utility allows

the user to see the results of transformations applied

to the PARSEDIN file.

3. Transformation generators which are invoked by

the command processor manipulate PARSEDIN.

To perform a particular transformation T these

generators find information about T in a transformation

library, TRANSLIB. This information will include enabling

conditions, instructions on how to manipulate PARSEDIN,

and links to other transformations in TRANSLIB that can be

tried next. Each generator will check that all enabling

conditions are met before performing operations on the tree

file. The generators may also request user intervention

for difficult action or validation decisions which

cannot be handled automatically.

The basic design of the transformational implementation

discussed here uses ideas of Loveman [L2] and Kibler,

Standish , and Neighbors [KIl ,ST1 ,ST2] . However, the

366



transformations dealt with here, and formal differentiation

in particular, are considerably more complex than the local

syntactic transformations which largely concerned the

authors just cited. Data flow, type analysis, value flow,

inclusion and membership relations [Sch8], and even human

intervention will sometimes be necessary to enable correct

application of the transformations which the system we

propose will apply.

Our proposal also differs from the previous work by our

use of a variant of SETL as a source language. This choice

is probably necessary to eliminate some sophisticated

theorem proving (which would be called for in a lower level

language) to establish enabling conditions for the powerful

transformations we wish to use. The close link between

language and transformations becomes clearer when we view

the effort required to justify the use of a transformation

as involving a temporary decompilation of a program from a

language of lower level of abstraction in which the meaning

of a program is scattered globally in the text into a language

of higher level in which difficult semantic details are

exposed only locally. The cost of this temporary decompila-

tion can be minimized, however, if each transformation serves

to translate a primitive semantic feature used in a limited

aontext of a program at one language 'level' into a more

efficient implementation expressed concretely at a lower

level. Since som.e information obtainable from analysis of

367 ,



more abstract versions of an algorithm will be lost at

lower level versions, each application of a transformation

must be chosen carefully to avoid dispersing important

program facts prematurely. In other words, we are aiming

for a largely top down program manipulation system.

Of course, the success of any transformational approach

depends on the ease in which transformations can be seen

to apply, and this is related to the difficulty of formally

justifying their use. These factors all reflect the expres-

sive power of the programming language, and the ability of

this language to express everything from what Schwartz

calls the most concise base 'rubble' form of an algorithm

to its implementation version 'cobweb' [SchlO ,Sch4]

.

B. SYSTEM DESCRIPTION

(i) Parser

We avoid unnecessary technical complications by

describing a parser for a modified subset SUBSETL of SETL

text (see Appendix A). SUBSETL lacks 'GO TO '

s
' and

labels, function and subroutine calls, I/O, and allows

no side effects other than implicit assignments to the

bound variables of existential and universal quantifiers.

SUBSETL also contains type declarations (used for input

variables) of the form <type> (<varlist>) ; where <type>

can be INTEGER, BOOLEAN, TUPLE, SET, or MAP and <varlist>

is a list of variables each separated by a comma.

368



A type declaration placed at a point p in a source program

determines the type of all program variables found in <varlist>

whose scope reaches p.

The parser first produces a parse tree version of a SUBSETL

source program. A control flow graph can subsequently be worked

out on the parse tree in preparation for data flow analysis and

type analysis. After this analysis, the parse tree T will have

been annotated with the successor and predecessor maps (FSUCC

and FPRED defined on the nodes of T) of the flow graph, the map

USETODEF which associates each variable use i to the set of

variable definitions which can reach i, the map DEFTOUSE which

associates each variable definition o to the set of variable uses

reached from o, and a map TYPE mapping nodes of T representing

expressions to {INTEGER, BOOLEAN, TUPLE, SET, MAP},

(ii) UNPARSER

The purpose of the unparser is to obtain a source listing

of the PARSEDIN file. The UNPARSER algorithm simply prints

out the leaves of the parse tree from left to right along with

the numbers of statements. Each statement begins a new line

preceded by a statement number, and if a statement cannot fit

on one line, it will appear on subsequent lines indented two

columns to the right. In this way, the loop, block, and state-

ment structure of the parse tree will be reflected in the

indentation of the text produced by the UNPARSER.

The procedure found in Appendix E (i) represents a SETL

version of UNPARSER, The parse tree consists of a set of

nodes whose labels correspond to the syntactic types.

369



lexical types, and literals of the SUBSETL grammar.

PROGRAM is the root node, TSUCC maps nodes to tuples of blank

atoms representing ordered successor nodes, NUMBER maps

nodes labeled <statement> to statement numbers, and LEAF

is a function defined as true for leaf nodes and false

otherwise.

(iii) TRANSFORMATION GENERATORS;

Our transformational approach derives from the ideas

of Loveman [L2] and Standish, Kibler, Neighbors [KIl].

We describe a transformation using six of Loveman ' s seven

properties

:

1. Name - identifies a transformation and describes

the parameter format for invocation ;

2. Enabling condition - a predicate which must be satisfied

for the transformation to be performed ;

3. Tree pattern to search for - the pattern must match a

section of the tree representation of source text in

order for the transformation to be performed ;

4. Replacement rules - the transformational action to be

performed on the tree representation of source text;

5. Changes to global functions - transformational action

to be performed on such global functions as USETODEF

and DEFTOUSE maps

;

6. Chaining directions - these are instructions which

trigger attempts to perform other transformations after

the current one successfully completes.

Loveman ' s seventh mechanism, his 'improvement heuristic', we

omit. 3-70



All the transformations of our system are encoded

as 6-tuples of the form just mentioned and are stored in

a transformational library, TRANSLIB. Aside from the

assortment of standard program transformations catalogued

in [ST2] , TRANSLIB should contain a variety of set theoretic

transformations important in preparing source code for

formal differentiation and in cleaning up the messy code

transition state that formal differentiation leaves in

its wake (cf. Appendix D for a sampling of the transforma-

tions we propose to use)

.

Like the transformational systems of Loveman and

Standish, the one described here will treat enabling condi-

tions as ad hoc procedures which can interrogate global maps

such as the USETODEF links, gather simple information from

the annotated parse tree, or ask the user to manually vali-

date difficult program facts. For purely local syntactic

transformations, the tree pattern and replacement rules can

conform to Standish 's production system [KIl] as the left-

hand side and right-hand side strings of productions of the

form LHS => RHS. We let LHS and RHS contain pattern variables

(which are denoted by capital letters), literals, and

balanced pairs of parentheses. A pattern can be represented

uniquely as a tree, e.g., if a , ,o ^ ,o ^,o .,o^ are either

literals or pattern variables then the pattern

(a, (o^ (o, o -.) a_.) a. a^) corresponds to the following

tree:

371



(1)

We say that a pattern (1) matches parse tree, P, if

(i) (1) has the same structure as P up to the leaves of (1)

.

(ii) all literals of (1) match corresponding leaves of P and

(iii) all occurrences of a single pattern variable a in (1)

must match the same subtree of P.

The procedure r4ATCH in Appendix E (ii) is a SETL version of

an algorithm which matches a pattern tree (the argument

'PATTERN') to a parse tree (the argument 'TREE'). PSUCC and

TSUCC are the respective successor maps for the pattern and

parse trees. The boolean function LEAF is defined as true

for the nodes having no successors, otherwise false. LITERAL

is a boolean valued function which returns true for leaf nodes

which are not pattern variables of a pattern tree.

Note in connection with the foregoing that expressions

enclosed in parentheses and pattern variables match subtrees.

Consequently, a production, P: {X or X) => (X) will not match

the tree (2), since the subtrees on both sides of the 'or'

are not the same.

372



<EXPN>

(2)

<EXPN>

<FACTOR>

<ATOM>
I

A

We will use the straightforward match-replacement

technique just described. However, many transformations

such as formal differentiation cannot be performed by a

simple rewrite rule. To handle these more general proce-

dures we let both the tree pattern and the replacement

rule entry in a formal differentiation 6-tuple consist of

code procedures.

We will not describe differential manipulation of

global functions (e.g. data flow maps) using any systematic

formalism but rather will use ad hoc procedures to do this.

Such procedures might even have to recalculate such global

functions completely.

Although chaining directions will not be used in our

proposed initial system, their success as reported by

Loveman [LI] and Kibler [KIl] in providing a way to auto-

matically link several low level transformations to achieve

a higher level transformation gives chaining mechanisms high

373



priority for future extensions to our work (cf. Appendix D,

Sections VII, VIII for examples). However, the system we

describe will contain lower level primitives which can

support the Kibler chaining technique programmed in Appen-

dix D.

These primitives serve to limit costly searching

through the parse tree and production space by defining a

tree locality and selecting transformations to try within

this locality. Program localities can be defined by either

a statement number (recall that each statement including

compound statements are given unique sequence numbers by

the parser) and/or by a pattern string. A statement number

locator defines the locality to be searched as the subtree

rooted to the particular statement. A pattern string

locator limits the locality to be searched by matching the

string against subparts of the current locality. The

pattern string and matching operation in this case are

somewhat less restricted than the production LHS pattern

and its respective matching operation; i.e., a string locator

may contain fragments of syntactic tokens and may match

only part of a subtree successfully. Consequently, we

expect a user of our system to be able to define a locality

in his program text about as easily as he could find a

portion of text by means of a general text editor.

Transformations are selected by supplying a name and

proper parameters. The exact format of the commands to be

supported by our system will be discussed in the following

374



subsection which deals with the 'command processor'.

(iv) COMiMAND PROCESSOR.

The command processor (CP) interfaces between a user

and the program manipulation system. One of the CP '

s

responsibilities is to validate system commands which a

user can enter from a teletype. Once validated, a command

is transmitted to an appropriate utility for execution.

All I/O is handled by command processor formatting and

diagnostic routines. Requests for user input might originate

from a utility or from the CP itself. Error diagnostics and

informative messages are channelled through the CP

.

The CP prompts the user to enter input by printing a

prompt character > at the beginning of a line. All

commands begin with a special character $ to distinguish

commands from other kinds of input.

A state of the CP may be described by two components,

a file table FTAB and a current tree location LOC . FTAB

maps file names to tuples containing relevant file informa-

tion. Each such file contains a parse tree representation

of a SUBSETL program. A special file named PARSEDIN refers

to the file currently being edited. LOC refers to the

current locality to be searched in PARSEDIN. Initially

FTAB = nullset and LOC =0. A transition from one CP state

to another takes place in accordance with the following

list of user commands:

375



$PARSE, <FNAME> - CP validates <FNAME> as an accessible coded

file. If validation succeeds, control passes to the

parser. If parsing succeeds, PARSER outputs its parse

tree of FNAME onto the file named PARSEDIN (previous

contents of PARSEDIN are destroyed). FTAB (PARSEDIN)

must be appropriately set and LOG refers to the root

node <program> in PARSEDIN.

$UNPARSE (FNAME) - CP checks that FTAB is not empty.

If this is true, it passes control to the UNPARSER

utility to print out the source text at the terminal

with statement numbers for the current PARSEDIN file.

An optional file name parameter can be used if the

user wants the source to be placed on a file instead of

at the terminal. In that case a new entry for FNATIE in

FTAB must be made.

$L, <statement#> - This command defines a locality in terms

of a particular statement. CP checks that LOC is not

zero, validates the number <statement#> , and if success-

ful it places a reference to the subtree corresponding

to <statement#> in LOC. $L,+s moves the locality up

or down the tree.

$P,<pattern> - This command defines a new locality within

the current locality based on the first successful

match between <pattern> and a sublocality according to

a depth first search within the current locality. CP

must first check that LOC is not and that <pattern>

376



is well formed before the search match begins. When

the first successful match occurs, LOC is set to the

new node of PARSEDIN. If no successful match takes

place LOC remains unchanged.

$PRINT - This command unparses the current locality if

LOC i- 0.

$STOP - The program manipulation system terminates.

$SAVE,<FNAME> - The PARSEDIN file along with the current

value of LOC is copied to a file named <FNAME>.

CP must determine that FTAB is not empty and that

a file of the name <FNAME> does not already exist

before performing its functions. If all is successful

CP sets FTAB(FNAriE) to appropriate attribute values.

$RESUME,<FNAME> - The file PARSEDIN becomes a copy of the

parsed file named <FNAME>. The old PARSEDIN file is

destroyed, while the file <FNAME> remains unchanged.

If the functions described just above are to be perform-

ed successfully, FTAB(FNAME) must not be undefined.

LOC is also reset. Note that both the SAVE and RESUME

functions provide a crude manual backtracking facility.

A system user will, thus, be able to transform the same

program according to different strategies at the same

time. If one chain of transformations appears unfruit-

ful, he can thus pursue an alternative strategy by

RESUMing a previously saved state of the system.

377



$<TRANSFORMATION NAI'4E> , <PARAriETER LIST> - This command serves

to select, validate, and perform a transformation on

the PARSEDIN file. CP must validate that PARSEDIN exists

by checking that FTAB 7^ nullset. Then < TRANSFORMATION

NAME> must match the name entry of a transformation

description in TRANSLIB. The parameter list syntax

must conform to the format part of the name entry.

If validation succeeds, CP passes a reference to the

entry in the TRANSLIB and the parameter list to the

transformation generators for execution.

The above command set is an initial collection of

functions to be implemented in our first system.

The following steps are necessary for system startup:

1. SUBSETL source text files are produced externally.

2. Source text files, TRANSLIB, and the program manipulation

system (PMS) execute module are requested for a run.

3. When the PMS module is first executed, control passes

to the CP routine which prompts the user to enter a command.

4. If FIRSTFILE is the first file that a user wants to

transform, then the command $PARSE, FIRSTFILE is entered.

If FIRSTFILE is successfully parsed, transformations can

then be performed. Otherwise, the user must select another

source file for parsing or terminate, edit FIRSTFILE, and

try again.

Let us consider the following topological sort text

as a first example to illustrate system functioning:

378



/* sp is a predecessor relation which defines a partial
order on s */

t - null tuple;

(while 3x e s
I

(sp{x} *s)= nullset)

t = t + [X];

s = s - { X } ;

end while; /* t will be the total order */

which is contained in a coded file named TOPSORT. For this

example, we will use two transformations from TRANSLIB,

3 FORMAT and SETEQNL (Appendix D, IX describes the collection

of transformations that we assume will be available) , to

transform the existential quantifier of the topological

sort above into a more convenient form.

During step 3 of system startup the command

processor will first prompt ('>' character is used) the

user to enter a command. The steps below describe a user's

interaction with the system:

user command system response

$PARSE, TOPSORT TOPSORT is parsed and stored on PARSEDIN.

LOG is set to the root node. The system

then prompts the user (a prompt will always

be generated after the system completes each

task)

.

$UNPARSE PARSEDIN is printed at the user's terminal

with statement numbers and textual structuring

as follows:

1 t = nulltuple

;

2 (while 3x G s
I

(sp{x} * s) = nullset)
3 t = t + [X ] ;

4 s=s-{x};
end while;

379



$L,2 LOG is set to the statement node corresponding to

the while loop. A new locality is defined.

$P, (X = Y) Starting from the current locality, a depth first

search matches the pattern (X = Y) with the

expression (sp{x} *s) = nullset. LOG is reset to

the new node

.

$SETEQNL The transformation generator will immediately match

the LHS pattern of the SETEQNL rule to the current

locality. Gonsequently , (sp{x} * s) = nullset

is replaced by {[+: u 6 (sp{x} * s)]l) = and

LOG remains unchanged.

$L,2 LOG is set back to the statement corresponding to

the while loop.

$3F0RMAT Starting with the current locality, a depth first

search will eventually stop with a match between

the LHS pattern of the 3 FORMAT rule and the

existential quantifier expression in PARSEDIN.

After the replacement takes place, LOG will be

set to the current node (for the 3 quantifier).

$UNPARSE The following PARSEDIN text is printed at the

user's terminal:

1 t = nulltuple ',

2 (while 3xe{v€s| ( [+:ue(sp{v}*s) ]1) = 0})
3 t = t + [X];
4 s=s-{x};

END WHILE',

$SAVE,T0P1 A new 2 record file, TOPI is created with the

contents of the current value of LOG as the first

record and a copy of PARSEDIN as the second.

380



Next, suppose that T0P2 is a saved file containing

the following parsed code (representing a lower level version

of a topological sorting algorithm)

:

1 t = nulltuple;

2 (Vx e s)

3 COUNT(x) := [+: y e (sp{x} * s)]l;

END V;

4 (Vx e s)

5 succ(x) := {y G s
|

x G sp{y}};

END V;

6 ZRCOUNT = {x G s
|
COUNT (x) = 0};

7 (while 3x G ZRCOUNT)

8 t := t + [x] ;

9 (Vy G succ (x)

)

10 Q:={zGs|z=y};
11 ZRCOUNT := ZRCOUNT- {z G Q | COUNT (z) = 0};

12 COUNT (y) := COUNT (y) - 1;

13 ZRCOUNT := ZRCOUNT + {z G Q | COUNT (z) = 0};

END V;

14 ZRCOUNT = ZRCOUNT - {x};

15 s=s-{x};

END WHILE

The TRANSLIB entries listed in Appendix D, IX include

cleanup transformations which can be used to simplify the

source code above

.

381



What follows below is a scenario of a user's inter-

action with the transformation system applied to the source

for T0P2.

User Command

$RESUME, TOP

2

$L,10
${T0*
$ *SIMP

$L,10
$VSUBST, SC0PE=11
$VSUBST, SC0PE=13

$L,11
${=NL

$L,11
$IDEM
$USELESS
$L,13
${TOIF

$L,13
$DISTIF1

System Response

The current PARSEDIN is replaced by

a copy of T0P2 and LOG is restored.

{zSs|z=y} is replaced by {y}*S;

system prints s J/l/CS {y} at the

terminal and replaces {y}*s by {y}.

Occurrences of Q in statements 11 and

13 are replaced by {y} after the

enabling condition is validated.

System prints Vz e {y } |nc0UNT ( z) =

and replaces the setformer of state-

ment 11 by nutlset .

ZRCOUNT:=ZRCOUNT-NULLSET becomes

ZRCOUNT:=ZRCOUNT . Statements 11 is

removed

.

IF COUNT(y)=0 then {y} else nullset

replaces {ze{y} | COUNT (z) = 0}

After validating the enabling condi-

tions the IF expression at line 13 is

distributed into a conditional state-

ment

382



$IDEM
$L,-1

$USELESS
$L,13
$EMPTYELSE

$DEADELIM, SC0PE=7

$L,5
${to V

$L,4
$VCONC

$VCOMMUTE
$VSIMP*
$*COMMUTE

IF COUNT (y)=0 then ZRCOUNT: =ZRCOUNT+{y }

;

eZ.se ZRCOUNT := ZRCOUNT + nullset;

end if;

Locality is moved up to the statement,

ZRCOUNT := ZRCOUNT;

The useless statement is removed.

Statement 13 becomes

IF COUNT (y) = then ZRCOUNT : =Z?.COUNT+{y } ;

The dead code elimination routine will

eliminate statement 10, Q := (y) as well

as the last assignment statement,

s : = s - { X } ;

succ(x) := {y e s|x e sp{y}};

is transformed to the following loop:

(Vy e s|x e sp{y}) succ (x) :=succ (x) +{y}

;

END V;

Viterators at statements 4 and 5 are

now trivially combined into the form

(Vx e s, y e s|x g sp{y})

succ(x) := succ (x)+{y}

;

END V;

These three commands simplify the loop

at statement 4 to an equivalent loop

(Vy e s, X e sp{y})

succ(x) := succ(x)+{y};

end V ;

383



$L,4
$VBRKUP

$L,2
$JAM

$UNPARSE,TOP

$STOP

System prepares loop at 4 for jam-

ming with the loop at 2.

The system makes sure that the

jammed blocks are disjoint and

carries out the transformation.

The system places source text for

the current PARSEDIN reflecting all

the transformations applied above

on a file named TOP. We state this

simplified version of the topologi-

cal sort just below:

t = nut tuple',

(VW G S)

COUNT(w) := [+: y e (sp{w} * s)]l;

(Vx e sp{w})

succ(x) :- succ(x) + {w};

END V;

END V;

ZRCOUNT := {x S s| COUNT (x) = }

;

(while 3x e ZRCOUNT)

t = t + [x] ;

( Vy e succ (x)

)

COUNT (y) := COUNT (y)-l;

IF COUNT (y) = then ZRCOUNT := ZRCOUNT

ENDIF;

END V;

ZRCOUNT := ZRCOUNT - {x};

END while;
3 84

- (y);



We have just presented external design specifications

for a source to source transformational implementation includ-

ing an extensive collection of high level transformations

required to accommodate formal differentiation which we

discuss separately in the next section.

385



C. Computing the Formal Derivative

1. Introduction.

The major implementation problems which we need to

consider center on the construction of algorithms to

automate formal differentiation (which we abbreviate

hereafter as FD) . Since FD is a basic optimization

technique applicable to programs written in a variety

of languages, it is useful to describe a language inde-

pendent methodology from which to derive FD implementa-

tions for particular programming languages. We will

develop such a methodology in this section for handling

expressions continuous in all of their parameters, and

we derive algorithms for implementing FD in the contexts

of FORTRAN and SETL.

Aside from providing a unified approach to implement-

ing FD in widely varying languages, the technique described

here will not be bound by assumptions which limit its

usefulness to expressions continuous in all parameters, and

Chapter 4 will describe extensions to our framework so

that it can aid in the development of FD algorithms for

handling more general expressions.

We recall from Chapter 1 that a method for implementing

FD must perform two principal functions:

1. Find reduction condidate expressions; and

2. Perform the FD transformation on some of these

candidates

.

386



We will describe two strategies for handling these

tasks. The first strategy is a completely automatic

approach that reduces all reduction candidate expressions.

This approach relates to FORTRAN level reduction in

strength algorithms found in [Al ,C1 ,C2 ,K1 , Schl ] . In the

second approach, reduction candidates are determined auto-

matically, but selection of candidates for differentiation

is done interactively from a terminal.

We propose this second approach for an initial SETL

level FD implementation design to be integrated with the

transformational system described in the preceding sections

of this chapter. In this section we shall describe an FD

design for SETL which is capable of applying many of the

transformations discussed in Chapter II, C.

An important human factors goal of our design is to

minimize and localize the changes made in the source code

due to application of our transformations. In particular,

wholesale introduction of temporary variables to hold

subexpression values, which is allowable for optimizers

which only transform an intermediate text, can easily make

source level code unreadable. The algorithms we use to

implement FD are sensitive to this concern.

387



2. Automatic Approach

FD is a kind of program loop optimization which

generalizes code motion and which works on a single program

region at a time. The program regions we will use for FD

are the 'natural' loops (described in AUl) which are

defined uniquely by the dominator relation on a flow

graph G and by the set of back edges in G. These loops

partition G into single entry strongly connected regions.

For each such loop L we insert a new prologue node at a

place p in the parse tree T determined by the following

conditions

:

i. p ^ L;

ii. Control flow must pass through p before entering L;

iii. The single statement succeeding p in the control flow

graph on T is the entry to L.

All code pushed out of L by FD will be moved to the prologue,

To handle the two tasks of finding and reducing differ-

entiable expressions, we proceed roughly as follows:

1. First we find an initial set Cands„ of differentiable

expressions and let i := 0.

2. Then we iterate steps 3 and 4 until Cands .
= 0.

3. Remove a candidate expression from Cands. and

differentiate it.

4. Let i := i+1 and include in Cands. expressions

found in Cands. _, plus any new reduction candidates

which may result from step 3.



2.1 Finding Reduction Candidates

Our automatic approach to FD demands that all differ-

entiable expressions in L should be reduced in an order

consistent with the following rule: an expression e cannot

be reduced until all dif ferentiable subexpressions of e are

first reduced. Thus, the initial set Cands. of reduction

candidates will include only those dif ferentiable expres-

sions which do not have reducible subexpressions. Our method

of constructing this set looks for all expressions e in L

matched by elementary expression forms found in a collection

F of such forms, and that also depend only on particular

combinations of region constants and 'induction' variables.

Each elementary form f(x, ,...,x ) is a pattern tree

involving pattern variables x, ,...,x and literal symbols.

We represent a pattern tree by a set N of nodes (implemented

as blank atoms) and a map Psucc associating each node n

with a tuple Psucc (n) of successor nodes. We also make

use of a map Plabel which is partially defined on N and

which associates a node n with either the name of a pattern

variable or a literal value (e.g., a constant or operator

symbol) . Patterns are used to match subtrees representing

reducible expressions within the parse tree for the loop L.

In SETL our implementation for parse trees is similar to

our pattern tree implementation; i.e., Tsucc is the

corresponding successor map in a parse tree and Label associ-

ates a parse tree node n with a literal value such as

389



variable name, constant, or other token value (cf. Appendix

E(ii) for more details on pattern and parse tree represen-

tation) .

We say that a basic form f matches a parsed expression

rooted in r if the tree structures of f and r match down to

the Leaves of f and if the literals of f and r match iden-

tically. In SETL this is expressed more simply by the test

Match (r, f,Pfunc) where match is the boolean valued SETL

function given in Appendix E(ii) and described in Section B

of the present chapter. We let Text(r) denote the text

expression for the parse tree r, and say that Text(r) is a

potential reduction candidate expression if the predicate

3f e F |Match (r, f ,Pfunc) holds. Finally, we note that when

Match succeeds, its parameter Pfunc will be defined as a

map associating each pattern variable x of f with the root

of a matched subtree Pfunc (x) of r. If we abbreviate

Text (Pfunc (x) ) by x, then the initial set Cands_ of

elementary reduction candidate expressions consists of all

expressions Text(r), r s l, satisfying the following two

conditions:

1. 3f e F
I

Match (r,f, Pfunc)

2. If X, ,...,x are all the pattern variables of f thenIn
for i = l,...,n, X. is either a region constant expres-

sion or an induction variable.

We categorize induction variables according to the

kinds of modifications they undergo in L. By constructing

390



such categories appropriately, we can decide whether within

L an expression is continuous relative to all modifications

to variables on which it depends. To see how this is done,

it is convenient to regard each elementary form f{x^,...,x )^ In
in F as an elementary expression E = f (x, ,...,x ) in the

variables x, ,...,x . We can then specify the kinds ofIn
modifications to x,,...,x relative to which f varies contin-

1 n

uously and can describe associated update corrections to E

by entries in a table of derivatives D. More specifically,

if E is continuous with respect to a change x := g(y,,...,y^)

and if the pre and post derivatives to E are

E :- preD(y, , . . . ,y ,x, , . . . ,x ,E) and
"^ -^1 -'ml n

E := postD (y^ , . . . ,y ,x, ,...,x ,E), then the set
'^

-'I -'ml n

D(x ,f) will contain the triple

(1) [Xj := g(y^,. . . ,yj^) , E := preD(y^, . . . ,yj^,x^, . . . ,x^,E) ,

E := postD(y , . . . ,y ,x ,...,x ,E)]

Once the set D of triples (1) is formed we can regard

the three components of (1) as patterns for use in con-

structing induction variables and also in generating deriva-

tive code. Also, we can use our tree pattern matching

routine Match (given in Appendix E) to match actual modifica-

tions in variables within L by parameter definition patterns

stored as the first component of triples (1) contained in D.

Additionally, we ease the task of recognizing redefinitions

391



to variables on which reduction candidates depend by assum-

ing that variable types are made available at compile time

and that all occurrences of a variable of the same name

are bound to the same data structure.

In general, we must allow a different set of induction

variables for every component of every elementary expres-

sion in F. Given a variable v found in L and an elementary

form f(x, ,..-,x ), V belongs in the i-th induction set for f,

which we denote IV(x.,f), iff the following two conditions

hold:

1. All definitions of v in the loop L in which FD is

applied match parameter definition patterns in D(x.,f).

2. For each such definition pattern the corresponding

derivatives must consist of easy calculations relative

tof

.

We indicate costly subparts of derivatives by underlining

them in the D tables of Appendix C, and require that such

subparts be reducible. Thus, each subpart must match an

elementary expression g found in F, and must depend on

induction variables of g.

A procedure to find induction variables satisfying the

two conditions above can be based largely on the F and D

tables. Of course, the F and D tables must reflect some

appropriate, even if loose, idea of the relative cost of

operations. This informal measure of cost guides us in

determining what elementary expressions to include in F,

392



what formal derivative rules to place in D, and also what

subexpressions of these derivatives must also be reduced in

order to make FD profitable.

Before describing our fully automatic reduction algo-

rithm, we note that condition 2 above, which governs the

construction of sets of induction variables, involves a

recursive step taken whenever one application of an FD trans-

formation leads to a chain of successive transformations. To

prevent the possibility of infinite chains of steps of this

sort, we admit only a bounded number of new differentiable

expressions introduced as part of derivative code. In this

connection we use the following general heuristic: never

reduce an expression which has already been reduced.

2.2 Reduction Algorithm

We shall now give additional details concerning the

procedures used to detect induction variables and reduction

candidate expressions. These procedures employ patterns

stored in our tables F and D to match expressions and

statements in a loop L, Derivative patterns stored in the

D table will be used as macros which generate actual deriva-

tive code which is inserted into L. Expansion of these

syntax macros can involve simple text substitution in which

pattern variables function as substitutable parameters.

Together, substitution and matching allow us to handle a

general family of dif ferentiable expressions formed by

393



composition from elementary expressions.

In SETL, the function subprogram Expand (f ,Pfunc)

(cf., Appendix E(iii)) implements macro expansion. The

two parameters of Expand are a pattern tree f and a map

Pfunc which associates each pattern variables x of f with

a parse tree Pfunc(x). Expand (f , Pfunc) will return the

root of a new parse tree which results from replacing each

pattern variable x of f by Pfunc (x)

.

To facilitate our discussion of the pattern matching

and macro expression mechanisms used by the FD algorithms

to be presented, it is convenient to make use or a few

additional notational devices. If a pattern f matches a

tree t so that Match (t ,f ,Pfunc ) holds, then we use the

symbol f as an abbreviation for Text(t). Note that the

parameter Pfunc will be defined after successful matching,

and that subsequent execution of Expand (f , Pfunc) will

produce a copy of the tree t originally matched by f. We

will sometimes use the term f(x, ,...,x ) to denote the
1 n

pattern f along with all of its pattern variables x, ,...,x ,

In this case, we use the term f(x, ,...,x ) as an abbrevi-

ation for Text(t), given that Match (t , f (x ,..., x ), Pfunc)

holds and that x. = Pfunc (x.), i = l,...,n. If for
1 1

i = l,...,n t. is a tree and y. = Text(t.), then we also

use the term f(y-|^,.,.,y ) to express the same thing as

Text (Expand (f,Pfunc)
) , where Pfunc (x.) = t. , i=l,...,n.

The notation just described allows us to describe FD

394



transformations at both implementation and abstract levels.

Our implementation requires all transformations to manipu-

late the parse tree form of source code. However, for

clarity we will often prefer to discuss FD and other

transformations more abstractly in terms of changes in

source code independently of the underlying parse tree.

We will make use of the preceding notation to sketch

the logic of the automatic FD procedure given below. An

important characteristic of this procedure is that it

only reduces elementary dif ferentiable expressions. How-

ever, nonelementary differentiable expressions become

elementary after reduction of all of their subexpressions.

Thus, all dif ferentiable expressions in L will eventually

be reduced.

Algorithm 1-2.

Input: a derivative table D, a set of elementary forms F,

a parse tree L of the optimization loop, and a map

Defs which associates each variable name v occurring

in L with the set Defs (v) of nodes in L corresponding

to statements which can modify the value of v.

Output: a new optimized loop L' and its prologue code block,

1. Find the set RC of nodes in L corresponding to region

constant expressions of L.

2. Compute initial sets iv(x,f)of induction variables for

every elementary form f e F and each pattern variable

x of f

.

395



3. Initialize Prologue to an empty code block.

4. While 3a node t s l and an elementary form

f(x, ,...,x )
e F such thatIn

(1) Match (t,f,Pfunc) and

(2) for i = l,...,n either Pfunc(x.) e RC or x. GIV(x.,f)

perform steps 5, 6 and 7.

5. Generate a unique variable v_ for keeping the matched
f

expression f available in L, and insert an assignment

V = f at the end of the Prologue block.
f

6. For each expression x. , i =l,...,n such that

x. e iv(x.,f), and for each program point p e Def s (x)

at which x undergoes a change x = A_ , insert
X

appropriate derivative code which keeps v_ avail-
f

able in L. This derivative code can be generated

by first finding the unique triple [mod,preD ,postD]

belonging to D(x.,f) in which Match (p, mod, Qfunc) holds.

Next, to prepare for macro expansion we must produce

a new pattern variable map Sfunc (which can be formed

from Pfunc and Qfunc) which maps pattern variables

found in preD and postD into appropriate trees.

Finally, we expand the pre and post derivative patterns

preD and postD by executing Expand (preD , Sfunc) and

Expand (postD, Sfunc) , and insert the resulting code

immediately before and after p.

7. Within L replace all occurrences of f by v . Also,
f

within the derivative code generated in step 6 substi-

tute the variable v for any expression e which has

396



already been reduced. Finally, make appropriate

additions to the set RC of region constants and to

the induction sets IV.

Steps 1-5 and 7 above are fairly straightforward,

but step 6 requires further explanation. We note, first

of all, that as a consequence of the way our algorithm

chooses expressions to reduce, each expression chosen will

be elementary; i.e., if an expression pattern f(x, ,...,x )

arising in step 4 is the elementary form in F matching

the subtree t in L, we will know that for i = l,...,n, x.

is either an induction variable belonging to IV(x. ,f) , or a

region constant expression. Hence, in computing the formal

derivative of v = f(x, ,...,x ) relative to the change
:p 1 n

in a variable x. , we only need to consider two cases.

1. In the simplest case the variable x. occurs

only once in f . In this case, at each point p within L

where x. undergoes a change x. = A_ , we compute pre and
X .

post derivatives for v_ by matching p to a parameter change
f

pattern x. = g(x-,,...,x , . . . ,x ) in D(x.,f) where x-j^,...,x^

must match the same objects x,,...,x in L as are matched

by the corresponding pattern variables in f{x^,...,x ).

Remaining pattern variables x ^, ,...,x may match arbitrary
-" ^ n+l m

subtrees of p. Recall here that the matched parameter

change pattern is the first component of a triple

397



[x. = g(x^, . . . ,x^) ,preD (x^, . . . ,x^,E) ,postD(x^ , . . . ,x^,E)

]

which we use to determine the derivative code relative to

the change x. = A_ . Specifically, we insert code produced

by expansion (involving simple text substitution)

(2) preD (x, , . . . ,x ,v ) and postD (x, , . . . , x ,v ) ,'^ 1 m £
'^ 1 m T

immediately before and after p.

Note also that the actual expansion implied by (2) can be

empty.

2. A second more complicated case arises when more

than one pattern variable of f(x^,...,x ) matches the

same variable of f. Consider an expression

(3) v_ = f (x, , . . ,x,x. , , . . . ,x )

matched by f (x^ , . . . , x ) in which for i = 1 , . . . , j ,

X s IV (x
.

, f ) . Suppose also that for i = j+l,...,n,

either x. g IV(x.,f) and x. is different from x or x. is111 1

a region constant expression. Then when v_ is available
f

just prior to a definition x = A which spoils v_ , we
^

f

can keep v_ available after this change by executing the
f

following derivative code:

398



(4) x„^ p^= X /* copy the old value of x */

X = A /* A is the change in x within L */
X X ^

P^^^l (^OLD ^OLD'^j+1 ^m'^^)

postD^(x,XQ^j-|, . . . /^oLD'^j+l' • • • '^m'^
f

P^^Dj (X ^'^oLD'^j+1 ' • • • '^m'^^^

postD (x, . . . ,x,x.^j^, . . . ,x^,v_
f

where for i = l,...,j the macros preD., postD. are the

second and third components of a unique triple (contained

in D(x.,f)) whose first component is a pattern matching

the assignment x = A .

In deriving (4) we use the formal device of replacing

the j occurrences of x in (3) by uniquely renamed new

variables x-,,...,x all having the same value of x just
1 m

before the change x = A , and modified by

(5) x^ = A_

X. = A
^ X.

:

just afterwards . This calls for j applications of the

case 1 differentiation rule to the expression f(x, ,...,x )

formed from (3) by substitution. Observation shows

that for each associated pre and post derivative code

fragment preD . and postD. , i = l,...,j, all occurrences

of X, ,...,x. , in pre D. and occurrences of x, ,...,x. in
1 1-1 '^ 1 11

399



post D. will have the same value as the changed value of x;

these occurrences can be replaced by occurrences of the

variable x. VJe also note that all occurrences of

X , X . in preD . and occurrences of x .,,,..., x . in
1 ] 1 1+1 J

postD. have the same value as the initial value of x;

such occurrences may therefore be replaced by occurrences

of the variable x-,. _, , i.e., by a copy of the initial value

of X. The code sequence (4) then results by elimination of

all dead assignments to the renamed variables x, ,...,x.

.

Note finally that the copy operation x = x can

sometimes be eliminated profitably by using the following

approach: Find the smallest number L between 1 and j+1

such that none of the code fragments preD. and postD.

i = L,...,j in (4) refer to x_ ^ ^^ • Replace all occurrences

of X and x in preD. and post D. , i = 1,...,L-1 by x and
OJ_iD 1 1

\ respectively. Replace all occurrences of x in preD. and

postD. , i = L, . . . ,
j by X. These substitutions allow us

to replace (4) by the following code:

(6) preD^ (x, . . . , x, x ._|_^ , . . . , x^,v_)

postD^ (A^,x, . . . ,x,x.^-|^, . . . ,x^rV_)

preD^_^ (A^, . . . ,A^,x, . . . ,x,x._^^, . . . ,x^,v_)
f

L-2

postD (A ,...,A ,x,...,x,x
L-1 ' X X j+1 ^m'^.

f̂

L-1

X = A
X

400



preDj^ (x, . . . ,x,x.^^, . . . ,x^, v_

postD^(x, . . . ,x,x
._|^-|^

, . . . ,x^^^,v_)

f

"f

preD . (x, . , . ,x,x . , , . . . ,x ,v_)
J J ''-'- '" f

postD
.
(x, ... ,x,x .,,... ,x ,v_)

D 3"'"-'- ^ f

Since the code (6) is defined by the way in which

we order occurrences of x in (3) , we can change the

ordering (5) so as to generate a minimal number of calcu-

lations A . When such calculations A can be eliminated
X X

entirely or when they can be effectively eliminated by

means of cleanup transformations (cf. Appendix D) then (6)

will usually represent an improvement over (4). Note also

that copying of nonelementary variables (e.g. array,

structure or set valued variables) is likely to be expen-

sive, so that an improved version of the update code (6)

may be a necessary precondition for deciding to reduce (3)

at all.

