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Operating System Specification Using Very High Level Dictions 

by 

Peter Markstein 

ABSTRACT 

Today, operating systems are an integral part of computing systems. Yet high level programming 

languages are not generally used by the designers and implementors of systems software. In this 

report we intoduce a language, PSETL, intended for operating system description and based on the 

SETL set-theoretic programming language. 

PSETL is a version of SETL which has been enlarged to allow the description of algorithms 

involving interrupts, parallelism, and to some extent, machine dependent features. Using PSETL, 

several operating systems are presented in detail. The first, a simple uniprogrammed batch system 

illustrates basic control mechanisms and scheduling. The second, a multiprogrammed batch 

system, shows additional complications which arise due to contention for resources and conflicting 

objectives. Our third system is interactive and includes data sharing capabilities. 

Research Advisor: 

Prof. Jacob T. Schwartz 
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PREFACE 

This thesis is an experiment in extending a very high level language, SETL, for operating system 

description. We propose an extension to SETL, and then use our extension to specify several 

operating systems. The principal question we are trying to address is: can extended SETL be used 

for the specification of operating systems as effectively as SETL can be used for other classes of 

problems? 'the reader, after studying the examples of Chapters III, IV, and V will have formed his 

answer to this question. 

An experiment of this kind cannot confine itself to the discussion of small examples. Operating 

systems are inherently larger and more complex than, say, sorting algorithms. To give a fair 

demonstration of extended SETL we feel it necessary to describe an entire operating system; even 

a simple example of this kind is relatively large, and requires at least a dozen pages of code. 

If our experiment is successful, then detailed specifications of several operating systems, in 

comprehensible form, appear in this work. In order to motivate the examples which are presented, 

and make them as clear as possible, this thesis has been cast in the form of an introductory text on 

operating systems which contains three completely coded examples. Of course, it is these 

examples which make the text unique. 

The reader is assumed to have a working knowledge of SETL; no explanations of SETL coding 

dictions appear in the body of the text. On the other hand, no previous exposure to operating 

system internals is assumed on the part of the reader. 
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Chapter I 

Introduction to Operating Systems 

Our first task is to define what an operating system is. It will not be possible to do this with 

mathematical precision. Instead, a loose characterization of 'operating system' will be given, 

motivated by citing objectives which such systems attempt to satisfy. 

1. 1 Informal Review of Operating System Objectives 

1.,1.1 The Automatic Operator 

In the early days of computing each job or run was an independent entity. A user submitted his 

own copy of a language processor, loader, or debugging aid, along with instructions for the 

operator on actions to take on the occurrence of various machine halts. At the end of a run, 

computer memory was generally cleared, tape reels associated with the concluded run dismounted, 

and tape reels for the next run mounted. Transition time between runs was frequently of the order 

of 1 to 5 minutes. These inefficiencies were often compounded by the inability of a computing 

installation to process a multi-step job. Thus, a "compile and go" job was usually two runs, with 

the attendant overhead paid twice. 

With a larger number of applications becoming economically feasible and with increased computer 

speed, the length of typical computer runs - especially runs for debugging - approached and fell 

below the run transition time. Just as the human's ability to enter data and commands became the 

limiting factor for desk calculators, so the speed of humans during r.un transition time threatened to 

become the limiting factor in the use of computers. 

As with conventional computing, the solution to the job transition problem used the stored 

program concept. Information describing characteristics of a job and the relations between job 

steps are included in machine readable form along with the data and programs which comprise the 

job. A computer program given a sequence of jobs which include job characteristic information 

can then determine an efficient order in which to run jobs. Such a program is commonly called an 

operating system. (The additonal statements specifying job characteristics and other operational 

information constitute the 'job control language'.) Multiple job steps per run become more 

common as a machine, instead of an operator, interprets and acts upon conditions stating whether 

subsequent steps should be executed, and transmits the output of one step to the next. By using 

precisely stated job or step transition information and resource requirements a. computer program 

can take many of the actions previously associated with human operators, reducing job transition 

time to a few seconds at most. 

Success of the programmed or automatic operator depends on control returning to the operating 

system at the conclusion of a job or step. This is insured either through software conventions, 

special hardware, or both. Modern computers have hardware facilities whose use guarantees 

integrity of the operating system, and enforces its software conventions. 

1.1.2 Program Libraries 

In any computer installation, there are a number of programs which are useful to a large class of 

users. Examples of such programs are language processors, loaders, debugging aids, as well as 
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application programs such as sorting programs. Rather than require each user to supply his own 

copy of such programs, an installation maintains a library of these frequently used programs, and 

an operating system can invoke these library programs on behalf of a user in response to job 

control language statements. Thus, instead of submitting a bulky program, a few JCL statements 

are all that a user need submit to invoke a library routine. Use of a centralized program library 

also insures that the most current version of a utility program is available to all. 

Operating systems usually include facilities for updating and maintaining program libraries. 

An obvious extension to the program library idea is to permit subgroups of users to create and 

maintain private libraries of programs. The same operating system facilities which are used to 

create and maintain the central library are usually available for the private libraries, and JCL 

generally invokes programs from any library with equal ease. 

One aspect of program library maintenance should be mentioned at this point because of its utility 

in a wide class of situations: this is the data management capability of operating systems. Data 

management involves construction and maintenance of catalogues which can be used to locate 

users' files, and structuring data files so that specified subsets can be easily extracted. In its most 

primitve form, data management merely aids in the coding of complex input-output instructions; 

advanced data management makes available convenient and powerful linguistic devices for 

characterizing and extracting subsets from data files. 

1.1.3 Resource Utilization 

The discussion of automatic operation in section 1.1.1 indicated the need for a program to manage 

the sequencing of jobs in order to avoid excessive system idle time between runs. This function of 

operating systems, while it is the function which historically motivated their construction, is just 

one aspect of the more general problem of maximizing utilization of the entire computing system. 

Many of today's computing systems include more equipment than any single job in tbe installation 

can use. Such configurations are justified by the desire to offer a wide class of services. For 

example, a large accounting application might require many tape or disc drives but not much main 

memory, while even a moderate linear programming problem can use a large main memory to 

advantage. 

Most jobs, however, do not tax any one component of hardware to the utmost. For such large 

computing systems, running only one job at a time can result in a substantial portion of the 

computing system's resources standing idle. To increase total system utilization, operating systems 

exploit the fact that equipment other than CPU and main memory can operate autonomously from 

the CPU for myriads of CPU instruction cycles. Several jobs are placed into main memory 

concurrently and control of the CPU given to one of them. When the currently running job 

reaches a state where it cannot utilize the CPU until the termination of an I/O operation, the CPU 

can be exploited by one of the other jobs in main memory. On the other hand, it would be 

undesirable if each application were to be written in such a manner to cooperate only wit~ a 

specific set of other applications, for then the_ economies of concurrent running can only be 

realized when all members of a set of cooperating programs run together. Ideally, it should be 
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possible to write a program as if it were the only program being run, and still realize economies if it 

fits into main memory with another program which has a different pattern of 1/0 usage. 

Many operating systems permit precisely this type of programming. Using the interrupt facilities 

of the CPU, the operating system can gain control when a user program is about to become idle, 

and give control of the CPU to another job. Similarly, when an awaited condition is satisfied, the 

operating system can regain control, and then return control to the task which was waiting for the 

condition to be satisfied. The sharing of hardware resources by independent jobs in the manner 

just described is called multiprogramming. 

To effectively schedule the typical mix of jobs present in a multiprogramming environment, the 

operating system may require characterizations of the jobs being submitted for execution. Such 

information can be supplied via the job control language. Assuming that more than enough work 

is available a possible objective of an operating system in scheduling jobs and determining which 

jobs are to run concurrently is to minimize the rental paid for idle equipment. 

In practice, however, the system must take account of other constraints such as job deadlines. 

Indeed, if we take a broader view of a computing system and include as "components" the people 

whose activities depend on the results of computation, then their idle time must also be taken into 

account. A direct consequence of such reasoning is the construction of interactive computing or 

time-sharing systems which on the surface appear to require extra hardware which does not 

contribute directly to throughput. 

The users of shared systems must have guarantees that their programs and data will not be 

disturbed by co-resident programs. This problem has already been alluded to in the discussion of 

automatic operation in section 1.1.1; the same techniques which guarantee integrity of the 

operating system in a uniprogrammed environment can be extended to prevent physical interfer­

ence among multiprogrammed jobs. 

1.1.4 Hardware Control 

To guarantee the integrity of programs sharing a computing system, one removes direct control of 

some hardware features from the system's users, and makes those features available only through 

simulation, during which potential misuse can be detected and prevented. 

The hardware features whose control the operating system reserves for itself are precisely those 

features which are used to subdivide the computing system's resources. The instruction set of 

today's computers usually consists of two classes: privileged and non-privileged instructions. The 

privileged instruction set includes facilities for input-output, instructions for setting access 

boundaries in main memory, interrupt control instructions, and instructions which transfer the 

computer between problem state and supervisor state. In the supervisor state, all instructions are 

valid; in the problem state, privileged instructions are treated as illegal and cause interrupts. The 

enabling and disabling of the interrupt system requires privileged instructions. 

Input/ output instructions are classified as privileged to prevent one user from accessing a device 

which contains data belonging to another user. In many cases, a single physical device, such as a 

disc, contains data belonging to several users, and the operating system is required to .establish 

correct 'logical' to 'physical' correspondences. To replace the privileged 1/0 instructions which 
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users are not allowed to invoke directly, the operating system provides l/0 routines. A benefit to 

the user is that the operating system also provides additional facilities which provide automatic 

buffering and synchronization between l/0 and computing. 

By reserving control of physical I/ 0 addresses to the operating system, the chance that arbitrary 

programs can be multiprogrammed is maximized; for if two programs depended on using the same 

physical l/0 unit from a set of identical devices, these two programs could never run concurrently. 

Job control language provides mechanisms to establish correspondences between user invented file 

names and the devices on which the files are located. A compensation for the loss of direct control 

of l/0 devices is that the l/0 instructions and l/0 error indications provided by the operating 

system tend to be device independent, so that frequently a program can utilize a wide variety of 

devices for a temporary file without any modification. 

The interrupt system is also privileged, as it is the principal means of communicating exceptional 

conditions to the operating system, including attempted violations of security. Often a .simulated 

interrupt system is made available to user programs, so that these programs can also handle 

exceptional conditions without explicitly executing tests which usually fail. Of course, the fact that 

the operating system handles many classes of interrupts explicitly means that programs are relieved 

of all necessity to concern themselves with interrupts. 

To allow sharing of main memory, users must often state how much contiguous space they will 

require, but usually do not have the freedom to specify the actual addresses in memory where the 

space will be. This limitation imposes minimal user discomfort, since the use of relocating loaders 

has already preempted some control over memory allocation. Even this modest level of discomfort 

is avoided in computing systems which have "virtual memory" capabilities. Such systems can 

often be programmed so that each user in a multiprogrammed environment has the illusion of 

having all the original resources of the computer, including all memory locations, at his disposal. 

1.1.5. Preparation and Maintenance of Software 

Once one has realised what the objectives of operating systems are, one is faced with the problem 

of producing the operating system itself. With what programming approach shall the initial design, 

development; and debugging of the operating system be attempted? What features for self 

maintenance shall be introduced into the operating system: what instrumentation, software error 

detection capability, what ability to test the operating system under itself? Ability of the operating 

system to accomodate a wide variety of hardware configurations is also an important design issue. 

A significant fraction of an operating system consists of library programs which behave as user 

programs and which are maintained in the same way as ordinary user programs. Language 

processors are examples of such operating system components. Standard library facilities can also 

be used to maintain and update the source programs comprising the operating system, and the 

language processors to compile these programs. Furthermore, ordinary programs can be used to 

structure compiled operating system programs into a new operating system. The only portions of 

the operating system which are notably difficult to debug in an operating system environment are 

those routines involved with hardware and resource allocation. 
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1.2 Overview of Operating System Internals 

Simulation of human operations, achieving hardware control and optimizing hardware utilization 

imply characteristics not often found in ordinary application programs. A human operator at the 

console of a computer exercises direct control only sporadically, while he observes the system 

continuously, looking for for unusual occurences. An operating system, which among other things 

simulates a human computer operator, must be able to exhibit similar behavior, that is, the 

operating system must give up control of the CPU for a majority of the time so that user programs 

can run, and in initiating a user program it must place the CPU in such a state such that if any of a 

number of special situations arise, control returns immediately to the operating system. Such 

behavior can be achieved by simulating successive user program instructions and testing for the 

unusual condi~ions as part of the simulator's basic cycle, but this is very inefficient. Computers 

which are designed to run with operating systems contain an interrupt system which makes it 

possible for crucial changes of CPU control to take place efficiently. Leaving the computers in a 

state enabled for all interrupt conditions is equivalent to constantly monitoring for unusual 

conditions but taking overt action only when such conditions occur. Control and management of 

the interrupt system is fundamental to an operating system. 

Even the simplest operating system creates a multiprogramming environment in the sense that the 

operating system consists of several relatively autonomous subprograms which run "concurrently" 

and which have the property of requiring only short bursts of CPU usage between which only 

monitoring of unusual events is required. Examples of functions treated in this way include: 

scheduling and dispatching jobs, controlling input/ output devices, requesting and confirming the 

mounting of tape reels or disc packs, and avoiding user program time overruns. Such functions are 

then multiprogrammed with one or more user programs. 

1.2.1 The State of a Computation 

A computer running under an operating system is actually involved with several potentially active 

computations at the same time. One of these programs may be in control of the CPU; the state of 

the other computations must be stored in a form allowing them to be restarted. 

The detailed description of a computation's state is machine dependent; however, it can be 

characterized With sufficient precision in an abstract way. The state of an interrupted computa­

tion consists of all the information necessary to resume the computation. At the machine level, 

this information falls into three broad categories: data resident in registers of the CPU, data 

resident in the address space of the computation, and data resident in files. 

For each program which it manages, an operating system reserves a portion of memory, addressa­

ble only by the operating system, for storing the CPU resident data when the program loses control 

of the CPU. A typical item of register-resident data is the location at which to resume execution; 

this is the last datum which the operating system restores when returning control to a program. 

In many batch systems, address space resident data remains physically resident in central memory 

during a program's entire run, including times when the program does not control the CPU. 

Alternatively, one can copy the memory resident data associated with a program P onto a file 

accessible only by the operating system when P loses control of the CPU, and can bring it back to 

physical central memory before returning control of the CPU to P. Other schemes involve 
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maintaining only a fraction of address space resident data in physical memory; this 'virtual 

memory' approach will be discussed in greater detail below. 

Since physical devices may store files associated with independent programs, the operating system 

must keep track of the assumptions which each program makes about the logical positioning of 

such devices, so that these assumptions will remain valid even if the device is shared in a multipro­

gramming environment. 

1.2.2 Mappings 

It has already been observed that for reasons of security and because of uncertainty over which of 

several identical resources will be assigned, programs running in an operating system environment 

are prevented from directly accessing many of the computer's resources. Consequently, such 

resources are referenced using programmer-invented symbols rather than physical addresses. The 

operating system assigns real resources to symbolically named resources, and creates a map from 

symbolic name space to the space of real resources. Operations on symbolically named devices are 

interpreted and symbolic device names are mapped to physical device addresses. Inverse maps 

must also be available so that signals from real devices can be associated with the symbolically 

named devices. 

Tables representing maps between various symbolic name spaces and device address spaces can 

consume a large fraction of the space occupied by operating systems; many system actions employ 

these maps or their inverses. For example, in file manipulation maps between external file name 

space, external volume name space, symbolic file name space, and physical device address space, 

are all required. 
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Chapter II 

Parallel SETL 

In presenting operating system algorithms, it is desirable to focus on algorithmic content rather 

than mac'hine dependent details. A natural approach is to present programs embodying the 

algorithms in a higher level language. 

The language used should have the property of not forcing artificial structure on the data which the 

operating system manipulates. While in practice the structure chosen may have a great bearing on 

performance, this choice of data structure may be hardware dependent and should not be dictated 

by the language chosen. In the programs to be given in this thesis, the focus will be on algorithmic 

content. The potential advantage for a structure free notation will become apparent when we 

come to represent the many maps which an operating system requires. A crisp, mathematical 

notation preserves spirit of the algorithms manipulating these maps; this spirit would be obscured 

by a language which insisted upon structural details. Accordingly our algorithms will, after 

appropriate informal description, be presented as SETL programs. It will be seen to be of 

particular advantage that SETL allows arbitrary index sets (domains of maps) without requiring 

explicit attention to how indices map into integers or other preferred entities. 

2.1 SETL Deficiencies 

There are however several notions needed in describing operating systems which cannot be 

expressed in ordinary SETL. Operating systems coordinate multiple processes, and mechanisms 

are required to identify these processes and to specify the way in which control passes between 

them. Interrupt mechanisms are necessary as a means of communicating between operating 

system and user programs, and it must be possible to specify protection mechanisms in order to 

allow programs to run concurrently in a safe way. Other features which must be described in 

presenting operating system algorithms, but which are not available in standard SETL, include 

clocks and timers, external device communication, resource allocation, and resource sharing. 

To make it possible to describe operating system algorithms, we shall add idealized versions of 

these features to SETL. Our operating system oriented extensions will not necessarily correspond 

directly to the hardware of a specific machine; however, all our extensions can be realized on third 

generation or later computing systems. SETL with operating system extensions will be called 

PSETL, short for parallel SETL. 

Our SETL enhancements will take several forms. Special sets which indicate the state of compo­

nents of the computing system, such as the process in control of the CPU, will be added to SETL. 

These sets will be accessible to certain operating system routines but not to user programs. Names 

of special sets, which are only accessible to the operating system sill appear in boldface type in this 

text. 

A number of new operations will be defined. Of these operations, only a few are truly fundamen­

tal; the remainder can be defined in terms of the fundamental ones and ordinary SETL. But most 

of the time it will be convenient to think in terms of of the macro operations which will be 

-7-



introduced. Of course, the representation of these macros in terms of a stripped down PSETL 

embodies some quite fundamental operating system algorithms. 

2.2 An Overall View of the Extensions Which Will Define PSETL 

2.2.1 Jobs and Processes 

The coarsest identification of independent programs and data within the computer will be by job. 

To unify the control structures of the operating system, the operating system itself will also be 

considered to be a job, although none of the user jobs are independent of the operating system. 

With each job, a 'mover' is associated as a means of identification, and a special set, 

within the operating system will hold the identifiers of all currently active jobs. 

II II movers , 

In representing the operating system's processing of a job, it is not sufficient to take into account 

only the code (i.e. program text) and data which comprise the job; the varying data state generated 

when the program executes must also be considered. The words 'program' and 'procedure' will be 

reserved to signify the (static) pattern of bits which the hardware is initially given to execute. A 

program in execution, i.e. a program already coupled to data and thus at least potentially 'in 

motion' will be called a 'process'. The notion of process can be put formally by mimicking the 

definition of a computation used in discussing Turing machines. A process is the sequence of 

states which a CPU takes on in executing a program. Since we wish to allow programs to initiate 

independent paths of execution (i.e. to initiate parallel processing), we will allow for more than 

one process to be associated with a job. Each process corresponds to a complete path taken by a 

CPU through the program. 

Formally, a process is then identical with the history of a CPU's execution of a program. In order 

to be able to regard such a history, (which may actually be executed in bits and pieces) as an 

identifiable 'thing', we will associate a unique blank atom p with each process at the time of its 

inception; p will serve, and occasionally be referred to, as the process identifier, though sometimes 

in the interests of brevity, we will refer to this identifier simply as 'a process'. That is, we will 

sometimes use the term 'process' informally, in the sense explained in the previous paragraph. 

Thus we will use expressions such as 'interrupting a process' to mean that a CPU is diverted to 

other activities between the execution of successive steps associated with a process, 'starting a 

process' to mean that the CPU is forced to take on the state indicated by a state vector supplied 

with the process identifier, and 'resuming a process' (presumably after an interrupt) to mean that 

some CPU which was interrupted after the nth step of a process is now continuing execution from 

the n+ 1st step associated with that process. An operating system is an example of a job using 

multiple processes, whereas the majority of (today's) applications consist of a single process. 

In the discussion which follows, the special set of pairs, processes, contains elements of the form 

<m,p>, where mis a mover and p a process belonging tom. The set processes{m} consists of all 

active processes belonging to the mover m. 

Let us first consider the case in which only a single CPU is available. The special variable 

CPUcontrol identifies the process controlling the CPU; the contents of CPUcontrol is always a 

member of the set processes. The special set state, which -is indexed by members of processes, 
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· gives the environment for each process. By the environment of a process, we mean all the 

information necessary to define the path which execution of a process will take when the process 

comes into control of the CPU. Details of what is specified in an environment are machine and 

implementation dependent, and may include information concerning the code_ block to be execut-· 

ed, the next instruction within it to be executed, and the values of all variables accessible to the 

process, together with the pattern of calls effective at a given moment, etc. For an element 

s Estate, environment(s) extracts the environment part of s, and processpart(s) identifies the 

process described by s. The macros loctr, code, and privilege extract the components of an· 

environment which give the next instruction to be executed, the string of bits which is the 

executable code within that environment, and the privilege class associated with that environment. 

Process switching is achieved by changing CPUcontrol. (See. examples 2.2.6.3 and the simple 

dispatcher in 2.4.3.1 for examples of this, i.e., for process switching by assignment to CPU control.) 

Ordinary 'go-tos' are a particular case of modifications of state; more specifically, for a privileged 

process, the two statements: 

go to L; and loctr(state(CPUcontrol))=L;, 

have the same effect. The first is still the prefered form; the second is shown by way of explana­

tion. 

2.2.2 Control of Interrupts 

Interruption is a major communication mechanism between parts of an operating system and 

problem programs. Generally this mechanism has no counterpart in higher level languages, since 

these languages are intended to describe simple, non-parallel, deterministic algorithms: 

In SETL, the standard flow of control is from one statement to the next sequential statement, with 

the exception of branch statements, if statements, 'while' and 'V' iterations, subprogram calls and 

returns. An interrupt is an additional control mechanism which causes the flow of control to move 

to a specific instruction in memory on the occurrence of a special event, such as an end of an 1/0 

operation, a machine malfunction, the end of a measured time interval, or a rare side effect of an 

instruction. If there are several different statements to which control may flow on interruption, 
depending on the condition which caused the interrupt, all the conditions which cause control to 

flow to the same statement will be said to belong to a single 'interrupt class'. 

Two features are required to describe an interrupt system. It must be possible to define the 

process which is invoked on the occurrence of particular interrupts, and it must be possible to 

inactivate the interrupt system. 

We define a set, interrupt, which consists of a collection of pairs of the form <int,intprocess>, 

where int specifies an interrupt class, and 'intprocess' identifies the process invoked when an 

interrupt of class int is encountered. 'intprocess' must be of an appropriate form to identify a 

process, as described in 2.2.1. A set resume takes on the value which CPUcontrol had immediately 

before the moment of interruption, and can be used to resume the interrupted process, via the 

simple statement: 

CPUcontrol = resume; 

After an interrupt has occurred further details concerning it are contained in the variable cause; the 
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value of this variable shows all relevant interrupt-related information. Only privileged operating 

system code has access to the sets interrupt, cause, and resume, which abstractly represent the 

hardware mechanisms which are directly associated with physical interrupts. 

In PSETL, the interrupt system is generally active or enabled, so that interruption is generally 

possible. At certain moments, however, interruption is intolerable, and computing systems 

therefore contain instructions for disabling and enabling the interrupt system under program 

control. A similar mechanism is required for PSETL. However, the PSETL interrupt disabling 

feature will be less general than that found on most computing systems, in that it will not be 

possible to keep the computing system permanently disabled. This may cause minor inconvenienc­

es in some cases, but it will have the beneficial property of making it linguistically impossible to 

introduce a "bug" which prevents the system from re-enabling the interrupt system. 

To this end we add to SETL a new semantic facility, the disabled block, which has the form: 

(disable) block; end disable; 

The block of code in a disabled block is restricted in the following ways: 

1. There may be no while iteration headers within the block. 

2. Only foward branches within the block are allowed. 

3. Branches out of the block end the disabled condition. 

4. Calls to user defined subroutines, or subroutine returns, end the disabled condition. 

While in the disabled state, the process in control of the CPU is guaranteed uninterrupted control. 