401



2.3 Automatic FD for FORTRAN and SETL

We can use the preceding framework to derive an FD

implementation design for a given programming language Q

by constructing F and D tables , by giving a procedure

for finding induction variables, and by bounding the

number of expressions reduced by Algorithm 1-2 for Q.

As a first example of this observation, consider the

case of FORTRAN. Our goal in FORTRAN level FD is to reduce

costly exponentiations to less costly multiplications, and

to replace division and multiplication operations by

inexpensive additions and subtractions. The Fortran F

and D tables shown in Appendix C, i reflect this aim and

also reflect our assumptions about the relative cost of

these operations. Note that subexpressions underlined in

the D table represent costly subparts of derivatives which

must be further reduced to make these derivatives profit-

able .

If we examine the F and D tables for FORTRAN closely,

we can see that use of a separate induction variable

procedure for each parameter of every elementary

expression is easily avoided. The Fortran table F contains

three elementary forms, but the basic parameter definition

patterns contained in D for each of these forms are the

same. To decide whether a variable v fits these basic

definition patterns we can simply evaluate the predicate

402



Redef 1 (v) * each definition to v in L is matched by

any of the forms v = + x3, v = -x3+x4

,

or V = x3 + x4

where x3 and x4 can be any variable or constant.

Observe, however, that for v to be a FORTRAN induction

variable, we require that the code produced by expansion

of every underlined subpart of the derivative patterns (in D)

associated with each definition to v in L must be an element-

ary reducible expression; and the variables on which this

reducible expression depends must all be induction vari-

ables. In the case of FORTRAN only one set of induction

variables needs to be defined for all entries in F and for

each component of each entry. To test whether a variable v

is in this set, we can use the predicate defined as

follows

:

Fortind{v) ** Redef 1 (v) &

Vdefinitions to v within L,

if the definition is matched by the forms

V = + x3 then

Fortind(x3) else

if the definition is matched by either

V = - x3 j^ x4 or V = x3 + x4 then

Fortind(x3) & Fortind(x4") else

False

.

403



In order to make Fortind a terminating algorithm, we

must substitute the value True for any recursive call to

Fortind which passes an argument which has been previously

passed. Note finally that Fortind can be used to test

variables matching both parameters of xl * x3, the

parameter xl in xl/x2 , and x2 in xl**x2. Since the D table

does not specify any parameters changes for x2 in xl/x2

and xl in xl**x2, only region constants are permitted for

these parameters

.

To show termination of Algorithm 1-2 we use the fact

that in any program there can exist only a finite number

of induction variables and region constants. Thus, in

reducing any binary operation, only a finite number of other

different costly binary operations can be generated and

subsequently reduced.

In contrast to FORTRAN, the task of recognizing the

relative cost of set theoretic operations, necessary for

constructing SETL F and D tables, is not so simple. The

main difficulty is in statically estimating the relative

sizes of sets (which helps to deduce whether an expression

iterates over a large or small set) . One possible way of

making this estimation automatic might involve a special

type of global analysis, specifically by incorporating

the property 'this data object is a small set' in a monotone

framework to which Kildall's technique [KI2] applies. The

approach taken in this thesis, however, is much simpler

404



since we only need to determine the relative sizes of sets

A and x in the context of an assignment x := x + A executed

repeatedly in a program loop L. As shown by the case studies

in Chapter 4 and Appendix F, in such contexts it is highly

likely that A will be small relative to x.

F and D tables for SETL are shown in Appendix C, ii.

Every derivative shown in D is considered profitable

a priori except for subcase 5, Rule 2 in which we require

that the set s„ must be reduced to make FD worthwhile.

A straightforward procedure for finding induction

variables for SETL is also available. The F and D tables

shown in Appendix C, ii suggest that this algorithm should

work with six different sets of induction variables, and

that no recursion is required. We define these six sets

as follows

:

1. IV = {all set valued variables x all of whose

redefinitions in L are of the form x := x + A}

2. IV = {all set valued variables x which are only

modified in L according to the rule x := x- A}

3. IV = {all map variables f affected only by indexed

assignments f (y, , . . . ,y ) := z in L where

y, , . . . ,y are region constants}^1 'n ^

4. IV. = {all integer variables x which change only

byx:=x+AinL}
5. IV = {all tuple variables x that only vary in L in the

the following ways x := x + x3 , x(x3) := x4 ,

and x{x3:x4) := x5}

405



6. IV, = {all tuple variables x which only undergo

modifications of the form x = x3 + x in L}.

Any elementary expression of the forms 1, 2, 3, 4, 11,

and 12 of the F table which depend on variables in IV, u iv„

or on region constants are considered to be reduction

candidates. Dif ferentiable expressions 9 must depend on

region constants and arguments xl and x2 which are found

in IV and the set RC of region constants. For expressions

of the forms 6, 8, and 10, we require that each non loop

invariant argument belong to IV^ . Subclass 7 of 6 , however,

may also involve variables in IV„ . Induction variables xl and

x2 of expression class 13 must belong to IV^ u RC and
D

IV u RC respectively. Set former expressions matching

the basic reducible form number 5 will be considered

differentiable if xl g (IV, u IV2 u RC) and if all map

variables (which match to special patterns denoted by f„

in the D table) occurring in the boolean subexpression K

belongs to IV^ u RC . For expressions {x e s|k(x)} of

form number 5, we further stipulate that all occurrences

of map induction variables within K must head map retrieval

terms involving the bound variable x of the set former.

To show termination of Algorithm 1-2 for SETL, we can

give a bound on the number of differentiable expressions

introduced by FD based on the number of indexed assignments

to map induction variables and to the f-depth of auxiliary

sets generated as derivative code from basic form #5 of Appendix

C ii (cf. Chapter 2 for further discussion of Rule 2).

406



3. A Semiautomatic Approach

In SETL, expressions can depend on large sets and maps

so that a strategy for FD which seeks to differentiate an

expression e only after first reducing all subexpressions

of e may be prohibitively expensive in space usage. There-

fore, it may be useful to consider an alternative strategy

which trades off speed for space by differentiating expres-

sions with unreduced subexpressions.

As an example of this, consider

(7) c = {x e (s + t)
I

K(x') }

.

If we differentiate (7) without first reducing the union

operation s + t, we save the space which would be required

for storing c' = s + t if c' were also reduced. Note also

that by avoiding reduction of c' we can even gain speed,

since the prederivatives of c relative to the changes

s := s + A are

(8) c = c + {x e A
I

K(x)} and

c = c-{xeA|x^t&K(x)}

respectively.

However, as yet we lack an automatic strategy which

deals with space/time tradeoffs. Hence we propose an

interactive system in which expressions are manually

selected for reduction, one at a time. Of course, before

407



an expression can be selected it must be marked 'reducible'

by a routine described below, which we will call algo-

rithm 1.

To select a qualified expression for reduction, a user

then issues the command,

(9) $FD, LOOP#, NAME = EXP

from his terminal; this directs the FD transformation

generators to differentiate the expression EXP, and to keep

its value available within a uniquely named vai^iable NAME

throughout a loop identified by a statement number, LOOP#

.

Our proposed system will automatically validate this command

before actually performing FD by use of a procedure we will

refer to as Algorithm 2.

Although our description of Algorithms 1 and 2 will

be language independent, these algorithms should only be

implemented for languages in which space utilization can

be of overriding concern. Since the cost of extra storage

required by the Fortran level FD is low. Algorithm 1-2 is

preferable in the FORTRAN context. However, we expect

that the semiautomatic FD approach we are about to describe

can be tailored effectively to very high level languages

such as SETL, SNOBOL, and APL.

408



3.1 Algorithm 1 .

Once induction sets and the set of region constants RC

are computed, we can find all nodes n in the parse tree of

a program loop L which correspond to dif ferentiable expres-

sions. The procedure we will sketch for doing this is

bottom up in that inner expressions are handled before

outer expressions; i.e., the algorithm starts with the

leaves of a parse tree representation of an expression

proceeds to predecessors and decides reducibility along

the way. To decide reducibility. Algorithm 1 uses the

following criteria. An expression e in L is reducible if

e is an elementary reducible expression (cf. the definition

of CANDS in Section 2.1); e will also be considered reduc-

ible if it is matched by some f e F and if each subexpression

X (of e) matched by a pattern variable x of f is either a

region constant expression, a member of the induction

variable set IV(x,f), or an induction expression for f and x;

i.e., X is an induction expression for f and x if x is

reducible, and once reduced with its value kept available

in a variable t, t would belong in IV(x,f).

The overall logic of Algorithm 1 is as follows:

1. For each leaf £ in L, if I corresponds to a region

constant of L mark it 'good'; otherwise, if I is contained

in a subtree e matched by an elementary form f in F in

which I is matched by some pattern variable x in f and

409



if X G IV(x,f) then mark £ 'good'.

2. Repeat step 3 until no more nodes in L can be marked.

3. For each unmarked node n s l and for each form f g F,

if the two conditions

(1) Match (n,f,Pfunc) and

(2) For all pattern variables x in f the node Pfunc(x)

is marked 'good'

both hold, we will mark n 'reducible' and associate n with f,

We will also mark n good if it represents a region constant

or an induction subexpression x of an outer expression e

matched by a basic form f' g F. We can determine whether

X is an induction expression for x and f' in the following

way. Let W be the set of all derivative patterns in D for

the basic form f such that costly subparts within these

patterns are considered single pattern variables. (Recall

that in the D tables of Appendix C such subparts are

underlined.) If the pattern variable E denoting the value

of f could be defined by any of the definitions to E found

in W and still qualify as a member of IV(x,f') then x is

an induction expression for x and f'.

410



3.2 Specializations

In the very familiar FORTRAN case all derivative

patterns in the D table (cf. Appendix C(i)) except for

the last two entries of D exactly match parameter change

patterns in D. Thus every reducible expression 1 (products)

and 2 (quotients) of F and each reducible exponentiation

which only depends on the parameter changes x„ = + x3

(where x3 must also be restricted) may be considered as

inductive subexpressions of all three kinds of expres-

sions which occur in the F table.

The following simplified FORTRAN marking algorithm

exploits this fact. In it we use the predicate,

Fortindl (v) *> all definitions to v in L

are of the form v = + x3 and

Fortindl (x3) holds;

This works in conjunction with the induction variable predi-

cate Fortind (discussed in subsection 2.3) to find induc-

tion expressions. We also make use of a map Mark, partially

defined on L , to indicate induction and reducible expres-

sions .

411



Algorithm IFORT

1. Initialize the map Mark to nullset.

Find the set RC of nodes in L corresponding to region

constant expressions of L.

2. For each leaf £ e L such that £ ^ RC

,

t/ FortindKText (£) ) then

assign 'INDl' to Mark(£); otherwise,

t/ Fortind (Text (£) ) then

assign •IND2' to Mark(£);

3. Repeat step 4 exhaustively.

4. Separate all nonterminal nodes n in L for which

i. Mark(n) is undefined;

ii. n ^ RC;

iii. For each successor node y G Tsucc{n),

either y g RC or Mark(y) is defined;

iv. f e F such that Match {n,f ,Pfunc) holds;

(note that F is defined in Appendix C (i)

)

into one of the following three cases:

a) If xl * x2 matches n and xl (respectively x2) is a

region constant expression, assign the value of

Mark (Pfunc (x2) ) (respectively Mark (Pfunc (xl ) ) ) to

Mark(n); else, if Mark (Pfunc (xl) ) (Mark (Pfunc (x2) )

)

is equal to 'INDl', assign the value Mark (Pfunc (x2 )

)

(Mark (Pfunc (xl) ) to Mark(n); otherwise set Mark(n)

to 'IND2'.

412



b) If xl/x2 matches n and x2 is a region constant

expression, perform the assignment

Mark (n) := Mark (Pfunc (xl ) ) .

c) If xl ** x2 matches n and xl is a region constant

expression, perform Mark{n) := Mark (Pfunc (x2 ))

.

After IFORT terminates, all expressions Text(n) such

that Mark (n) is defined and n is a nonterminal node of L

will be reducible.

A variant of algorithm 1 adapted to SETL has more

cases to consider but is no more complicated than IFORT.

The F and D tables for SETL are defined in Appendix C(ii).

First, we need to calculate the set of region constants RC

and the induction variable sets IV, ,...,IV^ (cf. subsec-
1 6

tion 2.3). This allows us to detect the elementary reducible

expressions. In order to pick out all the reducible expres-

sions, we must be able to determine induction expressions.

Fortunately, the primary induction expressions of interest

are set union, intersection, set difference, and set former

(these are forms 1,2,3,5,8 and 9 in our F table) whose

derivative patterns in the D table only realize changes

according to the forms x := x + A. Consequently, we can

treat reducible expressions of the kinds just mentioned as

induction expressions that behave in much the same way as

induction variables belonging to IV, and IV2 . This provides

a way to follow the logic of Algorithm 1 (but with a few

413



minor adjustments to be discussed in Chapter 4) and locate

the remaining nonelementary reducible expressions.

To illustrate the preceding remarks, consider the

expression

(10) c = {x e (T - S)
I

f(x) = q} - Q

occurring in a loop L to be optimized. Suppose that,

within L, the set s is modified exclusively by changes of

the form S := S - A, Q varies only by set additions,

Q := Q + A, and T, f and q are all region constants. Then

a SETL version of Algorithm 1 will decide that S and Q are

induction variables belonging to IV„ and IV, respectively.

The first reducible subexpression of c to be detected will

be c, = T - S. Since s only undergoes set deletions, we

know that the value of c, can only grow by set additions.

Thus, we will consider c, to be an induction expression

belonging to IV, . At this point the expression

C2 = {x e c, |f (x) = q} can be marked reducible. Moreover,

since the subexpression c, belongs to IV, , c„ is also an

induction expression belonging ito IV,. Finally, since

both c and Q belong to IV, , the expression c = c^ - Q is

reducible and is an induction expression in both categories

IV and IV .

414



3 . 3 Algorithm 2

After Algorithm 1 has determined the dif ferentiable

subexpressions in a program loop L, a user will be able

to select these subexpressions one at a time for reduction

Selection is made by commands of the form (9) , which will

cause the reduction routine Algorithm 2 to execute. The

input and output specifications of Algorithm 2 are the

same as those for Algorithm 1-2, and these two algorithms

have rather similar logic. However, while Algorithm 1-2

ensures profit by reducing all reducible expressions in L,

Algorithm 2 only attempts to reduce as few reducible

subexpressions of EXP as possible (so as to conserve space)

without sacrificing expected speedup.

Algorithm 2.

1. To validate the command (9), we check that LOOP#

refers to a program loop L, that NAME is not a program

variable which already exists, and that the expression

EXP is located in L at a node n which has been marked

'reducible' by Algorithm 1.

2. Next we order the reducible subexpressions of EXP

in a postorder arrangement (cf. Appendix E (iv)) as

indicated by the following SETL assignment,

Cands := [x g Postorder (n) [Marked (x) =' reducible '

]

415



3. For each node t selected from the tuple Cands,

determine the particular elementary form f in F for which

Match (t, f,pfunc) holds, and perform steps 5-8.

4. Halt.

5. Generate a unique name v_ for the variable which will
f

hold the value of the subexpression f in L, and insert an

assignment v_ := f at the end of the prologue for L.

f

6. For each pattern variable x in f for which x is an

induction variable belonging to iv(x,f), and for each

program point p G Defs(x) at which x undergoes a change

X = A_ , insert derivative code which keeps v_ available
X f

in L. Since the ordering of nodes in Cands and the overall

strategy of our algorithm makes f elementary, we can

compute derivative code for f in the same way as we did

in connection with Algorithm 1-2.

7. Within L replace all occurrences of f by v_ . Also,
f

within the derivative code generated in step 6, substitute

an appropriate variable v for any expression e which has

already been reduced. Next make appropriate additions

to the set RC of region constants and to the induction

sets IV. Moreover, within the derivative code generated

in step 6, mark each node n 'reducible' if the subexpres-

sion text(n) is formed from a derivative code subpattern

specially underlined in our D table. Recall that such

underlining indicates that further reduction is necessary

for FD to be profitable. After doing this, reduce all

416



such subexpressions using recursive application of

Algorithm 2.

8. For each pattern variable x in f in which x is a

generated variable holding the value of a reducible sub-

expression e of f available in L, if x is not used within

derivative code generated for f then

i. Remove all derivative code (previously generated)

which keeps the value of x current,

ii. Remove the initialization of x from the prologue

for L.

iii. Make appropriate corrections to RC and N.

iv. Replace all occurrences of x in L by occurrences

of e

.

On the other hand, if the generated variable x is used

within derivative code for f, prompt the user so that he

can supply a unique variable name to be used in place of x.

To illustrate the application of semiautomatic FD to

SETL, we again consider the expression (10) which we assume

is executed repeatedly within a program loop L. A user of

our proposed interactive system could select (10) or any of

its reducible subexpressions (marked by Algorithm 1) for

reduction. Suppose that in order to conserve space he

chooses to reduce the full expression (10) by issuing the

command,

(11) $FD, 15, Diff = {x e (T - S)|f(x) = q} - Q

417



After validating (11) , Algorithm 2 v/ill arrange

the reducible subexpressions of (10) in postorder as

follows: (1) c^ = T - S, (2) C2 = {xGc^ | f (x) =q}

,

and (3) c = c„ - Q. Then we first reduce c, which is

matched by form 3 of the SETL F table (cf. Appendix C(ii))

To do this, we begin by inserting the assignment

(12) c^ := T - S;

at the end of the prologue for L. Since T is a region

constant and S is an induction variable which undergoes a

single modification S := s - A at a program point p in L,

the only update code for c, will be the prederivative

(13) c := C-, + A * T

(generated by the macro found in the D table entry D(x2,3)

of Appendix C(ii)) which will be inserted just before p.

Next, all occurrences of T - S within L are replaced by

occurrences of c, . Then the identifier c, is added to the

induction variable set IV,

.

At this point Algorithm 2 will select c„ (which is

matched by form 5 in the F table) for reduction. The

assignment

(14) c^ := {x e c^\ f (x) = q}

is inserted at the end of the prologue, just after (12) ,

and the prederivative code

(15) c^ := C2 + (x S (A * T)
I

"f(x) = q}

418



(corresponding to the change (13)) is placed just prior

to (13) . Then we replace occurrences of {xGc,
|

f (x) = q}

by occurrences of c^ , and include c^ within the induction

variable set IV,. However, since c, is not used in the

derivative code (15) for c^ , all uses of c, within L are

eliminated. That is. Algorithm 2 will delete the derivative

code (13) within L, remove the initialization (12) from the

prologue, and replace all occurrences of c-, within L and its

prologue by occurrences of T - S. The identifier c,

will also be removed from IV,

.

Now the expression c originally selected for reduction

by the directive (11) can be processed. Algorithm 2 will

first place the initialization,

(16) c := C2 - Q;

just after (14) in the prologue. It will then examine the

D table entries associated with elementary form 3 of the F

table and determine the derivative code for c relative to

the change (15) in c„ and the change Q := Q + A in Q.

This will lead to insertion of the prederivative code

(17) c:=c+({xe(A*T)|f(x)=q}-Q);

just prior to (15) . The update correction

(18) c := c - (A * c^)

;

will be placed immediately before the modification to Q.

After substitution of occurrences of c for occurrences

419



of c- - Q the identifier c will be placed in both IV^

and IV . Note that the fact that c„ is used within (18)

prevents Algorithm 2 from avoiding the reduction

of c„ (as was done previously in the case of c, ) .

Therefore, the system will request a user supplied

name to replace c„. If we suppose that this name is

Temp, then all occurrences of c„ within L and its prologue

will be replaced by Temp. The reduction procedure completes

its work by replacing all occurrences of c by the user

supplied name Diff given in (11)

.

In consequence of these actions the end of the prologue

to L will contain the following code.

(19) Temp := {x G (T-S)
|

f(x) = q};

Diff := Temp - Q;

Within L, the derivative code inserted just before the

change to S will be

(20) Diff := Diff + ({x e ( A * T) | f (x) = q} - Q) ;

Temp := Temp +{xe (A*T)
[

f(x) =q};

while the update code inserted before the change to Q

will be

(21) Diff := Diff - (A * Temp)

;

The reader should note that instead of using (18),

we might have used either of the following alternative

420



prederivative codes: c :=c- {xSAj xGT&x^ S&f (x)=q}

or more simply, c : = c - A ; either of these alternatives

would eliminate the troublesome use of c„ in (18) and would

make it possible to avoid reduction of c, (thereby conserv-

ing space) . A capability to choose between competing

derivative code alternatives might be a useful future

extension to Algorithm 2. '

In the following chapter, we will extend the techniques

just described to obtain an implementation of FD for

general expressions. Vie will also study SETL FD more

closely in order to prepare for several case studies of

algorithms derived by FD and other transformations.

421



IV. IMPLEMENTATION DESIGN FOR FORMAL DIFFERENTIATION

OF EXPRESSIONS CONTINUOUS IN SOME OF THEIR PARAI4ETERS

A. Introduction

In considering formal differentiation of expressions

involving discontinuity variables, we face complexities

which cannot be handled without extending the simple FD

framework of Chapter III (c) • The additional information

needed to specify patterns for elementary discontinuous

expressions, for modifications to variables of such

expressions, and for associated update rules requires major

adjustments to the simple structure of the F and D tables

given in III (C) . Moreover, a full FD system must cope

with a greater number of relevant basic expressions, a

more complicated assortment of induction variables, and a

host of competing alternative transformations whose poten-

tial for program improvement is often unpredictable. All

these factors make it awkward if not impossible to use FD

algorithms utilizing easy variants of the F and D tables

of the preceding chapter. However, in this final chapter

we will modify those tables to support an FD implementation

design fashioned around a relatively straightforward

extension to the methods of III (C)

.

Although a fully automatic FD implementation is

conceivable (cf. [Wl] for a discussion of FD at the PASCAL

422



level), we will not consider this but instead will augment

the semiautomatic FD techniques described in the last

chapter. Our extended SETL FD system will incorporate

many of the transformations described in Chapter II (D)

within an extension of the interactive program impvovement

facility described in Chapter III (A,B) . The use of the

proposed system will be illustrated by considering and

improving several sample SUBSETL programs.

B. Semiautomatic Formal Differentiation of

Discontinuous Expressions.

In this chapter we consider general expressions

\ J-

)

rvx,/..., X, , ^-t , 1 ' ' ' ' ' ^j-,'

continuous in some of their variables x-,,...,x, , and
1 k

discontinuous in the remaining variables. To differentiate

expressions (1) in a program loop L, the general reduction

method of Chapter I and the particular transformations of

Chapter II, D must accomplish two related tasks:

1. Store separate values of (1) in a map c(x, ,,..., x )

defined on entrance to L

.

2. Keep c available throughout L by updating c whenever

variables on which c depends vary in L.

If each stored value c(x, ,,..., x ) depends continu-
K"r -L n

ously on changes to x^ , . . . ,x, , and if each derivative of c

involves an iteration over only a small portion of the domain

423



of c, we say that c is continuous relative to the conti-

nuity variables of (1) and that x, ^,,...,x are removable' K+l n

discontinuities. This will usually imply that the execu-

tion cost of the derivative code introduced by the second

step noted above will be low relative to a single calcula-

tion of (1) .

In the system to be described we will accordingly

restrict reduction candidates to those expressions (1)

all of whose discontinuity variables are removable. We

will also limit our reduction methods to those explored

in Chapter II (D) (with the exception of memo function

techniques) ; these offer a high likelihood of attaining

program improvement under circumstances recognizable by

easy analysis. As in the set former case studied in

Chapter II, we aim at order of magnitude speedups

.

An implementation design for semiautomatic FD for

discoiitinuous expressions can be based on the semiauto-

matic approach described in Chapter III. To find reducible

expressions (with discontinuities allowed) in a loop L,

we will make use of a marking algorithm, Algorithm 1',

closely related to Algorithm 1 of Chapter III. Algorithm 1'

proceeds by first determining the elementary reduction

candidates Cands. (these are reducible expressions hav-

ing no reducible subexpressions) before gathering up

the remaining nonelementary ones. We will also discuss a

reduction algorithm which we call Algorithm 2' (based largely

424



on Algorithm 2 of Chapter III) for differentiating expres-

sions marked by Algorithm 1'.

Both these algorithms make use of a table F of elementary

forms and a derivative code table D in a way similar to

the related algorithms of Chapter III. However, to deal with

the new problem areas raised by discontinuities, we will

make use of more complicated pattern constructs, and more

sophisticated matching and macro expansion operations. As

we shall see, the major differences between the FD design

of Chapter 3 (C) and our new design for discontinuous

expressions will be localized in pattern handling. These

differences involve format changes in our F and D tables

and new versions of Match and Expand.

As in the case of completely continuous expressions,

reduction candidate expressions involving discontinuities

can be recognized as those which are formed by composition

and parameter substitution from a finite collection F of

elementary reducible forms. This recognition problem is

handled primarily by our new Match routine (presented in

Appendix E (V)) under the control of Algorithm 1'. Thus,

Match will not only perform the simple syntactic kind of

matching between a pattern f and an expression e (as

was done previously) , but it will also check a variety of

restrictions imposed on each matched subexpression x of e,

where x is a pattern variable of f. Consequently, when

Match (e, f ,Pfunc) holds, we know that e is reducible.

425



Although the aforementioned restrictions on subexpres-

sions X of e are fairly uniform and easily expressed for

completely continuous expressions, this is not the case

for discontinuous expressions. Indeed, for discontinuous

expressions, it will be convenient to test these restrictions

by executing boolean valued function procedures Restrict (x, f)

defined for each form f e F and for each pattern variable

X in f . During a matching operation using a pattern f,

and just after the pattern variable x of f is matched to a

subexpressions x. Restrict (x, f) must be executed and

return true in order for matching of x to succeed.

We can categorize pattern variables x into three basic types —

discontinuity, continuity, and special parameters. If x is

a discontinuity parameter than Restrict (x, f) will return

true only if x consists entirely of free variables of f

and also if x is not a region constant.

In the case where x is a continuity parameter, we can

usually restrict x by the following predicate which

Restrict (x , f) computes: x is a region constant expression

or X is an induction variable belonging to IV(x,f) or

X is an induction expression for f and x. Note here

that the sets IV (x, f) , essentially serving the same purpose

as in the last chapter (cf., p. 392), can be computed for

every f in F and each continuity parameter x in f . General

routines to compute the set RC of region constants and the

IV sets are given in Appendix E (iv)

.

426



When X is a special parameter. Restrict (x, f) must be

programmed in a highly particular and unsystematic way.

As an example, consider the special parameter K occurring

as part of the following setformer pattern,

f = {y e x1|k} .

For this case, we might want Restrict (K , f) to implement

the following predicate: y is a variable occurring within

K & for each variable g occurring in K one of the

following conditions must hold:

1. g is a region constant.

2. g = y.

3. g is a map variable which only occurs in K as a map

retrieval involving y and is also an induction variable

which can only vary by indexed assignments.

In actuality our patterns will only make use of a very

few special procedures of the kinds just mentioned.

Since matching and expansion operations using a pattern

P will always visit the nodes of P in postorder, we can

specify when a particular procedure pname should be executed

during either of these operations by inserting the term

Ipname at an appropriate place in P. During matching,

procedures will usually be ised for validating expressions

matched to pattern variables. Thus, we will frequently

insert a procedure name proaname within a pattern immedi-

ately after the occurrence of a pattern variable patname

,

and will allow proaname to refer to patname

.

427



By allowing patterns to contain procedure names, we

gain considerable power. However, in order to provide a

practical pattern handling capability, it is necessary to

include a few additional features. The routines Match and

Expand shown in Appendix E (V) implement these features

.

In particular, these routines can handle the intricate

patterns specified in Appendix C (iii) for the FD tables

used with our SETL implementation design discussed in the

next section.

For practical reasons, it is of considerable importance

to allow a single pattern to match different variants of

the same expression. To achieve this, we allow patterns

to be built using alternation of subpatterns . We borrow

SNOBOL notation for this. Using alternation, we can specify

the entire elementary form table F used for FD as a

single pattern,

(2) F = Form, I Formal ... I Form
1

'
2

'
' n

If Pfunc is the pattern variable map constructed during

matching, then failure to match an alternand of F causes

Pfunc to be restored to its previous value just before F

is matched. Note that alternation provides a mechanism for

choosing between competing transformations.

As a notational convenience, we allow pattern names

to be associated with pattern expressions. This is achieved

by assignments of the form

(3) <pattern name> = <pattern expression>

428



This feature allows us to use pattern names (in place of

the pattern expressions they represent) as part of pattern

expressions. It may be convenient to use several assignments

of the form (3) for synthesizing a single pattern expres-

sion .

We will sometimes need to use a pattern which matches

all of the components of a parameter list of arbitrary size.

Such a pattern can be specified using the following recurs-

ively defined pattern name,

(4) Params = q3. ',' Params
|
q3.

where the comma in quotes is a literal and q3. is a special

pattern variable. The pattern assignment (4) borrows the

notion of recursive pattern definition from Snobol. (Note

that the right-hand side occurrence of Params in (4) is

treated in the same way as a Snobol unevaluated expression)

.

The period appearing immediately after the pattern

variable q3 denotes that each time q3. is encountered

during matching, a unique pattern variable (which

we call an instance of q3.) is generated. Each such instance

will have the form q3i where i-1 is the number of

previous instances generated. When matching succeeds for

q3i, q3i will refer to the text which is matched. If match-

ing fails a previous system state s will be restored (i.e.,

the pattern variable map will be restored) and instances

of q3. generated after the state s was last saved are lost.

429



Furthermore the underlying counter #q3 which we use to

maintain the number of q3 . instances is also restored.

For example, if the left alternand of (4) fails in matching

the comma just after q3i has been generated, the associa-

tion between qSi and q3i will be destroyed, i will be

reset to i-1, and matching will proceed with the right

alternand of (4)

.

Some of the remaining features of our pattern facility

are illustrated in the following pattern definition used

for matching setformers,

(5) Form = [ '{ ' [x 'G ' xl] '
I

' [K] ' } ']

Note that the pattern expression (5) uses quoted symbols

to denote literals, pattern variables x and xl, the pattern

name K, and predecessor formation brackets used to express

tree strcture for (5) ; this corresponds to the following

tree representation:

K

In (5) we intend K to be a pattern name which matches

a conjunction of terms in a rather general way. If we

use a pattern name conj for matching conjuncts then K can

be defined recursively as follows:

430



(6) K = [Conj] •&' K
I

[Conj]

where Conj is defined by the rule,

(7) Conj = [F8. •(' [x] ')''=' '0']
|

K5.
I

! x'e' x2
I

! K4 'e • [F2 ' (
• [Params] ' ) '

]

|

q4. -e' [F3. '
(

' [x] •) ']

The special symbol ! appearing in (7) triggers

execution of a 'built-in' procedure whenever this symbol

is encountered during matching. The effect of this proce-

dure is to set up a gate for each occurrence of the symbol !

.

Initially, all such gates are 'open'. During matching,

whenever a closed gate is encountered failure occurs;

whenever an opened gate is reached, matching proceeds

through the gate but leaves the gate closed. Since we store

the state of each gate within the pattern variable map Pfunc,

when failure occurs and a previous state of Pfunc is restored,

closed gates may become reopened. In connection with the

pattern (5) , the preceding rules imply that any set former

matched by the pattern (5) can have within its boolean sub-

part at most one conjunct matched by x 's ' x2 and one conjunct

matched by K4 'e' [F2 '(' [Params] ')'] .

To adapt (5) for matching dif ferentiable expressions,

we must modify (5) by inserting procedure names. Suppose

that Dvar , Cvar , and Svar are boolean valued procedures

431



which validate discontinuity, continuity, and special

parameters respectively. (Recall that we sketched the

logic for these procedures earlier in this section.)

Then within the pattern expressions (4), (5) and (7)

we should insert ! Dvar after each pattern variable whose

name begins with the letter q; insert ! Svar after each

pattern variable beginning with the letter K; insert

!Cvar after all remaining pattern variables with the

exception of x.

After (5) is altered in this way, it will be able to

match parse trees for an assortment of reducible SETL set

formers. For example, (5) matches the parsed form of the

following SETL setformer.

(8) {x G s|t e g(x) & f(g(x + z) ) =

& x**2 G h(t+b,a) & d*t G f(x)

& X G Q & f(x) = 0}

The pattern variable map Pfunc which results from matching

(5) to (8), will associate pattern variables of (5) with

the text (8) in the following way:

.9) X = X, xl = s, q41 = t, q42 = d*t, F31 = g.

F32 = f, K51 = f(g(x + 2)) =0, x2 = Q, K4 = x**2.

F2 = h, q31 = t + b, q32 - a, F81 = f .

Once defined, Pfunc can be used to trigger macro

expansion operations which produce code to reduce (8)

,

432



We treat macro expansion as the inverse of pattern matching,

so that all of the operations just described for pattern

matching can be used for macro expansion. After matching

a pattern P to a parse tree T, we obtain a map Pfunc which

associates pattern variables x of P to a matched sub-

tree Pfunc (x) of T. Macro expansion will produce T start-

ing from P and Pfunc. (Of course, it is not at all practical

to force the converse to hold.)

A few special features of macro expansion must be

noted. Suppose we use the map Pfunc which results from

matching (5) to (8) and expand the pattern Exp defined

below,

(10) Exp = [E * '(• [Params] ')']
|
E*

Params = Param',' Params
|

Param

Param = q3 .
|
q4

.

The symbol * occurring within (10) has special significance

only in connection with patterns used for macro expansion.

In the case of (10), when E* is encountered during expan-

sion, a new program variable name newname and a new ^lank

atom n are generated, where Leaf(n) = True and Label (n)

= newname . We then associate the pattern variable E with n

by making the SETL assignment Pfunc (E) := n.

As noted in Chapter 3, expansion proceeds by visiting

the nodes of a pattern tree in postorder. Recall that

expansion of a pattern tree P and a map Pfunc produces a

new parse tree T which is formed from P essentially by

433



replacing each pattern variable x in P by a subtree Pfunc(x)

,

We also permit expansion of patterns such as (10)

formed using alternation. To see how alternation works,

we first note that a subpattern P ' of a pattern P can only

fail during expansion when P' contains a pattern variable

not in the domain of the pattern variable map Pfunc. Fail-

ure causes Pfunc as well as the expanded parse tree T to

be restored to their values just before expansion of P '

.

If P' is an alternand of a subpattern P'
|

Q, failure of P'

will cause expansion to proceed with Q.

Dotted elementary variables such as q3. occurring in

(10) behave the same way in expansion as in matching. When

q3. is first encountered, expansion will treat q3. in the

same way as qSl, the first instance generated by q3. . After

the i-l'st instance q3i-l of q3. is expanded successfully

and q3 . is again encountered, we attempt to use the next

instance q3i.

As an example, note that expansion of (8) using

the Pfunc map defined by (9) yields the following

expression,

(11) c(t+b,a,t,d*t)

where c is a new variable name generated during expansion.

As part of our FD procedure we will use the map retrieval

operation (11) to replace the occurrence of (8) being

reduced

.

434



We can now give an example illustrating the structure

of our derivative table D, Suppose that within this table,

the entry D(xl,Form) for the elementary form (5) and pattern

variable xl is a set which contains the triple [mod,preD, ]

.

Let the modification pattern mod be defined by the rule

(12) mod = [xl •:=' [xl '+' A] '
;

' ]

and the prederivative pattern by the following pattern

definitions

,

(13) preD - ['(' 'V [iterator] ')' [Add] 'end' 'V '
;

'

]

iterator = iterpart
|

[K]

iterpart = [iter] ',' iterpart
|

[iter]

iter = !x 'S' ' (
' [A - xl] ') '

|

!w2* 'G-
[

•{• [u* 'G' ['Project' '('

[#q3 ', • F2] •) '

] ]
'

I

'

[K4 'G' [F2 '
(

' [u] •) '
] ]

• } ']

w3.* 'G' [F3. '
(

• [x] ') '
]

K = [Conj] '&• K
I

[Conj]

Conj = !x 'G' x2
I

[F8. '
(

' [x] •)
' ]

'=• '0'
I

K5.

Add = P* =[£'(' [Params] ')'
]

':='

[P ' + ' '{' [x] '}
' ] '; '

Params= Param '
,

' Params
|

Param

Param = !w2 I w3

.

435



A few clarifying remarks are needed to explain this example.

The subpatterns underlined within iter match parsed

expressions which must be further reduced. The pattern

variable #q3 occurring within iter is treated as a

literal number whose value is the number of instances of q3.

occurring within the map Pfunc used to expand preD.

Finally the use P*= of the pattern variable P within add

causes Pfunc (P) to be defined as the root of the subtree

expanded from the pattern tree occurring just to the right

of P*=.

We can use (12) and (13) to illustrate how we determine

a derivative for (8) relative to a change s := s + p(y)

.

Starting with the map Pfunc which becomes available after

expansion of (10) , we will match the pattern mod to the

change in s. Pfunc will reflect the successful match by

associating A with p(y) . Next we will use Pfunc to expand

PreD. The prederivative code v/hich results is

(14) (Vx G (p(y)-s) , u e {v G Project(2,h) |x**2 G h(v) },

w G g(x), z G f(x)|x G Q & f(x) = & f(g(x+2)) = 0)

c(u, w, z) := c(u, w, z) + {x};

end V;

where u, w, and z are new names generated for the pattern

variables w2, w31, and w32 respectively.