The restrictions on the disabled block guarantee that a disabled process cannot permanently hold 

the CPU. 

In the case of a multi-CPU configuration, only one CPU may be in the disabled state at a given 

time. Attempted entry into a disabled block while another CPU is already disabled implies a wait, 

which is known to be finite because of linguistic limitations on the contents of a disabled block. 

Thus, in PSETL, disabled blocks may be used to guarantee integrity of special sets during their use .. 

If the procedure executed as the result of an interrupt begins with a disabled-block, no additional 

interrupts can occur on that CPU until the end of the disabled-block. Failure to start an interrupt­

activated process with a disabled-block would allow a second interrupt to overwrite cause and 

resume before the process activated by the first interrupt can save them, thereby preventing proper 

recovery from the first interrupt. 

2.2.3 Private and Shared Data 

Conventional SETL distinguishes between two types of variables, locally owned and external. 

Locally owned variables are those which occur within a subprogram and are not otherwise 

declared. Locally owned variables can be referenced by name only within the subprogram in 

which they are defined, although their values may be transmitted between subprograms using the 

standard SETL 'call' mechanisms. External variables are explicitly declared by use of the SETL 

include and global statements. External variables may often be thought of as implicit arguments. 

PSETL requires a third class of variable. Recall that the notion of a process involves the further 

notion of 'path of control of a CPU'. It is possible that several paths of control should execute the 
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same body of code (though of course at least some parts of their environments would be different). 

Allowing interruption and multiprocessing raises the possibility that several processes may be 

executing a corrimon subprogram concurrently. Of the variables referenced within the subpro­

gram, some, for example, may have 'overall' significance to the subprogram itself, whereas others 

may have 'separate' significance for several processes, more than one of which may be executing 

the subprogram. 

In the first case, we wish only one instance of the variable to exist, regardless of the number of 

processes concurrently executing the subprogram. An example of such a variable is one which 

represents the number of processes currently executing the subprogram. Another example is a 

variable representing a table read by all processes currently executing a subprogram. Such 

variables will be called shared variables. 

In the second case, there exist as many instances of a variable as there are processes using the 

subroutine. Such a variable, for example, can represent the time at which the process entered the 

subprogram. These variables are in effect private. A process using such a variable need not be 

concerned about possible interaction through that variable with another process. The local 

variables of SETL will be taken to be ipso facto private variables of PSETL; we will also allow 

certain SETL global variables to be private. 

We adopt the convention that shared variables are to be declared at the beginning of a subprogram 

by means of the shared statement, as follows: 

Recognizing that a single subprogram can be executed on behalf of several processes, SETL 

initially blocks will be understood to be entered on the first execution of a subprogram on behalf of 

each process. Put another way, the mechanism which controls entry into the initial block is 

private. 

2.2.4 Standard Queues and Facilities 

In operating systems, it is common to regard work as being queued on an object such as a process, 

a data structure, or an I/0 device. PSETL provides standardized queues, which it relates to a 

special set, workset. It also provides standard mechanisms for adding elements to and deleting 

elements from these queues. For an object j, workset{j} is the queue of work stacked on j. The 

structure of the queues is immaterial to most of our discussion; suffice it to say that they can be 

either linked lists or tuples. 

With workset, we provide several subroutines which allow the workset for an object to be regarded 

as a queue without reference to the specific structure of the workset. The function readfirst(j) 

returns the first item on j's workqueue, unless it is empty, in which case it returns n. The subrout­

ine remove(j,x) deletes the item x from j's workqueue. Since one frequently wishes to access the 

first item of a queue and remove it from the queue, a function, getfirst, is provided which can 

simply be defined by: 

define getfirst(j); 
remove(j,readfirst(j) is x); 
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return x; 
end getfirst; 

To facilitate searching a workset for an item satisfying a condition, macro findfirst(j,x,C(x)) is 

provided. The value of this function is the first item x in j's workset satisfying the condition C(x). 

To augment worksets, we have the subroutine insertafter(j,x,y), which makes y the successor of x 

in j's, workqueue (unless x is not in the workqueue, in which case y becomes the last item). 

Similarly, insertbefore(j,x,y) makes y the predecessor of x, or the first item if n(XE:workset{j}). 

We also introduce two other useful auxiliary functions by the informal.definitions: 

putfirst(j,x) = insertbefore(j,readfirst(j),x), and 

putlast(j,x) = insertafter(j,a,x). 

Various important notions connected with the overall concept of dedicated computing system 

portions will be represented in PSETL using a special set called facilities. An object x is a facility if 

if the test x E facilities is true. The special set busy identifies those facilities which are momentarily 

in use or reserved. The special set holds identifies the facilities which are busy on behalf of each 

process. If p E processes, then holds{p} is that subset of busy which is dedicated to p. 

We also regard the pool of available CPUs as an object with a workset. The workset associated 

with the pool of CPUs contains all the processes which are ready to start or to continue to execute, 

but which are not running because every CPU is engaged in other activity. The following line of 

code may well serve as the final line of a dispatcher (a routine which selects the next process to be 

executed and starts the CPU on that process): 

CPU control = getfirst( CPU); 

To ease the coding of the common operating system operation which delays execution of a 

subprogram until a reserved facility becomes available, a new form of subprogram is added to 

PSETL. This is the queued subroutine. A queued subroutine is defined by a header of the form: 

define qd name(a1, ... ,an) on fac; 

This header is distinguished from the conventional SETL subroutine header by the keywords qd 

and on and by the expression following the keyword on. A queued subroutine with the above 

header is entered only when the calling program has exclusive control of the facility fac, which is 

generally an expression in the arguments ai, ... , an. 

Each queued subroutine must use the label "nonexistent" in its body. Control passes to this label 

in the event that n(facdacilities). If facdacilities, the subroutine is entered as soon as fac is not 

busy. At the moment of entry, fac is made busy on behalf of the process invoking the queued 

subroutine by adding fac to the sets busy and holds. It is the process's responsibility to release the 

facility when i.t is no longer needed by issuing the statement: 

free fac; 

In addition to the subroutine header shown at the beginning of this section, the various other 

function definition forms which SETL provides, including infix, postfix and prefix forms, are 

allowed to have the obvious queued forms, too. Queued subprograms are invoked in the same 
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manner as conventional subprograms. This frees the caller from concern with many detailed 

synchronization activities implied by the use of facilities. 

2.2.5 Process Control 

Among an operating system's prime responsibilities is the control of processes. Functions 

belonging to this general heading include process creation and termination, process suspension, 

and interprocess communication. We shall now describe statements useful in supporting these 

important functions. We point out that the operations described in this section are available only 

to privileged processes in PSETL. 

2.2.5.1 Process Creation 

The PSETL statement: 

split to s(e) for p1; 

is used to begin a new process from the state s; the new process is identified by processpart(s), 

and execution begins at loctr(environment(s)). The pair <pi,e> is passed to this process through 

its environment. The new process can extract the pair <p 1,e> from its environment by applying 

the positional macro initialvar to its environment. Moreover, the positional macros 'ancestor' and 

'info' retrieve p1 and e from initialvar(s). Thus, a process may identify the process which initiated 

it by retrieving ancestor(initialvar(state(CPUcontrol))), and it may reference the information being 

passed to it by retrieving info(initialvar(state( CPU control))). 

2.2.5.2 Process Suspension 

A privileged process may suspend its own operation until a specified condition is met. The PSETL 

statement: 

await cond; 

causes the process which issued the await to test the condition cond, and if it is found to be false, 

to suspend operation until cond becomes true. It is clear that for the condition to change in value 

other processes must be able to proceed during the suspension of the process which issued the 

await. (Non-privileged programs will be provided with a similar capability in the form of an 

operating system service which is invoked by a standard operating system request.) 

Processes suspended by await statements will be saved in the special set waitset. When a process x 

is entered into waitset, loctr(state(x)) is set up to re-evaluate the condition cond. 

2.2.5.3 Interprocess Communication 

A process may require the services of a second process, even though in many cases the time at 

which the services are rendered are not material to the first process, which moves forward as soon 

as the parameters for the second process are transmitted. The second process, o·n the other hand, 

may already be occupied with another request. A PSETL statement, enqueue provides this linkage 

by using the workset for the second process. The PSETL statement: 
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enqueue e on p2 for p 1; 

enters the pair <P 1,e> on p2's workqueue. The process p2 must be written to examine its 

w.orkqueue for additional requests each time it finishes servicing a request. See example 2.2.6.4. 

2.2.5.4 Process Termination 

A process can terminate its execution by executing the PSETL statement: 

term; 

This causes all facilities held by the process to be free'd, and its workqueue to be purged. 

A process can force the termination of a second process by executing the PSETL statment: 

Generally, the issuing process must have at least as high a level of privilege as the process it kills. 

As on the execution of a term statement, the kill'd process's workqueue is purged, and facilities 

held by it are free'd. 

2.2.6 Examples 

2.2.6.l The following trivial routine, which we will use frequently in this work, can be called to 

delay a process until a facility x can be secured: 

define qd reserve(x) on x; 
nonexistent: return; 
end; 

2.2.6.2 Dijkstra [Di68] defines P and V operations for process synchronization using semaphores, 

which are initialized to O or 1. 

"A process, Q say, that performs the operation 'P(sem)' decreases the value of the semaphore 
called 'sem' by 1. If the resultant value of the semaphore concerned is non-negative, process Q 
can continue with the execution of its next statement; if, however, the resulting value is 
negative, process Q is stopped and booked on a waiting list associated with the semaphore 
concerned. Until further notice (i.e. a V operation on this very same semaphore), dynamic 
progress of Q is not logically possible ... 

"A process, 'R' say, that performs the operation 'V(sem)' increases the value of the semaphore 
called 'sem' by 1. If the resulting value of the semaphore concerned is positive, the V­
operation has no further effect; if, however, the resulting value of the semaphore concerned is 
non-positive, one of the processes booked on its waiting list is removed from this waiting list, 
i.e. its dynamic progress is again logically possible." 

In PSETL, with the understanding that semaphore variables are facilities, that semaphores 

initialized to O are busy, and that semval is a map from semaphores to their values, we can express 

the P and V operations by: 

define P(sem); shared semval; 
(disable) semval(sem)=semval(sem)-1 is news; 

if news ge O then sem in busy; 
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else reserve(sem); 
end if;. 

end disable; 
end P; 

define V(sem); shared semval; 
(disable) semval(sem)=semval(sem)+l is news; 

if news le O then free sem;; 
end disable; 

end V; 

Clearly, if one merely desires to synchronize processes, without requiring that a count of delayed 

processes be kept explicitly by sem, our dictions are rich enough to allow 'reserve(sem);' for 

'P(sem)' and 'free(sem);' for 'V(sem)'. The number of delayed_processes can always be computed 

by #workset{sem}. 

2.2.6.3 A more complex example: Let d be a set all of whose elements are facilities. If all 

elements of d must be secured before a process can continue, one can simply insert the code: 

(VfaCEd) reserve(fac);; 

at an appropriate position. The above code achieves reservations one at a time. On the other 

hand, it may be preferable to seize each device as soon as it becomes available, since if one follows 

any particular sequential order, devices available at the start of the sequence but required later may 

be preempted by another process by the time an attempt is made to reserve them. A parallel 

reservation strategy must surely be at least as fast as the sequential approach, and may be written 

in PSETL as follows: 

w=newat; x=state( CPU control); loctr(x) =S; 
(VfaCEd) split to <<w,newat>,x>(fac) for CPUcontrol;; 
await #processes{w}eq O; 

S: reserve(info(initialvar(state( CPU control)) is i)); 
(disable) 

i in holds; 
<CPUcontrol,info(i)> out holds; 
term; 

end disable; 

Recall that initialvar(state(CPUcontrol)) is a pair <p,fac>, where pis the process which spawned 

the reservation processes, and fac is the facility to be reserved. The statement S reserves the 

facility fac on behalf of the process q executing S; the following disabled block switches the 

reservation to the process p to avoid the reservation being lost when term is executed by q. 

2.2.6.4 A final example: Let us sketch a simple output routine which accepts a single string of 

characters as input and prints the string using embedded er characters to deduce where the lines 

start. We assume that the routine is invoked by: 

enqueue str on printer for CPUcontrol; 

where printer identifies the process associated with the program to be given below. The advantage 
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to the calling program is that it can proceed immediately after the enqueue regardless of the work 

. already scheduled for the printer or the time physically required to print the string. 

output: await #workset{printer} ne 0; 
str:=info(getfirst(printer)); 
j=l; 
(while (j :5 3k :::;#str I str(k) eq er) doing j=k+ 1 ;) 

printout str(j:k-j); 
end while; 
go to output; 

The first statement causes 'output' to wait until (or unless) there is work stacked on its workqueue, 

and the second statemertt extracts the next string to be printed from the workqueue. The remain­

der of the code shown above is straightfoward SETL; we assume that 'printout' is a more primitive 

routine which prints its argument on a new line, left adjusted, on a printer. 

2.3 A Remark Concerning Machine Dependent Features and PSETL 

The PSETL features introduced in section 2.2 allow the desription of a good portion of operating 

systems. At some stage, however, we will wish to stop hiding crucial underlying derails by 

linguistic facades, and to face them. Some (but not all) of these underlying details are machine 

dependent. Those which are not we may subsequently wish to describe in additional detail; of 

course details which are highly machine dependent we exclude as belonging to a different type of 

discussion. Thus, for example, a read verb in PSETL describes an input action, and presumably is 

translated into a call on a standard 1/0 package. If we wish to describe the 1/0 package in 

PSETL, we are ultimately faced with the necessity of issuing 1/0 instructions which carry out the 

read, a task which cannot be circumvented by using another PSETL read. Such ultimate levels of 

machine dependence can only be handled by the .use of primitive machine-level subprograms or by 

special bit patterns or other data objects whose significance must be described in English and 

coded in a lower level language. 

The special sets, interrupt ·and cause, are additional examples of features of PSETL whose inner 

details are so machine dependent that detailed definition is left to the actual system implementer. 

In our PSETL discussion we may assume certain distinct interrupt classes, and some particular 

manner in which the information describing the circumstances of the interrupt is posted, but we 

shall not describe the machine-level mechanisms which cause this to occur. 

2.3.1 Time and Clocks 

We assume the existence of two special global integer variables, timer and clock. The variable 

clock is incremented by one automatically by the hardware every n microseconds, where n is a 

hardware dependent parameter. We further specify that clock is read-only, i.e., that storage 

operators applied to clock have no effect. By reading a message from the operator's console giving 

the real time, clock can then be used to compute the real time at later points in time. 

The variable timer may be accessed by fetch or store operations. Whenever the clock changes 

value and matches (or exceeds) the value in timer, a time interrupt occurs. 
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2.3.2 Input/Output 

The SETL input/ output statement forms should be viewed as subprogram calls, for the 

"statements" (or instructions) which perform the physical input/output operations are privileged 

instructions. Even the subprograms which interpret the SETL I/0 cannot use the physical I/0 

instructions of the computer directly; they must use - the services of the operating system to -

interpret more primitive 1/0 operations than the ones supplied by SETL. 

A sample set of such operating system services in described in section 3.3.3, and used in all the 

sample operating systems of Chapters III, IV, and V. In addition, the uniprogrammed operating 

system of section 3.5.3 shows in detail how the operating system interprets I/0. 

When the operating system interprets the requests for I/0, it must eventually specify physical I/0 

operations. These operations are highly machine dependent, and often require observing timing 

constraints, We there~ore do not attempt to specify in detail how the physical I/0 instructions 

should be represented in PSETL; however, for the sake of describing that portion of the operating 

system which interprets input/ output requests, we will use the following statement formats to 

specify physical I/0 (which requires no further interpretation except by the hardware): 

1. Read operations are coded: 

read(d,command); 

where d spcifies a physical I/0 device, and 'command' is a structure which specifies the 

location and size of the block of main memory to be read into. 

2. Write operations are coded: 

write( d,command); 

3. Simple control operations are coded 

op(d); 

where d is a device, and 'op' is an operation such as rewind, or backspace. For positioning 

operations, such as disc-seeks, we write: 
seek(d,c); 

where c specified the cylinder position to which the read/write head is to be moved, 

The reader disturbed by the vagueness with which physical I/0 is treated here may be consoled by 

the fact that physical 1/0 will not be used extensively in the operating system examples which 

follow in later chapters. With the exception of the sections of code identified as "Monitor 

Services" at the end of the code of section 3.5.3, the operating system itself uses either SETL 1/0, 

or the monitor services described in section 3.3, 1. 

2.4 Detailed Account of the Elements of PSETL 

In this section, the features of PSETL summarised in section 2.2 are described in detaiL Our 

description is arranged into three headi?gs: special sets, new primitive operations, and macro 

operations. In the case of macro operations, possible expansions in terms of SETL using the 

special sets and new primitive operations are given in order to illuminate the mechanisms involved, 

although the actual implementation is partly immaterial, since such macros are designed to be 

thought of as primitive. 
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In giving prototypes of PSETL statements, we will use symbols in the following standardized ways: 

fac represents a facility, 

P,Pt,P 2, ..• represent elements of processes, 

m represents an element of movers, 

n identifies a path of control for a mover, 

s,s1, ••. represent states, 

i,i1, ... represent interrupt classes, 

j,ji, ... represent system objects having worksets, 

at,···, an represent arguments to subprograms or processes, 

Vt,···, v0 represent names of variables, 

L and M represent compiler generated labels. 

The table which follows shows where the description of each PSETL feature will be found: 

ancestor .......... 2.4.3.8 info .............. 2.4.3.8 putfirst ........... 2.4.3.7 
await ............. 2.4.3.1 
busy ............ 2.4.1.11 
cause ............. 2.4.1.7 
code ............. 2.4.3.8 
clock ............ 2.4.1.13 
CPUcontrol ....... 2.4.1.4 
disable ............ 2.4.2.1 
environment ....... 2.4.3.8 
enqueue .......... 2.4.3.5 
facilities ......... 2.4.1.10 
findfirst ........... 2.4.3.7 
free .............. 2.4.3.3 

initially ........... 2.4.2.2 
initialvar .......... 2.4.3.8 
insertafter ......... 2.4.3.7 
insertbefore ....... 2.4.3. 7 
interrupt .......... 2.4.1.5 
kill ............... 2.4.3.6 
loctr ............. 2.4.3.8 
moverpart ......... 2.4.3.8 
movers ........... 2.4.1.1 
privilege .......... 2.4.3.8 
process switching ... 2.4.2.3 

putlast ............ 2.4.3.7 
queued subprogram . 2.4.3.2 
readfirst .......... 2.4.3.7 
remove ........... 2.4.3.7 
reserve ........... 2.4.3.2 
resume ........... 2.4.1.6 
shared ............ 2.4.2.4 
state ............. .2.4.1.3 
term ............. 2.4.3.6 
timer ............ 2.4.1.13 

getfirst ........... 2.4.3.7 
holds ............ 2.4.1.12 

processes .......... 2.4.1.2 
processpart ........ 2.4.3.8 

waitset ........... 2.4.1.9 
workset ........... 2.4.1.8 

2.4.1 Special Sets 

2.4.l.1 movers 

Elements: SETL 'blank atoms', used as identifiers for independent jobs. 

Uses: To identify independent jobs. 

2.4.1.2 processes 

Elements: pairs of the form <m,n> where m E movers, and n identifies a process for the mover m. 

Uses: For m E movers, processes{m} identifies the set of processes associated with the mover m. 

The elements of processes are the processes in progress under control of the operating system. 

2.4.1.3 state · 

Elements: pairs of the form <p,e> where pEprocesses, and e is the environment associated with 

the process p. 

Uses: For pEprocesses, state(p) determines all the control information, or environment, concern-
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ing the subroutine to execute, the location within this subroutine at which to begin execution, and 

the values of all variables accessible to the process; information which fully determines the future 

course of the process p. 

2.4.1.4 CPUcpntrol 

Uses: CPUcontrol identifies the process currently controlling the CPU. A running privileged 

process can always identify itself by reference to CPUcontrol, and can access its environment as 

state ( CPU control). 

2.4.1.5 interrupt 

Elements: pairs of the form <i,s> 

Uses: If the pair <i,s> E interrupt, and an interrupt of class i occurs, then CPU control is set to p, 

the former contents of CPUcontrol saved in resu_me, and the variable cause comes to represent all 

relevant information concerning the interrupt that has just occurred. To operate correctly, state(p) 

must have been initialized to indicate system privilege, and the first statement executed by the 

process should be a disabled block. 

2.4.1.6 resume 

Uses: resume has the same structure as CPUcontrol, and the same positional macros apply to it. 

On the occurence of an interrupt, resume saves the contents of CPUcontrol as it existed immediate­

ly before the interruption. To restore an interrupted process immediately, execute: 

CPUcontrol=resume; 

Otherwise, save the value of resume in some appropriate way. 

2.4.1.7 cause 

Elements: machine dependent 

Uses: Makes available, in some suitable form, a 'message' giving additional information regarding 

an interrupt being processed. For example, on arithmetic exceptions, it might be used to distin­

guish between overflow, underflow or division by zero; on input/ output interrupts, it might 

indicate the hardware address of the device causing interruption, or whether an attempted I/O 

operation was successful, and if not, the reasons for failure. 

2.4. 1.8 workset 

Elements: pairs of the form <j,q>, where j is a system object, and q is a queue. 

Uses: For an object j, workset{j} is the queue of items stacked on j. The structure of the queue 

elements are dependent on the object j. Note that knowledge of the detailed structure of the 

queue workset{j} is not needed in our algorithms, since subroutines described in 2.4.3.7 perform 

the queue manipulations by using auxiliary sets the details of which need not concern us at this 

level of discussion. It is sufficient to know that FIFO order of workqueues is preserved. 
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2.4.1.9 waitset 

Elements: A collection of processes suspended awaiting a condition to be satisfied. 

Uses: For XEwaitset, executing CPUcontrol=x; re-evaluates the awaited condition for the process 

x, which after this evaluation will either begin to move forward, or will resume its wait. 

2.4.1.10 facilities 

Elements: Serially re-usable system objects, such as devices, variables or subprograms. 

Uses: The elements of facilities may be reserved by processes, via use of queued subprograms. If 

xdacilities and XE busy, then x has been reserved by a process. For objects in facilities, the use of 

queued subroutines and the free statement provides automatic management of the objects' 

worksets, and synchronization of processes with the availability of facilities designated in the 

queued subprogram header. 

2.4.1.11 busy 

Elements: members of facilities 

Uses: XE busy implies that some process is using the facility x. 

2.4.1.12 holds 

Elements: pairs of the form <p,fac> with pEprocesses, and facdacilities. 

· Uses: <p,fac> E holds implies that the facility fac is busy on behalf of the process p. 

2.4.1.13 clock and timer 

Elements: Each of these variables is an integer. 

Description: clock is automatically incremented by 1 every n microseconds by the hardware 

(where n is a machine dependent constant). A timer interrupt is generated by the hardware 

whenever the clock becomes zero or clock changes value and matches or exceeds timer. 

Uses: By using input from_ an external source, one can correlate a value of the clock with real time, 

and thereafter use clock to determine by program the time in the outside world. timer can be set to 

cause an interrupt at a predetermined time. 

2.4.2 Primitive Operations 

2.4.2.1 disabled block 

Statement form: (disable) block; 

Description: While executing 'block', the interrupt mechanism is disabled. If there are multiple 

CPUs, only cine may be disabled at a time; indeed, the entry of one CPU into a disable blqck 

temporarily suspends the activity of all other CPUs which attempt to enter disabled blocks. 

While-iteration headers and backward branches are syntactic errors within a disabled block. 

Branches out of the block, returns, or invocations of user defined subprograms end the disabled 

condition. 
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2.4.2.2 initial block 

Statement form: initially block; 

Description: On each process's first entry to a subprograrn, the 'block' is executed. To effectively 

execute the initial block only once regardless of the number of unique processes executing the 

subprogram, use a shared variable to distinguish between a first and subsequent uses of the 

subprogram. 

2.4.2.3 process switching; the special variable 'CPUcontrol' 

A CPU is directed to switch processes by assignment to the special variable CPUcontrol. The 

assignment CPUcontrol=s; causes the process s to control the CPU starting at loctr(state(s)), and 

to operate in the privilege class privilege(state(s)). If a process p relinquishes control of the CPU 

as follows: 

CPU control= x; 

L: 

then if another process issues CPUcontrol=p;, then presumes execution at the statement labelled 

L in the above program fragment. 