A more formal description of our pattern notation can

be found in Appendix C (iii) . With each pattern specified

436



using our nonprocedural pattern language, we can associate

a pattern tree. The rules of correspondence between pattern

specifications and pattern trees are found in Appendix E (v)

.

The patterns specified in Appendix C (iii) make comprehen-

sive use of our pattern language. We handle these patterns

by compiling them into pattern tree form and using the

Match and Expand routines shown in Appendix E (v)

.

The major differences between FD implementations for

entirely continuous expressions and for discontinuous

expressions are found in our pattern language. A few

additional differences will be pointed out in the following

discussion concerning a general FD implementation.

A D table, much like that of the FD framework of

Chapter III can play essentially the same role in the

present formulation. For each elementary form f in F

and every continuity parameter x of f, we again use a

set D(x,f) of triples [mod, preD, postD] where mod is a

parameter change pattern, PreD stands for a prederivative

code macro, and postD a post derivative code macro. As

before, we will still use an F table together with our D

table to find induction variables, to find an initial set

of reduction candidates, and to expand this initial set

to a more general set of reduction candidates by means

of the following variant of Algorithm 1.

437



Algorithm 1
'

,

1. Find the set RC of region constants and the sets of

induction variables.

2. Arrange the nodes of L in postorder; i.e., perform

the assignment T := Postorder (n) ; where n is the root node

of L and Postorder is the SETL procedure given in

Appendix E (iv)

.

3. For all n e T such that 3 f g F in which Match (n, f ,Pfunc)

holds perform step 4.

4. Place n in each of the induction sets for which the

matched expression f is an induction expression. Use a map

Reduce to record the values of f and Pfunc at n by executing

the assignment Reduce(n) := [Pfunc, f]. (Reduce will be

used in connection with the reduction routine Algorithm 2

'

to be described later.) Finally, mark n 'reducible'.

Once algorithm 1' has executed, all reducible expressions

(with or without discontinuities) will be marked. Note that

the postordering in step 3 ensures that we visit a reducible

expression e only after first visiting all reducible sub-

expressions of e. This is critical to our algorithm since

determining reducibility for e depends on establishing that

reducible subexpressions of e belong to appropriate induction

sets -- analysis which should be done prior to examination

of e

.

Also, observe that the routine Match invoked in step 3

is the augmented matching procedure given in Appendix E (v)

.

438



It handles tree representations of patterns found in F,

and performs various checks in addition to the purely

syntactic tree matching operations used in Chapter 3 (where

only purely continuous expressions are handled) . In

particular we allow Boolean function code procedures to be

included as part of our pattern structures. When these

procedures are encountered during matching, they are executed

and must return True for matching to succeed.

It is worthwhile to make one more remark in connection

with Algorithm 1'. By using the induction variable procedure

shown in Appendix E (iv) , Algorithm 1' could be implemented

in a largely language independent manner. However, this

procedure constructs induction variable sets IV(x,f) associ-

ated with every continuity parameter x of every elementary

form f, and as is noted in the cases of Fortran and SETL

(cf.. Chapter 3 (2.3, 3.2)), this approach can be too

costly in space. Thus, for each particular FD implementation

we prefer to work out ad hoa induction variable routines

(as we did for Fortran and SETL) which classify induction

variables into fewer categories than the general procedure

just noted. Moreover, for each separate implementation of

Algorithm l' we may have to redesign step 4 where we classify

induction expressions according to the same categories

defined for induction variables.

Algorithm 1' prepares for the semimanual selection

and automatic reduction of expressions found in a program

loop L. This process of selection and reduction is

439



accomplished by Algorithm 2
' whose logic varies only

slightly from that of Algorithm 2 of Chapter 3.

When a user selects an expression EXP for reduction

by issuing a command

(15) $FD, LOOP#, NAME = EXP

Algorithm 2' will determine the discontinuities of EXP,

also the arity of the map NAME which will store values

of EXP, also the code initializing NAME which becomes

part of the prologue of the loop designated by LOOP#,

and finally will determine the derivative code to be

inserted into the loop. Algorithm 2' will also determine

which subexpressions of EXP to reduce in order to make

differentiation profitable. Having said all this, we

now outline Algorithm 2
'

.

Algorithm 2
'

.

1. For the command (15) to be valid, NAME must not be an

existing program variable and LOOP# must refer to a program

loop L which contains the expression EXP at a node n marked

'reducible' by Algorithm 1'.

2. If the validation check (1) is passed we order the

reducible subexpressions of EXP in postorder by executing

Cands :- [x s Postorder (n)
|
Marked (x) = 'reducible']

3. For each node t selected from Cands, assign

Reduce (t) (1) to f, compute Pfunc by executing Match (t, f ,Pfunc)

,

and perform steps 5-8.

4. Halt.
440



5. Generate a unique name v_ for the variable which will
_ f _

keep the value of f available in L. If f has discontinuities

then v_ will be a map storing separate values of f each
f

of which gives constant values to the discontinuities;

otherwise, it will be a nonmap variable storing only the

single value of f. In either case we must initialize v
f

at the end of the prologue for L.

6. For each induction variable x in f , and for each

program point p e Defs(x) at which the value of x undergoes

change, insert derivative code which keeps v_ available
f

in L. Derivative code can be generated in essentially

the same way as in Algorithm 2 despite possible occurrences

of discontinuities within f , except that we must use the

more powerful Match and Expand utilities given in Appendix

E (V) .

7. Within L replace each occurrence of f by the map

retrieval v_(q,,...,q ) where q, ,...,q are the disconti-

nuity parameters of f ; however, if f has no discontinuities

it can be replaced by a simple variable v_ . Within the
f

derivative code generated in step 6, replace any expression

e which has already been reduced by an appropriate simple

variable v when e is entirely continuous or by the map

retrieval v (b, , . . . ,b ) where b,,...,b are the disconti-
e 1 m 1 m

nuities of e. Next make appropriate additions to the set RC

of region constants and to the induction sets IV. After this,

mark each node n 'reducible' if n is introduced by the

441



derivative code in step 6 and requires further reduction.

Reduce all such expressions using recursive application

of Algorithm 2'.

8. This last step is identical to that of Algorithm 2.

Most of the details involved in actually implementing

Algorithm 2' are either straightforward or follow immedi-

ately from discussion of Algorithm 2. However, two new

problems arise. Initialization of the map variables v_
f

used in step 5 of Algorithm 2
' for storing values of

discontinuous expressions is more complicated and diverse

than initialization in the case of completely continuous

expressions. In step 7, we must use new techniques to

identify different occurrences of the same discontinuous

expression and to replace these occurrences by appropriate

map retrieval operations.

To illustrate the initialization problem, we consider

the following SETL example,

(16) c(y^,y2) = [+: x e f(y^,y2)]l

where y and y are the only discontinuity parameters

of (16) . When f is a programmer defined map then initiali-

zation for c involves a straightforward iteration over

the domain of f; i.e.,

(17) c := null set;

{^[b^,b^] e Project(2,f)

)

c(b^,b2) := [X e f (b^,b2)]l;

end V;

442



Suppose, on the other hand, that f is a compiler

generated variable resulting from reduction of the setformer

(18) f( y-^,y2) = {x e s|g(x) = y^ & h(x) = y^}

Reduction of (18) will cause the following initializing

code,

(19) f := null set;

(Vw e s)

if [g(w), h(w)] e Project(2,f) then

f(g(w),h(w)) := f (g (w) ,h (w) ) +{ w} ; else

f (g(w) ,h(w) ) := {w};

endif;

end V ;

to be inserted at the end of the prologue .for the loop L

containing (18). To initialize c, we could certainly use

the code (17) inserted immediately after (19) in the

prologue. However, it is profitable to exploit the incre-

mental way in which f is defined in (19) in order to produce

better initializing code than (17) for c. Essentially,

we can formally differentiate c relative to the changes

to f occurring in (19). Inserting the prederivative code

for c into (19), we come up with the following code which

initializes both f and c together:

443



(20) c := null set;

f := null set;

(Vw e s)

if [g(w),h(w)] G Project(2,f) then

c(g(w),h(w)) := c (g (w) , h (w) ) +1 ;

f(g(w),h(w)) := f (g (w) ,h (w) ) +{ w} ; else

c (g (w) ,h(w) ) := 1;

f (g (w) ,h (w) ) := {w}

;

endif;

end V

;

Moreover, if in step 8 of Algorithm 2' we make f dead on

entrance to the optimization loop L, then it is easy to

eliminate all assignments to f and uses of f within (20).

After we replace the term Project(2,f) with Project (2 ,c)

,

all assignments to f within (20) can be removed as dead

code. Note that it would not be so easy to eliminate f

from the prologue in the case of (17)

.

The preceding illustration of incremental initializa-

tion exemplifies a general initialization technique based

on the following idea. Whenever Algorithm 2' chooses to '

reduce an expression e, we know that e must be elementary

and that all of its outermost reducible subexpressions are

already reduced. These subexpressions are initialized in

the loop prologue according to the postorder in which they

are chosen for reduction. Whenever it is feasible, we will

plan to initialize e differentially relative to the

444



incremental initialization to the last reducible subexpres-

sion e ' of e occurring within the prologue.

To implement this method we will use an initialization

code table Init. For each elementary form f e F we associate

a pair Init(f) = [def,Deriv] where def is a pattern to be

used as a code macro for generating a straightforward

initialization typified by (17) ; Derive is a partially

defined map associating pattern variables x of f with sets

Deriv(x) of pairs of the form [mod,PreD]. We will then use

Deriv for differential initialization (cf. the discussion

of (20)), in which the pairs [mod,PreD] serve the same

purpose as the entries of the D table.

To determine initialization code for an expression e

we take the following steps: Suppose that Match (e , f ,Pfunc)

holds. Then we execute the SETL assignment

[def, Deriv] := Init(f)

If e has no reducible subexpressions, or if its outermost

reducible subexpression e' (whose initialization code occurs

last in the prologue) is matched by a pattern variable x

of f in which x ^ Dom Deriv, proceed as in case 1 below;

otherwise proceed as in case 2.

1. For this case, we use the nonincremental approach.

This requires insertion of the code generated by

Expand (def ,Pfunc) at the end of the prologue.

2. To initialize e differentially, we first suppose

that reduction of e' generates the map variable v^ ,
which

445



holds values of e'. Then within the initialization code

for e', at each point p where v , varies we must find a

unique pair [mod,preD] belonging to the set Deriv(x) such

that mod matches p using Pfunc, and we insert the prederiva-

tive code Expand (preD, Pfunc) just prior to p.

In Appendix C (iii) , we show an Init table included

as part of our SETL FD implementation to be discussed in

the next section. Note that in this table, out of eleven

basic forms contained in our F table (also shown in

Appendix C (iii)), only Init(FormlO) and Init(Formll) have

nonnull second components. Nevertheless, the SETL case

studies of Section D and Appendix F suggest that the

differential initialization capability just mentioned has

widespread utility. i

It is of considerable importance for Algorithm 2' to

be able to find all elementary reducible expressions in L

whose values can be stored using the same variable.

(Note that the variables which hold values of reduced

expressions are generated by macro expansion during the

initialization phase of FD.) We call such expressions

'similar', and can replace occurrences of similar

expressions by occurrences of the same simple variable or

of map retrieval terms using the same map variable.

Similar expressions which involve no discontinuities

can differ from each other only in the names of bound

variables. Similar expressions involving discontinuities

446



can also differ in their discontinuity subexpressions

.

For example, the SETL expressions

(21) {x e s
I

f(x) = q * t}

and

(21') {y e s
I

f (y) = p + b}

are similar when s and f are induction variables and

q * t and p + b are discontinuity subexpressions. If

we choose to reduce (21) in a loop L, then we will insert

initialization code for (21) within the prologue to L

and derivative code for (21) within L. If C is the map

used to keep (21) available within L, then we can replace

occurrences of (21) within L by occurrences of the

retrieval C(q * t) . But since (21') is similar to (21)

we can also replace occurrences of (21') by C(p + b).

To formulate a general method which locates similar

expressions and replaces them with simple variables or map

retrievals, we note first of all that each expression e

which Algorithm 2' selects for reduction is elementary,

a fact which simplifies our task. Suppose that an expres-

sion e selected for reduction by Algorithm 2' is matched

by the elementary form f and that the pattern variable map

Pfunc is obtained by executing Match (e, f, Pfunc) . We define

the decomposition of e as the pair [f, Pfunc]. Let e'

be some other elementary reducible expression having the

447



pair [f ,Pfunc'] as its decomposition. Then e' and e are

similar iff the following conditions hold:

(22) 1. f = f

2. Dom Pfunc = Dom Pfunc'

3. Let Bnd(f) be the set of pattern variables of f

which match to bound variables of an expression f.

For each nondiscontinuity parameter x belong to

Bom Pfunc, let t be a tree formed from Pfunc (x)

using the following substitutions: For each

y s (Bnd(f) * [Dom Pfunc')), replace all occur-

rences of subtrees Pfunc' (y) within Pfunc' (x) by

the subtree Pfunc (y) . After all of this is done.

Equals (Pfunc (x) , t) must hold, where Equals is

the tree equality test given in Appendix E (ii)

.

Moreover, if we assume that two expressions g and h decompose

into the pairs [f, Pfunc ] and [f, Pfunc, ] , we can test for simi-

larity between g and h by executing Sim (f,Pfunc„ , Pfunc, ) ,

where Sim is a boolean valued procedure which returns True

if conditions 2 and 3 of (22) both hold.

Using the test (22) for similarity we can locate all

expressions similar to an expression e which is chosen by

Algorithm 2' for reduction. Then in step 7 of our algo-

rithm, we can replace all occurrences of e and expressions

similar to e by occurrences of appropriate simple variables

or map retrievals. Let Similar (e) be the set containing e

448



and also containing all reducible expressions similar to e.

Suppose that e is matched by basic form f e f ; suppose

also that each expression g e Similar (e) can be decomposed

into the pair [f ,Pfunc ] . To each map Pfunc we then add

the pair [E,t] (generated by expansion during initialization

for e) in which E is the pattern variable whose name is

Label (t) used to keep values of e available. Then, using a

function Replace which associates each elementary form h 6 F

with a replacement macro Replace (h), we can replace each

occurrence of every expression g € Similar (e) with the term

Expand (Replace (f )
,Pfunc ). (Cf., the Replace patterns in

y

Appendix C (iii) .)

Using the test for similarity that has just been

described, we can also keep track of reduced expressions,

and avoid redundant reduction of similar expressions. This

is achieved by maintaining a set 'Reduced' of nonsimilar

reduced expressions e each of which is represented by its

decomposition [f, Pfunc ]. The first time Algorithm 2' selects

an expression e for reduction (in step 3 ) the set 'Reduced '

is initialized to { [f, Pfunc ]} where f is the elementary

form matching e, and Pfunc is the pattern variable map

obtained by matching f to e . Each subsequent time step 3

is performed, before choosing an expression e' (whose

decomposition is [f, Pfunc']) for reduction, we check

whether e' is similar to an expression already reduced. This

can be done by performing the test

449



(23) HPfunc e Reduced{ f } I Sim (f ,Pfunc
,
,Pfunc )

g
I ^ ' g I ' g'

If the value implied by (23) is true, we must perform the

indexed assignment Pfunc ,(E) := Pfunc (E) which retrieves

from Pfunc the name E of the variable which can keep

e' available, and stores this name into Pfunc ,.
e '

Then, we skip to step 7 of Algorithm 2' and replace all

occurrences of e' by occurrences of Expand (Replace (f ') ,Pfunc ,)

For the case when (23) does not hold, we proceed to step 5

where we add the pair [f', Pfunc ,] to Reduced after first

performing all the other subtasks specified for this

step.

We conclude this section by describing some heuristics

for constructing a table F of elementary forms which can be

included as part of an FD implementation for a programming

language P. These are as follows:

1. Define some minimal set E of applicative expressions

in P, where each expression in E contains no more than one

occurrence of the same variable.

2. For each expression f e E determine a set DS(f) of

data structures each capable of storing values of f.

3. For each expression f(x, ,...,x ) belonging to E, for

each data structure d e DS(f), and for each variable x.,

i = l,...,n determine empirically the kinds of modifications

to x. in which the value of f stored in data structure

d can be updated at a cost which is much less than the cost

of a fresh calculation of f. Let Cont be the set of pairs

450



[x.,mod] where mod is a pattern representing a distinct

kind of change in x. on which f depends continuously.

4. For each pair p := [x,mod] belonging to Cont, let

Removable (p) denote all the variables y of f (where y ^ x)

which we know to be removable discontinuity variables rela-

tive to the change mod in the variable x.

5. Then, proceed in the manner indicated in the following

code to compute a set 'Forms' containing pairs each of

which can be used to construct an elementary expression

form for our F table:

Forms := nullset ;

(Vp G Dom Removable) /* Initialize Forms */

Forms with [{p}. Removable (p) ] ;

end V;

(while 3 t s Forms , q G Forms
|
t 7^ q &

(t(l) + q(l)) ^ Dom Forms)

Forms := Forms - { [Conts ,Disconts] G Forms
|

(t(l) + q(l) Incs Conts &

(t(2) * q(2)) = Disconts}

+ [t(l) + q(l) , t(2) * q(2) ] };

endwhi le ;

6. Having computed Forms in the preceding step, we can

construct an elementary pattern form g (y.^^ , , . . ,y^) for

each pair [Conts, Disconts] belonging to Forms. We

construct this pattern g using the same tree structure

and literal symbols as occur in f. However, for i = l,...,n

y. is treated as a pattern variable restricted according

451



to the following three cases:

(i) If X. belongs to the set Disconts, then y. is a

discontinuity parameter.

(ii) If X. is contained in Dom Conts , y. is a continuity

parameter, and the value of any variable y. matched by y.

can only vary according to the modification patterns found

in Conts{ x . } .

(iii) If neither (i) or (ii) applies, y. must match

a region constant.

452



(C) Implementation Design for SETL

In this section we build an implementation design of

semiautomatic FD for SETL based on the general remarks

of the preceding section. This design incorporates

several of the transformations studied in Chapter II (D)

and regards differentiation of general set formers

(1) {x G s
I

K(x,tT , . ..,t ) }
i n

as being of primary importance.

As noted in Chapter II (D) , the cost of executing

(1) repeatedly in a loop L is proportional to

NX (# S) X Cost(K) , where N is the iteration count of L.

The FD transformations applied by our system will keep

the value of (1) available in L in either (N + #S) x Cost(K)

or (N + (#S) X log (#S)) Cost(K) elementary steps;

and this will usually imply a speedup.

The FD design to be described in this section also

aims to minimize the number of elementary reducible forms

in F and the variety of transformations embedded in the

D table without sacrificing power. This is achieved by

using the single form (1) to handle set intersection, set

difi-rcri-c, .ui'i oHr )- s'-.t llicoieLic perations . Moreover,

we exploit the fact that whenever iterative expressions

such as the arithmetic sum

[+: X e s
I

K(x,q , . . . ,q ) ] e (x)

453



are reducible, we can also reduce (1) . But instead of

using exhaustive elementary form and derivative entries

for both (1) and d'), we only need to specify all the

entries related to (1) and the D table entries associated

with the following two additional elementary expression

forms

,

[+: X G s]e(x) and [ + : x G K(q ,,,,,q )]e(x)

for (1'). Thus, the F table given in Appendix C(iii)

contains only 11 elementary forms.

To differentiate expressions in a Subsetl program P,

we must preprocess P by transforming expressions of P

into one of the 11 basic forms of F. Many of the

'preparatory' transformations used for this purpose are

given in Appendix D (v) . Since one FD transformation

can potentially lead to another, the code produced by FD

will contain expressions forced to match to the elementary

forms of F, and will lack a readable quality. Thus, after

FD is done, we will want to sweep up the leftover trans-

formational debris by applying a battery of cleanup

transformations (cf . Appendix D (vi) for examples)

.

For simplicity we will treat both preparatory and

cleanup transformations semiautomatically . The sample

user/system interaction for manipulating the Topological

Sort program in Chapter III (B) exemplifies the effort

required to apply transformations preparing for FD and

454



cleanup transformations afterwards.

To handle discontinuous SUBSETL expressions, our FD

design will use the following mechanisms:

1. The procedure Regconst given in Appendix E (iv) for

determining the set RC of region constants in L.

2. The routine ISETL which is the same procedure as

Algorithm 1
' of the preceding section except for minor

adjustments described later in this section. ISETL deter-

mines the set Cands of reducible expressions in L.

3. The reduction procedure, 2SETL (essentially the same

as Algorithm 2
' given in Section B) for reducing members

of Cands in L.

We will also make use of the following components tailored

exclusively to Subsetl:

4. The F, D, Init, and Replace tables given in

Appendix C(iii).

5. A procedure for determining sets of induction variables

for Subsetl. (For the sake of efficiency, we avoid using

the language independent induction set procedure found in

Appendix E (iv) .)

Since parts 1-4 of our FD design are discussed else-

where, we begin with remarks about 5. Since a decision

procedure for induction variables depends on knowing the

types of variables, we first perform a type analysis. This

can be based on either Tenenbaum's method [Tl] or on some

system of type declarations. Observation of the 11 elementary

455



expression forms in F and their associated derivatives in

the D table indicates that only seven sets of induction

variables are needed. These may be defined as follows:

IV^ = {all set variables x that only undergo changes of

the form, x := x + A};

IV„ = {all map variables f experiencing only indexed

assignments in L};

IV_^ = {integer variables x which only change according

to the rule, X := x + A};

IV. = {all set valued maps f(q ,...,q ) which only have

definitions of the form

f(q^,...,q^) := f(q^,..,,q^) + A};

IV J- = {positive integer valued 1-ary maps f (x) only under-

going modifications f(x) := f(x) + A}, where A is

a positive integer}.

IV^ = {all set variables x that only undergo 'strict' set
o

additions and deletions, x : = x + A }

;

IV = {all set valued maps f(q,,...,q ) that only have

definitions of the form f(qw..-/qa.) := f (q-, / • • • /go^) + A

which are 'strict'}; .

Once these seven induction sets have been calculated,

we can find all the reducible expressions in L by using

ISETL, Although ISETL closely follows the logic of

Algorithm 1', there are differences at step 4 in which

456



inductions expressions are determined. In this step ISETL

will classify the nodes n which correspond to reducible

expressions into the sets described above, according to

the following cases which arise for Subsetl:

1. n is matched by Forml of the F table. In this case,

if there are no discontinuities place n in IV, and IV,

;

6 1

otherwise place n in IV_ and IV .

.

2. n is matched by Forml, Form2 , ..., or FormV

.

Place n in IV_ and also IV..

3

.

n is matched by Form 8 . n goes into IV, and IV,

.

4. n is matched by Form 9. Insert n into IV^.

5. n is matched by Form 10. Put n into IV^..

6. n is matched by Form 11. Add n to both IV. and IV_

.

ISETL must also take an extra precautionary measure in

order to recognize expressions e which depend on a set or tuple

valued variable x having multiple occurrences in e.

As an example of such an expression, consider

(3) c = {x G s
I

f(x) f s}

occurring in a program loop L in which f is invariant

and s only varies by set additions of the form s := s + A.

In accordance the method of Chapter 3 (C) , we first

number the two occurrences s^ and s„ of s within (3)

.

Next we examine the prederivative code preD, and preD2

457



for (3) relative to the changes s := s, +A and s^ := s^+ A

respectively. The D table of Appendix C (iii) shows that

there are two cases to consider — that in which the set

addition s := s + A is strict (i.e., the predicate

s * A = nullset holds just prior tP the change in s)

and that in which it is not strict. In the first case,

preD, and preD„ are

(4) /* preD^ */

(Vx e A
I

f(x) ^ S2)

c : = c + { X } ;

end V

and

(4') /* preD^ */

(Vy G A, X 6 {u e x^
|

f(x) = y})

c : = c - { X } ;

end V ;

In the latter case, preD, and preD„ are given by

(5) /* preD^ */

(Vx e (A - s^)
I

f(x) 9- s^)

c : = c + { X } ;

end V ;

and

(5') /* preD2 */

(Vy G (A- s^), X G (u e s-j_|f(x) - y}

c :- c - { X }

;

end V

;

458



In both of these two cases we seek to arrange preD^

and preD^ together with s := s + A in an appropriate

order which makes it convenient to replace all occurrences

of s, and s^ within preD, and preD- by occurrences of s.

(Recall that this is an optimal form of (6), Chapter 3(C).)

In the first case, this can be achieved by surrounding

the code s := s + A by (4) and (4') in any order.

However, since (5) and (5') both depend on s, and s„ , we

cannot find an optimal derivative code placement which

avoids an extraneous and potentially costly copy operation.

Thus, when the latter case arises we will not want to

mark (3) 'reducible'.

Setformers such as (3) are used widely enough in SETL

algorithms to warrant a few additional remarks. It is

possible to reduce (3) by taking either of the following

two approaches

.

1. Choose less efficient or less desirable derivative

code which makes use of fewer parameters than the standard

derivative code.

2. Recognize that uses of parameters within derivative

code may be eliminated by transformation.

The first approach allows us to reduce (3) by noting

that the derivative code (4) and (4*) can be used to replace

(5) and (5'). However, if we do this, c will no longer

belong to IV , and an outer expression such as [+: x e c]

1

which depends on c may require more complicated reduction.

.

459



The second approach avoids the disadvantages of the

first, but is trickier to apply. In the case of expression

(3), we can observe that the occurrence of s, in (5') is

contained within the setformer c'(y) = {u e s^
|

f (x) = y}

which must be reduced. Consequently, after reduction of c
'

,

the unwanted occurrence of s^ will disappear. Thus, we

can treat preD, as involving s and s^ and preD- as involv-

ing just s„. A profitable derivative for (3) can then be

formed by using preD, followed by preD^ which precedes

the change to s. Moreover, we must place the derivative

code for c'(y; in between preD, and preD„

.

We will consider the two approaches just described

as future possibilities for an expanded FD system. In

any case, we will abide by the following general rule: If

an expression e is matched by a basic form f more than one

of whose continuity parameters match different occurrences

of X in e, then we will consider e undifferentiable if

our reduction techniques (cf., the discussion following (3)

of Chapter 3(C)) would fail to remove costly copy opera-

tions ,

(2) Xqlj^ := X

from the derivative code for e. Although we have not

provided a general decision procedure for doing this which

works better than the obvious exponential method, expres-

sions involving multiple occurrences of a single variable

460



are apt to be uncoinmon

.

Once all reduction candidate expressions are found

in L, a user can select a particular candidate, EXP, for

reduction by issuing the following command.

(6) $FD, LOOP #, NAME = EXP .

This command will be passed to the formal differentiation

transformation generators, and will be processed by 2SETL

(which is essentially a renaming of Algorithm 2' of the

preceding section) using the Subsetl tables F, D, Init,

and Replace of Appendix C (iii), the sets RC , IV^ , IV„ , . . . , IV^

and the map Reduce generated by ISETL.

In the next section we will illustrate our SETL FD

design by presenting four program derivations as case

studies. However, before doing this it may be helpful to

make a few explanatory comments about the SETL F and D

tables given in Appendix C (iii) .

Because the setformer is a fundamental building block

used to construct base forms of algorithms, the most

important elementary form appearing in the F table is the

setformer pattern Forml . Forml matches generalized set

formers which cover many of the set former constructs

studied in Chapter 2 (D) . The boolean subparts of set

formers matched by Forml must consist of a conjunction of

terms T, each of which is matched by a conjunct pattern

used in the definition of Forml. Recall from Chapter 2(D)

461



that differentiation of set formers is sometimes handled

differently for the two cases when a particular kind of

conjunct occurs only once or when it occurs several

times within T (cf. (49) of Chapter 2 (D) ) . However, we

have observed that whenever such a distinction is made

for a conjunct pattern p, we can handle multiple occur-

rences of terms which match to p by preparatory

transformations which reduce these multiple occurrences

into a single occurrence. We enforce this procedure

by designing Forml to allow p to match successfully no

more than once. This is done by placing the special

pattern operator ! just prior to p within the definition

of Forml

.

To illustrate the technique just mentioned consider

the following set former,

(7) (x e s|f,(x) e Q & f.(x) g Q„ & . . . & f (x) g q }
i L z z n n

When n = 1, ISETL can recognize (7) as a dif ferentiable

expression matched by Forml. However, for n > 1, (7)

will not be marked 'reducible'. Thus, to reduce (7) we

must first manually select transformations which rename

f^(x) and Q. as 'shadow variables' f'(x,i) and Q'(i),

i = l,...,n. Next we transform the conjunction

f'(x,l) G Q(l) & ... & f'(x,n) G Q'(n) into the following

intermediate form.

462



(8) [ + : 1 ^ i <_ n
I

f (x,i) ^ Q(i)]l =

which passes into the dif ferentiable form

(8') [ + : ye{l^i<_n|f(x,i) ^Q(i)}]l = .

(Cf. (45), (45'), (47), (47') and (49) of Chapter 2(D)

for further discussion.)

Although the FD tables of Appendix C (iii) allow us

to handle a wide variety of expressions and algorithms,

these tables are by no means complete; indeed, our F

table omits several elementary forms which generalize

expressions studied in Chapter 2 (D) (cf., (49) of

Chapter 2 (D) ) , and our D table lacks entries which could

handle Rule 2. These omissions simplify our initial

implementation design, and can be easily remedied

in the future

.

463



(D) Applications of Formal Differentiation to

Algorithm Development

To come to terms with the question of how automatical-

ly FD can be applied, we consider a simple example —
Knuth ' s Topological Sort. (This example is also studied

by Earley, [El].) The input assumed by this algorithm is

a set s and a set of pairs sp representing an irreflexive

transitive relation defined on s; as output, it produces

a tuple t in which the elements of s are arranged in a

total order consistent with the partial order sp. A

concise SETL form of the algorithm is as follows:

(1) t := nulltuple ;

(while 3a G s
I

(sp{a} * s) = nullset)

t := t + [a] ; /* tuple concatenation */

s : = s - { a } ;

end while;

In Chapter 3 (B) we showed how a user of our proposed

system could transform (1) semimanually into the following

form which is better suited to FD

:

(2) 1 t := nulltuple

2 {while 3a e {xe sl[+: y G {z e sp{x}| zes}]l = 0})

3 t := t + [a] ;

4 s:=s-{a};
5 end while;

At this point a user could differentiate (2) by issuing

the command,

464



(3) $FD, 2, Zrcount = {xes|[+: y e{z g sp{x}lz G s}]l = 0}

The system will have computed the sets RC = {sp}

and IV = {s}. Algorithm ISETL will have marked the

following expressions reducible:

and

c, (x) = {z G sp{x}|z G s},

c^ (x) = [+: y G Cj^(x) ]1 ,

c^ = {x G s
I

C2 (x) =0} .

Expression c, (x) matches basic form 11 of the F table

(cf. Appendix C(iii)), c^ (x) corresponds to form 10,

and c^ is of the first basic form.

Algorithm 2SETL, invoked by the user directive (3),

will first validate this directive. Then, Zrcount will be

reduced, starting from its inner and proceeding to its

outer reducible subexpressions. To reduce the innermost

subexpression c, (x) , the system needs to differentiate c^

with respect to the change s := s - {a} occurring at

line 4 of (2), and also needs to initialize c just prior

to line 2. The system will use entry lib in the D table

to generate the following prederivative code,

(4) (Vy G ({a} * s) , u G {z G Dom sply G sp{z}})

c, (u) := c^ (u) - {y}

;

end V

;

The following initializing code will also be obtained from

the I nit table entry 11a:

465



(5) (Vx e Dom sp) c, (x) := {z e sp{x}
|

z G s};

end V

;

However, since the derivative table entry lib stip-

ulates that the subexpression c. (y) = {z s Dom sp|y€sp{z}}

of (4) must also be reduced, the system will insert the

following initializing code for c. at the end of the

prologue to the while loop L,

(6 ) c . := nullset ;

(Vz e Dom sp, y e sp{z}
|

z £ Dom sp)

-Cf Y G Dom c. then

c^(y) := c^(y) + {z}; else

c^(y) := {z};

endif;

end V;

(Note that (6) is based on entry 1 of the Init table.)

No derivative code for c. is required, however, because

c^ is invariant in L. The system will request the user

to supply a variable name for c . . After all this the

code sequence (4) will be transformed into a more effi-

cient form.

(7) (Vy G ({a} * s) , u G c^ (y)

c (u) := c (u) - {y} ; /* strict deletion */

end V

;

466



Next, proceeding from inner to outer subexpression

of Zrcount, the reduction procedure aims to differentiate

c„ (x) . Since c_ only depends on the change in c, (u)

which occurs within (7) , entry 10b of the D table is

applicable and yields the special prederivative

,

(8) C2(u) := c^Cu) - [+: X e {y}]l

This exploits the fact that the element deletion within (7)

is strict, where we say that set addition x := x + A

(or set deletion x := x - A) is strict if the precondi-

tion A n X = (respectively, x ^ A) holds.

The system will now detect that c, has no uses within

(8) and can therefore be eliminated. The initializing code

for c„ (obtained from entry 10a of Init) , which is

(9) (Vx e Dom sp) c^ix) := [+: y € {z G sp{x}|z e s}]l;

end V ;

replaces (5), and the assignment to c, (u) within (7) is

removed.

Finally, c^ is prepared for reduction. Its prederiva-

tives , which are inserted within L, are

(10) (Vx e ({a} * s)
I

C2(x) = 0) /* change to s */

C3 := c^ - {x};

end V ;

(cf . , lb of D) and

467



(10') if u e s 8c C2(u) = [ + : X € {y}]l then

c- := c^ + {u}; /* change to C- */

endif

(cf . , Ihh of D)

.

Since both (10) and (10') contain uses of c„ , c„ will

not be eliminated. Consequently, the system will request

the user to supply a variable name for c„. It will also

initialize c. by inserting the following assignment

(based on entry 1 of Init)

,

(11) C3 := {x e s
I

C2(x) = 0};

at the end of the prologue to L.

If we assume that the user supplies the name succ

and count for c. and c_ respectively, then the following

much improved version of the topological sort (2) will be

produced by one user directive (3):

(12) 1 t := nulltupZe
',

/* prologue */

2 succ := nullset ; /* successor map */

3 (Vz S Dom sp , y s sp{z}
|

z G Dow sp)

4 if Y ^ Dow succ then

5 '.6l\':c(_/j :-^ £-'i'jr ^y) '- {z}- elne

6 succ (y) := {z}

;

7 endif;

8 end 1

;

9 (Vx G Bom sp) count(x) := [+: ye{zesp{x} | z^s) ] 1

;

10 end V

11 Zrcount := {x e s
|
count (x) = }

;

/* main loop */

468



12 {while 3a G zrcount)

13 t := t + [a]

;

14 (Vy £ ({a} * s) , u e succ(y))

15 if J. ^ s Si count(u) = [ + : x e {y}]l then

16 zrcount := zrcount + {u};

17 endif

18 count{u) := count(u)-[+: x e {y}]l;

19 end V;

20 (Vx G {{a} * s)
I

count(x) = 0)

21 zrcount := zrcount - {x};

2 2 end 1

;

23 s:=s-{a};
24 end while;

The topological sort shown in (12) can now be cleaned

up in a way similar to the program manipulation performed

on the second topological sort version of Chapter 3 (B)

.

The code which then results is

:

(13) t :- nulltuple

;

/* prologue */

succ := nullset

(Vz G Dom sp, y G sp{z})

if Y G Dom succ then

succ(y) := succ(y) + {z}; else

succ(y) = {z};

endif

;

end V ;

(Vx G Dom sp) count (x) := [+: yGsp{x}
|

yGs] 1

;

end V;

zrcount := {x g s
|
count (x) = 0};

/* main loop */

{while 3a G zrcount)

t := t + [a] ;

469



(Vu s succ (a)

)

if count (u) = 1 then

zrcount := zrcount + {u};

endif;

count (u) := count (u) - 1

;

end V;

zrcount := zrcount - {a};

end whi le ;

This final version of the topological sort algorithm

will run in a number of cycles proportional to the number

nsp of elements in the map sp. The original form (1) of

the algorithm will require something like nsp * (#s)*(#s)

cycles, which can be much larger. However, the symbolic

chain of transformations going from (1) to (2) and from

(12) to (13) is somewhat tedious (cf . , Chapter 3). More-

over, it does not seem likely that these preparatory and

cleanup transformations can be applied in a completely

automatic way.

Some of the manual effort these transformations

require might, however, be alleviated by integrating some

of the transformations found in Appendix D (v) and (vi)

as part of the FD algorithms. For example, since an

existential quantifier Q contains the same variables which

would appear in the set former F implied by Q, the marking

algorithm ISETL can certainly determine whether F is differ-

entiable or not. If it is, then ISETL can initiate trans-

formation P6 of Appendix D (v) which will transform Q into

470



a form which exposes F. Likewise, after each of its steps,

the reduction routine 2SETL can attempt to apply all of

the cleanup transformations of Appendix D (vi) within

the localized program regions just changed.

Another example closely related to the topological

sort is the transitive closure algorithm found in [Schl]

.

This algorithm takes a set s and a multivalued mapping f

as input. As output, it produces the smallest set s'

which includes s and is equal to the image of f restricted

to s ' . A succinct SETL version of this algorithm is as

follows

:

(14) 1 {while 3a e s
|

s 7^ s + f{a})

2 s:=s+f{a};

3 end while

In order to prepare (14) for FD a user might instruct

the system to apply the following sequence of transformations:

1. Turn the predicate s 7^ s + f{a} appearing in line 1

into a more convenient form f{a} - s 7^ nullset by applying

E4, D4 , N4 , and Nl of Appendix D (i)

.

2. P18, P8, and P6 of Appendix D (v) can then be used to

transform the while loop predicate in a form suitable for FD.