2.4.2.4 shared variables 

Statement form: share Vi, v2 , ... , vn; 

Description: Variables declared in a share statement and owned by a subprogram have only one 

instance in storage, regardless of the number of distinct processes executing the subprogram. Such 

variables, especially if global, may be used to communicate between subprocesses. For variables 

not declared as being shared, a unique value exists for each process executing the subprogram. 

Macro Operations 

2.4.3.1 await 

Statement form: await cond; 
Description: The privileged process issuing an await continues execution if the boolean expression 

cond is true; otherwise its execution is suspended until cond becomes true. 

Expansion: 

if not cond then 
(disable) 

CPUcontrol in waitset; 
CPU control= dispatcher; 

end disable; 
(disable) 

isok=cond; 
CPU control= dispatcher; 

end disable; 
end if; 
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The expansion works in cooperation with the operating system's dispatching process, which, in the 

above code is identified by the name 'dispatcher'. The variable 'isok' transmits to the dispatching 

process the recomputed condition. A simple dispatcher is: 

getwork: ·waitcopy=waitset; 
loop: if waitcopy ne nl 

then s from waitcopy; 
L=loctr(state(s)); /*recompute condition*/ 
CPUcontrol=s; 
if isok thens out waitset; 

putlast(CPU,s); 
else loctr(state(s))=L; end if; 

go to loop; 
encl if; 

/*if waitcopy eq nl then*/ 
s=getfirst(CPU); 
if s eq !J then go to getwork;; 
CPUcontrol=s; /*give control of CPU to chosen process*/ 
go to getwork; 

Notice in the fifth line that executing CPUcontrol=s; causes control to flow to loctr(state(s)), 

which is where the condition cond is recomputed in the above expansion for await. If the condition 

is still not satisfied, loctr(state(s)) is reset to recompute cond_. Otherwise the process swill proceed 

beyond the await when it next receives control of the CPU. After the dispatcher tests all awaited 

conditions, and moves processes with satisfied conditions to the CPU's workqueue, The first 

element of the CPU's workqueue is selected as the next process to run, unless the CPU workqueue 

is empty, in which case the dispatcher re-examines the unsatisfied conditions. Since the dispatcher 

is enabled, interrupt response is possible and may result in one of the conditions becoming 

satisfied. 

One may wonder whether a dispatcher can run enabled? The sample dispatcher will work 

correctly together with the above expansion of await. An interrupt during the running of the 

dispatcher will be handled, but a process which enters a wait condition as the result of such an 

interrupt having been pro~essed will not be considered for resuming operation until the next time 

the dispatcher executes the statement at 'getwork'. On the other hand, in handling certain 

interrupts, an urgent process may be put at the head of the CPU's workqueue, and thus be 

dispatched before any of the processes which were under consideration at the time that the 

dispatcher was started. 

2.4.3.2 queued subprogram header 

Statement forms: 

(1) define qd name(a 1, ... , a0 ) on fac; 

(2) definef qd name(a 1, ... , an) on fac; 

(3) infix, prefix and postfix forms of the above 

Description: Entry to the subprogram -'name' is completed only when the facility fac is available. 

While fac is busy for another process, the calling process is queued on fac. When control reaches 

the first user-coded statement in the subprogram, fac E busy and <CPUcontrol,fac> E holds. It is 
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the responsibility of the calling process to eventually release the facility when no longer needed. A 

queued subprogram must include a statement labeled 'nonexistent' to which control will flow in the 

event that fac is not a facility. 

Expansion: 

define name(a 1, ... , an); 
if n(facdacilities) then go to nonexistent;; 
(disable) 

if faCE busy then 
putlast(fac,CPUcontrol); 
CPUcontrol=dispatcher; 

else 
fac in busy; 
<CPUcontrol,fac> in holds; 

end if; 
end disable; 
end if; 

Note: The else-clause is necessary to make fac busy to other processes. Remember that the 

queued subroutine performs control functions which ordinarily are assumed by the user to be 

performed by an operating system; the queued subroutine is used to construct an operating system. 

The 'reserve' subprogram of section 2.2.6.1 is an example of a queued subprogram. It is used to 

delay a process until it's argument, a facility, is not busy and can be reserved. 

2.4.3.3 free 

Statement form: free fac; 

Description: The facility fac is released by the process which issued the free. fac is removed from 

busy unless another process is enqueued on fac, in which case that process is activated and the 

facility reserved for that process. 

Expansion: 

(disable) 
v= getfirst(fac); 
<CPUcontrol,fac> out holds; 
if v=Q then 

fac out busy; 
else 

putlast(CPU,v); 
<v,fac> in holds; 

end if; 
end disable; 

Note: The above expansion assumes that the workqueue for fac is empty if fac is not busy. To 

guard against other code violating this assumption, the 'else block' above should include the 

statement: fac in busy;. 
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2.4.3.4 split 

Statement form: split to s(e) for p1; 

Description: In the above statement, s is a state variable, such that processpart(s) represents a 

new process, p. A new process is created as follows: pis added to processes, the pair <p 1,e> is 

stored in p's environment in such a manner that it can be retrieved by initialvar(environmeIJ.t(s)), s 

is added to the set state, and an entry is made on the CPU's workqueue, indicating that the process 

pis ready to use the CPU. 

Expansion: 

(disable) 
moverpart(processpart(s) is p) in movers; 
pin processes; 
sin state; 
initialvar(state(p)) = <p 1,e>; 
putlast(CPU,p); 

end disable; 

The first of the above statements will be a "no-operation" whenever a new process is being 

created for an already existing mover. When the process being initiated belongs to a new mover, 

the first statement insures that the new mover is a member of movers. 

2.4.3.5 enqueue 

Statement form: enqueue eon p for p 1; 

Description: The pair <p 1,e> is placed at the end of p's workqueue. Upon adding the pair to p's 

workqueue, the process which executed the enqueue is free to continue execution. A process 

which services enqueued requests will, upon becoming idle, generally suspend its operation for 

later resumption by waiting for its workqueue to become non-empty. See example 2.2.6.4. 

Expansion: putlast(p,<p 1,e> ); 

2.4.3.6 process termination 

Statement forms: 

kill p; 

term; 

Description: The process identified by p is terminated; ilems already stacked by it on other 

wcirkqueues are eliminated, facilities held by it are released, and its workqueue is dropped. The 

statement term; is equivalent to kill CPUcontrol; and is used by a process to terminate its own 

execution. 

Recall that elements in workset are of the form <s,p,r>, where s identifies the item on whose 

workqueue the element belongs, p represents the process which has enqueued the request in s's 

workqueue, and r are the arguments being passed by p to s. Thus, items in workset{s} are of the 

form <p,r> and ancestor(y) for yEworkset{s} is a process identifier. Thus, the first statement 
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removes all items enqueued by the process being killed, whereas the third statement, 

(workset{p}=rl;), destroys the items enqueued for the process being killed. A possible variant to 

this expansion would recursively kill the processes which had enqueued work on processes being 

killed. 

Expansion: 

(disable) 
(VobjectsEhd[workset], VprocsEworkset{objects} I ancestor(procs) eq p) 

remove(objects,procs); 
end Vx; 
(VfacEholds{p}) free fac;; 
workset{p}=rl; 
p out processes; 
if #processes{moverpart(p)} eq O then 

moverpart(p) out movers;; 
if processpart(state) eq p then 

/*This is the case when term is being executed. Having removed all objects from 
queues associated with the terminating process, the process removes itself from the 
state set, and gives control to the dispatcher.*/ 

< CPU control, state ( CPU control)>= < dispatcher ,nl >; 
/* else 

control continues to the next sequential statement.*/ 
end if; 

end disable; 

2.4.3. 7 queue management subprograms and macros 

Statement forms: 

findfirst(j,x,C(x)); 

getfirst (j); 

insertafter(j ,x,y); 

insertbef ore(j ,x,y); 

putfirst(j,x); 

putlast(j,x) 

readfirst(j) 

remove(j,x) 

Description: The function readfirst(j) returns the first element on object j's workqueue. If there 

are no elements on the workqueue, then readfirst(j)=rl. remove(j,x) will remove x from j's 

workqueue if x is present, in such a manner that the FIFO ordering of the remaining enqueued 

items is preserved. The function getfirst(j) combines the actions of readfirst and remove, by 

returning the first item on j's workqueue and removing the item from the queue. 

The subroutine insertafter(j,x,y) makes y the successor of x in j's workqueue if x is present; 

otherwise y becomes the last item in the workqueue. Similarly, insertbefore(j,x,y) makes y the 

predecessor of x or the first item in the queue. The special cases of adding to either end of a 

workqueue are handled by putfirst and putlast, which can be defined by: 

define putfirst(j,x); insertbefore(j,readfirst(j) ,x); return;; 

define putlast(j,x); insertafter(j,newat,x); return;; 
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The macro findfirst(j,x,C(x)) sets x equal to the first item in j's workqueue satisfying the condition 
C(x). 

These subprograms have routine SETL expansions defined by whatever logical structure is chosen 

for the workqueues. The only PSETL consideration that arises is that these subprograms will have 

to be be disabled to prevent other processes from modifying the workset while getfirst, putlast, and 

remove are in operation. 

2.4.3.8 positional macros 

Forms: 

processpart( s) 

environment(s) 

privilege( en) 

loctr(en) 

code(en) 

initial var( en) 

ancestor(x) 

info(x) 

moverpart(p) 

Description: Once a specific structure for state has been chosen, the first two macros, to be used 

on objects with the same structure as state, extract the process portion and environment portion of 

their arguments, respectively. If for example, state is a pair, we could use the conventions 

processpart(s)=s(l), and environment(s)=s(2). 

privilege, loctr, code, and initialvar apply to objects with the same structure as an environment. If 

en has the structure of an environment, then privilege(en) extracts the privilege portion of en, 

loctr(en) extracts the location portion of en, and initialvar(en) extracts the pair <p,e> from en, 

where p is the process which initiated the process having en as an environment, and e is initializa­

tion information passed by p to that process. code(en) extracts the string of bits which is the 

executable code within the environment en. 

ancestor(x) and info(x) apply to objects of the form occuring 011 workqueues, and respectively 

reference the process which placed the object 011 the workqueue, and the request being transmitted 

through the workqueue. These macros are also applicable to objects retrieved by the initialvar 

macro. 

moverpart(p) extracts, from a process identifier p, the identification of the mover to which it 

belongs. 

2.5 Other Proposals for High Level Language Operating System Primitves 

Dijkstra [Di65], Hoare [Hoa], and Brinch Hansen [B] propose several dictions for coordinating 

parallel processes; all of these dictions are included in Brinch Hansen's book. A comparison of 

these dictions with those of PSETL follows. 

The notation [Hoa, b], 
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is used to indicate that the statements S1, S2 , ... , Sn may be executed concurrently (or in any order). 

A simple condition for the results of the computations in a parallel block to be independent of the 

order of their execution is that the statements Si, S2, ... , Sn be disjoint, that is, no Si may change a 

variable referenced by an Si, j#i. Restrictions on the nature of the Si [Hoa] permit a compiler to 

check that the Si are disjoint. The cobegin block gives each parallel statement the same environ­

ment. PSETL's split statement provides similar capability. In PSETL, each process's environment 

must be specified before the process can be initiated, and these environments are generally 

different. No effort was made in PSETL to make the disjointness of parallel processes decidable 
by the compiler. 

To relax the disjointness requirement of cobegin, mutual exclusi9n is provided by the diction [Hoa, 
B]: 

region v do S 

The block S is called a critical region on the variable v. Only one critical region on any variable 

may be executed at a time. The compiler can recognize references to v outside a critical. region, 

and treat such references as errors. One requirement placed on critical regions is that control leave 

the critical region within a finite time, although no means of enforcing that requirement are 

described in the above-mentioned references. 

We can construct the critical region from our PSETL primitives. If we do not put additional 

requirements on the PSETL compiler, the detection of references to the critical variable v outside 

the region would be dynamic. In PSETL, the diction region v becomes 'reserve (v);'. The variable 

v itself is implemented as a function, which operates on a variable not directly accessible to v's 

callers, e.g., an internal structure in v represents v. 

definef v(args); /*Internal variable var represents v*/ 
if vEholds{CPUcontrol} then 

/*Valid reference.*/ 
(load) return var(args);; 
(store) var(args)=result;; 

else 
/*Invalid reference -- outside 'critical region'*/ 
error; /*Some kind of diagnostic action*/ 

end if; 

end v; 

At the end of the critical region, we need: 'free v;'. 