The result of these steps is the following version of (14)

,

(15) 1 {while 3 a G {x e s| [ + : ze{yef{x} |y^s}]l 7^ 0})

2 s:=s+f{a};
3 end while;

471



In (15), we note just as in the previous example that

RC = {f} and IV, = {s}. Procedure ISETL will mark

the following expressions 'reducible':

c (x) = {z e f{x}
I

z ^ s} ,

c (x) = [+: y G c,(x)]l , and

c^ = {x e s
I

c^ (x) 7^ 0},

where c, (x) and c^ differ (but only slightly) from their

counterparts in the topological sort.

Then if a user issues the directive,

(16) $FD,1, Differ = (x e s|[+:zG{y e f{x}|y ^ s}]l ^ 0}) ,

2SETL will go through essentially the same steps as for (3)

Of course, a slightly different derivative code sequence

will be obtained for c, . However, the reduction actions

triggered by (16) will not lead to the optimally efficient

code. This is because the prederivative of c^ with respect

to s := s + f{x}, i.e.,

(17) (Vy G (f{a} - s), u e {z G Dom f |y G f{z})

c^ (u) := c^ (u) - {y}

;

end V ;

contains a hidden occurrence, c, (a) = f{a} - s, of c, .

Unfortunately this occurrence will go undecected by

2SETL and c^ will be prematurely eliminated as dead

following the reduction of c^. The code which results

472



will be correct, but it will fall short of the desired

efficiency. Thus, it is better to handle (15) by taking

smaller and more careful formal differentiation steps.

Another problem with (15) is that we cannot profit-

ably differentiate the expression s + f{a} appearing in

line 2 of (15) . This makes the assignment at line 2

potentially inefficient.

To make (15) more suitable for FD, a user can apply

the transformation P19 of Appendix D (v) to line 2. The

code which results,

(18) (Vx e (f{a} - s))

s := s + {x} /* strict addition */

end V ;

can then be transformed still further by turning f{a} - s

into the canonical form {y g f{a}|y ^ s} which is reducible.

(Transformation P18 of Appendix D (v) accomplishes this

second task.

)

Next, the user can issue the following FD directive,

(19) $FD,2,Prout = {y e f{x}
|
y ^ s} .

The code which results is shown as follows:

473



(20) /* Prologue */

/* SUGG is supplied as the auxiliary map name

needed for reduotion of g1 */

1 SUGG := nullset;

2 (Vz G Dom f, y e f{z}
|

z s Uom f)

3 if y e Dom SUGG then

4 suGc(y) := sugg (y) + fz}; else

5 SUGG (y) : = { z}

;

6 endif ;

7 en^f V;

/* Prout Gorresponds to g1 */

8 (Vx e Dom f)

9 Prout(x) := {z e f{x}
|

z ^ s);

10 end V

;

/* main loop */

11 {while 3aG{x€s|[+: zG Prout (x) ]1 ^ 0})

12 (VxGProut(a)

)

13 (Vz G {x}, u e sugg(z) )

14 Prout(u) := Prout{u} - {z};

15 end V; /* prederivative of prout */

16 s : = s + { X }

;

17 end V

;

18 end while;

At this point one additional user command,

(21) $FD, 11, Differ = {x G s|[+: z g Prout(x)]l j^ 0}

474



will carry (20) into a penultimate version of (14).

An efficient final form is subsequently reached by apply-

ing standard cleanup transformations.

It is useful to follow the FD actions triggered by

(21) . Analysis of the main while loop (line 11) of (20)

will show that set s belongs in IV^ and the map Prout is a

member of IV . ISETL will discover two reducible expres-

sions, c^ (x) = [+: z e Prout (x)]l matching form 10 of F,

and c^ = {x e s|c„(x) f^ 0} which is of the first elementary

form with c„ corresponding to the pattern F9 . 2SETL will

first attempt to differentiate the inner expression c~

before it reduces c... Based on entry 10b of the D table,

the system obtains the following prederivative code for c_

with respect to the change to Prout at line 14 of (20) ,

(22) C2(u) := C2(u) - [+: w e 1 z } ] 1 ;

Note that, owing to the strict element deletion occurring

at line 14, (22) will be generated by a special derivative

code entry. The initialization code for c„ , obtained

from entry 10a of Init, is

(23) (Vy e Dom Prout)

C2(y) := [+: X G Prout (y)]l;

end V ;

which is placed at the end of the prlogue . Finally, c^ will

be reduced as prescribed by entry la and Ijj of the D table.

475



The prederivative code for c^ with respect to the change

(22) is

(24) i/ u e s & c„ (u) = [+: w e {z}]l then

C3 := C3 - {u};

endif;

The prederivative code to update c relative to the

strict element addition to s is

(25) (Vy e {x}
I

c^(y) ^ 0)

c 3 : = c 3 + { y } ;

end V;

Since (24) and (25) contains uses of c- , c„ will remain

as a reduced subexpression of c^. The system will request

the user to supply a name for c„ and will also initialize

c at the end of the prologue. In response to a user

request, $UNPARSE, at this point the system would print

out the following more efficient version of (20),

(26) /* prologue */

1 succ := null set;

2 (Vz s Dom f, y e f{z}|z e Dom f)

3 if Y ^ Dom succ then

4 succ(y) := succ(y) 4 {z}; else

5 succ (yiji
:= { z} ;

6 endif;

7 end V;

/* Prout corresponds to c, */

476



8 (Vx e Dom f)

9 Prout{x) := {z e f{x}|z ^ s};

10 end V;

/* count is the user name for c„ */

11 (Vx G Dom Prout)

12 count (x) := [+: z e Prout (x) ]1;

13 end V;

14 Differ := {x g s|count(x) 7^ 0};

/* main loop */

15 (while 3 a G Differ)

16 (Vx G Prout (a) )

17 (Vz G {x}, u e succ(z))

18 £/ u G s & count(u) = [+: w G {z}]lthen

19 Differ := Differ - {u};

20 endif;

21 count(u) := count(u)-[+: w G {z}]l;

22 Prout(u) := Prout(u) - { z }

;

23 end V;

24 (Vy G {x}
I

count(y) ^ 0)

25 Differ := Differ + {y};

26 end V;

27 s:=s+{x};

2 8 end V

;

29 end while',

All



To clean up the above code, one can apply the

following transformations all of which are described

in Appendix D: c_ of Section vi will simplify

[+: w G {z}]l occurring at lines 18 and 21 to 1

;

c„ of the same section will turn the loop at line 24 into

a conditional statement.

if count (x) ^ then

Differ := Differ + {x};

endif;

A similar transformation applies to loop 17. Finally, the

redundant element test z g Bom f at line 2 can be elimi-

nated by a variant of transformation s„ of Section iii.

As a third example, we consider an algorithm which

finds an interval in a flow graph. Input to this algorithm

consists of a set V of nodes, an edge collection E repre-

sented as a mapping, and a root node H. The algorithm

will output a set Int of nodes forming the interval in V

whose header node is H. A base form SETL version of this

algorithm can be written in the following way:

(27) Int := {h};

{while 3 a e (E[Int] - Int)
|

({xe (v-Int)
|
aGE (x) }

= null set)

)

Int := Int + {a}

;

end while

478



But in order to put (27) into a form suitable for

FD, we change it by straightforward interactive

program manipulation into the following equivalent form:

(28) 1 Int = {H};

2 {while 3a G {x e [+: w e lnt]E(w) |x ^ Int

& [+: z e {y G V|y ^ Int & x G E(y)}]l = 0})

3 Int := Int + {a}

;

4 end w hile ;

Though seemingly more complicated than the previous two case

studies, (28) can actually be differentiated using only one

user directive

,

(29) $FD, 2, New = {xG[+: w G Int]E(w) |x ^ Int

& [+: z e {y G v|y ^ Int & x G E(y)}]l = 0}.

To process (29) , the system will note that

IV, = {Int} and RC = {E,V}, ISETL will discover the

following four reducible expressions:

c (x) = {y G V
I y ^ Int & x G E(y)}

c^ (x) = [+: z G c^ (x) ]1

and

c- = [+: w G Int] E(w) ,

= {x G c Ix ^ Int & c (x) = 0},

each of them matching a different elementary form found

in F.

479



The reduction procedure, 2SETL, will reduce the

innermost expressions c, and c first. The prederivatives

of c^ and c relative to the modification of Int at

line 3 of (28) are

(30) (Vy G ({a} - Int), x G E (y)
|
y G v)

c^ (x) := c, (x) - {y}

;

end V ;

(obtained from entry le of D) , and

(31) c^ := 0^+ ([+: w G ({a}- Int)]E(w) - c )

;

(30) and (31) will be inserted (in an arbitrary order)

just prior to line 3. Within the prologue to L, 2SETL

will insert the following code.

(31') /* initialize c */

c, := null set

;

(Vy G V, X G E(y) |y ^ Int)

if X & Dom c, then

c^ (x) := c^ (x) + {y} ; else

c^(x) := {y};

end-if;

end V ;

/* initialize c^ */

c := [+: w G Int]E(w)

;

480



which makes c, and c., available on entrance to the while

loop L

.

Next 2SETL will reduce c„. The prederivative of

c„ with respect to the assignment c, (x) := c, (x) - {y}

within (30) is given by the following code.

(32) C2(x) := C2{x) - [+: w e {y}]l;

Since c„ does not depend on c, , c, can be eliminated from

L and from the prologue P to L. To do this, 2SETL first

inserts initializing code for c^. Because c~ depends on

c, , and because c, is defined incrementally within P,

Cy will be initialized by means of incremental entries

10b and 10c of Init. Once this has been accomplished

c, can be removed from P and L.

2SETL is now ready to reduce c.. However, before

we describe the reduction steps used for this purpose,

it is useful to pause and see what has already taken place.

The state of the interval program after the transformations

already noted is as follows:

481



(33) 1 Int := (h);

/* prologue */

2 c^ := nullset; /* define c^ */

3 (Vy e V, X e E(y) |y ^ Int)

4 if X ^ Dom c„ then

5 ^2^^^ " ^2^^^ "*" ["•"= ^ ^ {y}]l? else

6 ^2^^^ " ^'^' ^ ^ ^^^^ ^'

7 endif;

8 end 'i

;

c
3

• [+: w e lnt]E(w); /* define c^ */

/* main loop */

10 (while 3a 6 {x G c^
I

x ^ Int & C2(x) = O})

11 (Vy G ({a} - Int), x 6 E(y)
|
y G v)

12 ^^2^^^ " ^2^^^ " t'^^ " ^ {y}]i;

13 end V;

14 c^ := c^ + ([+: w G ({a} - Int]E(w) - c^)

;

15 Int := Int + {a};

16 end while;

But to continue: c. matches elementary form 1 in F,

and it depends on parameters c-, , Int, and c- correspond-

ing to pattern variables x, , x^ , and F8 of form 1.

The modifications of c^ , Int , and c„ at lines 14, 12, and

15 of (33) lead to derivative code entries la, Ihh,

and le respectively. These prederivative sequences are

as follows,

482



(34) /* for the change to c- */

(Vz e ([+: w G ({a}-Int]E(w)-c
)

I z f Int & C2(z)=0)

^4 := c^ + {z}

;

end V

;

(34') /* for C2 */

f/ X G C-, & ^2^^^ ^ ^'''* wG{y}]l & x^Int then

C4 := c^ + {x};

endif',

(34") /* for Int */

(Vy G ({a} - Int)
|
y G c^ & c^{^i) = 0)

^4 == ^4 - ^y^'

ewd V

;

Since uses of c„ and c^ occur within (34), (34'), and (34"),

these values cannot be removed. The system will therefore

request the user to supply names for c„ and c^. Finally,

initialization code for c. will be inserted at the end

of the prologue.

The FD command (29) will therefore initiate system

actions taking the high level algorithm (28) into the

following equivalent concrete version.

483



(35) 1 Int := {H};

/* prologue */

2 predout := nullset; /* corresponds to c- */

3 (Vy e V, X 6 E(y)
| y ^ Int)

4 if X G Dom predout then

5 predout(x) := predout (x) + [ + : w G {y}]l;eZ.se

6 predout (x) := [+: we {y}]l;

7 endif;

8 end V;

9 succ := [+: w G Int]E(w); /* same as c^ */

10 new := {x e succ | x ^ Int & predout (x) = 0};

/* main loop */

11 Awhile 3 a G new)

12 (Vy G ({a} - Int), x G E(y)
|
y G V)

13 if X G succ & predout(x) = [+: w G {y}]l

& X ^ Int then

14 new := new + {x};

15 endif;

16 predout(x) := predout (x) -[+ : w G {y}]l;

17 end V;

18 (Vz ( [+:wG({a}-Int]E(w)-Succ)

z ^ Int & predout(z) = 0)

19 new := new + {z};

20 end V;

21 succ := succ+([+: wG ( {a }-Int] E (w) -suCc)

;

22 (Vy G ({a}-Int) y g succ & predout (y) =0)

23 new := new - {yl;

24 end V;

25 Int := Int + (a);

end while;

Although (35) invites cleanup at almost every other

line, (35) itself represents a considerable speedup over

(27); i.e., we can expect (35) to run at worst in time

proportional to #E.

C 484



As a last example of algorithmic improvement by

formal differentiation, we consider Haberman ' s Banker's

Algorithm for detecting deadlock amongst concurrent

processes competing for resources (e.g., in an operating

system environment) . This algorithm models resource

allocation by allocating 'loans' to customers who make

known demands. Initially each customer c will have a

quantity, loan (c) , already preallocated to him, but he

also requests claim (c) more money. Once his total demand

is met, he will repay the bank his entire borrowed amount

within a finite amount of time.

The bank starts out with an unallocated sum, cash,

which it must use to satisfy the full demands of all of

the customers one after the other.

The version of Haberman 's algorithm given here uses

only one kind of currency (equivalent to one resource type)

.

Its strategy is to meet the demands of any customer c whose

claim is less than the bank's available cash. The bank will

then wait until c makes full repayment and is no longer a

customer before scheduling any more customers. If all

customers have been eliminated when the algorithm terminates,

the original configuration of loans is safe (i.e., a

deadlock can be avoided) ; otherwise not.

A base form SETL version of this algorithm is

485



(36) /* cus is the set of customers */

1 {while 3c s cus
|
claim{c) <_ cash)

2 cash := cash + loan(c);

3 cus := *cus - {c};

4 end while;

To reduce (36) only one preparatory transformation is

required. Specifically, P6 of Appendix D (v) should be

applied to the existential quantifier within the while

loop. The while loop predicate will then appear as

(37) 3 c e {x e cus
|
claim(x) <_ cash}

which is ready for reduction. A user can now issue the

directive

(38) $FD,1, Gcus == {x G cus|claim(x) <_ cash}

to begin a rapid and dramatic transformation of (36)

.

Since IV = {cus}, IV^= {cash}, and RC= {claim, loan},

Gcus is reducible and matches elementary form 1 of F with

variables cus, claim and cash matching the corresponding

parameters x^ , F 5 , and x of form 1. Of these

parameters, only x, and x, , undergo change; cus is defined

at line 3, cash at line 2, and these changes match parameter

changes in D corresponding to derivative entries lb and laa.

486



These entries lead to the following prederivative code,

/* update code due to change in cus */

(39) (Vx G ({c} * cus) |claim(x) <_ cash)

Gcus := Gcus - {x};

end V ;

and

(40) /* due to change in cash */

{while xmin, , < cash + loan(c))

(Vx e {u s cus|claim(u) = xmin,.,})

Gcus := Gcus + x ;

end V ;

xmin^ , := succ, , (xmin, , )

;

endwhi 1e

;

The variables xmin^ ^ and succ, , appearing in (40) must

JDe initialized on entry to the loop. The initializing

code for Gcus stems from entry 1 of Init and is given by

the following code:

(41) sortas (claim[cus] , 11);

xmin, , := \min: w G claim[cus] |w > cash]w;

Gcus := {x 6 cus|claim(c) <_ cash};

where sortas sorts claim [cus] in ascending order and

produces successor and predecessor maps, succ, , and pred,.,

for traversing this sorted set of numbers.

For FD to be profitable the derivative table entry Ihh

requires that the expression c, (xmin, ,)={ uGcus | claim (u) =xmin,,}

487



must be reducible. Hence, our FD system will define c,

by inserting the following code,

(42) c, := nullset;

(Vx G cus)

if claim(x) ^ Dom c, then

c, (claim (x) ) := c, (claim(x)) + {x};

else C-, (claim (x) ) := {x};

endif;

end V;

at the end of the prologue. Just before line 3 of (35),

the prederivative code

(43) (Vx e {c} * cus)

c, (claim(x)) := c, (claim(x)) - {c};

end V;

obtained from entry lb of D will be inserted. Finally,

c, (xmin, , ) will replace the calculation it represents

within (40) .

The version of the Banker's Algorithm which results

from all this runs an order of magnitude faster than (36),

and is as follows:

488



(4 4) /* prologue */

1 sortas (claim [cus] , 11);

2 xmin,, := [min: w e claim[cus] |w > cash] .';

3 Gcus := {x G cus
I

claim (c) <_ cash};

4 goodc := null set', /* goodc = c, */

5 (Vx G cus)

6 if claim (x) g Dom goodc then

7 goodc (claim (x) ) := goodc (claim (x) )+{ x}

;

8 else goodc (claim(x) ) := {x};

9 endif;

10 end V;

/* main loop */

11 (while 3c e Gcus)

12 (
'J^^^s xmin^^ < cash + loan(c))

13 (Vx e goodc (xmin, ,

)

14 Gcus := Gcus + {x};

15 end V;

16 xmin, , := succ, , (xmin, , )

;

17 endwhile'i

18 cash := cash + loan(c);

19 (Vx G ({c} * cus) |claim(x) <_ cash)

20 Gcus := Gcus - {x};

21 end 'i

;

22 (Vx G ({c} * cus) )

23 goodc (claim(x) ) := goodc (claim (>.) ) {x};

24 end V;

25 cus := cus - {c};

2 6 endwhile; 439



The above code requires some cleanup, but its asymptotic

speed is still good — at worst proportional to #cus log #cus

,

Note that the sort operation at line 1 may require this

much time; however, when #claim[cus] << #cus, the expected

running time of (4 4) will be 0(#cus)

,

490



E. Conclusion

1. Implementation Plans

The two main goals proposed in this thesis for future

work are the implementation of an interactive source to

source Subsetl program manipulation system and the mechani-

zation of formal differentiation for Subsetl. Since SETL

provides machine portability, an interactive capability,

readability, and a minimal programming effort we will

use SETL to implement these projects.

The actual work can be completed incrementally in

six phases. In the first three phases v/e plan to implement

the basic source to source transformational system which

also supports the FD design of Chapter 4 (C) . This

initial system will then be extended in the next three

phases to make it useful for experimenting with and

automating formal differentiation. Ultimately we hope

to incorporate FD as part of an optimizing compiler.

A brief description of each phase of our proposed

implementation project is as follows:

Phase 1.

First we plan to construct a basic interactive source

to source Subsetl program improvement system as described

in Chapter 3 (A,B). For this, we require the unparser,

pattern matcher, and macro expander given in Appendix E

(i-iii) and a transformational library containing several

491



of the set theoretic transformations found in Appendix D.

In addition we must supply a Subsetl parser and a command

processor which interfaces the transformational system

and user.

Phase 2.

Next, we want to accomplish control flow, data flow,

and type analysis. And once this is done, we can proceed

to implement semiautomatic FD for completely continuous

Subsetl expressions (cf.. Chapter 3(C)).

Phase 3.

In this last preliminary phase, the simple pattern

matching and macro expansion routines introduced in phase 1

should be replaced by the more powerful pattern handling

procedures shown in Appendix E (v) . Then we can implement

the more ambitious semiautomatic FD implementation of

Chapter 4 for general Subsetl expressions.

Phase 4.

Starting with the semiautomatic implementation completed

in phase 3, we can now proceed to study program derivations

which depend on formal differentiation so that we might gain

sufficient empirical evidence to make FD fully automatic.

To attain this goal, we must be able to mechanize three

main tasks:

a. Reducible expressions must be recognized before

preparatory transformations to produce them are even

applied (cf . , p. 470) for some initial ideas on how this

492



can be done)

.

b. Some of the reducible expressions recognized in

the preceding step can then be selected for reduction.

This will trigger application of a chain of preparatory

transformations (using Kibler's chaining technique; cf..

Appendix D (x) )

.

c. Preparatory transformations will lead seguet

into successive reduction steps interleaved by applications

of chains of cleanup transformations (once again, using

Kibler's chaining technique).

There is little doubt that an effective mechanization

of set theoretic FD will require declarations to supply

important program facts which cannot be determined by

automatic program analysis. For example, profitable

differentiation of c„ = {x e s|q G f (x) } (cf., (29) of

Chapter II (D) ) depends on the property

(1) # f (x) << #s for each x e s ,

which would have to be declared in any practical implementa-

tion. Of course, when f is the successor or predecessor

map defined on s, then any declaration stating that (f,s)

represents a tree, a dag, or a flow graph would lead to

the expectation that condition (1) holds. Note that

differentiation of the topological sort and transitive

closure algorithms in the last section requires condition (1)

493



We encounter another example of a program property which

must be declared when choosing between two competing rules

for reducing

(2) c-|_ = {x e s
I

f (x) < q} .

To differentiate (2) relative to incremental changes in q,

one reduction method is preferred when the image set of

integers f[s] is 'dense', while another method works much

better when f[s] is 'sparse' (cf., (27) of Chapter II (D) )

.

The latter method is used to differentiate the Bankers'

Algorithms in Chapter 4 (D) and Appendix F.

Once we work out declarations for specifying such

properties as sparsity, and once these declarations are

sufficient to enable a fully automatic implementation of FD

,

then we will study how to incorporate automatic FD as part

of the SETL compiler. FD is a higher level optimization

and naturally precedes the techniques of automatic data

structure selection which have recently been added to the

SETL optimizer.

Note finally, that the success of installing FD as

part of the SETL compiler may ultimately rest on the

efficiency of the implementation. Thus, it may be necessary

to improve our pattern handling techniques and to explore

inexpensive ways to perform data flow and type analysis

incrementally.

494



Phase 5.

Assuming that FD has been successfully automated in

phase 4 , we can proceed to expand the interactive system

so that it can manipulate source programs written in full

standard SETL . Next we will enlarge our initial collec-

tion of set theoretic FD transformations, and will explore

new techniques for reducing a more general class of

expressions.

Among those FD transformations which seem like promising

candidates for inclusion into our system are the various

incarnations of Rule 2. We can also admit FD table entries

for two new reducible expression forms roughly corresponding

to the set formers

(3) {x G Fj^ (q^, . . . ,q^) |Kj^ (x, t^, . . . ,t^) ov ~\Y.^ (x ,b^ , . . . ,b^) }

based on (49) of Chapter II (D) and

(4) {K^(x) : X e F^Ct-j^, .. . ,t^) }

related to (56) of Chapter II (D) . Note that within (3)

and (4) the parameters q. , i = l,...,n, t. , i = l,...,m,

and b. , i - 1, ...,£, are discontinuities in which

n,m,2. ^0; F must be a region constant; F- must belong

to the induction set IV (cf . , p. 456); K, is restricted

in the same way as the parameter K appearing in Forml of

the F table in Appendix C (iii); K is of the same form

as K^ but every free variable occurring within K^ but

outside of any b., i = !,...,£ must be a region constant;

495



K must be constrained by the condition Restrict (K, f)

(cf., p. 427). We can further broaden the class of

reducible expressioiis and useful FD transformations by

adding appropriate FD entries for handling several of

the examples discussed in Appendix F.

It may be somewhat more difficult but still worthwhile

to study reduction techniques for handling discontinuous

expressions some of whose discontinuity parameters require

range analysis. An example of such an expression is

(5) c^(y) = {z G y I

z ^ s}

which must be reduced in order to improve the grammar

algorithm (6) of Appendix F. To reduce (5) we determine

the range of values D of the discontinuity y by interrogat-

ing the Usetodef map. However, in more complicated

situations range analysis may require comprehensive value

flow (Sch8). In still more difficult situations it may

be easier to fall back on range declarations.

We can also handle general discontinuities (which may

not be removable) using the 'memo' function technique

discussed in Chapters 1 and 2. Using this method, we are

able to reduce all applicative expressions, but accurate

speedup estimates are not generally possible since they

are likely to depend on undecidable facts; i.e., improvement

in running time will depend strongly on a large loop

iteration and on small ranges of values for the discontinuities,

496



As is noted in Appendix F (cf., (28-30), (40)), it can

be useful to develop general techniques to eliminate

redundancy occurring among the discontinuities of an

expression. For example, straightforward prederivative

code for the set former

(6) c^(q^,q2,q^) = {x^s
|

q^SK^ (x) & q2eK2 (x) & q^GK^ (x)

}

relative to a change s := s + A is

(7) (Vx G (A - s), t^ e K^(x), t2 G K2(x), t3 G K^ (x) )

If c^(t^,t2,t2) 7^ Q. then

c, {t,,t^,t-.) with X else

'^1^^1'^2'^3^ := {x};

endif;

end V

;

But by exploiting the redundant use of q, within (6), we

can rewrite (7) using the following more efficient code:

(8) (Vx G (A - s), t^ G K^(x), t2 G K2(x)
1 1^ G K^U))

If c^(t^,t2,t-^) yi Q. then

c, (t,,t2,t,) with X else

^1^^1'^2'^1^ := {x};

endif;

end V

;

In fact we can reform c, as a bivariate map by eliminating

one of the q, parameters.

The preceding example leads to a general rule which

497



sometimes may be applied to handle redundant discontinuities.

Consider an expression

which depends continuously on modifications in x. , i=l,...K

and discontinuously on the remaining parameters. Suppose

that the prederivative code for (9) which compensates

for a change x. := A , i £ k is of the following form:
i

(10) (V[tj^_^^, . . . ,t^] G Project(n-k,c) )

c(tj^^^,...,t^) :=
'^c(tj^^^,...,t^)'

end V

;

In order to handle the following new expression

(11) c^ (x) = f (x^, . . . ,Xj^,X,X, . . . ,x)

formed from (9) by replacing each discontinuity parameter

of (9) by X, we note first of all that the map c, which

stores separate calculations of (10) only uses a single

parameter corresponding to x. We also observe that the

prederivative code for (11) relative to a change

X. := A , i < k, may be derived rather easily from (10);
1

i.e., this update code is

(12) (Vt e Dom c^\ [t,t,...,t] e Project (n-k+l,Cj_{t} ) )

^1^^^ == ^c^(t)'

encfV

;

498



I

where the expression 6 . appearing in (12) can be

constructed from the expression 6 ,. . . appearing

in (10) using the following substitution steps:

1. First, we replace occurrences of c(t, ,,..., t )
Kt" J. n

within 6 , .by occurrences of c, (t)

.

^^^k+1'---' n^
i

2. Then we replace all remaining occurrences of

t, ^,,...,t by occurrences of t.k+1 n -^

Techniques which eliminate redundant discontinuities

not only help to improve reduction of dif ferentiable

expressions, but also allow us to reduce expressions not

normally suited for FD . For example, although the setformer

c^ (q^^, . . . ,q^) = |x 6 s
\
or K^ (x) = qA

is not reducible, the related setformer

n
(13) c (q) = {x e s

I

or K. (x) = q}
i=l ^

can be reduced. To see this, note that (13) can be transformed

into the following equivalent form,

(14) C2(q) = {xGs
I

[ + : ye {l<i<n|K^(x) =q}]l7^0}

The innermost subexpression {l <_ i £ n|K. (x) = q} within

(14) may be reduced in a manner similar to (38) of Chapter 2 (D)

It is clear how to reduce the other subexpressions.

Phase 6

.

In this final experimental phase, we plan to uncover

and then implement useful very high level dictions optimiz-

able by FD. One example is Schwartz's 'Pursue Block'

(Schll, Schl2),

499



vv

(15) Block

end VV;

which causes Block to be executed repeatedly until such

execution results in no change in value to any variable.

In addition to the form (15) Schwartz also allows pursue

blocks to involve bound variables, e.g.,

(VVx Gs, , . . . ,x Gs (x , . . . ,x ) |K(x, , . . . ,x ) )11 nni n'l n

(16) Block (x , . . . ,x )

end VV;

which does the same thing as

(17) [while 3x,es, ,..., x es (x,,...,x )|K(x, ,...,x ) &11 nnl n'l n

execution of Block would result in a change of state)

Block (x, , . . . ,x )
1 n

end while ;

but much more concisely.

Certainly, the inefficiency of the pursue block (16)

can be a high price to pay for clarity. However, for situa-

tions when formal differentiation can improve (17), this

cost ;.;a_^ be avoi'^ed. NoLe in particular that the base form

transitive closure algorithm of Chapter 4 (D) (cf . , (14))

can be written more simply as

500



(18) (VVa G s)

s := s + f{a};

end VV;

and the main loop of the base form available expressions

algorithm found in Appendix F (of., (36)) can be crisply

stated using the following pursue block,

(19) (VVn G Np)

AE(n) := [*: y G pred (n) ] ( (AE (y) *PR (y ) ) +XE (y ) ) ;

end VV;

The preceding examples, (18) and (19) represent two of

the four main cases in which Pursue Blocks of the form

(20) (VVx G s|K(x))

statement

end VV;

may be reduced. These four cases correspond to the following

four 'monotonic' forms for statement'.

(21) A := A + exp (x)

A(x) := A(x) + exp(x)

where exp(x) is any expression involving x.

To dllustrate one of these cases, consider the Pursue

Block

(22) (VVx G s|K(x) )

A(x) := A(x) + exp(x);

end VV;

501



which can be implemented by the following lower level code,

(23) (whileixe s|k(x) & ( (exp (x) -A (x) ) 7^ nullset))

A(x) := A(x) + exp(x);

end while;

Without much ado (23) can be rewritten in the following form

(24) {while 3xG {yG s|K(y) & [ + : toS {zeexp(y) |z^A(y) IJIt^O})

A (x) := A (x) + exp (x) ;

end while;

suitable for differentiation. The other three cases are

handled in much the same way.

One long range implementation goal is to extend formal

differentiation so that it can apply to full SETL procedures.

However, before we are able to recognize the continuity

properties of full procedures and to differentiate them

automatically, it may be useful to augment SETL with

declarations which state a procedure's continuity properties

and associated derivative rules. This extended FD capability

would facilitate the construction of large modular incre-

mental programs; e.g., incremental metaparsers continuous

relative to slight grammatical changes or incremental data

flow algorithms continuous with respect to changes in local

maps and the control flow graph.

502



ii. Various Implications and Applications of Formal

Differentiation

There are many interesting side issues which can be

pursued in parallel with the main implementation goals just

mentioned. Some of these are listed as follows:

1. The most general algorithms presented in this thesis

for recognizing dif ferentiable expressions and performing the

actual reductions have been derived from the heuristic

notion of 'continuity', and can be used for any procedural

programming language. To implement FD for a language P,

we must select either the automatic or semiautomatic FD

routines described in Chapters 3 (C) and 4(B), and must also

construct the FD tables which encode the continuity properties

of some of the primitive operations of P. Thus, it seems

both feasible and worthwhile to design FD implementations for

various high le'\^l languages such as Snobol and APL.

2. It is somewhat more speculative but still interesting to

apply FD in a simplified data base context, where we neglect

issues of sharing, and limit storage to main memory. Our basic

idea is to make SETL an incrementally compiling and inter-

active language so that directives containing SETL source

code to construct, modify, and query a data base can be issued

from a terminal. These directives will have the form,

(25) op, setlsource

where op is an operation code, either 'construct', 'query',

or 'modify', and setlsource is a block of SETL source state-

503



ments restricted in the following way: 1. Setlsource

for 'construct' operations contains statements which assign

initial values to certain 'elementary' variables of the data

base. 2. Queries are SETL code sequences which use these

'elementary' variables (without modifying them) to form

expressions which can be printed. 2. Directives having an

operation code 'modify' involve SETL code which change

'elementary' variables differentially; i.e., in a way

ensuring that these variables are 'inductive'.

A finite sequence of SETL source statements laid out

from consecutive directives may be seen as forming a rather

stylized straight line SETL program P having a character-

istically high degree of repetitive code (as would normally

be found only in a program loop). Thus, we can anticipate

opportunities to improve P by application of various peep-

hole transformations and the more global techniques —

redundant code elimination, formal differentiation, and

data structure selection.

Unfortunately, program optimization methods depend on

the availability and analysis of complete programs. And in

the interactive milieu in which our data base model resides,

only a part P' of our 'program' P is available for analysis --

the part which has already been executed. There always

remains a significant unknown portion P" of P formed from

directives yet to be issued. Nevertheless, we expect the

504



code of P to be sufficiently repetitive that properties of

P" (especially some initial segment of P") can be predicted

from analysis of P' (especially some final portion of P').

Consequently, it seems plausible that various program

optimization techniques, reformulated in a minor way for

run time use, can improve the processing of our data base

directives

.

In particular, we will show how formal differentiation

might be used to optimize queries. Consider, as an example,

a data base used by an airline company. Suppose that the

'elementary variables' of this data base are

1. A set Flights of flight numbers;

2. A map Strt associating each flight n s Flights with a

starting location Strt(n);

3. A map dest associating each flight n 6 Flights with a

destination dest (n)

.

4. A map Pass associating each flight n with a set Pass(n)

of passengers scheduled to fly on flight n.

5. A map Food associating each flight n and each passenger

p s Pass(n) with a meal selection Food(n,p).

Then we can initialize the data base using the following

directive

,

(26) 'construct'. Read (Flights , Strt , dest , Pass , Food);

Once the Read statement within (26) is parsed, compiled,

and executed, we can issue an assortment of queries which use

the five elementary variables just defined. Some examples are

505



(27) 'Query ', Print (#{feFlights I Strt(f)= 'New York'

& dest (f ) = 'Paris' }) ;

(28) 'Query' , Print (3pePass (142) | Food (p, 142 )= 'Kosher ' )

;

and

(29) 'Query',

Q := {feFlights|3pGPass (f ) |Food(p,f) = 'Fish'

}

(Vf e Q)

Print (f, {p e Pass(f)
|
Food(p,f) = 'Fish'});

end V;

To ensure that the five elementary variables are induc-

tive, we only allow code within 'modify' directives to change

the maps strt, dest, and food by indexed assignments; also,

the set Flights and each set Pass(n) for a given flight n

may only vary by differential set additions and deletions.

Most of the techniques needed to optimize queries have

been worked out in previous sections of this thesis. However,

we also require that additional techniques mentioned in

phase 4 of the FD implementation proposed in the preceding

subsection be available. Thus, we assume that FD is fully

mechanized, and specifically that hidden reducible expressions

can be recognized before they would be exposed

by application of preparatory transformations.

We now illustrate how the queries (27)- (29) might be

improved using formal differentiation. First consider the

case of (27). Once the Print statement appearing in (27) is

parsed, we will recognize two reducible expressions.

506



Cj^{q^,q2) = (f e Flights
|
strt(f) = q, & dest(f) = q }

and

^2^^1'^2^ " [+: X e C^(q^,q2)]l

Note that we ignore the fact that 'New York' and 'Paris'

appearing in (27) are region constants, and instead treat

(27) as containing two removable discontinuities q, and q2 .

This strategy is taken in anticipation of encountering

other reducible expressions differing from c, only with

respect to the bound variable f and constants used in place

of the parameters q, and q2 • All such expressions would be

kept available by reduction of c, (cf. the rules of (36)

of Chapter 2 (D)). It is also practical to reduce c, under

the assumption that all continuity variables Flights, Strt,

and dest can be modified.

In order to select expressions for reduction efficaci-

ously, we keep track of all 'nonsimilar' reducible expressions

(cf., (22) of Chapter 4(B)) and their frequency of occur-

rence within some finite number of most recently executed

queries. In the case of c, and C2 , we must decide for each

of these expressions whether it is similar to an expression

which has been encountered 'frequently'. If this is the case

for c, and if c, is not yet reduced, we will then perform

the initialization part of the FD transformation for c, . If

c is similar to a reduced expression, we can replace the

expression c, in the query parse tree by the appropriate map

retrieval term. After examining c- in the same way, the

507



query (27) can be compiled and executed. As a final step,

we eliminate the reduced forms of all those reduced expres-

sions whose frequency of occurrence has become too low.

After C-, and C2 are reduced, directives which 'modify'

Flights, strt, or dest, will trigger execution of derivative

code to maintain c and c^.

It should be expected that heavy use of the airline

data base just described will very quickly establish expres-

sions c^ and C2 as occurring frequently enough to warrant

reduction . There may be several other expressions which

will require a longer period (to be discovered by the user

community) before they stabilize in reduced form. At the

outset, queries for such a data base are likely to be

executed inefficiently. Eventually, however, the system

can be expected to reach an equilibrium state in which the

small number of commonly occurring expressions most useful

in the formation of queries will be detected and reduced.

We also expect occasions when persistent occurrences

of usually rare queries will trigger temporary query optimi-

zation. Consider the following scenario. Somewhat by chance,

a query (28) is issued to inquire whether Kosher food must

be prepared for flight 142. Such a query establishes uses

of two reducible expressions,

C3(q2^fq2) = {p G Pass (q^^) |Food(p,q^) = q2

}

and

C4(qj^,q2) = [ + : X e c^(qj^,q2)]l

508



(cf . , (28)- (30) of Appendix F for reduction of c.) .

If at the same time there are reports that certain contami-

nated fish have been distributed to various flights, then

the probable use of emergency queries such as (29) reinforced

by occasional queries of the form (28) can initiate reduction

of c, and c. (which are common to both queries) . Of course,

when the emergency subsides and uses of c-, and c. become

rare, the maps holding values of c, and c. will be eliminated.

3. Another area of research involves expanding the results

of Chapter 2 (D) where we make some initial estimates of

expected speedup which can result from application of FD

to SETL expressions. If algorithm speedup and space

utilization can be prediced in advance of successive appli-

cations of formal differentiation, then we move closer to

the point when FD can actually be installed safely as part

of a conventional compiling system. Of course, results of

this kind will also make FD. more powerful by allowing

us to make better choices between competing

transformations

.