A conditional critical region [Hoa, B] is a critical region which contains an await similar to the 

PSETL await, with the difference that if the condition is not met, the critical variable becomes 

available, and the delayed process re-enters the critical region at the end of the await. In PSETL, 

the code: 

R: reserve(v); 

if n B then 
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free v; 
v in holds{ CPU control}; /*This statement will make it possilbe for the condition B in 

the next statement to be evaluated. B involves the "variable" v, in the manner 
described in the discussion above on critical regions, and unless 
VEholds{CPUcontrol}, the reference to v (c.f. above) would be invalid. Yet having 
free'd v, it is available to other processes. Once B holds true, the reservation must 
must be reestablished.*/ 

await B; 
v out holds{ CPUcontrol}; 
go to R; 

end if; 

free v; 

gives the same effect as Brinch Hansen's: 

region v do begin ... await B ... end 

PSETL's workset can be used to create 'message buffers' [MMe, BJ of a kind described by 

Brinch-Hansen. Our worksets are not specified to b.e of a-priori limited capacity; getfirst, putlast, 

etc, would have to take the finiteness into account by using awaits in the event that the workqueues 

were full. 

The general semaphore [Di65] has already been shown in example 2.2.6.2 to be realizable in 

PSETL. For binary semaphores, the P operation is simply the PSETL 'reserve(sem);', and the V 

operation, 'free sem;'. 

Brinch Hansen observes that each of the synchronizing mechanisms, semaphores, message buffers, 

critical regions, conditional critical regions, and event queues can be realized in terms of any of the 

other mechanisms of this list; however, it is only more convenient and natural to use the various 

mechanisms in different situations. Thus, once the semaphores were shown to be expressible in 

PSETL, it is not surprising that the other synchronizing dictions could be realized in PSETL, too. 

Guarantees that a V(sem) will be issued, or that a critical region will terminate execution are 

lacking, although their need is acknowledged [Hoa, BJ. The critical region, (except for its lack of 

guaranteed finite execution) is an easy and natural diction to use in a structured programming 

language. There is also some danger of deadlock with nested critical regions. 

The PSETL primitives were chosen to be closer to capabilities of contemporary computers. The 

aim was to specify in PSETL process synchronizing dictions. Thus, the operating system designer 

can specify in detail in PSETL, how the synchronizing mechanisms are to be realized on his 

machine. 

In the short examples given in the texts of [BJ, [Hoa], and [Di65], the use of parallel processing 

dictions are easily comprehended. However, no large body of code comparable to the systems in 

Chapter III and Chapter V are given; thus one cannot compare the readability of PSETL with, say, 

Pascal [W71] augmented by parallel processing primitives. 
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Donovan and Madnick [DM] do present a complete operating system in code, although it is written 

in assembly language for the IBM System/370. The Dijkstra semaphore is used as the synchroni­

zation mechanism in this system. In the code given by Donovan and Madnick, the P and V 

operations are physically close enough so that the reader may easily convince himself that the 

critical sections between these operations have finite execution time. The code suffers from the 

usual assembly language difficulties: opaqueness of data structures, a mass of details imposed by 

the language (in particular, the appearance of the USING pseudo-instruction, whose correctness is 

difficult to ascertain), etc. 
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Chapter Ill 

A Simple Operating System 

In this chapter, an operating systems will be presented in a fair amount of detail to illustrate 

various control mechanisms and mappings commonly used in operating systems, and to make vivid 

the many detailed design alternatives which arise and must be resolved before an operating system 

can actually be implemented. Some machine dependent details will enter; care will be taken to 

distinguish between these and operating system aspects which are machine independent. 

3.1 System Objectives 

The operating system to be presented here is intended to run on a single CPU configuration 

operating in a non-interactive environment in a uniprogramming mode. The system to be 

presented will typify many of the more advanced 'second generation' systems, as well as small, less 

ambitious 'third generation' systems. In the context of this discussion, 'non-interactive' will be 

taken to mean that the system allows the running of jobs submitted by users at the computer 

installation, but only without assistance from the user during execution. This means that all the 

data for the run is available when the job is submitted and that the only operational decisions 

which the user can make are those which he has preprogrammed into his programs or which he can 

express in a job control language. 

'Uniprogramming' will be taken to imply that only one user run is in execution at a time, and that a 

user job runs to completion without the CPU being temporarily diverted to other user jobs. By 

'user job', we mean just the code submitted with the job. Indeed, there will be housekeeping to be 

performed for each job before and after its execution, and this housekeeping will be multiprogram­

med with the running of other jobs. Note that a designer may be constrained by a small main 

memory to implement a uniprogrammed design. Indeed severe memory limitation can make it 

difficult to spare the extra space needed for multiprogrammed control, and can also make it 

unlikely that several jobs will fit into main memory concurrently. 

The constraint to uniprogramming which we begin by assuming limits the degree to which 

hardware utilization can be optimized. A list of reasonable objectives for a uniprogrammed system 

are: to minimize job-transition times, to allow jobs to be assigned priorities which influence the 

scheduling scheme, and to provide library facilities for programs and data. Jobs will be processed 

in the order in which they are submitted, perhaps within priority classes. The only exception to 

this FIFO scheme will be to utilize device mounting time, during which the highest priority 

available job whose estimated running time is less than the expected mounting time, is run. 

Users will be allowed and required to reference input/ output devices symbolically. Several 

advantages result from such addressing. If several devices of a given type are provided with the 

computing system, a job which requires a subset of these devices can run whenever a sufficient 

number of devices are available; with absolute referencing, a specific subset must be available. In 

the case of temporary files, a variety of devices may be apropos, and symbolic addressing permits 

the job to run if any such device is available. Furthermore, premounting of devices while a job 
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using the same class of devices is running is made possible by the flexibility of symbolic referenc­
ing. 

From the users' point of view, a simple job control mechanism is an important objective. When 

the computing system is used in perfectly typical ways, minimum control specification should be 

required from the user. To this end, default values should be established for most job description 

parameters, moreover, it should be possible for each user to establish the default values tailored to 

his personal needs. 

3.2 Job Control Language1 

Job control language is used to describe various aspects of a job to the operating system, such as 

the job's estimated running time, the files it requires, the partitioning of the job into steps, and the 

dependence of a job step on previous steps. Four types of control statements will be used by our 

operating system: a job statement to identify a job, a job-step statement to identify subsections of 

a job, a data file statement to identify and describe files needed by the various job steps, and an 

end-of-data statement to mark the end of data files which are included with the job. These job 

control statements are part of a language in the sense that they allow communication of the 

operational characteristics of a job which would have to be given to an operator if there were no 

operating system. 

Job control language statements, or JCL for short, are imbedded in the statements and data which 

comprise the job. The general structure of a job consists of a job statement, followed by several 

job steps. Each job step consists of a job step statement, data file statements, data, and an 

end-of-data statement. 

Each JCL statement other than an end-of-data statement will be represented by a SETL set 

(which we will use as a mapping): 

where st is a string representing the statment's label, c is a string identifying the JCL statement 

type, s1, ... ,sn are names of subfields, and p1, .. ·,Pn are parameters associated with the subfields 

With the exception of the end-of-data statement, each type of JCL statement contains several 

subfields which convey information. Many of these subfields are optional, in that they are not 

mandatory in every use of the JCL statement. To make the identification of subfields easy, each 

subfield will have the form: 

<sname,info> 

The job control language for this operating system is patterned after the job control language 

for IBM OS/360 [I72]. 
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where sname is the name of the subfield 3nd info is the information being transmitted in that 

subfield. For example, to estimate 5 minutes running time on a job statement, the subfield 

<'time',5> 

would appear in the statement. Because the subfields are identified by name, their order in a JCL 

statement is immaterial. 

Descriptions of how to code the various JCL statements follow. These detailed descriptions will in 

fact describe to a great extent the services which this operating system offers its users. 

3.2.1 The Job Statement 

The form of the job statement is: 

{ <'label',nm>,<'command','JOB'>,a 1, ... ,a0 } 

In the above prototype, nm is a name attched to the job, and a1, ... ,a0 are n subfields. The subfields 

which we allow will be representative of the information which can be transmitted in the job 

statement in most systems, although the more elaborate systems allow for a larger variety of 

specifications to be given. 

The NAME Subfield 

This parameter is used to identify the user responsible for the job. It must match one of the names 

of valid users stored in the operating system. The name parameter is the only required parameter 

on the job statement. A comma or a blank ends the name subfield. An example of a valid job 

statement is: 

{ <'label' ,'XYZ'>,<'command','JOB'>,<'name' ,'MARKSTEIN'>} 

The TIME Subfield 

This parameter gives the estimated CPU running time for the job. If this time elapses during 

execution, the operating system will automatically terminate the job. The TIME specification is 

given in units of minutes: 

<'TIME',x> 

where x is a real number representing the number of minutes estimated for the job's running time. 

The PRIORITY Subfield 

This parameter is used to determine in which priority class the job is to be placed for scheduling of 

the CPU. There are 10 classes, denoted by the integers O through 9, class 9 having the highest 

priority. If not specified, the priority class is taken from the user profile; if specified, the priority 
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used is the lesser of the specified priority and the maximum allowable priority for the user as given 

in the user profile. A sample use is: 

{ <'label' ,'QUICK'>,<'command' ,'JOB'>,<'name', 'VIP'>,<'priority' ,9>}; 

3.2.2 The Job-Step Statement 

The form of the jobstep statement is 

{ <'label' ,nm> ,<'command', 'EXEC'>,a1, ... ,a0 } 

In the above prototype, nm is a name attached to the jobstep. The following subfields are 

recognised: 

The PROG Subfield 

This subfield identifies the data file which contains the program to be executed. If the data file is 

already catalogued by the system, no further information is required; otherwise, a data file 

statement for the file must be given in the JCL for this job step. An example of a valid job step 

statement is: 

{ <'label','A'>,<'command','EXEC'>,<'PROG','ALPHA'>} 

which causes file alpha to be loaded and run. 

If several files are to be loaded, their names are given as a tuple, e.g. 

{ <'label','B'>,<'command','EXEC'>,<'PROG',<'ALPHA','BETA'> >} 

The PROC Subfield 

This subfield identifies a data file which contains JCL for one or more job steps to be executed. 

Use of PROCs (short for procedures) enables libraries of JCL to be built up and reduces the 

amount of JCL a user must supply himself. If, for example, 'SETL' is the name of a file of JCL 

statements to invoke the SETL compiler, the data for a SETL compilation could be preceeded by: 

{ <'label' ,'C'> ,< 'command' ,'EXEC'> ,<'PROC' ,'SETL'>} 

PROCs may be thought of as JCL macros. An EXEC statement must have either a PROC 

subfield or a PROG subfield, but not both. 

The PARM Subfield 

This optional subfield passes a tuple of parameters to the job step. It is coded: 
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The main program of the job step can reference one argument, which will be the parameter 

PARM. 

The COND Subfield 

This optional subfield is coded: 

<'COND',<'r',n>> 

where r is an arithmetic relational operator and n is a positive integer. If the immediately preceed­

ing step returned a result x to the system, and the relation x r n is true, then this step is executed; 

Otherwise the job is terminated. If the COND subfield is not given, the default is 'ne O'. A sample 

job step statement using the COND subfield is 

{ <'label'.,'T'>,<'command' ,'EXEC'>,<'PROG', 'RUN'>,<'COND' ,<'le' ,256> >} 

The TIME Subfield 

This optional subfield is coded exactly in the same form as the TIME subfield for the JOB 

statement. If TIME is used for a job step statement, the maximum time allowed for the step is the 

minimum of the TIME subfield for the step and the total time remaining for the job. If time runs 

out for the step, the step is terminated, and the job proceeds with the next step. If TIME is not 

used, the step is allowed the total time remaining for the job. 

3.2.3 The Data File Statement 

Before giving a detailed description of the data file statement, it is necessary to discuss the various 

file-name spaces which we suppose to exist in our computing system. At the physical level, names 

refer to input/ output devices attached to the computing system, and to dismountable volumes, 

such as tape reels or disc packs·. To physically address a file on permanently mounted storage, one 

must specify _the hardware· address of the device on which the file is stored. T_o physically address 

a file on dismountable storage, first the volume on which the file resides must be specified; then an 

appropriate device on which the volume can be mounted must be specified: Once the mounting 

has been accomplished, it suffices to address only the device on which the volume has been 

mounted. 

For the user, it is more convenient to associate names with. files in a hardware independent and 

volume independent manner. In the case of dismountable storage, it is not to the user's advantage 

to permit him to specify on which of several identical devices to mount his volume since this would 

prevent his job from running when the specified device type is available, but the specific device is 

not. 

The system catalogue provides a map from the user file name space to the physical storage address 

space. Physical addresses may be of several types, some of which identify the volume on which the 

file resides, identify the areas on the volume allocated to the file, identify the unit on which the 
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volume is mounted, and identify the channel through which the unit transmits data to main 
memory. 

Once a physical file has been described to the catalogue via the data file JCL statement, future 

references need only give the user file name. The operating system, by use of the catalogue, will 

determine where the file is stored, and in the case of dismountable storage, it will allocate an 

appropriate device for the file. 

When a program is written it is not always clear which files will be used with it. The relation 

between program file names and user file names is established by the data file JCL statement. At 

execution time, the correspondence between program file names and physical devices is given by 

the composition of the system catalogue and the job's data file JCL statements. 

The form of the data file statement is: 

{ <'label' ,nm>,<'command' ,'FILE'> ,ai, ... ,an} 

In the above prototype, nm is a name in program file name space. 

The NAME Subfield 

Each data file statement has a name subfield which specifies the user name for the file to be 

associated with the program file name. This subfield may be given in three ways: 

1. A symbolic name may be given, e.g.: 

{ <'label' ,'INPUT'>,<'command' ,'FILE'>,<'NAME' ,'MASTER'>} 

In this case, if the parameter in the name field is found in the catalogue, the correspondence with a 

physical file is determined from the catalogued information. Otherwise a new entry is made in the 

catalogue, using the additional subfields on the statment to define the physical file. If no addition­

al subfields are given, the operating system will assign the physical space for the file. For a scratch 

file, the name parameter may be omitted. 

2. A reference to a previous FILE JCL statement, usually in a previous job step, may be given. In 

this case, the information from the previous JCL statement is used. This is specified by giving the 

step name or the proc name, followed by a period, followed by the program name used in that step. 

For example, suppose that all language processors store the machine language output in a program 

named file called TEXT. The loader step would need to refer to this file also. If the language 

processor's PROC name were TRANS, then the input file for the loader can be specified by: 

{ <'label' ,'INPUT'>,<'command' ,'FILE'>,<'NAME','TRANS.TEXT'>} 

This manner of describing a file is especially useful when constructing a JCL procedure; the 

program file names are known in this case, but not the user file names. 
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3. The data is included in the job being submitted. In this case, an asterisk is used as the user file 

name, and the data follows the defining FILE statement, e.g. 

{ <'label','INPUT'>,<'command','FILE'>,<'NAME','*'>} 

See 3.2.4 for the end-of-data specification in this case. 

While a user u may give a file the name x, the file is known within the system as <u,x>. In this 

way, two users inventing the same file name will not inadvertantly share the same data. (Of 

course, there may be instances when several users wish to share data. Additional command 

language to specify such actions are discussed in section 5.4.) 

The DEVICE and VOLUME Subfields 

The DEVICE subfield specifies the device type to be used for the file, but not the physical device 

address. In our system, we will allow the following types: 

CARDIN for card readers, 

CARDOUT for card punches, 

PRINTER for high speed printers, 

TAPE for tape drives, assuming only one type of tape drive is available, 

DISC for disc drives with removable disc packs, assuming that only one type of removable 

storage disc drive is available, and 

PERM for permanently mounted file storage. 

The VOLUME subfield gives a physical identification of the volume on which the file resides, and 

identifies the volume to the computer operator. For example, if a user wishes to establish a new 

file on tape reel 2048, he might specify: 

{<'label', 'OUTPUT'>, <'command', 'FILE'>, <'name','RESULT'>, 

<'device','TAPE', <'volume','2048'>} 

In the above example, if VOLUME were not specified, the system would assign an available tape 

reel. 

The DISPOSITION Subfield 

This subfield is used to specify whether or hot the file is to be 'rewound' before the step starts. It 

also specifies whether or not to catalogue th~ FILE statement, that is, whether or not the file is to 

be retained by the system after the job step is completed. If the system retains the file, the 

information which relates physical storage to the file is kept in the catalogue, and in subsequent 

runs, the user need give only the file name in JCL statements in order to describe the file to the 

system. 'NOCA T' causes the system to purge information concerning the file from its catalogue. 

If the file had been stored on a shared volume, the file is lost after the job step is terminated. The 

possible contents of the subfield are: 

LEA VE don't rewind 
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REWIND rewind before use - the default value 

CAT catalogue - the default value 

NOCAT don't catalogue, or drop from catalogue 

If more than one of the above are to be given, they should be the components of a tuple, e.g. 

{ <'label','TEXT'>,<'command','FILE'>,<'name','TXTFILE'>, 

<'device','TAPE'>,<'disp',<'LEAVE','NOCAT'> >} 

The SPACE Subfield 

This subfield is coded 

<'SPACE',n> 

where n is an integer which indicates the amount of space to be allocated to the file. If this 

allocation proves to be too small during execution, the system will attempt to allocate additional 

space on the same volume. ALL may be given instead of n to indicate allocation of an entire 

volume. This is taken as the default for tape. 

3.2.4 End-of-File Statement 

This statement is coded: 

{ <'command' ,'end-of-data'>} 

After encountering a JCL file statement with the name subfield <'name','*'>, all information read 

is regarded as part of that file until the end-of-file statement is encountered. The end-of-file 

statement is also used to terminate a catalogued JCL procedure. 

3.3 Monitor Services 

Services which the operati~g system can perform on behalf of the user are invoked by statements 

of the form: 

· monitor(service,arguments); 

where 'service' indicates the action to be performed and 'arguments' are additional parameters 

describing the service desired. Rather than assuming that such a request invokes a subprogram in 

the conventional manner, we will assume that such a statement causes a special interrupt, and that 

the list of parameters gets passed to the appropriate interrupt handler through cause. 

For several reasons we prefer to use monitor-interrupt linkage, rather than the subroutine call, 

when monitor services are requested by users. Fore1:1ost, by using interrupts, no portion of the 

operating system need be directly addressable by a user program, as would be the case if subrout­

ine linkage were used. This allows the internal structure of the operating system and the names of 

internal subroutines to remain invisible to the user, but he can request that the operating system 

perform actions on his behalf. 
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The only services which we will describe explicitly in this system are step termination requests, and 

input-output requests. The table below lists the services supported. 

Step termination services (Section 3.3.1) 

endstep a bend 

Input-output services (Section 3.3.2) 

read enable 

write disable 

backspace wait 

rewind iointerrupt 

space fixup 

release endfixup 

3.3.1 Step Termination 

Normal step termination is invoked by: 

monitor('endstep'); 

and abnormal termination by 

monitor('abend' ,x); 

where x is a numeric code which indicates the reason for the termination. x is also used as a 

parameter by the job control interpreter in determining whether or not to skip the next job step. 

In making this decision after a normal termination, a normal termination will be taken to be 

equivalent to monitor('abend',0);. The codex is returned to the job control interpreter via its 

workqueue. 

3.3.2. Input/Output 

Most operating system environments provide a variety of 1/0 facilities, including facilites allowing 

the user to specify how computing and I/O are to be overlapped. In some multiprogramming 

environments, the ability for a user to specify CPU-1/O overlap in such detail is not important, 

since global efficiencies can be realized by running CPU and channels concurrently, but not 

necessarily all for the same process. In our uniprogramming environment user controlled 1/0 

overlap is essential, since it represents the only opportunity to use parallelism within a user 

program. Hence our basic 1/0 facilities must support detailed control of CPU-channel overlap. A 

user interrupt facility therefore is an integral part of the supervisor services which are provided to 

the user; this facility corresponds to the privileged PSETL interrupt mechanism which is described 

in section 2.2.2. 

Data for 1/0 operations, such as the string to be written on a file as the result of a write-request, 

or the string to be read from a file as the result of a read-request, are transmitted between the 

operating system and the requesting process via the requesting process's workqueue. 1/0 related 

items on the workqueue will be of the form <b,data>, where b is a blank atom, and 'data' is the 

information being transmitted. A function, buffer, given below, shows how items are fetched and 

stored on the workqueue. 
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definef buffer b; 
(load) /*Fetches the item paired with b on this process's workqueue. If <b,data> is on the 

workqueue, then buffer b returns data.*/ 
findfirst( this process, x, x(l) eq b); 
if X eq n then 

else 
return n; 

remove( this process, x); 
return x(2); 

end if x; 
end load; 

(store result) /*Forms the pair <b, result>, and places it on the process's workqueue, making 
sure that it is the only tuple t on the workqueue such that hd t eq b. * / 

L: findfirst( thisprocess, x, x(l) eq b); 
if X ne n then 

remove(thisprocess, x); 
go to L; /*to look for other items x with x(l) eq b* / 

else 
putlast(thisprocess, <b,result> ); 
return; 

end if; 
end store; 
end buffer; 

where 'thisprocess' is given by the macro: 

macro thisprocess; CPUcontrol endm thisprocess; 

The monitor call: _ 

monitor('read', f, b); 

causes the next record of file f to be read and associated with the blank atom b on the calling 

process's workqueue. The read monitor request only starts the I/O operation. The user can 

synchronize his program in several ways with the termination of the operation, at which time the 

string of characters associated with b represents the record just read. A monitor wait service is 

provided for this purpose. For example: 

monitor ('read', f, b); 

/*computing, but not on buffer b. * / 

monitor('wait', f); /*Delay until operation on f is completed.*/ 
r=buffer b; /*get the info just read.*/ 

The wait service is described more fully below. A second method involves a user's interrupt 

facility, which is also described below, and which is illustrated by the output spool code in Section 

3.5.3. 

To write a record to file f, a monitor call of the form: 
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monitor('write', f, b); 

is used. The string of characters, s, associated with the atom b on the calling process's workqueue 

is written on file f as the next record. An assignment statement such as: 

buffer b = s; 

may be used to place the strings on the workqueue prior to the 'write'. As with the read request, 

write requests only start the operation. One of the synchronization techniques mentioned al;>ove 

must also be used. 

The monitor request: 

monitor('backspace', f); 

causes the file to be repositioned to the previous record, i.e., if f contains records ri, r 2, ... , rn, and 

if f is positioned at rj, the result of a backspace will leave f positioned at record r 1 max i-l. 

The monitor request: 

monitor ('rewind', f); 

repositions f to the first record of the file (record r1 in terms of the above example). For files 

which are on devices such as card readers or printers, these commands are inappropriate, and cause 

an error to be indicated when the operation terminates. 

The monitor request: 

monitor('space' ,f); 

positions file f to the beginning of a new page, when f is on a printer or similar device. If this 

request is issued for a device which is not a printer or something similar, an iointerrupt code (see 

below) indicating an illegal I/O request will be returned. 

The user I/O interrupt system is normally enabled. Two monitor call statements are provided with 

our operating system to alter the state of the user I/O interrupt system for each program file: 

monitor('enable', pfn); 

monitor('disable', pfn); 

While a file is disabled, interrupts resulting from the termination of an I/O request on pfn are 

stacked by the operating system, to be released FIFO whe,n the interrupt system for pfn is 

re-enabled by the user. 

In some cases it may be desirable to ignore the interrupt information associated with an I/O 

operation. (For example, when rewinding a file, the interrupt bits are generally uninteresting.) In 

particular, when a file is disabled, or while executing a fixup routine (see below), a mechanism to 

avoid stacking certain interrupt reports is needed. The 'release' monitor service call, 

monitor('release', pfn); 
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causes stacked interrupt information for pfn to be discarded, or, if pfn is currently active, it will 

cause the interrupt information resulting from the current operation to be discarded. 