Studies along these lines might also lead to a more

powerful use of stepwise refinement to prove space and

time requirements of an algorithm in addition to its correct-

ness. For this purpose we would apply FD transformations

to a base form algorithm to determine an asymptotic speed

and space estimate. We would then apply data structure

selection transformations to obtain closer estimates of

509



the constant factors involved in the analysis of the final

efficient form of the algorithm.

4. The heuristic notion of 'continuity' frequently arises

in algorithm design and analysis. It seems highly

worthwhile to study this property further with regard to

more data structures than those used in the runtime environ-

ment of SETL. This in turn will shed new light on the

continuity properties of full algorithms (which must be

implemented using data structures and associated operations).

In [Sch 6] Schwartz elaborates on this thought.

Something close to the heuristic notion of
'continuity'... seems to play an important role
in algorithm design. In [Sch4] we note that programs
will commonly be structued as nests of loops; many of
these loops . . . realize some set-theoretic expression
E - E(a) by applying a map M = M^ repeatedly until E

emerges as a fixed point of M. The efficiency of
programs having this structure can often be improved
by noting that within an 'outer' loop Lout ^^ich
contains an 'inner' loop L-i_j^ producing the value E(a),
the parameters a of E(a) are varied only slightly.
An observation of this kind often allows one to

restructure Lj_j^ for efficiency by calculating E using
its available previous value, which calculation can
of course be substantially more rapid than calculation
of E 'from scratch' would be. [Moreover, a speedup of
this kind may still be realized even when the parameters
a do not vary 'slightly' within Lq^^ , if they can be
made to do so by restructuring Lq^^^, ]... This line
of thought makes it clear that an algorithm for evaluat-
ing E = E(a) will be of particular interest if it has
good continuity properties. Suppose for example that
E(a) is calculated as the fixed point of a transforma-
tion M^ . There will in general be many transformations
Ma,M^ , Mg , ... all of which have the value E(a) as
fixed point; among these transformations [we] will often
be particularly interested in those M^ for which the
sequence E(a), M-(E(a)), M-(E(a))), ... leads after

a a
comparatively few iterations to the fixed point E(a)
of M- (where we assume that the parameter values a and a

differ only slightly) . This line of thought points up a

510



problem area in algorithmic analysis which has not
yet been explored systematically.

It is instructive to consider one or two cases in
which algorithms or data structures having useful
properties of continuity are known or can be devised.
First consider sorting, and the problem of maintaining
the sorted form of a set s to which modifications are
continually being made by addition and deletion. If
there are n elements in s, the bubble sort will
correct for an insertion or deletion in approximately
n/2 steps. However, if the sorted form of s is kept
as a balanced tree, one can connect for an insertion
or deletion in log n steps.

Next consider the minimum min of a set s of integers.
After an insertion s = s + {x} one can update min by
executing

min = if X It min then x else min;

and after a deletion s = s - {x} by executing

min = if X ne min then min else (sort s) (1).

Since in many situations the minimum of s will rarely
be deleted, it will rarely be necessary in using this
procedure to generate the sorted form of s. On the
other hand, if the minimum of s is used in a process, as
for example a selection sort, which invariably deletes
the minimum, then one wants an algorithm which has good
'worst case' rather than good 'typical case' continuity
properties. In such a situation, it is reasonable to
arrange s as a vector v = tree s having the implicit
tree property, i.e. v(n) < v(2*n) and v(n) < v(2* n+1).
Then the minimum of s is necessarily v(l), i.e. can be
expressed as [tree s) (1) . Note that in approaching the
quantity min s in this way, we have essentially factored
the function min into the product of two functions, of
which the first, tree, is continuous, while the second
(indexing) can be performed rapidly.

In addition to Schwartz's observations above we note

that sometimes it is necessary to restructure a program loop

L containing uses of an expression e in order to exploit the

continuity properties of e. As an example of this, consider

a loop

511



(30) (Vx e s)

• • •

= {y e T
I

f (y) < x}

end V

containing repeated calculations of

(31) c = {y G T|f (y) ^ x}

and no definitions to either f or T. Unfortunately (31)

cannot be reduced within (30) since x is not an induction

variable of c. Thus the net cost of computing c within (30)

is 0(#s X #T) . Note, however, that by selecting x values

from s in sorted order, we can make x inductive and can

differentiate (30) using the method (28*) of Chapter 2(D).

The cost of ordering s is 0(#S x log #S) , while the expense

of keeping c available within (30) after reduction is

0(#T X log #T + #S) — and this usually represents improve-

ment .

5. Another topic relevant to formal differentiation

concerns expressions which cannot be reduced profitably.

We hypothesize that the lower bounds in running time of

algorithms whose base form versions depend heavily on such

expressions will be predictably high. Substantiation of

this hypothesis might then lead to the discovery of more

general relationships between the lower bounds in running

512



time of algorithms and the continuity properties of expres-

sions used in their base form rubble versions.

Of course, the problems just mentioned are very diffi-

cult, since finding lower bounds for a particular algorithm,

and determining the full continuity properties of a single

expression e are often hard problems. Note that while

establishing reducibility for e can be achieved merely by

discovery of some profitable derivative code, determining

that e cannot be reduced requires the much more difficult

discovery of a proof that no profitable derivative code

exists at all. Proofs of this sort are little understood,

however, and the most we have attempted to do in this thesis

is provide a modicum of insight by considering example

expressions whose continuity properties may be determined

in a reasonable way.

Among the various expressions examined for their

continuity properties, there arise two main obstacles to

speedup due to FD. The most common snag results from the

high cumulative cost of performing inexpensive update opera-

tions for too many stored calculations of an expression

involving discontinuities. Speedup may also be limited

when reduction of an expression e_ depends on

reduction of a whole chain of auxiliary expressions e-j^,...,e^

in which for i = l,...,n, e. must be reduced to make

reduction of e._, profitable. (Recall that this situation

arose in the first formulation of Rule 2, cf . , p. 30l-)

513



Although a chain of this sort may be necessary to minimize

the update operations directly involving e„ , the net cost

of reducing too many expressions may be prohibitive. In

this case, an alternative -approach which minimizes the

number of auxiliary expressions at the cost of performing

some redundant or unnecessary operations is preferred.

(Rule 2 was reformulated in this way on p. 304.)

The preceding ideas can be illustrated using a few

relevant examples which have not been discussed in the

previous chapters. Consider the set union

(32) c^(x) = f(x) + t

which is executed repeatedly within a program loop L.

Suppose that within L, f is a region constant, t varies

only by slight set additions and deletions, and x is

modified ad lib. Suppose also that f is the edge map for

a directed graph having Dom f as its vertices, and t is a

subset of these vertices. Since (32) is discontinuous

relative to changes in x, formal differentiation requires

that separate calculations of (32) be stored in a map c-, (x)

for each x s Dom f. This may be achieved by performing

the following initialization code,

(33) c, := null set;

(Vy G Dom f)

c^(y) := f (y) + t;

end V ;

on entrance to L. Then within L, whenever t changes by

514



t := t + A, we can execute the following prederivative code,

(34) (Vw e (A * t) , y G {u g Dom f
]
w ^ f(u)})

, . with
c, (y) 7 w;
1 "^ less

end V

;

Examination of (33) shows that the iteration count N of

the loop L must be greater than %Dom f or else the original

cost of the repeated calculation (32) will be less than (33).

But ignoring the cost of the preprocessing code (33), we see

that the expense of computing the prederivative code (34)

is at least proportional to the cardinality of the set

(35) ^2^^^ = {u G Dom f
|

w ^ f(u)}

For FD to be worthwhile we require that the cost of computing

(32) which is proportional to #f(x) + #t must be signifi-

cantly greater than the cost of (35) (which is 0(#C2(w)).

But this will only be true when the graph f is almost

completely connected; i.e., for all u G Dom f , f(u) ~ Dom f.

Suppose now that f is almost completely connected. Then

for FD to be profitable we must reduce (35) which,

fortunately, can only be done profitably when f is almost

completely connected (cf., p. 340). To reduce (35) we need

to perform the following initialization immediately

after (33)

:

515



(36 ) c^ := null set',

(Vy e Dom f)

c^Cy) := {u e Dom f
|
y ^ f(u)};

end V;

Note that the cost of computing (36) is proportional to

2
{Dom f) . Consequently, we can replace the costly setformer

{u e Dom f
I

w ^ f(u)} occurring within (34) by the

retrieval c„ (w)

.

It is interesting to consider how to handle (32) in

the following more restricted context: Suppose that t is

an upper bound on the range of x values within L and that

t only varies by differential set deletions. To exploit

this new situation, we can replace the initialization code

(33) and (36) by the following more efficient code,

( 37

)

c, := nullset ;

(Vy e t)

c-^ (y) := c^ (y) + t

;

end' V ;

c^ := nul Iset ;

(Vy e t)

c^ (y) := {u e t
I
y ^ f (u)

}

end V ;

Within L whenever t is modified by a change t := t - A we

can execute the prederivative

516



(38) (Vw e (A * t) , y 6 c^ (w)

)

c, (y) less w;

end V ;

which is less expensive to compute than (34).

Note, however, that within (38) c_ (w) can contain

elements belonging to A * t, so that unnecessary update

operations for c, may occur. To avoid executing

these undesirable operations, we can perform the

following prederivative code for c^ ,

(39) (Vw e (A * t), y G {u G t
1
u ^ f(w)})

c^ (y) less w;

end V;

just prior to (38). But by introducing (39), an additional

expression

,

(40) ^3 ^"^ " (u e t
I

u ^ f (w) }

must be reduced.

To reduce (40) we perform the initialization

(41) C-. := nullset;

(Vy G t)

c^(y) := {x g t
I

X ^ f (y) };

end V ;

immediately after (37). Consequently, the setformer

{u G t
i

u ^ f (w) } occurring within (39) may be replaced

by the retrieval c-,(w). However, even after this, the

517



fact that c^ depends on an ever decreasing set t implies

that unnecessary update operations of c„ can occur within

(39) unless c_, is first updated to correct for this problem.

Unfortunately the required update calculation is

(42) (Vw e (A * t) , y 6 {u G t
I

w ^ f(u)})

c-,(y) less w;

end V ;

which can also include unnecessary updates of c .

Observe that a continued quest to eliminate unnecessary

operations will only introduce more code selected from the

cycle (38), (39), (42), and the cumulative expense of

computing this code may be high. Thus it seems prudent to

avoid this approach and instead be satisfied with the

imperfect code (42) in which the setformer {u e t
|

w ^ f(u)}

is replaced by the retrieval c_ (w)

.

The preceding example suggests that workset algorithms

can sometimes reach maximum efficiency by actually introduc-

ing local inefficiencies; e.g., by letting these algorithms

depend on worksets which are larger than absolutely necessary.

iii. Summary

We have now presented a thesis investigating formal

differentiation, a program optimization technique which

generalizes and reformulates John Cocke's method of strength

reduction, and provides a convenient framework with which

to implement Jay Barley's 'iterator inversion'. Algorithms

518



to implement formal differentiation both automatically and

semiautomatically for programming languages ranging from

Fortran to SETL have been given. However, since FD seems

best suited for SETL, we have studied set theoretic

formal differentiation in depth, and have presented a

comprehensive semiautomatic implementation design for a

subset of SETL. This design includes an interactive source

to source transformation program improvement system to be

used for performing experiments in algorithm derivation

using FD. It is expected that empirical evidence gathered

from such experiments will lead eventually to a full mechani-

zation of FD for SETL.

In contrast to other research in program transformations,

we have shown that FD is unusual in many respects; e.g.,

1. It may be applied over a large spectrum of language

levels and in wide ranging contexts within these languages.

2. It can realize swift convergence from a very high level

inefficient form of an algorithm to a much lower and more

efficient implementation version.

3. FD can be implemented systematically.

4. We can estimate the speedup due to transformations applied

by our proposed SETL FD implementation, and have shown this

speedup to be as great as an order of magnitude.

We have illustrated our proposed FD system for SETL by

considering and improving eight sample Subsetl programs.

519



We feel that these initial case studies lend strong support

to further efforts to fully automate and incorporate set

theoretic formal differentiation as part of an optimizing

compiler. There are encouraging indications that this goal

will be reached. When this finally happens, it will repre-

sent real progress towards the development of optimization

algorithms envisioned by Schwartz "which explore spaces of

program transformations as freely as a manual programmer

does" (Sch 6) .

520



Appendix A. SETL and SUBSETL

In the present section, we summarize the principal

features of a version of the SETL language used throughout

this thesis. Much of this description has been taken

from [Schl] pp. 72-80 and from [DGS 2] . However, some of

the latest changes occurring in the official SETL language

are absent, and we do not regard this precis as a

reference to the current standard SETL language.

As the name suggests, SUBSETL is a subset of the

version of SETL described in this section. We use an

asterisk to the left of an item to denote a SETL feature

not included in SUBSETL.

Basic Objects

Sets and atoms; sets may have atoms or sets as members

Atoms may be

Integer Examples: 0, 2, -3

* Real Examples: 9., 0,9, 0.9E-5

Boolean Examples: True, False

* Character strings Examples: 'aeiou', 'spaces'

* Blank (created by function newat) .

(Note: special undefined blank atom is Q..)

Basic Operations for Atoms

Integers: arithmetic: +, -, *, /, **, // (remainder)

comparison: =, "1=, < ,
> ^ 1. ' ^

(Results are True, False, or Q.)

other: max, min , abs

521



Examples: 5//2 is 1; 3 max -1 is 3; abs -2 is 2.

*Reals: Above arithmetic operations (with exception of //)

plus exponential, log, and trigonometric functions.

*Booleans: logical: &, or, exor, implies ,
"1

(Any value other than True is considered False.)

logical constants: True, False >

*Strings: + (catenation), * (repetition), a(i:j) (extrac-

tion), # (size), nullahar (empty strings).

Examples: 'a' + 'b' is ' ab ' ; 2 *
' ab ' is 'abab',

•abc'(l:2) is ' ab '
, •abc'(2:2) is 'be',

'abc'(2) is 'b', # ' abc ' is 3, # nullahar is 0.

General: Any two atoms may be compared using = or n=;

* atom a tests if a is an atom.

Basic Operations for Sets

G, ^ (membership tests); nullset (empty set),

B (arbitrary element) , # (number of elements)

;

= , n= (equality tests) ; inos (inclusion test) ;

with, less (additionand deletion of element);

pow(a) (set of all subsets of a);

* npow(k,a) (set of all subsets of a having exactly k elements)

Examples: a s {a,b} is True, a G nullset is False

B nullset is ^; 3 {a,b} is either a or b, #{a,b} is 2,

# nullset is 0, {b} with a is {a,b}, {a,b} less a is {b},

{a,b} less c is {a,b}, {a,b} inos {a} is true

pow({a,b}) is {nullset ,{&} ,{h] ,[a,h)} .

npow(2,{a,b,c}) is {{a,b},{a,c},{b,c}}.

522



Tuples

Ordered tuples are treated as SETL objects of different

type than sets — e.g. tuples may have some components

undefined.

Operations on tuples:

^, e (membership tests); nulltuple (empty tuple);

3 (arbitrary element)

.

Tuple former: If x,y,...,z are n SETL objects then

t = [x,y,...,z] is the n-tuple with the indicated components.

#t is the number of components of t

t(k) is the k-th component of t

t(i:j) is the tuple whose components, for l5_k<_j , are

t(i+k-l)

+ is the concatenation operator for tuples

Examples: a(n) G t is an abbreviation for 3 l<_n<_#t
1
1 (n) =a

If t = [a,b] and t = [a,c] then

T = t + T= [a,b,a,c] , T(3:2) = [a,c]

Tuple components may be modified by writing t(j) = x;

An additional component may be concatenated to t

by writing t(#t +1) = x;

Set Definition

By enumeration: {a,b,...,c}.

Set former: {e(x,,,..,x ): x,ee, ,X2Ge2 (x, ) , . . .x Ge^ (x, , . .x -j^)

I

c(x-^, . . . ,x^) } .

Tuples may also be defined by analogous tuple-formers,

[e (x^, , . . ,x^,mj^, , . . ,m^) : x^ (m^)Ge-|^,

. . . , ^n^'^n^^^n^'^l' * " ' '^n-l'^^i' • ' ' '%-l^

I

c(x^, . . . ,x^,mj^, . . . ,m^) ]

523



The range restrictions x e a(y) can have the alternate

numerical form

min(y) ^ x <_ max(y)

when a(y) is an interval of integers.

If t is a tuple, the form x(n) € t can be used, see

below, iteration headers , for additional detail.

Optional forms include

{x e a
I

C(x) equivalent to {x: x e a
]
C(x)}; and

{e{x) : x 6 a} equivalent to {e(x) : x s a
|

True] .

Functional Application (of a set of ordered pairs, or a

programmed, value-returning function):

f{a} is {if #p > 2 then p(2:) else p(2), p G f
]

if type p n= tupl then False else (#p) ^ 2 & p(l) = a},

i.e. is the set of all x such that [a,x] e f .

ffa) is: if #f{a} = 1 then 3 f { a } else 9.,

i.e., is the unique element of f{a}, or is undefined atom,

f[a] is the union over x s a of the sets f{x},

i.e., the image of a under f.

More generally:

f(a,b) is g(b) and f{a,b} is g{b}, where g is f{a};

f[a,b] is the union over x s a and y s b of f{x,y}.

If f is a value-returning function, then

f{a,b} = {f(a,b)}, f[a] = {f(x): x e al, etc.

Constructions like f{a,[b],c}, etc. are also provided.

524



Compound Operator

[op: X G s]e(x) is e(x-.) op e(x_) op ... op e(x ) ,

where s is {x,,...,x }.

This construction is also provided in the general form

[op: X e e, , X e e„(x ),...,x e e (x ,...,x^ ., )
|L L Z Z L nnl n-i '

C(x^, . . . ,x^) ]e (x) ,

where the range restrictions may also have the alternate

numerical form, or the form appropriate for tuples.

Examples: [wax: x e {1,3,2}] (x+1) is 4,

[ + : X e (1,3,2 }] (x+1) is 9,

n
[+: x(n) € a]x is SETL form of la

i = l

[op: X G nullset]e (x) is Q.

.

Quantified Boolean Expressions

3x e a
I

C(x) Vx e a
|
C(x)

General form is

3 x^ e a^, x^ G a2(x^), Vx^ g a^ (x^,X2) , . . .
|

C (x^^ , . . . , x^)

where the range restrictions may also have the alternate

numerical form, or the form appropriate for tuples.

Evaluation of

3x e a
I

C(x)

sets x to first value found such that C (x) = True.

If no such value, x becomes fi.

The alternate forms:

3min ^ x <_ max, 3 max ^ x ^ min, 3 max ^ x > min, x(n) e t, etc,

of range restrictions may be used to control order of search.

525



Conditional Expressions

if bool, then expn, else if bool„ then expn„ . . . else expn

Statements

:

are punctuated with semicolons.

Assignment and Multiple Assignment Statements

a := expn; f{exp} :- expn; is the same as

f := {p e f
I

p(l) n= exp} + { [exp,x]: x e expn};

f(exp) :- expn; is the same as f{exp} := {expn};

f(a,b) := expn; f{a,b} := expn; etc. also are provided.

* [a,b] :- expn; is the same as a := expn(l); b:= expn ( 2 : )

;

* [a,b,...,c] := expn; [a,[b,c],...,d] := expn; etc.

are also provided.

* [f(a), g{b}] := expn; is the same as f(a) := expn(l);

g{ b } : = expn ( 2 : )

;

Generalized forms:

* [f(a), g{b,c},...,h(d)] := expn;

* [f(a), [g{b,c} ,h (d) ] , ...,k(e)] := expn; etc. also are

provided.

* Use of General Expressions on Left-Hand Side of

Assignment Statements (sinister calls)

.

e(x, ,...,x ) := y; must be no-op if executed immediately

after y := e(x, ,...,x ); and vice-versa. The use

op op ' X :- y

;

of a product operator on the left-hand side of an

assignment expands as

526



t := op ' x;

op t := y;

op ' X := t ;

with sinister rules for multiparameter compounding. These

rules allow user-defined functions to be used quite

generally on the left-hand side of assignment statements.

The 'left hand' significance of a function is often deducible

from its standard right-hand side form, but may be varied

by using specially designated code blocks which are executed

only if the function is called from right-hand or left-hand

position respectively. These have the respective forms:

(load) block; (execution only if function

called from right-hand side is

assignment)

(store x) block; (execution only if function f

called is from

f (param , . . . ,param ) := x;) .

* Commonly Used Operators Having Special Side Effects

X := expn; has same value as expn and assigns this

value to X

x in s; same as s := s with x;

X from s; same as x :=3s; s :=s less x;

X out s; same as s := s less x;

527



* Use of Code Blocks Within Expressions

If block is a section of text which could be the body

of a function definition, then [; block] is a valid expres-

sion which both defines and calls this function. Such

code block expressions can be used freely within other

expressions

.

Control Statements

* go to label;

if cond, then block, else if cond„ then block2 . . .else block ;

if cond, then block, else ... else if cond then block^;11 n n

Iteration Headers

(while cond) block;

* (while cond doing blocka) block;

(Vx^ e a^, x^ 6 a^ix^) , . . . ,x^ e a^{x^, . . . ,x^_-^)
|

C (x, , . . . ,x ) ) block;

in this last form, the range restriction may have such

alternate numerical forms as

min ^ X <_ max , max ^ x >^ min , min ^ x < max , etc. ,

which control the iteration order.

If t is a tuple, then the operator of form

(Vx(n) e t) block; is available. This is abbreviation for

(VI ^ n ^ #t
I

t(n) 1= ^) X = t(n); block;

Iterators of this form may also be used in set formers,

compound operators, quantifiers, etc.

528



Iterator Scopes

The scope of an iteration or of an else or then block

may be indicated either with a semicolon, with

parentheses, or in one of the following forms:

end V; end while; end else; end if; etc.,

or :

end Vx; end while x; end if x; etc.

* Loop Control

quit; quit Vx; quit while; quit while x;

and

continue; continue Vx; continue while; continue while x;

The quit statement terminates an iteration; the continue

statement begins the next cycle of an iteration.

* Subroutines and Functions (are always recursive)

To Call Subroutine :

sub(param, , . . . ,param )

;

sub[a]; is equivalent to (Vx e a) sub(x);;

Generalized Forms:

sub (param, , [param „ , par am,,] , . . . ,param, )

are also provided.

* To Define Subroutines and Functions

Subroutine

:

define sub(a,b,c); text end sub;

return; — used for subroutine return

529



Function

:

definef fun(a,b,c); text end fun;

return val; — used for function return

Infix and prefix forms:

define a infsub b

definef a infin b

define prefsub a

definef prefun a

text end infsub;

text end infin;

text end prefsub:

text end prefun;

* Namescopes

Scope declarations divide a SETL text into a nested collec-

tion of scopes . Scope names are known in immediately

adjacent, containing, and contained scopes. Other than

this, names are local to the scope in which they occur,

unless propagated by include or global statements.

Declaration forms

scope name; ..., end name;

scopes with specified numerical level

soope n name; ..., end name;

global declaration

global name, , . . . , name ;

with specified numerical level

global n name,, ..., name ;

include statement

include list,, ..., list

530



Example

:

* include bigscope 1 (scope 1 x, scope2 (-z) ,scope3 (x,y , u [v] ) ) ,

bigscope2*

;

'*' signifies all elements in scope,

'-' signifies exclusion of those elements listed,

[ ] modifies the 'alias' under which an element is known

in scope in which included. Subroutines and functions

are scopes of level 0. Macros (see below) are

transmitted between scopes in much the same way as

variable names. The declaration

owns routname, (x, , . . . ,x , ) , routname„ (y, , . . . ,y ^) , ...11 ' nl 2-^1 -^ n2

states that the variables x. are stacked when routname

^

is entered recursively, the variables y. are stacked

when routname ^ is entered recursively, etc.

* Macro Blocks

To define a block: macro mac(a,b); text endm mac;

To use

:

mac (c ,d)

;

* Initialization

initially block; {block executed only first time

process entered)

* Input-Outpu't

Unformatted Character String :

A SETL file is a pair [st,n] , where st is a character

string and n an integer designating 1 of its characters.

er is end record character; input, output are standard

I/O media; the function record(s); — reads a file [st,n]

531



from position n until ev character or string-end is

encountered in the character string st .

* Standard Format I/O

f read name, ,... .name ; using standard format reads
1 n ^

from file [st,n] , starting at position n

f print expn, , . . . ,expn ; using standard form transfers

external representation of objects to file s = [st,n],

starting at position n as above.

The set {s,,,..,s } is represented as {r-,,...,r },In '^ In
where r . is the external representation of s .

.

Similarly, the tuple [s,,.,.,s ] is represented

as [r^, . , .
,r^]

.

If str is a character string identical with the

external name under which a file is known to the

operating system supporting SETL , then

open str returns a pair [st,l] ,

where st is the contents of the file str.

close (st, str)

makes the SETL string st into the contents of the

external file str.

532



The following grammar for SUBSETL is a slight modifica-

tion and subset of the SETLA grammar found in SETL Newsletter

# 70, pp. 31-34. The notations used are the same as in

that newsletter and are as follows:

<Stype>

<*Ltype>

Literal, 'Literal'

<StYpe*>

<Stype (M,N)

>

Lexical Types

:

< *Name>

< *Opname>

< *Qname>

< *Logop>

Denotes a syntactic type

Denotes a lexical type

Denotes literals

Denotes indefinitely many

repetitions of a syntactic type

Denotes a minimum of M and a

maximum of N repetitions of a

syntactic type

.

variable name

operator {-^ ,-,*,/ ,max ,min ,.. .)

period terminating constant

{True , False ,nullset ,nullchar ,

nul Ituple . . .

)

Logical operators

(>, =, ~1=, >, Inos , ...)

533



SUBSETL GRAMMAR

<program> = < declaration *> <Block>

<declaration> = < type> (< varlist> )

;

<varlist> = <*name> <comname*>

<coinname> = ',' <* name>

<type> - integer \ boolean \ tuple \ set

<block> = <statement (1,*)

>

<statement> = if <expn> then <block> <elseif*> else

<block> endif;

= if <expn> then <block> <elseif*> endif;

= V<iterator> <block> end V

;

- {while < expn>) <block> end while;

= < term> ' :-' <expn>;

< term> - < *name>

- <*name> <arglist>

<arglist> = (expnlist)

= {expnlist }

<expnlist> = <expn> <coinexpn*>

<compexpn> = '

,
' < expn>

<elseif> = elseif <expn> then <block>

<iterator> = < f irstit (0 , 1) >< iterlistx lastit (0 , 1) >

<firstit> = <expn>','

< lastit> = |<expn>

<iterlist> = < iterexpn> <comiterexpn*>

534



<iterexpn> = <*name> e <expn>

= < expnx compareopx *name>< coinpareop><expn>

<compareop> = >

_ I _ I

= <

= > ' =

<comiterexpn> = ',' <iterexpn>

<expn> = < factorx *opname><expn>

= <factor>

= if <expn> then < expn>< elsexpn *> else < expn>

<elsexpn> = else if <expn> then <expn>

<factor> = < *opname>< factor>

= 3 <iterlist> < lastit (0 , 1)

>

= V <iterlist> < lastit (0 , 1)

>

= [<*opname>: <iterlist> < lastit (0 , 1) >] <expn>

= < atom> <arglist>

= <atom>

= < atom> <*logop> <factor>

<ATOM> = <term>

= (<expn>)

= {<expnlist>}

= {<iterator>}

- [<expnlist>]

= [<iterator>]

= <*const>

= < *Qname>

535



Appendix B. Predicting Speedup for Rule 1

In the following Appendix we will continue the discus-

sion raised in Chapter 2 (C) concerning the difficulties

in predicting program speedup which results from formal

differentiation. To illustrate our point we will consider

the rule 1 reduction transformation applied to the

setformer

(1) c = {x e s
I

K(x) }

executed repeatedly in a program loop L (cf . Chapter 2(C)) .

In this case we can facilitate prediction of program

speedup by restricting our attention to an asymptotic

speed complexity in which the frequency of execution of

a program loop L is arbitrarily large in comparison to the

initialization block to L. This optimistic heuristic

obviates the need to consider the cost of any code inserted

within an initialization block to L by rule 1. Another

possibility is to take the somewhat pessimistic view that

within L control will always travel along a path containing

a maximal number n of prederivatives c = c+{xeA^ |k(x)},

...,c=c+{x£A |k(x)} between any two calculations— n

of (1). Then, after waving aside numerous complications, we

can formalize a condition under which we expect rule 1 to

result in improvement: For the cost of calculating (1) to

exceed the maximum cost of computing the update code in L
,

the following inequality

536



n
(2) I #A. Cost(K) < #s Cost(K)

i = l ^

which simplifies to an equivalent 'win predicate'

n
(2')

I #A. < #s
i^l ^

must hold.

The present thesis will not attempt to provide a

method for static determination of (2'). Although we

can factor out the term Cost(K) from the win predicate

for the rule 1 case, a more general complexity measure

cannot be avoided in analyzing more complicated examples

of interest. Hence, the current thesis will steer clear

of such serious and difficult complexity issues to favor

a more heuristic approach having broad practical applica-

tions .

537



APPENDIX C

FORMAL DIFFERENTIATION TABLES

In this appendix we provide the pattern tables

which support the various formal differentiation implementa-

tion designs discussed in Chapters 3 and 4. In particular,

Section (i) contains the elementary form table (F) and

the derivative table (D) used in connection with the

Fortran variants of Algorithm 1-2, Algorithm 1, and

Algorithm 2 (cf.. Chapter 3 (C.2.3, C.3.2)). Section (ii)

gives the F and D tables needed for our algorithms imple-

menting set theoretic FD limited to expressions continuous

in all of their parameters (cf.. Chapter 3 (C.2.3, C.3.2,

C.3.3)). Finally Section (iii) provides the F, D, Init,

and Replace tables to be included as part of the more

general SETL FD implementation design proposed in

Chapter 4

.

The entries in all of the tables to be presented

consist of pattern specifications used for either

pattern matching or macro expansion operations. To specify

pattern expressions we will make use of literal symbols,

pattern variables, pattern names, and names of code proce-

dures, all combined by balanced parentheses and operations

of concatenation, alternation, and predecessor formation.

However, to make these tables more readable we will avoid

cluttering up patterns with explicit tree structure, and

538



will instead assume that this structure can be determined

by an appropriately modified Parser. Other notational

shortcuts taken for the sake of clarity will be mentioned

as we proceed.

The following BNF rules describe the notational

details of our nonprocedural pattern language:

<ASSIGN> ::= <Pattern name*> '=' <Pattern expression>

<Pattern expression> : := <term>
|

<Pattern expression> '
|

' <term>

<term> : := <factor>
|

<term> <factor>

<factor> : := <literal*>
|

<Pattern variable*>
|

<Pattern mame*>
|

<Procedure name*>
|

[<Pattern expression>]
|

(<Pattern expression>)

The lexical categories of the above grammar are defined as

follows

:

<Pattern name*> — an alphanumeric string beginning with

a letter; each pattern name must appear once on the

left side of an assignment.

<Literal*> -- a string enclosed in quotes;

<Pattern variable*> — an alphanumeric string beginning

with a letter; these identifiers can be distinguished

from pattern names in that they cannot appear on the

539



left side of an assignment.

<Procedure name*> -- an alphanumeric string

beginning with the symbol !

;

i. FD Tables for Fortran

The following tables shown in abbreviated form can

be used in connection with Algorithm 1-2 of Chapter 3(C,2.2)

tailored to Fortran (cf., Chapter 3 (C, 2.3)). For

Fortran FD only two tables, F and D, are required. Each of

the three patterns f belonging to F appears as part of a

term E = f. We use this notation to indicate that the

pattern variable E will match the generated variable v_ used
f

to hold the value of a reduced expression f matched by f.

The D table is lined up with the F table so that

derivative entries associated with each elementary form f

are listed just to the right of the entry for f. As a

notational shortcut, we sometimes specify two derivative

entries on a single line; e.g., the line

xl = + x3 E = + x3 * x2

indicates the following two entries:

xl = + x3 E = + x3 * x2 .

and

xl = - x3 E = - x3 * x2

540



Elementary Form Table (F) Derivative Table (D)

Parameter Change Prederivative

1. E = xl * x2 xl = + x3 E = + x3 * x2

xl = - x3+x4 E =: - x3*x2 + x4*x2

xl = x3+x4 E = x3*x2 J: x4*x2

x2 = + x3 E = + x3 * xl

x2 = - x3+x4 E = - x3*xl + x4*xl

x2 = x3+x4 E = x3*xl + x4*xl

2. E = xl / x2 xl = + x3 E = + x3/x2

xl = - x3+x4 E = - x3/x2 + x4/x2

xl = x3+x4 E = x3/x2 1 x4/x2

3. E = xl ** x2 x2 = + x3 E = xl**±x3

x2 = - x3+x4 E =
( xl**-x3 ) *

(

xl**±x4 )

x2 = x3+x4 E =
( xl**x3 ) *

(

xl**±x4 )

ii. FD Tables for Subsetl Expressions Continuous in All of

Their Parameters

The F and D tables shown below can be used with the

Subsetl variants of either Algorithm 1.2 (of.. Chapter

3 (C.2.3)) or Algorithm 1 and Algorithm 2 (of. Chapter 3

{C,3.2, C.3.3)). The form of these tables is the same as

the tables just given for Fortran.

541



F Table D Table

Parameter Change

1. E = xl+x2

set union

xl

xl

x2

x2

2. E = xl*x2 xl

intersection x2

3. E = xl-x2 xl

set differ-
ence

x2 :

x2 :

4 . E = Pow (xl) xl :

= xl + A

= xl - A

= x2 + A

= x2 - A

= xl + A

= x2 + A

= xl + A

= x2 + A

= x2 - A

= xl + A

xl := xl - A;

5. E={xexl|k} xl := xl + A;

fj^ (yl, . . . ,yn) :=z;

postderivative

E

E

E

E

E

E

E

Prederivative

= E + A;

= E - (A - x2) ;

= E + A;

= E - (A - xl)

;

= E + A * x2;

= E + A * xl;

= E + (A - x2) ;

E := E - (A * xl) ;

E := E + (A * x2) ;

E := E+

{y+z :yGE, zSPow (A-x) };

E := E-

{yGE| A*y^=/l/uUset};

E := E + {x e A
I

k}
;

^0 =
=

r n
{xexl| or{ & P. . (x)=y. ) } ;

i=l j^i ^3 J

E:= E-{xGs |k};

-^{E:= E+{xesQ |k};

6. E=[op ixGxl |kl]k2 xl := xl+A; E := E op [op : xG ( A-xl ) |
kl ] k2

;

where op is any
binary operator

7. E=[+:xGxl|kl]k2 xl := xl -A

;

where + is
addition

E := E- [+:xG (A*xl) |kl]k2;

542



F Table
Parameter
Change

Prederivative

8. E = {kl: xexl|k2} xl := xl+A; E := E + {kl: x e A
|
k2};

9. E = {xl<_x<_x2 |k} xl := xl+A; if A ^ then

E := E-{xl£x< (xl+A min x2)|k};

else

E:=E+{xl+A^x< (xl min x2)|k};

endif;

xl := xl-A; t/ A ^ then

E:=E+{xl-A£x< (xl min x2)|k};

else

E:=E-{xl<^x< (xl-A min x2)|k};

endif

;

x2 := x2+A; if ^ -^ Q then

E:=E+{(xl max x2 ) <x£x2+A | k }

;

else

E :=E-{(xl max x2+A ) <x^x2 | k }

;

endif;

x2 := x2-A; if h >_ then

E:=E-{(xl max x2-A ) <x^x2 | k }

;

else

E:=E+{(xl max x2 ) <x£x2-A | k}

;

endif;

rmin mzn ,mvn
10. E-[""'":xexl|kl]k2 xl:-xl+A; E := £"""' ["-": xGA|kl]k2;

max ' max max '

543



^ „, , - Parameter r^ jF Table ^, Prederivative
Change

11. E = xl e x2 x2 := x2 + A; t/ xl e A then E:= true;

/aZ-se

endif;

12. E = xl ^ x2 x2 := x2 + A; i/ xl G A t/zen E:= false-,
true

endif

;

13. E = xl + x2 x2 := x2 + x3; E := E + x3;

tuple xl := x3 + xl; E := x3 + E;

concatenation
x2(x3) := x4; E(#xl + x3) := x4

;

x2(x3:x4) := x5; E(#xl + x3:x4) := x5

;

iii. FD Tables for Subsetl Expressions Continuous in Some

of Their Parameters

The F, Replace, Init, and D tables shown below support

the SETL implementation design discussed in Chapter 4 (C)

.

Because too many long and complicated pattern entries are

required for these tables, it is no longer convenient to

present them using the simple format for tables given in

Sections i and ii. Instead, they are given separately with

the following rule of association: Within each table,

entries corresponding to the eleven basic pattern forms

belonging to F are numbered 1,2,..., 11.

In addition, actual pattern names Forml ,Form2 , . . . ,Formll

are used to specify basic pattern forms within F.

Expl, . . .
,Expll are the corresponding pattern names of the

Replace table, and denote macros which expand to retrieval

terms used to replace occurrences of reducible expressions.

544



Initl , . . .
, Initll are the respective pattern names

within Init, and represent macros which expand to initiali-

zation code. The D table entries are divided into 11

separate groups, each of which is associated with a different

basic form belonging to the F table. These groups are

presented in the same order as the corresponding entries

of F. Within each group associated with Form. ,

i = 1,...,11, we list entries labeled by letters for every

continuity parameter x of Form. , and for each allowable

modification to x. Each entry contains expressions for a

parameter change pattern and a derivative code macro.

To avoid cluttering our tables with needless detail,

the pattern entries displayed for these tables will not

adhere strictly to the pattern language rules. Since a

modified Subsetl parser can be made to recognize the literal

symbols and tree structure of pattern expressions, literals

will not be enclosed within quote marks, and brackets will

not be used to specify tree structure. Thus, any occur-

rences of brackets will denote literal symbols. Parentheses,

too, will denote literals instead of meta symbols.

For conciseness and readability, we will use macros

to help generate pattern e>prefasiGn:3 . hacros are declared

in the following way,

macro name (PI ,P2 , . . . ,PN)

;

<exp>

<block>

endm

545



where name is the macro name, P1,...,PN are parameter

names, exp is a pattern expression and block is a sequence

of pattern name assignments. A macro use, name (textl , . . . , textN)

causes text. , i=l,...,N, to be substituted for each

occurrence of P. within exp and block. Note that a single

token may be formed by concatenation from parts separated

by the symbol @. A parameter may be part of such a token.

Although pattern names defined outside of macros will be

considered global within each table, all pattern names

defined within a macro block are assumed to be local to

each macro use. After macro expansion, exp will replace the

macro invocation

.

Pattern specifications used for the F table incorporated

in the FD implementation discussed in Chapter 4 (C) normally

contain a procedure name pattern of the form Ipname

immediately following each occurrence of a pattern variable

pvar. Recall that when Ipname is encountered during

matching, the procedure pname which validates the sub-

expression matched by pvar is executed.

For the sake of clarity, the F table shown below has

been pruned of all procedure names. However, we use a nam-

ing convention for pattern variables which allows us to

restore these missing procedure names systematically.

We consider five such procedures in connection with an

upgraded F table: Cvar (Indset) , Dvar, Svar , Bvar, and Mvar.

546



The first three of these procedures have already been

discussed on p. 426. Cvar is used for validating pattern

variables which are continuity parameters. For each

continuity parameter xi the procedure parameter Indset

is the name of the induction set associated with xi . The

following table gives the rule of correspondence between

continuity parameters of the F table and the induction sets

defined on p. 456.

Induction Set Continuity Parameters

xl

,

x2 , x3, x4 , x5

x6

,

x7, x8 , x9 , xlO, xll, xl2 , xl3

Fl, F2, F3

F8, F9

xl

,

x2 , x3, x4 , x5

Fl, F2, F3

The routine Dvar will be used for validating discontinuity

parameters. By convention all pattern variables of the F

table whose name begins with 'q' are discontinuity parameters

and should be followed by an occurrence of the procedure

pattern !Dvar.

Svar is used to validate special parameters; these are

pattern variables which begin with the letter 'k'.

In addition to the three procedures already discussed,

we also require two new routines, Bvar and Mvar. Bvar vali-

dates all parameters which match variables bound to iterators.

547

^^1



All such parameters occurring within the F table use the

name x. To implement Bvar we must ensure that whenever

a term ! Bvar is encoxintered just after an occurrence of

a pattern variable x, the expression x matched by x

represents a simple variable occurrence.

The routine Mvar is designed to validate pattern

variables F4 , F5, F6, and F7. Mvar must ensure that any

subexpression matched by each of these parameters is a map

variable

.

Various other procedure names also prove useful in

specifying patterns for the Init and D tables. Two of

these procedures, zero and Ct are used in connection with

dotted pattern variables 'q'. We associated with q two

special counters, #q and $q whose values are stored in

Pfunc('#q') and Pfunc('$q'), where Pfunc is the pattern

variable map used in either macro expansion of pattern matching

The counter #q associated with a particular pattern variable

q. will have zero as its initial value, and will reflect

the number of generated instances of q. . The counter $q

will have the same value as #q. except when it is reset to

some other value constrained by the condition <_ Pfunc ($q)

<_ Pfunc (#q) .

We illustrate the use of these counters by considering

the following pattern specifications,

(1) Paramsl e !zero($y) Params2

Params2 = !2t($y, #q2) y.*, Params2
|

y.*

548



in connection with macro expansion. Consider expansion

of Paramsl using a pattern variable map Pfunc in

which Pfunc (#q2) has the value 3. Then !zero($y) will

cause Pfunc ($y) to be set to zero, and expansion to proceed

with Params2. The procedure i?.t($y,#q2) will succeed when-

ever the value of $y is less than the value of #q2; other-

wise it will fail.

The first time ?.t is called expansion succeeds,

Pfunc (yl) is given a unique generated variable name nl,

and the value of $y is incremented. After this the literal

, is expanded, and Params2 is expanded recursively. Once

again it succeeds, and expansion of y.* results in assigning

the value two to $y, and a new name n2 to Pfunc (y2). Next

we expand the comma followed by Params2. This third attempt

to call Sit will also succeed; y.* will be expanded generat-

ing a third name n3; the comma will be expanded; and finally

Params2 will be expanded. However, since $y has the value 3,

It will fail, and expansion will proceed with the right

alternand, y.*. One last name n4 is generated before expan-

sion terminates with the following result,

(2

)

nl , n2 , n3 , n4

representing seven sibling nodes of a tree. The sort of

expansion just illustrated is useful in generating bound

variables of forall loops within the derivative code

sequences for Forml.

549



We use the procedure eq(x,y) to test the equality

of the trees Pfunc(x) and Pfunc (y) . eq succeeds whenever

the tree comparison Equals (Pfunc (x) , Pfunc (y) ) (cf. Appendix

E (ii)) holds and fails otherwise. For tree inequality

we use the procedure ne(x,y).

Two other procedures used only in the D table are

subst (k2 ,x, u) and strict. subst always succeeds, and

substitutes all free occurrences of x within k2 with

occurrences of u. The routine strict is used within the

D table in the following context, arg ! strict, where arg

can belong to either the induction sets IVl or IV6

.

strict succeeds whenever arg belongs to IV6 and fails

otherwise

.

550



Elementary Form Table (F)

Forml = {x e xl '

|

k E Conj & k
I

Conj

Conj = F8. (x) =0

F9. (x) n-

k5.

kl. = ql.

X G x2

x ^ x3

k2 G x4

k3 ^ x5

x e Fl (Q2)

k4 e F2 (Q3)

q4. G F3. (x)

x < x6

X £ x7

X > x8

X ^ x9

F4 (x) < xlO

F5(x) < xll

F6 (x) > xl2

F7(x) >_ xl3

Q2 = q2. , Q2
|
q2

Q3 = q3., Q3
|
q3

k}

551



macro Setform(op) ; {x e xl 'I' Fl(x,q) op F2 (x) } endm

2. Form2 E Setform(G)

3. Forms = Setform(^)

4. Form4 = Setform(<)

5. Forms = Setform(£)

6. Form6 = Setform(>)

7. FormV E Setform(>^)

8. Forms = xl + x2

9. Form9 = [+: x e xl]

1

10. FormlO = [+: x G F1{Q2)]1

11. Formll E {x e f10{Q5) 'I' k}

Q5 = q5. , Q5
|

q5.

Replace Table



Init Table

1. Initl = Srts

E* := nullset

(Vx* e xl, Iteradd '
|

' k)

Eitiapl := Emapl + {xl ort {x};

end V ;

Emapl = Izero ($kl,$w3) E(Params)

Params = Param, Params
|
Param

Param e kl.
|

! wl
|

! w2
|
w3.

Iteradd = Iter, Iteradd
|
Iter

Iter = ! wl* 6 {u* e Pro ject (#q2 ,F1) '|' x e Fl (u)

}

! w2* e {u* e Project (#q3,F2) '|' k4 e F2 (u) }

w3.* e F3. (x)

k E Conj & k
I

Conj

Con j = X £ x2

X ^ x3

k2 G x4

k3 ^ x5

X < x6

X _< x7

X > x8

x >_ x9

F4 (x) < xlO

F5(x) <_ xll

F6 (x) > xl2

F7 (x) > xl3

F8. (x) =

553



F9. (x) 1=
I

k5.

Srts = Srt Srts
|
Srt

macro Sort (set , op, id)

;

! Sortas(set, pred@id(au* , succ@id@u) ;

xmin@id@u := [min: w* s arg '
|

' w >_ x(3id]w;

pred@id@u (Q) := [max: w G arg]w;

endm

;

macro

macro

Srt E

Sortr (op, id) ; Sort (xl ,op , id) endm

Sortf (op, id,num) ; Sort (Fgnura (xl) ,op, id) endm

Sortr (>^, 6) |

Sortr(>,7)
|

Sortr(>,8)
\

Sortr (^,9) |

Sortf (>,10,4)
I

Sortf(>,ll,5)
I

Sortf (>,12,6)
I

Sortf (^,13,7)

Init2 E E* :- nullset;

(Vx* G Dam Fl , y* e Dom Fl{x} '|'

x G xl & Fl (x,y) e F2 (x) )

E(y) := E(y) + {x} ort {x};

end V;

InitS E E* := nullset;

Cix* G Dom Fl, y* e Dom Fl{x} '|'

X e xl & Fl(x,y) ^ F2 (x)

)

E(y) := E(y) + {x} ort {x};

end V ;

554



macro Initform (opl ,op2 )

;

E* :- nullset ',

(Vx* e Dom Fl, y* e Dom Fl{x} ' |' Fl(x,y) opl F2 (x)

)

E(y) :- E(y) + {x} ort {x} ;

end V;

xminSu* := nullset',

(Vx G xl)

Sortas (Z)om Fl{x}, pred@u, succgu, x) ;

pred(au(x,fi) := [maxi y e Z}om Fl{x}]y;

xmin@u(x) := [min: y e Dom Fl{x} '|' y op2 F2(x)]y;

end V;

en dm

4. Init4 = Initform (< ,>^)

5. InitS = Initform(^,>)

6. Init6 s lnitform(>,>)

7. InitV s Initform(^,^)

8. InitS = E* := xl + x2

;

9. Init9 = E* := [+: x* G xl]l;

10. Straightforward Initialization

a. Initio = E* := nullset ;

(V[Paramsl] g Pro ject (#q2 ,F1 )

)

E(Params3) := [ + : x* G Fl (Params3) ] 1 ;

end V

;

Paramsl = !zero($y) Params2

Params2 = !Lt($y,#q2) y.*, Params2
|

y.*

Params3 s !zero($y) Params4

Params4 = y., Parains4
|
y.

555



Differential Initialization

b

.

Parameter change

:

Fl := null set

;

Prederivative

:

E* := nullset ;

c. Parameter change:

Fl(Params5) := Fl(Params5) + A ort A;

ParamsS = !zero($y) Params6

Params6 = !Lt($y,#q2) y., Params6
|
y.

Prederivative

:

E{Params5) := E(Params5) + 1 ort 1;

11. Initll = E* := nullset;

(V[Params7] e Pro ject (#ql+#q2+#q3+#q4+#q5 ,F1)

)

E(Params3) := {x* 6 Fl(Params3) '|' k};

end V;

Params7 =!zero($y) ParamsS

ParamsS = ! Lt ($y , #ql+#q2+#q3+#q4+#q5)

y.*, ParamsS
|

y.*

556



Derivative Table (D)

macro Itin (arg)

;

A - arg Istrict
|

A

endm

macro Itout(arg);

A * arg ! strict
|

A

endm

macro Iteradd (skip,num)

;

Iterad

Iterad = Itera, Iterad
|
Itera

Itera = !ne(skip,Fl) ! [P6] G

{ [P5] e Project (#q2,Fl) '
|

' x e Fl(u) } |

!ne (skip,F2) i [P7] e

{[P5] e Project(#q3,F2) 'I' k4 e F2 (u) } |

!£t($F3,nuin-l) w3.* e F3.(x)
|

!eq(skip,F3) !eq ($F3 ,nuin-l ) w3.* G Itin(F3.(x))
1

!£t ($F3,#F3) w3.* S F3. (x)

endm

macro Itersub (skip,num)

;

Itersu

Itersu = Iters, Itersu
|
Iters

Iters = !ne(skip,Fl) i [P6] G

{ [P5] G Project (#q2,Fl) '
|

' x G Fl(u) } * Dom E

!ne(skip,F2) ! [P7]

{[P5] G Project (#q3,F2) 'I' kGF2(u)}* Dom E{wl}l

557



Idt (#F3, num-1) w3.* 6 F3.(x) * Dom E{Paramsl}

!eq(skip,F3) ! eq ($F3 ,num-l) w3 . *eitout (F3 . (x) )

*

Dom E{Paramsl}

!£t($F3,#F3) w3. G F3.(x) * Dom E{Paramsl}

endm

Paramsl = ! zero {$w 3 , $wl , $w2) Params2

Params2 e Param2 , Parains2
|
Param2

Param2 e w] .
|

w2 .

1

w3

.

Params = ! zero ($K1 , $w3 , $wl , $w2 ) Parameters

Parameters Param, Parameters
[
Param

Parain e kl.
|

wl .| w2 .| w3.

P5 = !zero($u) P8

P8 = u.*, P8
I

u.*

P6 = !zero($wl) P9

P9 = wl.*, P9
I

wl.*

P7 E !zero($w2) PIO

PIO = w2.*, PIO
I

w2.*

macro k (skip, num)

;

bool

bool = Conj & bool
|
Conj

Conj E !ne(skip,x2) ! x e x2
|

!ne(skip,x3) ! x ^ x3
|

!ne (skip,x4) ! x2 e x4
|

!ne(skip,x5) ! k3 s x5
|

558



!ne(skip,x6) ! x < x6

Ine (skip,x7) ! x < x7

!ne{skip,x8) ! x > x8

Ine (skip,x9) ! x ^ x9

!ne(skip,xlO) ! F4 (x) > xlO

!ne(skip,xll) ! F5 (x) < xll

!ne(skip,xl2) ! F6 (x) > xl2

!ne{skip,xl3) ! F7 (x) >^ xl3

! £t ($F8,num-l) F8 . (x) =

!eq(skip,F8) ! eq ($F8 ,num-l) !Inc($F8)

Ut($F8,#F8) F8. (x) =

Ut ($F9,num-l) F9.(x) 1=

!eq(skip,F9) ! eq ($F9 ,num-l ) !Inc($F9)

l£t ($F9,#F9) F9. (x) 1=

k5.

endm

559



la. Parameter change:

xl := xl + A;

Prederivative

:

(Vx* e Itin(xl), Iteradd '
|

' k)

E(Params) := E(Params) + (xl;

end V ;

b. Parameter change:

xl := xl - A;

Prederivative

:

(Vx* G Itout(xl), Itersub '
|

' k)

E(Params := E(Params) - {x};

end V

;

c. Parameter change:

x2 := x2 + A;

Prederivative

:

(Vx* e Itin(x2), Iteradd '1' k(x2) & xG xl)

E(Params) := E(Params) + (x};

end V

;

d. Parameter change:

x2 := x2 - A;

Prederivative

:

(Vx* G Itout(x2), Itersub '|' k(x2) & x ^ xl)

E(Params) := E(Params) - {x};

end V

;

560



e. Parameter change:

x3 := x3 + A;

Prederivative

:

(Vx*Gltin(x3) , Itersub '|' k(x3) & x e xl)

E(Params) := E(Params) - {x};

end V ;

f. Parameter change:

X 3 : = X 3 - A ;

Prederivative

:

(Vx*eitout (x3) , Iteradd '
|

' k (x3 ) & x s xl

)

E(Params) := E(Params) + {x};
e n 6? V ;

g. Parameter change:

x4 :=x4 -A;

Prederivative

:

(Vy* e Itin(x4), x* e {u* G xl 'I' ! subst(k2 ,x, u) = y},

Iteradd '
|

' k(x4)

)

E(Params) := E(Params) + {x};

end V ;

h. Parameter change:

x4 := x4 - A;

Prederivative

:

(Vy* e rtout(y^), x* e {u* g xl '|' ! subst (k2 ,x, u) - y],

Itersiob '
|

' k(x4) )

E(Params) :- E(Params) - {x};

end V ;

561



Parameter change:

x5 := x5 + A;

Prederivative

:

(Vy* G Itin(x5), x* e {u* e xl '|' ! subst (k3 , x, u) = y},

Itersub '
|

' k (x5) )

E(Params) := E(Params) - {x}

;

end V ;

Parameter change:

x5 := x5 - A;

Prederivative

:

(Vy* e ltout(x5), x* e {u* e xl '|' ! subst (k3, x, u) = y},

Iteradd '

|

' k(x5)

)

E(Params) := E(Params) + {x}

;

end V ;

Parameter change

:

F3@$F3(x) := F3@$F3(x) + A;

Prederivative

:

t/ X s xl then

(Vlteradd(F3,$F3) '

|

' k)

E(Params) := E(Params) + {x};

end V ;

endif ',

Parameter change:

F3(a$F3(x) := F3@$F3(x) - A ;

562



Prederivative

:

-£/ X G xl then

(Vltersub(F3,$F3) '
|

' k)

E(Params) := E{Params) - {x};

end V ;

endif;

m. Parameter change:

Fl(ParamslO) := Fl (ParamslO ) + A ;

ParamslO = lzero($wl) Paramsll

Paramsll e !Lt($wl,#q2) wl . Paramsll
|

wl

.

Prederivative

:

(Vx* G Itin (Fl (ParamslO) ) , Iteradd(Fl) '
|

' x e xl & k)

E(Params) := E(Params) + {x};

end V ;

n. Parameter change:

Fl (ParamslO) := Fl (ParamslO) - A;

Prederivative

:

(Vx* e itout (Fl (ParamslO) ) , Itersub(Fl) 'I' x e xl & k)

E(Params) := E(Params) - {x};

end V;

o. Parameter change:

F2(Paramsl2) := F2(Paramsl2) + A;

Paramsl2'E !zero($w2) Paramsl3

ParamslS = !Lt($w2,#q3) w2 . Paramsl3
|
w2

.

Prederivative

:

( Vy* G Itin (F2 (Paramsl2) ) , x* e

{u* G xl 'I' Isubst (k4 ,x,u) = y}.

Iteradd(F2) '

|

' k)

E(Params) := E(Params) + {x};

end V;
563



Parameter change

:

F2(Paramsl2) := F2 (Paramsl2 ) - A

;

Prederivative

:

(Vy* € Itout (F2 (Paramsl2) ) , x* e

{u* e xl 'I' subst (k4 ,x, u) = y},

Itersub(F2) '

|

' k)

E(Params) := E(Params) - {x};

end V

;

macro Dsuccr (relop, setop , id)

;

{while xmin@id@u relop x@id + A)

(Vx* :- xmin(3id@u.

Iterator '
|

' k(x@id)

)

E(Params) := E(Params) setop {x};

end V ;

xrain@id@u := succ(3id@u (xinin@id@u) ;

endwhile ;

Iterator = !eq (setop, + ) Iteradd
|
Itersub

endm

macro Dpredr (relop , setop , id)

;

(while pred@id@u (xinin@id@u) relop xQid - A)

xmin@id@u := pred@id@u (xmin@id@u)

;

(Vx* := xmin(aid@u.

Iterator '
|

' k(x@id) )

E(Params) •.- E(Params) setop {x};

end V

;

endwhi le

;

Iterator E !eq (setop, +) Iteradd
|
Itersub

endm
564



maaro Dsuccf (relop, setop, id ,arg)

;

{while xinin@id@u relop x@id + A)

(Vx* s {u* s xl
'

I

' arg(u) = xmin@id@u}.

Iterator '
|

' k (x@id) )

E(Params) :- E(Params) setop {x};

end V;

xmin@id@u := succOidgu {xmin@id@u)

;

endwhi le ;

Iterator s !eq (setop, + ) Iteradd
|
Itarsub

endm

macro Dpredf (relop, setop, id, arg)

;

{while pred@id(au (xmin@id@u) relop x@id - A)

xmin@id@u := pred@id@u (xmin@id@u)

;

(Vx* £ {u* G xl
'

I

' arg(u) = xmin@id@u}

,

Iterator '
|

' k(x@id) )

E(Pararas) := E(Params) setop {x};

end V

;

endwhile ;

Iterator = !eq (setop, +) Iteradd
|
Itersub

endm

q. Parameter change:

x6 := x6 + A;

Prederivative

:

Dsuccr (< , +, 6

)

565



r. Parameter change:

x6 := x6 - A;

Prederivative

:

Dpredr (^,- ,6)

s. Parameter change:

x7 := x7 + A;

Prederivative

:

Dsuccr (£,+,7)

t. Parameter change:

x7 := x7 - A;

Prederivative

:

Dpredr (>,-,7)

u. Parameter change:

x8 := x8 + A;

Prederivative

:

Dsuccr {±r- I 8)

V. Parameter change:

x8 := x8 - A;

Prederivative

:

Dpredr (>,+, 8)

w. Parameter change:

x9 := x9 + A;

Prederivative

:

Dsuccr (< ,- ,9)

X. Parameter change:

x9 := x9 - A;

Prederivative

:

Dpredr (^,+,9) 555



y. Parameter change:

xlO := xlO + A;

Prederivative

:

Dsuccf (<,+,10,F4)

z . Parameter change

:

xlO := xlO - A;

Prederivative

:

Dpredf (^,-,10,F4)

aa. Parameter change:

xll := xll + A;

Prederivative

:

Dsuccf (£,+,11, F5)

bb . Parameter change:

xll := xll - A;

Prederivative

:

Dpredf (>,-,ll,F5)

cc . Parameter change

:

xl2 := xl2 + A;

Prederivative

:

Dsuccf (<,-, 12, F6)

dd. Parameter change:

xl2 := xl2 - A;

Prederivative

:

Dpredf (>,+, 12, F6)

ee . Parameter change:

xl3 := xl3 + A;

Prederivative

:

Dsuccf {<,+, 13, F7)

5b7



ff. Parameter change:

xl3 - A;

Prederivative

:

Dpredf (>,-,13,F7)

gg. Parameter change:

F8(a$F8(x) := F8(a$F8 (x) + A ;

Prederivative

:

-if X e xl & F8(a$F8{x) = then

(Vltersub '
|

' k(F8,$F8)

)

E(Params) := E(Params) - {x};

end V ;

endif

;

hh. Parameter change:

F8@$F8(x) := F8(a$F8(x) - A;

Prederivative

:

if X G xl & F8@$F8(x) = A then

(Vlteradd '
|

' k(F8,$F8)

)

E(Params) := E(Params) + {x};

end V ;

endif ',

ii. Parameter change:

F9(a$F9(x) := F9(a$F9 (x) + A;

Prederivative

:

if X e xl & F9@$F9(x) = then

(Vlteradd '
|

' k(F9,$F9)

)

E(Params) := E (Params + {x};

end V

;

endif;

568



jj. Parameter change:

F9(a$F9(x) := F9(a$F9(x) - A;

Prederivative

:

if X G xl & F9(a$F9(x) - A then

(Vltersub '
|

' k(F9,$F9) )

E(Params) := E{Pararas) - {x};

end V ;

endif;

569



2a. Parameter change:

F2 (y) :=F2 (y) + A;

Prederivative

:

i/ y e xl then

(Vx* G Itin(F2 (y) ) ,u* e {w* e Dom Fl{y} '|' Fl(y,w) = x})

E(u) := E{u) + {x};

end V

;

end if;

b. Parameter change:

F2 (y) := F2 (y) - A;

Prederivative

:

•£/ y e xl then

(Vx* e Itout (F2 (y) ) , u* G {w* € Dom Fl{y} 'I' Fl(y,w)=x})

E(u) := E(u) - {x};

end V ;

endif',

3a. Parameter change:

F2(y) := F2 (y) + A

;

Prederivative

:

i/ y s xl then

(Vx* G Itin(F2(y)), u* G {w* G Dom Fl{y} '|' Fl(y,w)=x})

E(u) := E(u) - {x};

end V ;

endif;

570



b. Parameter change:

F2(y) := F2 (y) - A;

Prederivative

:

if y 6 xl then

(Vx* G Itout (F2 (y) ) , u* e {w* e Dom Fl{y} '|' Fl(y,w)==x})

E(u) := E(u) + {x};

end V ;

endif',

macro xsucc (relop, setop)

;

{while xmin@u(y) relop F2 (y) + A)

(Vx* e {w* G Dom Fl{y} '|' Fl{y,w) = xmin@u(y)})

E(x) := E(x) setop {y};

end V ;

xmin@u(y) := succ@u (y , xmin@u (y ) )

;

endwhile ;

endm

macro xpred (relop, setop)

;

{while pred@u (y , xinin@u (y ) ) >_ F2 (y) - A)

xinin@u(y) := predSu (y , xmin(au (y ) ) ;

(Vx* G {w* G Dom Fl{y} '|' Fl(y,w) = xmin(au(y)}

E(x) := E(x) setop {y};

end V;

endwhi le ;

endm

571



4a. Parameter change:

F2(y) := F2 (y) + A;

Prederivat_ve

:

xsucc (< ,+)

b. Parameter change:

F2(y) := F2 (y) - A;

Prederivative

:

xpred i^,-)

5a. Parameter change:

F2 (y) := F2(y) + A;

Prederivative

:

xsucc (£, + )

b. Parameter change:

F2 (y) := F2 (y) - A;

Prederivative

:

xpred (> , -)

6a. Parameter change:

f2(y) := F2(y) + A;

Prederivative

:

xsucc (^f-)

b . Parameter change

:

F2 (y) := F2 (y) - A;

s

Prederivative

:

xpred(> ,+)

7a. Parameter change:

F2 (y) := F2 (y) + A

;

Prederivative

:

xsucc (< ,-) 572



b. Parameter change:

F2(y) := F2 (y) + A

;

Prederivative

:

xpred(^,+)

8a. Parameter change:

xl := xl + A;

Prederivative

:

E := E + A;

b. Parameter change:

xl := xl - A;

Prederivative

:

E : = E - (A - x2 ) ;

c. Parameter change:

x2 := x2 + A;

Prederivative

:

E := E + A;

d. Parameter change:

x2 := x2 - A;

Prederivative

:

E := E - (A - xl)

;

9a. Parameter change:

xl := xl + A;

Prederivative

:

E := E + [+: x G itin(xl)]l;

b. Parameter change:

xl := xl - A;

Prederivative

:

E := E - [+: X G itout(xl)]l;

573



10a. Parameter change:

Fl(Params3) := Fl(Params3) + A;

ParamsS ^ !zero($y) Params4

Params4 = !Lt($y,#q2) y., Params4
|
y.

Prederivative

:

E(Params3) := E(Params3) + [+: x* G Init (Fl (Params3) ) ] 1;

b. ParaiTieter change:

Fl(Params3) := Fl(Params3) - A;

Prederivative

:

E(Params3) := E(Params3)- [+: x* 6 Inout (Fl (Params3) ) ] 1

;

574



APPENDIX D

VARIOUS ELEMENTARY AND COMPOUND SET THEORETIC TRANSFORMATIONS

In this section we give a list of auxiliary set

theoretic transformations likely to be useful supplements

to formal differentiation around which our proposed imple-

mentation will be built. This list includes transformations

likely to aid in performing preparatory and cleanup tasks

arising before and after formal differentiation. Although

most of these rules lie at a relatively low level, at the

end of the present appendix we describe a way to collect

simple rules into 'rule groups' applicable automatically

and collectively over a region.

Each transformation we consider will be written as a

rewrite rule in one of two forms. We write LHS => RHS to

indicate that the LHS pattern can be replaced by RHS;

the second form LHS ** RHS designates a production

allowing for replacement of either RHS by LHS or of LHS

by RHS. The notation <k,x \ y> indicates that all occur-

rences of the term x in k are to be replaced by y.

Unless otherwise specified we assume that all trans-

formable expressions are applicative, and consequently

side effect free. For this reason, in theory the usual

transformations (e.g., commutative laws) which can

rearrange the order of expression of computations can be

575



expected to hold. Since in SETL, primitive operations

consider boolean arguments to be false if not explicitly

true, we expect that standard identities such as

3x G s
I

f(x) > g(x) *» n Vx e s|n (f(x) > g(x))

are preserved. Due to finite computer data representation

and machine dependent error condition handling, issues of

code motion safety frequently pose obstacles to

nontrivial arithmetic transformations (e.g. distributive

laws may not hold) , but this does not concern us since

our primary interest is in expressions involving finite

sets and set theoretic relations. However, even when

arithmetic operations appear, the order of evaluation may

sometimes be changed without sacrificing accuracy, (cf. wi

for a further discussion of safety problems in formal

differentiation)

.

Some of the transformations listed here will rearrange

the execution order of code C only when the Usetodef and

Deftouse maps do not change, a precondition which we call

'transformational dis jointness '

.

i. Simple Set Identities (all arguments are set valued)

C0MI4UTATIVE Laws ASSOCIATIVE Laws

CI. S*T<*T*S Al. S*(T*Q)*>(S*T)*Q
C2. S + T «• T + S A2. S + (T + Q) « (S + T) + Q

576



Idempotent

II. S * S <* S

A2. S + S *» S

N3.

N4 .

Ml.

M2.

M3.

M4.

M5.

M6.

M7.

M8.

M9.

MIO

Rules for Nullset

Neutral Element

Nl. S + nullset ** S

N2. S - nullset ** S

DISTRIBUTIVE

S * nullset ** nullset Dl . S * (T + Q) ** (S * T) + (S*Q)

S - S <* nullset D2 . S + (T * Q) *» (S + T) * (S+Q)

D3. S * (T - Q) <* (S * T) - (S*Q)

D4. (S + T) - Q <^ (S - Q) + (T-Q)

MISCELLANEOUS Rules

s - (t + Q) ^ (s - t) - Q ** (s - Q) - t

s + (t - Q) «* (s + t) - (Q - s)

s - (t - Q) « (s - t) + (s * Q)

s - (t * Q) *> (s - t) + (s - Q)

s * (t - Q) « (s - Q) * t

s-t*>s- (t*s)<*(s-t)-t

s « (s + t) - (t - s) ** (s - t) + (s * t)

s + t**s+ (t-s)

s*t**s- (s-t)

(S - T) * T «> nullset

Rules which Require T Il^CS S as an Enabling Condition

El. S - T *> nullset E3. S + T <* T

E2. S * T <* S E4. S n= T «• T - S n= nullset

Tautologies

Tl. T IISICS nullset T3. T INCS T-S
T2. T INCS T * S T4. T + S INCS S

577



ii . Boolean and Relational Identities

ASSOCIATIVE

Al. K & (J & L) *» (K & J) & L

A2. K or (J or L) <* (K or J) or L

Neutral Element

Nl. K & true *» K

N2. K or false -* K

DISTRIBUTIVE

Dl. K & (J or L) *> (K & J) or (K & L)

D2. K or (J & L) *» (K or J) & (K or L)

COMMUTATIVE

CI. K&J**J&K
C2, K or J ^ J or K

Idempotent

11, K & K ** K

12

.

K or K « K

Rules for TRUE, False

N3. K & False ^ False

N4. K or True ** True

NEGATION

N5. n n K ** K

N6. n False *> True

DE MORGAN ' S LAWS

Ml. K or J ^ n (n K & n J)

M2, K S, J <» n (H K or n J)

RELATIONAL and Negation Relational

Rl. n(K n= J) <> (K = J) R5. I < M « M > I

R2. n(K ^ S) => K e S R6, I <^ M <* M ^ I

R3. n(I > M) <* I < m] R7. I = M <> M = I

R4. n(i ^ m) ** I < mJ r8. I n= m « m 1:3 I

^ I and M must be inteyers

578



MORE COMPLICATED RULES

K = J <* K e {J}

[or: X, e s ,..., X e s K ] [or: y et , . . .y et k ]

k

1 1 n nl 11 m m z 3

[or: X-, G s, ,..., X ^ s ,
y^e t,,...,y G t Ik, & k„]k-,

1 In nil m m' 1 23

[& : Xt e s, ,..., X S s k,][&: Y-,^t^,...,Y Gt k_]k^
1 1 n n' 1 ^1 1 -^m m ' 2 3

f^
= ^l^^l ^n^^n' ^l^^l ^m^^ml'^1 ^ ^2]^3

DE MORGAN ' S LAWS

[&: Xt g s, ,..., X e s |k,]k„
1 1 n n ' 1 2

~\[or: x,G s, ,..., X e s |k,]~lk_
1 1 n n ' 1 2

[or: X, G s, , . . . , X e s |k,]k„
1 1 n n ' 1 2

-,[& : X, e s,,..., X e s |k,]nk^
\ 1 1 n n ' 1 2

DISTRIBUTIVE LAVJS

&
[or: X, G s, ,..., X e s |k,](kT k-,)

1 1 n n'12oi'3

[or: x-^ e s^ ,..., x^ e s^|k^]k2 ^^ [or: ^i^s-|_ , . . .x^Gs^
|

k^] k^

f^
= ^1 ^ ^ ^n ^ ^nl^l^^'^2 or ^3^

f^
= ^1 ^ ^1 ^n ^ ^nl^l^^2 or ^^ = ^l^^l ^n^^n'^J'^S

579



SIMPLIFICATION

if X, ,...,x are not free in k„ and

{<x,,...,x >, x,Gs, ,..., X Ss Ik,} ~\- nullset
1 n i 1 n n i

^7'- ^1 ^ ^1 ^n ^ ^nl^J^2

iV" •• x,e s ,..., X G s
I

k & k„] True
& 1 1 n n i z

iii. Set Former Manipulation and Simplification Rules

DISTRIBUTIVE LAWS

{e: x-GSt ,..., X Gs Ik, or k„}11 n n ' 1 2

{e: X Gs ,..., X Gs Ik,} + {e: x,GSt ,..., x Gs Ik-}11 nn'l 11 nn'2

{e: x,Gs, ,..., X Gs Ik, & k„}11 nn'l 2

{e: x^Gs^ ,..., x^Gs^lk^} *{e: x-j^G-^ ,..., x^Gs^|k2}

{e: x^Gs^ ,..., x^Gs^|[or: y^Gt-^ ,..., Yj^et^^Jk}

* transformational disjointness
required

f^= ^l^^l ^m^^m^^^r ^l^^l ^n^^'^nl'^^

{e: x^Gs^ ,..., x^Gs^|[&: Y^^t^ , . . . ,y^Gtj^] K}

transformational disjointness
required

f*= ^l^h ^m^t^l^^= ^l^^l V^n^

580



[+: x,SSt ,..., X Ss |K]{e}11 n n

'

{e: x^Gs, , . . . , X Gs I K}11 n n

'

A := exp{{e: x,&s^ »..., x €s Ik})^ 11 n n

'

A must not be free in RHS of assignment;

A := nullset ; Transformational disjointness is

(Vx Gs, ,..., X Gs Ik) required; exp is an expressionlinn' ^ • f jr

A := A + ex-p{{e]); in which

EtlD V; ea;p({e,,e }) = exp l,{e^])+exp {{e^])

holds

.

{on x^Gs, , . . . , x^Gs^|K] (J % T)11 n n '
5c

J ^ [+: x,es, ,..., X Gs |K]T
^ ' 11' ' n n

'

where x, ,...,x are not free in J.
1 n

Simplification Rules (basic to all iterative operations)

si. {e: XnGs, ,..., X G{p} . . , x Gs Ik}11 J n n

{<e,Xj\p>: x^Gs^
^j-l^^j-1' ^J+1^<^J+1'^J ^P'

c G <s ,x^ \p>
I

<k,x_ \p>}
n n J ' J

s2. {e: X Gs, ,.., x Gs^ ,..., x Gs Ix^ g Q & K}
I 1 J J n n ' J

* when s^ INCS Q e.g., Q = (p)
u

{e: X^Gs, ,..., X^GQ ,..., X Gs Ik}II J ' n n

'

where Q and s do not have free occurrences of ^j+j'-'-'^n'

581



:3 . {e: Xj^^s^ , , Xj^Sj , , ^^63^ ,..., x^es^jk}

{e: Xi^s, ,..., ^j^s ,..., XjSSj ,..., x^es^|k}

where s^ has no free occurrences of x^ , . . . , ^j-i '

s has no free occurrences of x ,,..., x ,

and for L = J+1,...,I-1, s^. does not have free
J-i

occurrences of x or x .

s4. {e: Xt^St ,.-./ x^nullset , . • . / x^s
|
k}

J. X u nil

nullset

iv. Forall LOOP LAWS

(VxGs, ,..., X es Ik) BLOCK END V

;

11 n n

'

(Vx^es^)

(Vx^es„ ,..., X es Ik) BLOCK END V

;

2 2 n n

'

END V;

(Vx G s) BLOCKl END V;

(Vx G s) BL0CK2 END V;

(Vx e s) BLOCKl BL0CK2 END V

;

provided BLOCKl {x) commutes with BL0CK2 {y)

for every x,yG s & x^^y;

Obvious analogues of the three set former simplification

rules discussed previously in iii can be made for 'forall'

582



loops and can result in diminishing the size of or removing

iterators

.

DISTRIBUTIVE TRANSFORMATIONS

(Vx.Gs, ,..., X es Ik) if P then BLOCK ENDIF; END V;11 n n

(Vx.Gs, , . . . , X Gs Ik & P) BLOCK END V;11 n n

'

(Vx.Gs, ,..., X Gs IP & K) BLOCK END V;11 n n

if P then (Vx^Gs^ ,..., x Gs Ik) BLOCK END V

;

11 n n '

ENDIF ;

where x^ ,...,x do not occur free in P.
1 n

V. Commonly Occurring Transformations Preparatory

to Formal Differentiation

PI. #{xGs|K} ^ [+: xGs|k]l

P2. 3xGs|k =* ([+: xGslk]l) =

P3. VxGslk ^ ([+: xGspkjl) =

where x is not used beyond
the quantifier

P4. 3x,Gs, ,..., x Gs Ik *> [or: x,Gs,,...,x Gs ]k11 nn' 11 nn
P5. \/x,Gs, ,..., X Gs Ik «" [&: x-Gs, , . . . ,x Gs ]k"11 nn' 11 nn-"

where

X, ,...,x are not used beyond quantifier

583



P6.

P7.

P8.

P9.

PIO

Pll

P12

P13

P14

P15,

P16

P17,

P18,

P19,

y is a new variable

name which is

generated.

P20,

3xes|k =* 3x e {yes|<k,x \y>}

VxGs|k =» Vx e {yGs|<k,x \y>}

s ^ nullset => ([+: y e s]l) ^

s INCS R => ([+: y G s|y ^ R]l) =

S = R =* (S li^CS R) & (R INCS S)

{x G s|k} *» S - {x e s
I

~lK}

{x G s|K^ & K } *> {x G S|K^} - {x G s
I

Hk^}

[op: xG s|K^]e =• [op: x G {y G s
|
<K ,x\y>}]e

[or: X G S]K =* ([+: x G s|k]1) ~\=

[&: X G S]K => ([ + : x G s
|
Hk]!) =

S 1= nullset => ([ + : y G s]l) 1=

S * T => {x G s|x G T}

S - T =» {x G s|x ^ T}

S := S + A ^ (Vx G (A - S) )

S := S + {x};

end V

;

S:=S-A=>(VxG(A*S))

s : = s - { x } ;

end V;

vi . Productions Derivable from Previous More Basic Rules

and Useful for Cleanup After Formal Differentiation

CI. {z G {y}|K} => if <K,z \y> then {y} else nullset

C2. (Vz G {y}|K) BLOCK END V; => if <K,z \y> then <BLOCK, z \ y>

ENDIF',

C3. 3z e {y} |k => <K,z \y>

C4. Vz G {y} |k => <K, z \y>

584



C5 [op: z G {y}|K]e =» if <K,z \y> then <e,z\\y>

else nilpot (op)
where , e.g.,

nilpot ( + )
=

for addition
nullset for union
nulltuple for tuple concatenation
etc

.

C6

C7

C8

C9

[op: X G {y € SlKj^llK^ ^ [op: x e sl<K ,y \x>]K

[+: z G {y}]l ^ 1

{z G nuZ-ZsetlK => nullset

(Vz G nullset \ K) BLOCK END V; ^ G
where e is the empty string

CIO. 3z G nullset \ K =* FaZse

Cll. Vz G nullset K True

Other Cleanup Transformations

C12. 3x G (i/ c t/?en el else e2) |k

=* if c then 3x G el|K

else 3x G e2| K

C13. Vx G (i/ c t/zen el else e2)|K

=* t/ c t/2en Vx G el|K

else Vx G e2
I

K

C14 . if {if c then cl eZse c2) t^zen

BLOCKl else

BL0CK2

endif

if (c & cl) or He & c2 t/zen

BLOCKl else

BL0CK2

endif
585



vii. Organizing Rules into an Automatic Production System

and an Efficient Implementation

This section describes a production system which can

eliminate unnecessary set former, intersection, set differ-

ence, and union operations found in a program region R.

The system consists of the following 5 rewrite rules which

can be applied in any order exhaustively throughout R:

{x G {ye t|K }|K } =» {w e t|<K ,y \w> & <'^2'^ \v>}

where w is a unique generated variable

S*T=>{xes
I

xGt}

S-T=>{xes
I

x^T}

x G (S + T) =* X G S or x e t /* membership test */

X G {y G t|k} => X G T & <K,y \ x> " "

The above rules can be guided by an efficient 'chain-

ing' mechanism discussed in general terms by Loveman [Ll],

and detailed by Kibler et al . [KIl]. In what follows

we will use Kibler 's approach to design an optimized

production system for those rules. In addition to standard

production system features such as use of a parse tree

representation T of a program and a set of rewrite rules P,

Kibler 's system has facilities for judiciously selecting

productions according to their likelihood of succeeding

and for limiting the necessary range of search through T

for a place where such productions can be applied. For

586



each node N of T, Kibler associates a locality defined

by the subtree of N and an instruction stack S(N) con-

taining a possibly empty sequence of directives; each

directive has the form <location><transformation list>

where <location> is either HERE or UP and

<transformation list> is a list of production names.

Also, for each production p of P, Kibler associates a

sequence of directives of the same form as was just

mentioned for stacks.

The production system begins in a starting state

[Tq,Sq,Nq] where T^ is an initial tree, S is a mapping

from nodes of T into stacks, and N is a node in T .

The transition rule which takes one state into the next

is implemented by the following SETL program:

/* the parse tree is represented by a set T of blank */

/* atoms along with predecessor and successor maps Tpred */

/* and Tsucc defined on T; N is a node in T and defines */

/* the current locality; for each node n e T, S(n) is a */

/* sequence of directives; for each production p g P, */

/* prods (p) is a sequence of directives, Lhs(p) is the */

/* Lhs pattern and Rhs (p) is the Rhs macro for p */

Define Psys

;

{while N "1= 9.) /* halt when locality is undefined */

{while S(N) 1= nulltuple)

Inst := S(N)(1); /* select instruction */

S(N) := S(N)(2:); /* pop stack */

587



If Inst = 'HERE' then continue-,

elseif Inst = 'Up' then

Top := S (N) ;

S(N) := nulltuple; /* empty stack */

N := Tpred(N); /* Go up */

S(N) := Top + S{N) ;

continue ;

elseif Temp := Dmatch (N,Lhs (Inst) ,Pfunc)

~\- false /* cf.. Appendix E(ii) for
Dmatch */

then N := Expand (Rhs (Inst) ,Pfunc)

;

/* Define new locality; cf., Appendix E(ii) for
Expand */

S(N) := prods (inst) + S(temp);

Replace(Temp,N)

;

end if;

end while ;

N := Tpred(N); /* enlarge locality with stack is empty*/

end while

end Psys

;

In order to illustrate the previous mechanism with the

five transformations presented earlier, we list these rules

again but with required additional information.

588



NAME: PI / structure set intersection /

ENABLING CONDITION: TYPE(S,T) = set, x not free in S , T,

Rule: S*T=='{xes
|
xGT}

Directions: HERE P3 P5 P4 PI P2 UP P3 P5 P2

NAME: P2 / structure set difference /

EC: TYPE(S,T) = set, x not free in S, T.

Rule: S-T^{xGS
|
x^T}

Directions: HERE P3 P5 P4 P2 PI UP P3 P5 PI

NAT-IE: P3 / set former combinator /

EC: w not free in S, K, J

Rule: {x G {y G s|K}|J} => {w G S|<K,y \w> & <J, x \w>}

Directions: HERE P3 UP P3 P5

NAxME: P4 / union removal /

EC: TYPE(S,T) = set, TYPE(result) = Boolean

Rule: xG (S + T)=>xGSor'xGT

Directions: HERE P4

NAME: P5 /set former removal /

EC: TYPE (Result) = Boolean

Rule: xe{yGS|K}=>xeS& <K,y \ x>

Directions: HERE P5

589



As an example, we consider a SUBSETL syntax tree for

the expression (S, * (S- + S^)) - S. and manually follow

the linked transformations and changes in locality stacks,

More specifically, consider the initial tree

/ \
PI P2 P3

(i:

^2 ^3

where the circled node represents the current locality, and

the initial stack attached to this node contains PI at the

top and P^ at the bottom. Processing of this tree takes

place as follows:

PI succeeds

I
P3 P5 P4 PI P2 UP P3 P5 P2

/ \
^2 ^3

continued

590



P4 succeeds

P2 P3

setformer S^ | PI P2 UP P3 P5 P2

,/\

or) P4

\

^1 f ^

|\
X S^ X S.

P2 succeeds

P3 P5 P4 P2 PI UP P3 P5 PI P2 P3

y setformer

or

/\ /\

/\ l\
X S^ X S.

/\
y s^

a P3 succeeds

setformer

W S2 W St

591



The locality stacks are now empty and the transformation,

(S *(S2+ S3)) - S^ =* {wG S,|(wG S2 or we S^) Siinot w€S^)}

has been accomplished, only one user directive being required,

592



viii. A Production System for Simple Automatic Jamming

A recent paper by William Burge [BU] describes a

method of loop jamming for optimizing nested recursively

defined Lisp functions. All of Surge's techniques apply

to corresponding iterative SETL forms, and serve to remove

nesting from among set formers, tuple formers, and compound

operations. An exam.ple, also considered by Burge, is to

find the sum of the squares of the odd numbers of a tuplet,

i.e., SUM(SQUARE (FILTER ( t) ) ) ,

where FILTER(t) = [x G t: odd(x)] ,

SQUARE (t) = [x ** 2: X G t] ,

and SUM(t) ^ [+: x g t]x

Several applications of 'jamming'

transform the high level expression

[+: X G [y ** 2: y G [z G t|odd(z)]]] resulting from

procedure integration into the more efficient calculation,

[+: w G t|odd(w)]w ** 2.

In general, this kind of transformation can be

achieved automatically in a program region R by exhaust-

ively performing the (A) productions listed below and then

exhaustively performing the (B) productions.

593



a. Preparatory and Jamming Transformations

[w G t] =* [w: w e T]

{we s } =* {w : w G S

}

[we t |k] =* [w: we t |K]

{w e s |k} =* {w: w G s |k}

[e: we t] => [e: we t\TRUE]

ie: w G s} = {e: w G s\TRUE}

[op: w G s]e => [op: w G s|TRUE]e

[e^^: w e [e^: z e t|K2] |k ]

[<ej^,w \<e2,z \y>>: yet|<K ,z\y> & <K,w \<e2,z \y>>]

where y isn't free ine,,e ,K ,K

{e,: w 6 {e-: z e slk^llk,}

{<e,,w\<e2/Z \y>>: yes|<K2,z \ y> & <k, ,w \<e2/Z \y>>}

where y isn't free in e,,e2,K ,K

[op: w e [62: z e t|K2] |K^]ej^

[op: y e t|<K„,z \ y> & <K ,w \<e„,z \y>>]<e,,w \<e^,z\ y>>

where y isn't free in e, ,e^,K^,K^

[op: w G {z: z G s|K }|K le, => [op : yGs
|
<K2 , z\ y-

& <K, ,w \y>]<e,,w \y>

594



B. Cleanup Transformations

TRUE & K => K

K & TRUE => K

[e: X G t|TRUE] => [e: x G t]

{e: X G s
I

TRUE} => {e: x G s}

[op: X G t|TRUE]e => [op: x G t]e

[x: x G t|K] =* [x G t|K]

{x: X G s
I
K} => {x G s

I

K}

{x G s |TRUE} => {x G s}

[x G t
I

TRUE} => [x G t]

{x G s } =* S

[X G t] ^ t

595



ix . Named Productions for Use in Topological Sort

Example of Chapter 3.

NAME : 3 FORMAT

Rule: 3x e s|k =*3x g {u g s|<K,x \u>}

NAME: SETEQNL

Rule: s = nullset =* ([ + : u G s]l) eq

where u is a unique name in TOPSORT's namespace, x, s, K

are patterns, and <,\ ,> are metasyrabols used to denote

substitution

.

NAME: (To*

Rule: {z G s|z = y} => {y} * s

where z isn't free in y

NAME: *SIMP

Rule: A * B =*• A

ENABLING PRED: B INCS A

NAME: {= NL

Rule: {x G s|k} =* nullset

ENABLING PRED: Vx e si not K

NAME:



NAME: {TOIF

Rule: {z G {y}|K(z)} =* if K(y) then {y} else nullset

where z is not within the scope of a bound variable

y in K

,

NAME: DISTIFl

Rule: A = B + if P then x else y;

=> if P then A = B + x; else A

where A cannot occur free in P

B + y; endif;

NAME

:

{ to V

Rule: A = {x e s|K} => (Vx e s|K) A = A + {x}

where A is not free in S or K

NAME:

Rule:

VSIMP*

(Vx e s|x e T) BLOCK => (Vx G S * T) BLOCK

NAME

:

*COMMUTE

Rule: A * B => B * A

where B, A are disjoint

NAME:

Rule:

NAME:

Rule:

VCONC

(Vx^ G s^) (Vx2 G s2iK) BLOCK

=»
( x^ G s^, X2 G S2IK) BLOCK

VCOMMUTE

(Vx-j^ G s^, X2 G S2 |K)BL0CK

=> (VX2 G S2, x^ G s^|k) block

where s-,,x, are disjoint with X2,S2 & block is order independent,

597



NAr4E

Rule

JATI

(Vx e s) BLOCK^ end V; (Vy e s) BLOCK2 end V

=^ (Vw e s)<BLOCK, ,x \w>;<BLOCK y \w> end V

ENABLE PRED: where BLOCK and BLOCK^ are disjoint and

w is a unique generated name.

NAME:

Rule:

NAME:

Rule:

NAME:

Rule:

VBRKUP

(Vx^ e s^, X2 G s |k) block

=* (Vx, e s, ) (Vx e s^lK) BLOCK

DEADELIM FORMAT (SCOPE = L)

'Remove dead code from Region L'

EXECUTE (DEADELIM)

'Rule executes a procedure'

VSUBST FORMAT (SCOPE = S)

EXECUTE (VSUSBST)

VSUBST substitutes the expression e to the right of

the first matched assignment statement A for occurrences

of the variable name V (to the left of that assignment)

in statement number s where s is a user supplied parameter

The value of the ud map applied to occurrences of V in s

must equal the program point p containing A. Furthermore

all paths from p to s must be clear of definitions to

variables of e.

598



Appendix E. Assorted Utility Routines for a Source to Source

Transformational Implementation

i . The Unparser

The Unparser procedure shown below is used to print the

source code of a SUBSETL program, given the program in

parse tree form. We assume that the parse tree is based on

the grammar given in Appendix A and is generated by any

suitable parser (for which we omit any further description)

.

The tree will consist of a set N of nodes (each node

implemented as a blank atom) and a map Tsucc associating each

node n with an ordered tuple Tsucc (n) of successor nodes.

Aside from Tsucc, we also make use of a number of other maps

defined on N. These include the following.

1. Leaf(n) is true when the node n is a leaf and

false otherwise.

2. Label (n) will be a token value if n is a leaf, or

the lexical type (e.g. 'block', 'statement') associated

with an internal node n.

3. Number (n) represents the statement number of node n

when Label (n) = 'statement'.

The following is a SETL version of Unparser:

/* Program is the root node of the parse tree */

Define Unparser (Program)

;

/* Initialize global variables */

line := nullchar; /* line is line buffer */

599



Columns:= 60; /* max no. of chars for line */

Margin :- 10; /* source line begins after column 9 */

Indent :=

Printpart (Program)
; /* begin unparsing */

Flush; /* print last line */

endj

/* unparse the block represented by parameter Block */

Define Printblock (Block)

;

Indent := Indent+1; /* indent statements of block */

(VState e Tsucc (Block)

)

Printstate (State) ; /* print block statements */

end V

;

Indent := Indent - 1; /* restore previous indentation*/

end;

/* unparse the statement state */

Define Prinstate (State)

;

Flush; /* print current buffer line */

Putleaf (number ( State) ) ; /* add statement no. to line*/

Tab(Margin + Indent*2); /* begin statement in
correct col */

(Vn e Tsucc (State)

)

Printpart (n) ; /* unparse the parts of statement */

end V

;

end;

600



/* Print the subpart node of a statement */

Define printpart (node)

;

if Label (node) = 'BLOCK' then

printblock (node) ; else

if Leaf (node) then

Putleaf (Label (node) ) . /* print token */

Tab (#Line+2) ; /* add 2 spaces after each token */

else

C^x G Tsucc(node)) /* print subparts of node */

Printpart (x)

;

end V

;

endif',

end;

/* Add the token string to the source line */

Define Putleaf (string)

;

/* if string cannot fit on line then print line and */

/* add string to next line which is indented */

if #line + ttstring > Columns then

Flush;

Tab (Margin + Indent * 2 + 2);

endif;

Put (string)

;

end;

/* Add spaces to line up to the column Col */

Define Tab (Col)

;

line := line + [ + : #line < i <_ Col] ' '
;

end;

601



/* print line and initialize next line */

Define flush;

if #line > then

Print (line)

;

endif;

line -.-nullohar ;

end;

ii. Pattern Matcher

Dmatch is a function subprogram which attempts to

match a pattern, Pat, to a subtree within a SUBSETL parse

tree whose root node we call Tree, using a depth first

search through Tree. The parse tree structure is as

described in connection with the Unparser algorithm.

Patterns will have the same structure as trees. Maps Pleaf,

Plabel, and Psucc will be defined on the nodes of a pattern

tree and serve much the same purpose as Leaf, label, and

Tsucc respectively. Moreover, if n is a leaf of a pattern

tree, then application of the boolean valued function

Literal (n) will yield true when Plabel (n) is a literal and

false when it is a pattern variable. Dmatch will return

the root of the subtree within Tree at which a first success-

ful match occurs. When matching succeeds, Dmatch will also

return the map Pfunc as a parameter. This map associates

each pattern variable x of Pat with the root Pfunc (x) of a

602



subtree of Tree matched by x. Note that Pfunc is useful

for macro expansion subsequent to matching (cf. the Expand

algorithm in this appendix, section iii) . If Dmatch is

unable to find a successful match, then it will return

false

.

The actions of the pattern matching routine Match

which is invoked by Dmatch has been described in detail

in Chapter 3 (B) .

The following SETL code implements Dmatch, Match and

various related auxiliary routines.

/* Tree and Pat are roots of a parse tree */

/* and pattern tree respectively */

Definef Dmatch (Tree , Pat , Pfunc)

;

if Match(Tree, Pat, Pfunc) then

Return Tree; else /* return node where matching
succeeds */

-i/ 3x s Tsucc(Tree)
|
Subtree : == Dmatch (x, Pat , Pfunc) then

Return Subtree; else

Return false;

endif;

end;

/* Match is a routine whose sole purpose is to initialize

the pattern variable map Pfunc. This permits the main

match procedure Matchl to call itself recursively

and preserve the previous value of Pfunc */

Definef Match (Tree , Pattern, Pfunc)

;

Pfunc : = nullset ;

Return Matchl (Tree, Pattern, Pfunc)

;

end;

603



/* Matchl attempts to match the parse tree whose

root node is Tree by the pattern tree whose root

node is Pattern. If the match succeeds, for each

pattern variable x in the pattern tree, Pfunc(x)

will be the node in the parse tree matching x. */

Definef Matchl (Tree, Pattern, Pfunc)

;

if Pleaf (Pattern) then

if Literal (Pattern) then

Return Plabel (Pattern) = Label (Tree) ; else

if Plabel (Pattern) ^ Dom Pfunc then

Pfunc (Plabel (Pattern) ) := Tree;

Return true; else

Return Equals (Pfunc (Pattern) , Tree)

;

endif; else

if #Psucc (Pattern) = #Tsucc(Tree) then

Return V 1 <^ n <_ #Psucc (Pattern)
|

Matchl (Tsucc (Tree) (n) ,Psucc (Pattern) (n) , Pfunc)

;

else
Return false;

endif;

end;

/* Equals is a predicate that decides whether 2 trees

Tl and T2 have the same values; i.e., the same

structure and the same leaf values */

Definef Equals (Tl ,T2)

;

if Leaf (Tl) then

Return Label (Tl) = Label (T2); else

604



Return V 1 <_ i <_ #Tsucc(Tl)
|

Equals (Tsucc (Tl) (i) ,Tsucc (T2) (i) ) ;

endif;

end

;

iii. Macro Expander

The function subprogram Expand performs macro expansion

by generating a tree from a pattern Pat and a pattern variable

map Pfunc. It replaces each pattern variable x within Pat

by the tree Pfunc (x). The tree generated will then have

the same structure as Pat down to the leaves of Pat.

A utility routine copytree is used to make a fresh copy

of a tree

.

In SETL these substitution routines are as follows:

Definef Expand (Pat , Pfunc)

;

if Pleaf(Pat)& HLiteral (Pat) then

Root := Copytree (Pfunc (Plabel (Pat) )) ; else

if Leaf (Pat) then

Root := newat;

Label (Root) := Plabel (Pat); else

Root := newat',

Tsucc (Root) := [Expand (x): x e Psucc (Pat) ]

;

endif;

Return Root;

end;

605



Definef Copytree ( Tree) ;

node := newat; Label(node) := Label(Tree);

Tsucc(node) := [Copytree (x) : x e Tsucc (Tree) ]

;

Return node;

end;

iv. Utility Routines for Formal Differentiation

The two procedures, Regconst and Indvars, shown below

compute the region constants and induction variables within

a loop L. Both these routines can be used (with minor

adjustments) in all of the FD frameworks discussed in

Chapters III and IV. They make use of the following global

variables

:

1. L, Leaf, Label, Tsucc represent the parse tree for

the loop L.

2. Vars is the set of variable names used in L.

3. For each v e Vars, Def s (v) is the set of definition

points in L for v.

4. F and D are the elementary form and derivative tables.

5. Pleaf, Pvar, Pleaves and Plabel are maps defined for

patterns (cf. Appendix E(ii)). .

Regconst defines the global variable RC , the set of all

nodes n e L in which Text(n) is a region constant expression,

Indvars computes the global map IV which associates the set

of induction variables IV(x,f) for each pattern variable x

within each elementary form f G F.

606



/* RC is the set of nodes n e L such that Text(n) is a

region constant expression */

Define Regconst;

/* initialize RC to the set of leaf nodes corresponding

to constant and region constant variables */

RC := {n G L|Leaf(n) & (Label (n) ^ Vars or

Defs (Label (n) ) = nullset)};

/* Find the region constant expressions */

(while 3 n e (L-RC)
] (Vy e Tsucc (n) |y e RC)

)

RC : = RC + { n } ;

end while;

end;

/* Compute the set IV(x,f) of induction variables for every

pattern variable x in each elementary form f 6 F */

Define Indvars;

/* compute the set of region constant variables */

Rvars := {Label(n): nGRC|Leaf(n) & Label(n) G Vars};

/* Initialize IV */

IV : = nullset ;

(Vf G F, X G Pleaves(f) iPvar(x))

IV(Plabel(x) ,f ) := Vars - Rvars;

end V;

607



/* Find each IV set by a negative transitive closure

algorithm */

(while 3 [x,f] e Project (IV, 2) , v e iv(x,f) , n e Defs(v)

I

n(3t G D(x,f) |Match(n,t(l) ,Pfunc) & t(4)))

/* t(4) is a SETL code block whose value must be true

for matching to succeed */

IV(x,f) := IV(x,f) - {v};

end while

;

end',

/* Compute the set of leaf nodes of pattern Pat */

Definef Pleaves (Pat)

;

if Pleaf (Pat) then

Return {Pat}; else

Return [+: x e Psucc(Pat)] Pleaves (x)

;

endif;

end',

The following routine, Postorder, computes a tuple

containing the nodes of a parse tree (of the standard form

that we have been using all along) arranged in postorder,

i.e., left to right successors before root order.

608



/* Traverse successors from left to right.*/

Then visit the root */

Definef Postorder (Tree)

;

T := nulltuple;

Post (Tree, T)

;

Return T;

end;

Define Post (Tree ,T)

;

if Leaf (Tree) then return;

endif;

(Vx 6 Tsucc (Tree) |lLeaf (x)

)

Post (x,T) ;

end V ;

T := T + [Tree]

;

end;

609



V. Revised Matching and Expansion Routines

The two routines , Match and Expand shown below are

more powerful versions of the simpler routines of the

same name described earlier in this appendix. Match accepts

as input parameters the root nodes Tree and Pattern of a

parse tree and pattern tree respectively. Match initializes

Pfunc to the empty set and calls the main matching utility

Matchl which defines the pattern variable map Pfunc.

However, the parameters Tree and Pattern for Matchl must

be tuples whose components are the root nodes of parse

and pattern subtrees . Likewise , the parameter Pattern used

by Expand will be a tuple of root nodes of subpattern trees.

These routines are sufficiently powerful to handle

patterns specified in the FD tables of Appendix C (iii) .

Thus, they are fundamental components of the FD implementa-

tion design of Chapter 4

.

/* Match initializes Pfunc to nullset and passes the root

nodes Tree and Pattern to Match 1 */

Define f Match (Tree, Pattern, Pfunc);

Pfunc := nullset ;

Return Matchl ( [Tree] , [Pattern] , Pfunc)

;

end;

/* Match 1 attempts to match an ordered forest 'Pattern' */

/* to an ordered parse tree forest 'Tree'. During successful */

/* matching Pfunc will be built up by associating pattern */

610



/* variables x with parse tree nodes Pfunc(x) matched by x .
*/

/* When matching fails, Pfunc will be restored to its

previous state */

De finef Matchl (Tree, Pattern, Pfunc);

Local Savfunc;

if Pattern = nulltuple then /* consider trivial match- */

if Tree = nulltuple then /* int decisions first */

Return True; else

Return False;

endif;

endif;

P := Pattern(l); /* fetch the first pattern */

if Tree = nulltuple & nControl(P) then

return false;

endif

;

if Control (P) then /* if pattern is a procedure */

if Plfabel(P) (P) then /* execute Plabel(P)(P) */

Return Matchl (Tree ,Pattern ( 2 : )
,Pfunc) else

Return false

;

endif;

endif;

T := Tree(l) ; /* fetch first parse tree from forest */

if Pvar(P) then /* if p is a pattern variable */

if npvarut(P,T) then /* execute a utility routine */

return false; /* which handles this case; if */

endif /* False is returned matching fails; */

endif; /* else, Pvarut will associate Pfunc (Plabel (P)

)

with T */

611



if Alt(P) then /* if P represents alternation save */

Savfunc := Pfunc; /* Pfunc and match one of the alternands .*/

(Vx e Psucc(P)

)

if Matchl(Tree, x + Pattern (2:) then

return true; else /* return true if success */

Pfunc := Savfunc; /* restore Pfunc, and try again; */

endif; /* otherwise return false */

end V; /* if no alternand succeeds */

return false

;

elseif Literal (P) then

return Plabel(P) = Label (T) &

Matchl (Tree(2: ) , Pattern (2:), Pfunc);

elseif Leaf(P) then

return Matchl (Tree (2 :) , Pattern(2:), Pfunc); else

return Matchl (Tsucc (T) , Psucc (P) , Pfunc) &

MatchKTree (2: ) , Pattern (2:), Pfunc);

endif;

end;

/* Pvarut handles pattern variables. The parameters

P and T are the roots of a pattern and parse tree resp. */

Definef Pvarut(P,T);

Pname := Plabel(P); /* The value of Pname is the name of */

/* the pattern variable at P */

if Pgen(P) then /* if a generated name for the */

/* assignment variable is required */

612



Sname := '#' + Pname; /* fetch special name to */

Pfunc(Sname) := Pfunc (Sname) +1 ort 1; /* increment counter"

Pname := Pname+Code (Pfunc (Sname) ) ;
/* generate name */

endif;

if Pname ^ DOM Pfunc then /* if pattern variable has not */

Pfunc (Pname) := T; /* been previously encountered record

return true; else; /* it; else, check for consistency. */

return Equals (Pfunc (Pname,T) ) ; /* equals is the same as in */

endif; /* connection with the earlier Match */

end; /* routine in setcion ii . */

/* Pattern is an ordered forest of patterns, */

/* Expand returns an ordered forest of parse trees. */

D'efinef Expand (Pattern , Pfunc);

Local Savfunc;

if Pattern = nulltuple then

return nulltuple; /* trivial expansion */

endif

;

P := Pattern(l); /* Fetch first pattern. */

if Control (P) then /* If pattern is a procedure, execute */

if Plabel(P) (P) t^eri/* Plabel(P)(P) */

return Expand (Pattern (2 :) , Pfunc) else

return false;

endif;

elseif Alt(P) then /* If P represents alternation */

Savfunc := Pfunc; /* save Pfunc and try to expand */

(Vx e Psucc(P)) /* an alternand successfully */

if Temp := Expand (x+Pattern (2 :) ) j^ False then

return Temp; else

613



Pfunc := Savfunc; /* restore Pfunc after

each failure */

endif;

end V;

return false;

elseif Literal(P) then

Root := newat;

Label (Root) := Rlabel(P);

elseif iLeaf (P) then

Root := newat;

if Temp := Expand (Psucc (P) , Pfunc) ^ false then

Tsucc(Root) := Temp; else

return false

;

endif;

endif;

if Pvar(P) then /* If P must be assigned fetch the name */

Pname := Plabel(P); /* of the pattern variable. */

if Pgen(P) then /* If the name is generated, create new
name */

Sname ;= '$'+Pname;

Pfunc (Sname) :- Pfunc (Sname) + 1 ort 1

;

Pname := Pname + Code (Pfunc (Sname) )

;

end^/;

if Ngen(P) then /* In the case a tree is stored in Pfunc */

if Leaf(P) & HLiteraKP) then

Root := newat; /* create tree */

Label (Root) := newname ; /* create new variable name */

endif;

Pfunc (Pname) := Root; /* store tree */

614



endif;

if Pname f- Dom Pfunc then /* If Pfunc cannot satisfy */

return false; */ Pname, expansion fails */

endif;

endif;

t/ Temp := Expand (Pattern (2 :) , Pfunc) ^ false then

return [Root] + Temp; else

return false;

endif;

It would be convenient for our FD implementation to

include a compiler for translating the patterns given

in Appendix C (iii) into their tree representation — the

form which must be passed as input to Match and Expand.

Until such a compiler is built, however, we will have to

perform this translation by hand coding in SETL. In the

following discussion we give rules for translating pattern

expressions into pattern trees (cf. the informal discussion

of patterns in Chapter 4 (B) and the formal syntactic

description of our pattern language in Appendix C (iii) )

.

Patterns will be implemented using a set N of blank

atoms (representing nodes), a successor map Psucc(n), a root

node r, and an assortment of maps defined on N. Some of

these maps, especially Plabel, Pleaf and Literal are used

in much the same way as before.

615



To synthesize a pattern tree from a pattern expression

we will use the following order of evaluation.

1. Process pattern expressions from within innermost to

outerpost brackets (these include parentheses and predecessor

formation brackets). Evaluate subexpressions in the order

defined by the following rule.

2. A pattern expression e selected by step 1 is processed

by evaluating all concatenations before evaluating alterna-

tions. Next, if e is enclosed within parentheses, we

evaluate the factor (e) as the value of e ; otherwise, if e

is the argument of a predecessor formation operation

evaluate the term [e] according to rule 6 below.

The actual pattern construction steps which must be

taken to transform pattern expressions into pattern trees

(using the preceding order of evaluation) are as follows:

1. The value of a literal symbol; e.g., ',', is a tuple

[n := newat] . On encountering such a symbol, we also

execute the following assignments:

Leaf(n) := Literal (n) := true;

Plabel(n) :=',';

2. The value of a procedure name; e.g., !Cvar is a

tuple [n :- newat]. In processing such a name, we also

perform the following actions.

Leaf(n) := Control(n) := true;

Plabel(n) := Cvar ; /* Cvar is a procedure name */

616



3. The value of a pattern variable x is [n := newat] .

In processing such a variable we execute the code

Leaf (n) := Pvar (n) :- True;

Plabel(n) := 'x';

If the pattern variable is dotted (e.g., x.) we will also

execute

Pgen (n) := True ;

For pattern variables x* we must perform the additional

assignment,

Ngen(n) := true;

4. The value of a pattern name C is the value of the

pattern expression on the right side of the assignment

which defines C. This value will always be a tuple of

one or more components each of which is a blank atom

representing the root node of a subpattern tree.

5. If PI and P2 are two pattern expressions then the value

of the concatenation of PI with P2, written PI P2 as in

Snobol, is the SETL tuple concatenation PI' + P2 ' where PI'

is the value of PI and P2 ' is the value of P2.

6. If P is a pattern expression and P' is the value of P

then the value of the predecessor formation [P] is

[n := newat], in connection with which we perform

Psucc (n) := P'

.

7. If P1,P2,...,PN are pattern expressions whose values

are PI ' ,P2 '
, . . .

,PN ' then the value of the alternation

P1|P2|...|PN is [n := newat] in connection with which

we execute the code

617



Alt (n) :- true

;

Psucc(n) := [PI
'
,P2

' , . . .
,PN ' ]

;

Note that for recursive pattern definitions; e.g.,

(1) Params = q3. ',' Params
|
q3.

where the pattern name Params appears on the right and

left hand side of the same assignment, we assign [newat] .

which is the value of the alternation expression on the

right hand side of (1) to the pattern name Params.

After doing this, we can evaluate the two alternands.

The actual SETL code used to evaluate (1) is given below.

/* evaluate q3 . '
,

' Params */

Tl := [n := newat]; /* evaluate q3 . */

Pgen(n) := Pvar (n) :- true;

Plabel(n) := 'q3';

Tl := Tl+[n := newat];; /* evaluate q3 . ',' */

Pliteral (n) : = true;

Plabel(n) :- ',';

Tl := Tl+Params :- [save := newat];

/* evaluate q3 . '
,

' Params */

/* evaluate q3. on the right */

T2 :- [n : = newat]

;

Pgen(n) := Pvar(n) := true;

Plabel(n) := 'qS';

/* evaluate alternation */

Alt(save) := true;

Psucc(save) := [Tl,T2];

618



APPENDIX F. ADDITIONAL CASE STUDIES

In the following Appendix, we explore the potential

of formal differentiation for algorithm optimization by

studying four more programs. These programs are somewhat

more complicated than those studied in Chapter 4, and

they require minor adjustments and extensions to the trans-

formations found in Appendix C (iii) . These extensions to

the F, D, and Init tables point to further extensions

which would lead to a fairly complete implementation design

of FD for SETL.

The first example considered is a derivation of an

efficient bubble sort algorithm. (Note that a similar

derivation was first described in [Sch 9, Sch 10].) In

its base form, the bubble sort can be written in SETL as

follows

.

(1) 1 (while 31 ^ n < #v|v(n) > v(n + 1))

2 [v(n), v(n+l)] := [v(n+l), v(n)];

3 end whi le

;

where the input variable v is a tuple of integers to be

sorted in place.

In order to apply FD to (1) we must first recognize

the existential quantifier within (1) as an instance of

the general form (18) of Chapter II (c) . For this to be

the case, we must demand that the predicate v(n) > v(n+l)

619



occurring in line 1 of (1) should be independent of #v.

But this is obvious since #v is a region constant expres-

sion; i.e., by simple range analysis of the variable n we

may know that the double indexed assignment to v at line 2

of (1) will not spoil the value of #v. Thus, we can prepare

(1) for FD by transforming the expression 3 l£n<#v | v (n) >v (n+1)

into n := [min: 1 <^ m < #v|v(m) > v(m+l)]m ^ Q.

.

After this, we can improve the bubble sort by reducing

(2) n = [min: 1 ^ m < #v
|
v(m) > v(m+l)]m .

The derivative code for (2) relative to the changes to v

at line 2 of (1) is

(3) T:=t/l<_n&n<n then [n] else nulltuple

+if 1 <_ n-1 & n-1 < n then [n-1] else nulltuple

+if 1 <_ n+1 & n+1 < n then [n+1] else nulltuple

+if 1 ^ n & n < n then [n] else nulltuple ;

[v(n), v(n+l)] := [v(n+l), v(n)];

i/ 3 m G T
I

v(m) > v(m+l) then

n := m; else

if 1 (v(n) > v(n+l) ) then

n := [min: n+1 <^ m < #v|v(m) > v(m+l)]m;

endif;

which is obtained from a general update rule (for multiple

indexed assignments) which combines the efficient Rule 2

Technique (21) of Chapter II (c) with the derivative code (9)

620



of Chapter II (c) . Transformation is completed by insert-

ing an assignment (2) at the entry to the while loop

within (1 )

.

The actual changes to the FD implementation of Chap-

ter 4 necessary to perform the transformations just

described involve rather straightforward additions to the

F, D, and Init tables and a minor generalization of Rule 2.

We consider these extensions to be attractive future

possibilities.

To obtain a final form of the bubble sort, several

low level cleanup transformations must be applied. Speci-

fically, the assignment to T within the derivative code (3)

can be simplified if we note that both the relations

n < n and n + 1 < n can be replaced by False, while the

relation n - 1 < n can be replaced by True. Further

applications of simplifying syntactic transformations of

the sort found in [ST2] and Appendix D lead to a more

attractive assignment, T := if 2 <_ n. then [n-1] else

nulltuple . Still further simplification of (3) is possible

if we note that the relation v(n) > v(n+l) (which occurs

in the while loop predicate) holds just prior to the multiple

assignment [v(n), v(n+l)] :- [v(n+l), v(n)] but its

negation holds immediately afterwards. Consequently, the

IF statement occurring in (3) can be optimized into the

following form.

621



if m G T|v(m) > v(m+l) then

n : = m ; else

n := [min : n+1 <_ m < #v|v(m) > v(m+l)]m;

endif;

The changes to (1) made thus far lead to the following

code

.

(4) 1 n := [min : l<_m< #v|v(in) > v(m+l)]m;

2 [while n ^ 9.)

3 T := if 2 <_ n then [n-1] else nulltuple',

4 [v(n), v(n+l)] := [v(n+l), v(n)];

5 if 3m eT|v(m) > v(m+l) then

6 n:=m;eZ-se

7 n := [min: n+1 <_ m < #v|v(m) > v(m+l)]m;

8 endif;

One last chain of cleanup transformations will bring us

to our goal. First we apply the directive VSUBST, 3

(cf. Appendix D (IX)) which replaces the single use of T

at line 5 by the conditional expression at line 3, and

then deletes line 3. Next we make successive applica-

tions of transformations C12, CIO, C3, and C14 of

Appendix D (VI) followed by standard simplifying boolean

identities of Appendix D(ii) to the IF statement at

line 5 of (4) . Our final form of the bubble sort is then

622



(5) n :- [min: 1 £ m < #v|v(m) > v(m+l)]m;

{while n 7^ fi)

[v(n) , v(n+l)] := [v(n+l), v(n)];

if 2 <^ n & v(n-l) > v(n) then

n : - n- 1 ; else

n := [min: n+1 ^ m < #v|v(m) > v(m+l)]in;

endif;

end while;

The manual effort required to apply all of the cleanup

transformations mentioned seems exorbitant. It seems likely,

however, that efficient production systems of the kind

proposed by Kibler and Standish [KIl] and exemplified

within Appendix D (VII) and (VIII) might reduce the amount

of manual intervention. Such transformation families might

be enabled by assertions propagated from loop predicates

throughout the program text, and applied automatically.

Methods of this kind tailored to SETL have been worked

out by E. Deak [D] . Further research along these lines

look promising for the future.

For another example of algorithm improvement by FD,

we consider an algorithm which finds all nonterminals in

a context free grammar from which the empty string A

can be derived. The base form SETL program we use to

specify this algorithm accepts the grammar G as input,

and outputs the appropriate set S of nonterminals. G is

represented as a function which maps each nonterminal n

623



into a set of terms G(n) immediately derived from n. Each

term t £ G(n) is a tuple; each component of t contains

either a terminal or nonterminal of G.

We begin our consideration of this example with the

following succinct program,

(6) 1 S :- {n G Dom G \
A G G(n)};

2 {while 3 n G Dom G|n ^ S & ( 3tGG(n)
|

(VyGt |yGS) ) )

3 S : = S + { n } ;

4 end while',

Next we prepare the while loop predicate of (6) for FD

by applying the following transformations (all of which

are described in Appendix D (v) : P3 and P13 to the universal

quantifier, P2 and P13 to the inner existential quantifier

of the predicate, and finally P6 to the outermost quantifier.

The predicate which results is

(7) 3n G {x G Dom G
|
x ^ S & ([ + : t G {y G g(x)

]

([+: z G {w G y|w f S}]1 = 0)}]1 7^ 0)}

To reduce the outermost setformer appearing in (7) , we

can use a single directive:

(8) $FD,2,W = {x G Vom GJx ^ S & ([+: t G {y G G (x)
|

([+: z G {w G y|w 9- s}]l = 0)}]1 ^ 0)}.

However, to handle (8) the FD implementation design of

Chapter 4 must incorporate a few revisions. This is because

624



our current version of algorithm ISETL will fail to

recognize that c^ (y) = {w s y|w ^ s} is reducible. In fact

ISETL excludes from reduction any expression which, like

c, , has set or tuple valued discontinuities. However,

when the range of values for a set or tuple valued

discontinuity y can be bounded explicitly; e.g., when y

belongs to a set valued variable which is invariant within

the optimization loop, we can relax these restrictions.

In the case of c, , the usetodef map will help determine

that the value of the tuple valued discontinuity y used

in c, must belong to the range of the map G. This fact

allows us to define c, on entrance to the while loop L

of (6) by executing

(9) (Vx G Bom G, y G g (x)

)

c^ (y) := { z 6 y I z ^ s} ;

end V ;

and to keep c, available in L by executing prederivative

code

(10) (Vy G ({n}-s), te{w G Dom c |y G w})

c^ (t) := c^(t) - {y};

end V ;

just prior to the definition s := s + { n} at line 3 of (6]

Assuming then that algorithm ISETL can mark c,

reducible, it will also be able to recognize the other

reducible subexpressions of W (cf. (8)). These are

625



c^ (y) = [+: z e c^ (y) ]1 ,

c^(x) = {ye G(x)
I

c^ (y) = 0} ,

c^(x) = [+: t s c (x)]l , and

c = {x e Dom G|x ^ s & c (x)7^0}.

Next we envision a slightly more refined version of the

reduction algorithm 2SETL of Chapter 4 in which successive

applications of reduction would interleave the application

of a standard collection of cleanup transformations. This

would enable us to simplify (10) directly into

(10') (Vt e (w 6 Dom c |n G w})

c^ (t) := c^(t) - {n};

end V ;

The differentiation rule for c, will require that the

calculation c, (n) = {w e Dom c, |n g w} occurring within

(10') should be reduced. c^ can be treated as a special
6

case of elementary form 1 with conjunct H described in

Appendix C (iii) . Since c, is invariant within L we only

need to initialize by executing

(11

)

c^ := nullset;
6

( Vx e Dom c, , y € x)

if Y ^ Dom c^ then

c, (y) := c, (y) + { x} ; else
b o

Cg (y) := { x}

;

endif;

end V ;

626



immediately after executing (9). Consequently, the code

(10') further simplifes to

(12) (Vt e Ntinrhs (n)

)

c^ (t) := c^(t) - { n};

end V ;

where we suppose that Ntinrhs is the user supplied name

replacing c^ . The reduction alaorithm can now proceed

straightforwardly from inner to outer expressions in a

manner consistent with the method of Chapter 4 and the

tables of Appendix C (iii) . The prederivative of c^ with

respect to the change to c. occurring in (12) is

(13) C2(t) := C2(t) - [+: y e {n}]l;

which simplifies immediately to

(13') C2(t) := C2(t) - 1;

Since no uses of c, occur in the derivative code for

c„ , we can define c„ at the entry to L and remove all

dead definitions to c^ from the program. This puts the

original program (6) into the following transitional form:

627



(14) 1 s := (n e Dom G
|

A e G(n)};

/* prologue */

2 (Vx e Dom G, y G G(x) )

3 ^^2^^^ :=[ + :zey|z^s]l;

4 end V;

5 Ntinrhs := nullset;

6 ( Vx e Dom c„, y 6 x)

7 if Y ^ Dom Ntinrhs then

8 Ntinrhs (y) := Ntinrhs (y) +( x} ; else

9 Ntinrhs(y) := (x);

10 endif',

11 end 'i

;

/* main loop */

12 {while 3n € (x e Dom Gjx ^ s & ([+: te{yeG(x)

(C2(y) = 0) }]1 7^ 0})

13 (Vt e Ntinrhs (n)

)

14 ^2^^^ '" ^2^^^ " ^'

15 end V;

16 s:=s+{n};

17 end while;

Next we reduce C-.; its prederivative relative to the

change to c^ at line 14 of (14) is

628



(15) if C2(t) = 1 then

(Vq e {w e Dom G| t e g(w) })

c-.(q) := c-^(q) + {t}; /* strict set
^ ^ addition */

end V ;

endif;

in which c_ (t) = {w 6 Dom G
|

t G G (w) } must be reduced.

Since a use of c^ occurs within (15), c^ cannot be

eliminated. Thus, the system will request the user to

supply a name for c„. (Let this be Noncnt.) The

initializing code for c-, inserted just after line 11

of (14) is

(16) c^ := null set;

(Vx e Dom G, y £ G(x) |Noncnt(y) = 0)

if X s Dom C-. then

c-(x) := c-.(x) + {y}; else

c^(x) := {y};

endif;

end V;
«

To handle c , which is invariant within the while loop,

we only need to define it at the end of the while loop

prologue. The code to do this is

629



(17) /* USER supplies the name Rhstont for c */

Rhstont := nullset;

(Vx e Dom G, t € G(x)

)

t/ t s Dom Rhstont then

Rhstont(t) := Rhstont (t) +{ x} ; else

Rhstont (t) := { x}

;

endif;

end V ;

The current stage of reduction ends after we replace the

setformer {w g Dom G
|

t G G (w) } occurring in (15) by

the map retrieval operation Rhstont (t).

Proceeding now to the next outer expression c.

which contains c^ , we note that the final form of the

prederivative of c. relative to the change to c, occurring

in (15) is

(18) c^(q) := c^(q) + 1;

Since (18) contains no uses of c^ we can replace the

assignment to C-,(q) in (15) by the assignment (18). After

this we can replace (16) by the following code which

initializes c. ,

(19) c . : = nul Iset;

(Vx G Dom G, y G G(x)
|
Noncnt(y) = 0)

if X G Dom c. then

c . (x) := C4 (>^) + 1/* &tse

c^ (x) := 1;

endif;
end V

;

630



This makes the workset c^ = {x g Dom G | x^s & c.ix)^0}

ready for reduction. The prederivative of Cj- relative to

the change (18) in c. is

(20) if c.(q) = & q G Dom G & q ^ s then

c^ := c^ + { q}

;

endif;

while the prederivative of c relative to the strict

element addition s := s + {n} is

(21) (Vy G {n}
I

y G Z)om G & c^ (y) 7^ 0)

c^ := c^ - {y};

end V

;

which can be easily simplified to

(21') if c^(n) 7^ then

c^ := Cc - {n};

endif;

Since we cannot eliminate c, , we will refer to it by a

new user supplied name, Ntcnt. c_ which the user has

named W can be made available on entry to the while loop

by executing w := {x g Bom G|x ^ s & c.(x) ^ }

;

The result of this last series of transformations

is the following efficient low level version of (6),

631



(22) 1 s := (n G Dom G
|

A G g (n) };

/* prologue */

2 (Vx G Dom G, y G G(x)

)

3 Noncnt(Y) := [ + : zGy
|

z^s]l;

4 end V;

5 Ntinrhs := nullset;

6 (Vx G Dom Noncnt, y G x)

7 if Y ^ Dom Ntinrhs then

8 Ntinrhs (y) := Ntinrhs (y) +{ x} ; else

9 Ntinrhs (y) := { x }

;

10 endif;

11 end V;

12 Ntcnt := nullset',

13 (Vx G Dom G, y G G(x)
]
Noncnt(y) = 0)

14 i/ X G Dom Ntcnt then

15 Ntcnt(x) := Ntcnt(x) + 1; else

16 Ntcnt(x) := 1;

17 endif;

18 end V;

19 Rhstont := nullset;

20 (Vx G Dom G, t G G(x)

)

21 if t & Dom Rhstont then

22 Rhstont(t) := Rhstont(t) +{ x] ; else

23 Rhstont (t) := { x} ;

24 endif;

25 end V;

26 W := {x G Z)om Gjx ^ s & Ntcnit(x) 7^ } ;

632



/* main loop */

27 [while 3 n e W)

28 ( Vt e Ntinrhs (n)

)

29 if Noncnt(t) = 1 then

30 ( Vq e Rhstont(t) )

31 if Ntcnt(q) = & q ^ s then

3 2 W := W + {q};

33 endif;

34 Ntcnt(q) := Ntcnt(q) + 1

;

3 5 end 'i

;

36 endif;

37 Noncnt(t) := Noncnt(t) - 1;

38 end V;

39 if Ntcnt(n) j^ then

4 W : = W - { n } ;

41 endif;

4 2 s := s + {n};

43 end while;

Observe that (22) represents an improvement over (6)

only when the number m of nonterminals (in G) from which the

empty string can be derived is large. If we let

^ = I I # t
n e Dom G t G G(n)

then the expected cost of executing (6) is proportional

to £ X m, while the expected cost of (22) is 0(£) . In

analyzing (22), we see that the preprocessing cost is much

633



more expensive than the while loop. Indeed, I elementary

steps are consumed by the code from lines 2 to 10 of (22)

where the maps Noncnt and Ntinrhs are computed. The time

cost of the remaining code within the prologue is bounded

by #G . However, the expected cost of the while loop is

only proportional to J #Ntinrhs(n) where s is the set
nGs

of nonterminals in G and Ntinrhs (n) is the set of all right-

hand side terms which contain the nonterminal symbol n.

In comparing the preceding example with the bubble

sort example, we cannot help but note that despite the

potential improvement in transformational mechanization

suggested by our derivation of the grammar algorithm,

neither example shows any overwhelming speedup. The next

two examples will exhibit much greater degrees of speedup.

In Chapter 4 (D) we obtained an order of magnitude

speedup by formally differentiating a restricted version

of Haberman ' s Banker's Algorithm. In the following example,

we apply FD to an unrestricted version of the Banker's

Algorithm and realize a logarithmic speedup in general, and

an order of magnitude improvement if the cost of preproces-

sing can be neglected.

The general Banker's Algorithm considers a bank with

several kinds of currency. For each kind i of currency R,

cash(i) represents the total amount of this currency

controlled by the bank; loan(i,c) is the loan of type i

currency presently out to customer c; claim (i,c) is a

634



customer's claim for type i currency. The strategy of the

general algorithm is the same as that of the simplified

version presented in Chapter 4; i.e., any customer whose

full claim can be met by the bank can be satisfied. But

since we now have R different currencies, the bank can

only meet the demands of a customer c if the predicate

Vi G R|claim(i,c) <_ cash(i) holds.

A base form version of the full Banker's Algorithm

can be written as follows:

(23) 1 {while 3c s Cus|(Vi e R|claim(i,c) <_ cash(i))

2 (Vi e R)

3 cash(i) :- cash(i) + loan(i,c);

4 end M

;

5 cus : = cus - { c} ;

6 end while;

2This executes in time proportional to (#cus) x #R on

the average. In order to differentiate (23) we must first

transform it into a more convenient form. This can be done

by applying the following sequence of transformations to

the while loop predicate: P3 and P13 of Appendix D (V),

R6, R4, and R5 of Appendix D (ii), and finally P6 of

Appendix D (v) . The code which results is

635



(24) 1 {while 3c e { u e Cus|[+: yG{ iGR
| claim (i , u) >

cash(i) }]1 = 0})

2 (Vi e R)

3 cash(i) :- cash(i) + loan(i,c);

4 end V;

5 cus := cus - {c};

6 end while;

This form of the Banker's Algorithm is especially

amenable to FD, since only one user directive,

(25) $FD,l,Gcus = {uecus|[+: y G {i e R
|

claim(i,u) > cash(i)}]l = 0},

is needed to speed up (24) . The program analysis applied

to process the command (25) will recognize that the

expressions c, (u) = { iGR | claim (i ,u) > cash(i)},

C2(u) - [ + : y G c-, (u) ] 1 , and c, = {uGcus|Cp(u) = 0}

are all reducible. The reduction procedure will handle c-,

by first differentiating the innermost subexpression c,

of c^. The prederivative code for c, with respect to the

change to cash(i) at line 3 of (24) is

(26) (while xmin(i) < cash(i) + loan(i,c))

(Vx G {w G Dom claim{ i} I claim (i ,w) - xmin(i)})

c (x) := c, (x) - {i}; /* strict deletion */

end V;

xmin(i) := succ (i , xmin ( i) )

;

end while;

636



The auxiliary maps xmin and succ occurring in (26) are

initialized by executing the following code,

(27) c, := null set;

(Vx e R, t G Dom clainrf x}

I

claim(x, t) > cash(x))

if t £ Dom c, then
' 1

c, (t) := c-(t) + {x}; else

c , ( t ) : = { x } ;

endif

end V ;

(Vx G R) /* sort claimCx} and produce succ (x) */

sortas (Dom claimfx}, x)

xmin(x) := [mini y^Dom claim{ x}
|

claim(x,y) > cash (x) ] claim (x,y)

;

end V ;

just prior to line (1) of (24).

However, for (26) to be profitable, we must reduce the

costly set former c.(i) = { w€Z)om claim! i}
|
claim (i ,w) =xmin (i) } .

c. depends discontinuously on xmin(i) and on i. Unfortun-

ately, a general expression of the form

c(q-L.q2'q3) " iwj^F-^iq^) \F^{q^,^fi)=q^} to which c^ can be matched

will not usually be profitably reducible. The cost of

initializing c is exorbitant; this can be observed by

inspection of the following initialization code.

637



(28

)

c := null set;

(Vt e Dom F^, t^ G Bom F^ , w e F^(t^))

if [t, ,t„ ,F (t_ ,w) ] e Project{c,3) then

c(t^,t2,F2 (t2,w)

)

:= c (t, , t2 ,F (t^ /W) ) + {w}; else

c(t^,t2,F2 (t^rw) ) := { w}

;

end V ;

This code executes in time proportional to

# {Dom F-. ) X # {Dom F )
x n, where n is a uniform bound

on #F (t^ ) . However, when the discontinuity parameters

q^ and q„ in c can both be replaced by 2 occurrences of

a single discontinuity parameter q, (28) can be improved

to the following more efficient code,

(29) c := null set;

(Vt e Dom F , w 6 F (t ) [t G Dom F )

if [t,F (t,w)] G Project(c,2) then

c{t,Y^{t,^)) := c(t,F2 (t,w) )+{w} ; else

c (t,F2 (t,w) ) := {w};

endif;

end V ;

Note that (29) is formed from (28) by eliminating the

second component of c, and also by turning the iterator

t G Dom F within (28) into a membership test in (29).

638



This technique can be generalized to a rule for efficiently

handling expressions which depend on redundant discontinuity

parameters. Such a rule, if incorporated into the imple-

mentation design of Chapter 4, will significantly expand

the contexts in which FD can be profitably applied.

In the case of c. , xmin(i) and i are the only para-

meters on which c. depends and which undergo modifications

within the while loop beginning at line 1 of (24)

.

Thus, to reduce c. we only need to initialize it at loop

entry. The code to do this is based on (29) and is,

(30) c. := nullset ;

(Vt G Bom claim, w ^ Dom claim { t}
|

t s Bom claim)

if [t, claim(t,w)] G Project (c. ,2 ) then

c . (t , claim (t,w) ) :=

c . (t,claim(t ,w) ) + {w}; else

c. (t, claira(t,w)) := {w};

endif ',

end V ;

where the membership test t 6 DOM claim appearing in

line 2 above can be removed as superfluous.

The next step in reducing Gcus requires reduction of

c_. The prederivative of c„ relative to the change

c, (x) := c,(x) -{ i} within (26) is

(31) C2(x) := C2(x) - [+: v 6 {i}]l;

which simplifies to

639



(31') c^ (x) := c^ (x) - 1;

Since (31') shows that c„ does not depend on c, , all

definitions to c, in the program are dead. Thus, we

can replace the change to c, in (26) by (31') and the

initializing code (27) by the following code,

(32) c„ := null set;

(Vx e R, t G Dom claim { x}
|
claim(x,t) > cash(x))

if t ^ Bom c„ then

c„(t) := c„(t) + 1; else

C2 (t) :- 1;

endif;

end V;

(Vx G R)

soTta.s{dom claim { x} , x) /* sort claim { x] */

xmin(x) := [min : y £ Dom claim {x}|y > cash(x)]y;

end V ;

Finally c-, must be reduced. The prederivative of c^

relative to the change (31') is

(33) t/ X e Cus & c„ (x) = 1 then

c :=c^+{x};

endif

where the membership test x e Cus within (33) can be

eliminated. The prederivative code for c^ relative to

the element deletion Cus := Cus - {c} is

640



(34) (Vy G {c}
I

c^Cy) = 0)

c 2 : = c 3 - { y } ;

end V ;

which after cleanup becomes the following equivalent code,

(34') C3 := C3 - {c};

Since (33) contains a use of c^ , c„ must remain in the

program under a user supplied name, say Count. A last

reduction step inserts the assignment Gcus :- { xGCus | Count (x) =0

}

at the end of the prologue.

The low level SETL version of the Banker's Algorithm

derived from (23) is as follows:

(35) /* Prologue */

1 Count :- nullset ;

2 (Vx e R, t e Dom claim { x} | claim (x,t) > cash(x))

3 if t ^ Dom Count then

4 Count (t) := Count (t) + 1; else

5 Count (t) := 1;

6 endif;

7 end V;

8 (Vx e R)

9 sortas (Dom claim { x} , x) ;

10 xmin(x) := [mini y G Dom claim { x}
|

y>cash (x) ] y

;

11 end V;

641



12 Ycus := nullset; /* Ycus replaces the name c*/

13 (Vt G Dom claim, w s Uom claimltl)

14 if [t, claim(t,w)] e Pro ject (Ycus , 2) then

15 Ycus(t, claim(t,w)) :- Ycus ( t ,claim ( t,w)

)

+ {w}; else

16 Ycus (t, claim (t,w) ) := {w};

17 endif;

18 end V;

19 Gcus := {x e Cus
|
Count (x) = 0};

/* Main loop */

20 [while 3 c G Gcus)

21 (Vi e R)

22 {while xmin(i) < cash(i) + loan(i,c))

23 (Vx G Ycus(i, xmin(i)))

24 i/ count (x) = 1 then

25 Gcus := Gcus + {x};

26 endif;

27 Count (x) := Count (x) - 1;

28 end V;

29 xmin(i) := succ(i, xmin(i));

30 end while;

31 cash(i) :- cash(i) + Loan(i,c);

32 end V ;

33 Gcus := Gcus - {c};

34 end while;

642



Note that the dead assignment Cus := Cus - {c} has been

eliminated just after line 33 of (35).

In analyzing the expected running time of (35) we

will make the following assumptions:

1. Vx G R
I

Dom claim{x} c Cus

2. Dom claim c R

We can then estimate that the cost of executing the prologue

of (35) will take no more than 0(#R x #Cus x log #Cus)

elementary steps. This is the cost of the loop appearing

in lines 8-11; the other loops within the prologue require

no more time than either #R x #Cus or # Cus steps. The

main loop itself should run in time proportional to #Rx#Cus

at most.

The preceding techniques for eliminating redundant

discontinuity parameters also prove useful in the next

example, a form of Kildall's iterative algorithm [KI2] for

computing expressions available for a program flow graph.

Input for this algorithm consists of the following,

1. the set N„ of nodes in the flow graph, where each node

corresponds to a basic block of the program;

2. the set CV of potentially available expresions;

3. a map pred which maps each node n e N^ into the set
r

pred (n) of predecessor nodes in the flow graph.

4. a preserved set map PR which maps each node n G Np

into the set PR(n) of all expressions e G CV in which

there occur no definitions to parameters of e within n.

643



5. an exposed definitions map XE which associates each

node n G N„ with the set XE(n) of all expressions e whose
r

value is saved in a temporary o by an assignment o := e

occurring within n at a place after which a is not spoiled

in n.

The algorithm will output the set AE(n) of expressions

available at the top of each node n g n_ .

r

In SETL a base form version of the available expressions

algorithm is

(36) AE := nullset;

(Vn e Np)

AE (n) := CV;

END V;

[while 3n G N^
|
AE (n) 7^ [

* : yGpred(n) ] ( (AE(y) *PR(y) )

+ XE(y) ) )

AE(n) := [*: y G pred (n) ] ( (AE (y ) *PR (y )
) +XE (y ) )

;

end while;

In order to improve (36) by FD , we must first take several

manual steps to transform (36) into the following canonical

form,

(37) 1 AE: :- nullset;

2 (Vn G N^)

3 AE(n) := CV;

4 end 1

;

5 (u/ziZ-e 3 nG{mGN
I

[+:yG{ zGAE (m)
I

[+: we{ xGpred (m)
|

(z 9- AE(x) or z^PR(x)) & z^XE(x)}]l

7^ 0}]1 jt 0})

6 AE(n) := AE (n) -{zGAE (n) I

[+: wG{ xGpred (n)

|

(z^AE(x) or z^PR(x)) & z^XE(x)}]l ^ 0);

7 end while;

644



within the loop appearing in lines 5-7 of (37), there

occur five different reducible expressions; these are

c (m,z) ={xG pred(m)
I

(z^AE(x) ov z^PR(x)) & z^XE(x)},

c^ (m,z) = [ + : wec^ (m,z) ]1, c^ (m) = { zSAE (m) |c2 (ra,z) i^ 0} ,

c • (m) = [ + : yGc- (m) ] 1 , and c_ = {mS N_|c.{m) 7^ 0}.
4 J D r 4

(Note that c, is an instance of a general reducible form

not currently included within our FD tables.)

The expressions c^ , c„ , and c-. occur at both lines 5 and 6,

while the other reducible expressions occur only at line 5.

Unfortunately, we are unable to apply FD to (37) successfully,

because the prederivative code for updating c, , c„ , and c^

would be executed prior to line 6, thus spoiling the old

values for c^ , c„ , and c^ which we need at line 6.

A remedy for this can be worked out by decomposing

the assignment at line 6 into the following forall iterator.

(38) (Vy G { z e AE (n)
|

[+: we{ xGpred(n)
|

(z^AE (x)

ov 7. f PR(x)) & z ^ XE(x)}]l 7^ 0})

AE(n) := AE(n) - {y};

end V

;

r

After this the algorithm can be differentiated with one

user directive.

(39) $FD,5,W = { m G N^l [ + : y G { zGAE (m) I [+: wG{ xGpred(m)
1

r

(z f KE.U) ov z ^ PR(x)) & z^XE(x) }] 17^0}] 17^0}

645



In order to reduce W, its innermost reducible

subexpression c, must be reduced first. Since c, contains

three occurrences of the same discontinuity parameter z,

we can apply the techniques of the previous case study to

improve the derivative code for c, relative to the change

AE(n) := AE- {y} occurring within (38). This involves

replacement of potentially costly iterations over PR{x)

and over the range CV of possible values for z by simple

membership tests. In raw form before cleanup the prederi-

vative code for c, is

(40) (Vz e {u G Dom pred
|
n pred(u)},xe {y}|xePR(n) &x^XE(n)})

c, (z,x) :=c,(z,x) +{n};

end V ;

where it is required that succ(n) = {u s Dom pred | nGpred (u)

}

should be reduced. To reduce succ , we have only to place

the following initialization code

(41) succ := nullset ;

(Vu e Dom pred, n G pred(u))

if n G Dom succ then

succ(n) := succXn) + {u}; else

succ (n) := { u} ;

endif;

end V ;

just before line 5 of (37). After straightforward

application of standard (-leanup transformations, (40) can

646



be rewritten in the following efficient form,

(42) if Y ^ PR(n) & y ^ XE(n) then

( Vz e succ (n)

)

c, (z,y) := c, (z,y) + { n}

;

end V ;

endif;

To complete the reduction of c, , we place the following

code within the loop prologue:

(43

)

^^ '~ nullset ;

(Vm e dom pred, x s pred(m) , z e AE (m)
[

(z ^ AE(x) or z^PR(x)) & z^XE (x) )

)

if [m,z] G PROJECT(c, ,2) then

C-. (m,z) := c, (m,z) + { x} ; else

c^ (m,z) := { x}

;

endif

;

end V ;

The next reduction step involves c . Its prederiva-

tive relative to the change in c, within (42) is simply

(44) C2(z,y) := C2(z,y) + 1;

which makes c, useless within the loop. Hence, we replace

the assignment to c, in (42) by (44), and within (43) we

first differentiate c„ relative to the changes to c, and

then eliminate all code which refers to c, . The code

which replaces (43) is then.

647



(45) c„ := nullset)

(Vm G Dom pred, x e pred (m) , z G AE (m)

(z ^ AE(x) or z ^ PR(x)) & z ^ XE(x)).)

£/ [m,z] e Project (c^ ,2) then

c_(m,z) := c„(m,z) + 1; else

c^ (m,z) := 1;

endif',

end V ;

The next expression to reduce is c-.. Its prederiva-

tive relative to the change (44) to c„ is

(46) if c (z,y) = then

c^(z) := c^(z) + {y};

endif',

Its prederivative relative to the change AE(n) := AE(n)- {y}

is just

(47) C3(n) :- C3 (n) - (y) .

Note in connection with (46) that the variable z within

(46) cannot have the same value as n. This determination

requires relatively simple reasoning (lending support to

the possibility of proving this fact automatically) , yet

it is crucial to the entire reduction. After initializing

C3 by inserting the code

648



(48) c^ := nullset;

(Vm e Dom AE , z G AE (m) |c (m,z) 7^ 0)

t/ m G Dom c then

c (m) := c^(m) + { z } ; else

c^ (m) := { z}

;

end-i/;

end V ;

at the end of the prologue, we can replace uses of the

expression c^ by a map retrieval opeation using the vari-

able c^.

All this will have put the available expression

algorithm into the following transitional form,

(4 9) 1 AE := nullset J

2 (Vn e N^)

3 AE(n) := CV;

4 end V

;

5 numpred := nullset ', /* the user name for c„ */

6 (Vm e Dom pred, x G pred(m), z G AE (m)
|

(z ^ AE(x) ov 7. ^ PR(x)) & z ^ XE(x))

7 if [m,z] s Pro ject (numpred, 2) t/zen

8 numpred(m,z) := mnumpred (m, z ) +1 ; else

9 numpred (m,z) :- 1;

10 endif',

11 end V;

12 succ := nullset ;

649



13 (Vu G Bom pred , n e pred (u)

)

14 if n £ Dom succ then

15 succCn) := succ(n) + {u}; else

16 succ (n) := { u} ;

17 endif;

18 end V;

19 Del := nullset; /* Del stands for c^ */

20 (Vm e Dom AE, z e AE (m)
|
numpred (m, z ) 7^ 0)

21 if m ^ Bom Del t/2en

22 Del (m) := Del (m) + {z}; else

2 3 Del(m) := { z } ;

24 endif;

25 end V;

/* main loop */

26 {while 3 n G { m e N^| [ + :y e Del (m) ] 1 7^ 0})
r

27 (Vy G Del(n)

)

28 'i-f Y ^ PR(n) & y ^ XE(n) t?zen

29 (Vz G succ(n) )

30 if numpred (z,y) = then

31 Del(z) := Del(z) + (y);

32 endif;

3 3 numpred (z,y) := numpred (z ,y) +1

;

34 end V;

35 endif;

36 Del(n) := Del (n) - {y};

37 AE(n) := AE(n) - { y} ;

38 end V ;

39 end while;

650



Reduction continues with handling of c . (m) = [+ lyGDel (m) ]

1

Just prior to lines 31 and 36 where Del is modified we must

insert the following prederivative code for c. ,

(50) c (z) := c (z) + 1; /* BEFORE line 31 */

and

(50') c^(n) := c^ (n) - 1; /* BEFORE line 36 */

c. may also be initialized incrementally within the

initializing code for Del at lines 19-25. That is, just

prior to the assignment Del := nullset at line 19 we place

the assignment c. := nullset ; Then just before lines 22

and 2 3 we insert the incremental code

(51) c^ (m) := c^ (m) + 1;

and

(51') c^(m) :-l;

respectively

.

This brings the reduction process into a final stage

in which the workset W = (n e N_|c.(m) ^ 0} can be reduced.
r 4

W depends only on the definitions (50) and (50') which occur

within the optimization loop. The prederivative code for W

relative to these definitions are

(52) if c^ (z) = then

W : = W + { z } ;

endif;

with respect to (50) and

(52') if c^ (n) - 1 then

W : = W - { n } ;

endif

651



with respect to (50'). It is clear from both (52) and

(52') that c. must be included in our final algorithm.

Thus, we will supply a name numdif to replace c.. The

last task to perform inserts the assignment

W := {m G N_
I

numdif (m.) 7^ } at the end of the prologue.
F

Collecting the results of all of the previous trans-

formations together we arrive at the following low level

SETL version of (36)

.

(53) 1 KE := nulls et',

2 (Vn e Np)

3 AE(n) := CV;

4 end V;

/ /* prologue */

5 numpred := nullset ;

6 (Vm e BOM pred, x e pred(m) , z e ae (m)
]

(z 9 AE(x) or z ^ PR(x)) & z ^ XE(x))

7 if [m,z] G Project (numpred, 2) then

8 numpred (m,z) := numpred (m, z) +1 ; else

9 numpred (m,z) := 1;

10 endif',

11 end V

;

12 succ := nullset ',

13 (Vu G Dom pred, n G pred(u))

14 if n & Dom succ then

15 succ(n) := succ(n) + { u} ; else

16 succ (n) := { u}

;

17 endif;

18 end V;

19 numdif := nullset ;

20 Del := nullset',

21 (Vm G Dom AE, z G AE (n)
|
numpred (m, z) 7^ 0)

22 i/ m G Dom Del then

23 numdif (m) := numdif (m) + 1;

652



24



BIBLIOGRAPHY

[Al] Allen, Frances F., Cocke, John, and Kennedy, Ken,

"Reduction of Operator Strength," Rice University,

Tech. Rep. 476-093-6, August 1974.

[AHUl] Aho, Hopcroft, Ullman,

Design and Analysis of Computer Algorithms

,

Addison-Wesley , 1974.

[AUl] Aho and Ullmann, Principles of Compiler design,

Addison Wesley, 1978.

[BA] Bauer, F., et al . , "Towards a Wide Spectrum

Language to Support Program Specification and

Program Development," 5-£^pZ an Notices, Vol. 13,

No. 12, 1978.

[Bl] Balzer, Robert, Goldman, Neil, and Wile, David,

"On the Transformational Implementation Approach

to Programming," UCS/Information Sciences Institute,

Marina del Rey , Calif., April 1975.

[B2] Burstall, R. M. , and Darlington, J.,

"A Transformation System for Developing Recursive

Programs," JACM, Vol. 24, 1 (Jan. 1977).

[BU] Burge , William, "An Optimizing Technique for High

Level Programming Languages," IBM Research Tech.

Report, 1976.

[CI] Cocke, John and Kennedy, Ken, "An Algorithm for

Reduction of Operator Strength," CACM Vol. 20, 11

(Nov. 1977) .

654



[C2] Cocke, John and Schwartz, J. T,, Programming

Languages and Their Compilers , Courant Institute

of Mathematical Sciences, New York University,

1969.

[D] Deak, Edith, Thesis in progress, Department of

Computer Science, New York University, 1978.

[DGSl] Dewar, Robert, et al .
, "SETL Data Structures,"

SETL Newsletter # 189.

[DGS2] IBID, The SETL Programming Language , Manuscript,

1978.

[El] Earley, Jay, "High Level Iterators and a Method

for Automatically Designing Data Structure Repre-

sentation," Dept. of Elec. Engr. & Computer Sci.,

and the Electronic Research Lab., Univ. of California,

Berkeley, Calif., February 1974.

[E2] Earley, Jay, "High Level Operations in Automatic

Programming," Dept. of Elec. Engr. & Comp . Sci.

and the Electronics Res. Lab., Univ. of Cal .

,

Berkeley, Calif., October 1973.

[Fl] Fong, Amelia C. and Ullman, Jeffrey D., "Induction

Variables in Very High Level Languages," Proc.

Third ACM Symp. on Principles of Programming Languages

,

January 1976.

[F2] Fong, A. C., "Elimination of Common Subexpressions

in Very High Level Languages," Proa. 4th ACM

Symposium on Principles of Programming Languages ,

Jan. 1977.

655



[Gl] Goldstine, H. H., The Computer from Pascal

to Von Neumann, Princeton University Press,

Princeton, New Jersey, 1972.

[Hi] Hecht, Matthew, Flow Analysis of Computer Programs

,

North-Holland, 1977.

[Kl] Kennedy, Ken, "Reduction in Strength Using Hashed

Temporaries," SETL Newsletter No. 102, March 12,

1973.

[K2] Kennedy, Ken, "Linear Function Test Replacement,"

SETL Newsletter No. 107, May 20, 1973.

[K3] Kennedy, Ken, "Global Dead Computation Elimination,"

SETL Newsletter No. Ill, August 7, 1973.

[K4] Kennedy, Ken, "An Algorithm to Compute Compacted

Use Definition Chains," SETL Newsletter No. 112,

August 14, 1973.

[K5] Kennedy, Ken, "Variable Subsumption with Constant

Folding," SETL Newsletter No. 123, February 1, 1974.

[KIl] Kibler, D. F., et al . , "Program Manipulation via an

Efficient Production System," SIGPLAN , Aug. 1977.

[KI2] Kildall, Gary A., "A Unified Approach to Global

Program Optimization," Proo. First ACM Symp . on

Principles of Programming Languages , Oct. 1973.

[L2] Loveman, D. B., "Program Improvement by Source to

Source Transformation," JACM, Vol. 24, 1 (Jan. 1977)

[PI] Pratt, Terrence, Programming Languages : Design and

Implementation, Prentice-Hall, 1975.

656



[P2] Paige, Bob, and Schwartz, J. T., "Expression

Continuity and the Formal Differentiation of

Algorithms," Proa. Fourth ACM Symp. on Principles

of Programming Languages , Jan. 1977.

[SI] Schonberg, Ed, "The VERS2 Language of J. Earley

Considered in Relation to SETL ,
" SETL Newsletter

No. 124, Jan. 30, 1974.

[Schl] Schwartz, J. T., On Programming : An Interim Report

on the SETL Project, Installments I & II, (one vol.)

Courant Inst. Math. Sci . , New York Univ., New

York, 1974.

[Sch2] Schwartz, J. T., "General Comments on High Level

Dictions, and Specific Suggestions Concerning

'Converge' Iterators and Some Related Dictions,"

SETL Newsletter No. 133-B, Jan. 29, 1975.

[Sch3] Schwartz, J. T., "Introductory Lecture at the June

June 28 'Informal Optimization Symposium',"

SETL Newsletter # 135, July 1, 1974.

lSch4] Schwartz, J. T., "Structureless Programming, or the

Notion of 'Rubble', and the Reduction of Programs

to Rubble," SETL Newsletter # 135-A, July 12, 1974.

[Sch5] Schwarcz, J.T., "A Framework for Certain Kinds of

High Level Optimization," SETL Newsletter No. 136,

July 16, 1974.

657



[Sch6] Schwartz, J. T., and Paige, B., "On Jay Barley's

'Method of Iterator Inversion'," SETL Newsletter

No. 138, April 19, 1976.

[Sch7] Private communication.

[Sch8] Ibid "Optimization of Very High Level Languages,"

Parts I, II, J. of Computer Languages , pp. 161-218,

1975.

[Sch9] Ibid., "Updating the Lower Bound of a Set of

Integers in Set Theoretic Strength Reduction,"

SETL Newsletter No. 138-B, 1976.

[SchlO] Ibid., "On the 'Base Form' of Algorithms,"

SETL Newsletter # 159, Nov. 1975.

[Schll] Ibid., "A Higher Level Control Diction,"

SETL Newsletter # 133, June 1974.

[Schl2] Ibid., "Additional Pursue Block Examples,"

SETL Newsletter # 133-A, July 1974.

[Stl] Standish, Thomas, "An Example of Program Improve-

ment Using Source- to-Source Transformations,"

Dept. of Information and Computer Science,

Univ. of Cal. at Irvine, Irvine, Cal . , February 11,

1976.

[St2] Standish, Thomas, et al . , "The Irvine Program Trans-

formation Catalogue," Dept. of Information and

Computer Science, Univ. of Cal. at Irvine,

Jan. 7, 1976.

[Tl] Tenenbaum, A., Thesis, New York Univ., Oct. 1974.

[Wl] Warren, Henry, Thesis, in preparation. Department

of Computer Sci., New York Univ., 1978.

658





This book may be kept ^FP ? 7 1Q7Q

FOURTEEN DAYS
A fine will he



NYU NSO-15
^'^

Liu
Data structure choice / formal
differentiation.

N.Y.U. Courant Institute of

Mathematical Sciences

251 Mercer St.

New York, N. Y. 10012