If a user has specified an 1/0 interrupt routine for a file by having executed: 

monitor('fixup' ,f ,r); 

control will be forced to the statement whose label is r on the occurrence of an 1/0 interrupt due 

to the file f, whenever a monitor(disable) is not in effect. At r, the user program can get the cause 

of the interruption via the call, 

monitor('iointerrupt' ,y); 

which results in buffer y being set to information concerning the cause of the most recently 

processed user I/ 0 interrupt (interrupts stacked are not considered in determining the most 

recently processed interrupt). buffer y will be a pair, whose first component is the program file 

identifier for the file which caused the 1/0 interrupt, and whose second component is machine 

dependent and gives information regarding the completed I/0 operation.. Since 

monitor('iointerrupt',y) will set buffer y to the information related to the most recent file to h·ave 

caused entry to a user fixup routine or to have satisfied a wait-request, this monitor call should be 

one of the first actions taken in an 1/0 interrupt routine. We will use the term 'fixup' to designate 

code executed as the result of interruption at the termination of an I/0 operation on a file. If no 

fixup has been specified for a file by a user, then a standard system fixup is used. 

An 1/0 fixup routine may be regarded as a co-routine of the mainstream program. All of the 

variables of the mainstream program are available to the fixup and vice-versa. When control 

enters an 1/0 fixup, our monitor will save the mainstream location counter, and restore it when the 

user program executes: 

monitor('endfixup'); 

While in a fixup routine, f_urther user 1/0 interrupts are inhibited and any interrupts which occur 

during fixup are stacked by our operating system, to be released FIFO on execution of 

monitor('endfixup') ;. 

To synchronize CPU and 1/0 activities, 

monitor('wait' ,f); 

is used to suspend the calling process until the file f is released by the system. If f was not busy 

when the 'wait' was executed, the 'wait' behaves like a no-operation. Otherwise, control goes to 

f's fixup when the operation on f is concluded. If an interrupt is already stacked for f, it is 

unstacked and control reaches f's fixup, regardless of the state of the interrupt system. By 

disabling interrupts and issuing 'wait's, a user program can handle interrupts in a predictable order. 

Note that waiting on a file f causes the disabled condition to be overridden for file f only. If a 

'wait' is issued while in a fixup routine, and the wait is not a no-op, then the process resumes in the 

new fixup, and the old fixup is considered to be concluded. 
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Finally, a program file f is considered to be busy from the point at which an 1/0 operation is 

accepted to the point where its fixup routine is entered. Thus, it is allowed to issue an 1/0 

instruction to a file as part of its fixup routine. 

3.4 System Organization 

The structure of our operating system can be likened to a set of concentric circles. The innermost 

circle represents programs which have the highest privilege level and which are the most machine 

dependent. Each outer circle has a lower privilege level than any circle it contains, and tends'to be 

more machine independent, with operating system programs in the outermost shell being indistin­

guishable from user programs. 

3.4.1 System Nucleus 

The innermost circle, or system nucleus, consists of the basic interrupt handling programs, 

. protection mechanisms, functions and maps describing the structure and status of the hardware 

being controlled, and a rudimentary dispatcher. 

The interrupt handling processes are precisely those specified in hd tl[interrupt]. In most cases, 

interrupts are handled by posting information on the workqueue of a process operating in an outer 

circle. 

Data sets associated with the nucleus describe the hardware to be controlled. Thus, if c a channel, 

devices{c} might give us the hardware addresses of all devices on channel c, etc. Using these 

maps, we can express many of the common operating system operations without becoming 

enmeshed in undue detail involving the precise layout of the tables in storage. 

3.4.2 Resource Allocation 

The next highest privilege level of our operating system handles resource allocation. To this level 

belong our main library catalogue and routines to search or update this catalogue. 

Resource allocation routines accept the description of a device type along with certain restrictions, 

and return the physical address of a device which satisfies the description. Given the user defined 

name of a file, the catalogue identifies the physical volume or device which contains the file. 

The data and routines at this level are available to processes operating in the next lower privilege 

level, but not to processes with still lower privilege. Such processes achieve resource allocation by 

asking a higher level process to request the allocation for them; the higher level process can then 

perform consistency checks and impose address mappings before actually requesting allocation. 

3.4.3 Major Components 

The next highest privilege level of our operating system consists of the major system components. 

Our operating system allows several major activities to take place concurrently with the running of 

a user program. These are: communication between machine operator and system, reading of 

input for subsequent jobs, printing of output from previously run jobs, allocation of resources, and 

scheduling. Corresponding to each of these activities there will exist a program and one or more 
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processes. For example, the program to read input may be executed by as many processes as there 
are card readers. 

3.4.3.1 Operator Communication 

Even though operating systems are produced to automate the running of a computer installation, 

some communication between operator and operating system will be necessary. Operator 

communications will fall into several general catagories: communications to the operating system 

giving information about the physical environment, requests overriding the operating system's 

automatic operation, and inquiries to the operating system on the status of jobs or workqueues. 

The operator is expected to inform the operating system whenever he has mounted a volume on a 

device. To initiate the running of jobs, he must indicate which ?f the devices are to be the system 

input and/ or output devices. 

In our system, it will also be the operator's responsibility to communicate to the system the eligible 

users, along with profile information for each user. This information includes the maximum 

priority level at which the user may run, as well as information concerning user-chosen defaults to 

be used in conjuction with JCL statements. The operator also has a command whereby he can 

allocate time to each user. A user whose jobs have used up this allocation cannot execute 

additional jobs until the operator issues him a new allocation of time. The operator can advance a 

user's job to the top of the scheduler's highest priority queue. Finally, the operator has a command 

to remove a user from the set of eligible system users. This command results in purging all system 

tables of data which pertains to the former user. 

The set of operator commands to which our system responds is by no means complete, but serves 

to illustrate interaction between the operator and the system. Additional functions are discussed in 

Section 4.6. 

3.4.3.2 Scheduler 

In our simple uniprogrammed environment, we use a relatively_ straightfoward scheduler. When 
the CPU finishes a job, the scheduler selects the oldest member from the set of highest priority 

jobs. If mounting of volumes is required, messages are sent to the operator, and an estimate of the 

time required to mount the volumes is computed. The scheduler then searches for a job whose 

estimated running time is less than the mounting time and which does not require operator setup. 

If such a job is found, it is run during what would otherwise be idle CPU job transition time. 

Our scheduler also uses the catalogue and JCL to match names in program file name space with 

those in physical address name space. When allocation for new data files is not specified, the 

scheduler will make an appropriate assignment. If the computing system has inadequate resources 

for a job, the scheduler will cause the job to be terminated. 

· 3.4.3.3 Input Reader 

To reduce job transition time and job execution time, our operating system will read jobs being 

submitted through input devices and copy the jobs onto disc storage, from which the data can be 

read faster than from the original input device. During the transfer of data from input device to 

disc, the input reader will analyze all the JCL statements it finds, and will determine the resources 
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which the job will require; it will then summarize this information for use by the scheduler. If JCL 

procedures are used, the input reader will locate the procedures in the library and expand the 

procedure references into standard JCL. On detecting the end of a job, the scheduler will be 

notified through its workqueue that another job is available for scheduling consideration. The 

entire job, considered as a data file, will at the same time be catalogued for later reference by those • 

of the program's read statements which are directed to the data included in the job. 

This mode of buffering jobs on intermediate disc storage assumes two things: that disc storage can 

be read substantially faster than the systein input devices (which are often card readers or slow 

communication lines), and that jobs are likely to be presented while a backlog of work exists for 

the CPU. The reading of a job on a slow device during a time when there is backlog can be 

overlapped with the execution of the backlog. Furthermore, the greater the backlog, the greater 

the selection of work for the scheduler in its attempt to utilize hardware effectively. 

3.4.3.4 Output Printer 

If we assume that because of the relatively slow speed of printers, the time to print the output for a 

job tends to be longer than the CPU time needed to execute the job, then we can expect to 

increase the performance of our system by writing information intended for the printer onto a fast 

I/O device, such as a disc, and by copying the disc file to the printer while subsequent jobs are 

executing. Several printers may be required on a computing system with a very fast, powerful 

CPU. Our operating system will incorporate such a buffering scheme for printed output. 

Whenever a job finishes executing, the output printing routine will be alerted. If a printer is 

available, the output is sent to it; otherwise the request for printing gets stacked. When the 

printing of an output file is terminated, the output printer will unstack the request for the highest. 

priority job; if several stacked requests for the same priority class are present, the oldest will be 

chosen, that is, FIFO queue qiscipline will be maintained within each priority class. 

3.4.4 User Programs 

User programs operate at the lowest privilege level. Some software which the operating system 

provides also operates at this level; examples are language processors, sorting subsystems, and 

some portions of data management systems. These portions of operating systems will not be 

depicted at this time. 

3.5 Coded Operating System 

3.5.1 Sets, Maps, and Tables 

In this section, we describe the sets, maps and tables which our operating system uses to describe 

the hardware configuration on which it runs, the states of the various devices which it manages, 

and the jobs which it controls. These structures will appear in the code which follows, and will 

serve as a major communication channel between the various components of our system. Of 

course, the special sets described in Chapter II will also be present. 
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3.5.1.1 Global Information 

users: The set users contains the identifiers of all bona-fide users of the computing system. Each 

element of this set is a character string. 

owner: This set consists of pairs of the form <m,u>, where m E movers and u E users. This map is 

many:one since one user may have several jobs in the system. 

devices: This set contains the hardware addresses of all 1/0 devices which are attached to the 
computing system. 

channels: This set contains the hardware addresses of all data channels available to the computing 

system. (We assume that a channel is necessary and sufficient to establish a data path for 

transmission of data between a device and main memory. We allow several devices to be 

attached to the computer through the same channel, although the channel can act as a 

communication path for only one device at a time.) 

type: This set is used to classify devices. For d E devices, type(d) identifies the nature of the 

device. In our system, we assume the following device types: card reader, card punch, 

printer, tape drive, disc (for disc drives which use dismountable disc packs), and perm (for 

disc drives which have a fixed storage surface). 

volumes: This set contains one element for each storage element available to the system. Each 

element is represented by a tuple <id,t,s> where 'id' is the volume's external identification, t 

is the type of device on which it is used, and s is the amount of unassigned space on that 

volume. 

3.5.1.2 User Oriented Information 

budget: For each uEusers, budget(u) is the remaining time available for jobs submitted by u. 

defaults: For each u E users, defaults{ u} is a set of pairs, giving the user's specified default values 

for various JCL parameters. 

datafiles: For each u E users, datafiles{ u} is the set of file names of data files accessible to the user 

u. 

catalogue: Members of the set 'catalogue' are of the form <d,v,k>, where dEdatafiles, 

v E volumes, and k is a set of pairs, each pair consisting of an attribute name and a value 

associated with that attribute. Examples of attribute names are: extents, private volume, 

etc. The value associated with 'extents' is a list of pairs giving the location and size of the 

physical storage blocks for the file. In the event that non-contiguous blocks are used to 

contain the file, the order of the pairs determines the logical ordering of the file. 

maxprio: For uEusers, maxprio(u) gives the maximum priority level which the user u can assign to 

his own jobs. 

3.5.1.3 Process and Mover Oriented Information 

userprogs: This set contains those process identifiers which correspond to active user programs. 

esttime: For each mover m, esttime(m) gives the estimated total CPU time for the mover as given 

by the job statement. 

timeleft: For each mover m, timeleft(m) is the CPU time remaining form. 

steptimeleft: For each process p, steptimeleft(p) gives the CPU time remaining for the job step 

associated with p. 

iowait: For each process p, iowait(p) is true if and only if pis suspended awaiting completion of an 
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1/0 event. 

mainstate: For a process p, mainstate(p) is the state of process p's mainstream execution. If p 

handles its own interrupts, then mainstate(p) is used to return to the main processing 

program when the interrupt fixup routine is completed. 

ioint: For a process p, ioint(p) is true if and only if p's location counter points into an I/0 

interrupt fixup routine. In such case, other 1/0 interrupts for process p will automatically be 

stacked, and handled FIFO whenever the process p attempts to return from an interrupt 

handler to the program's 'mainstream'. 

workset( <p,io> ): For a process p, this workqueue is the queue of stacked 1/0 interrupts. 

programfiles: For process p, programfiles{p} are the names in program file name space being used 

by p. 

newallocations: . For each mover m, newallocations(m) is the set of user files which are being 

catalogued for the first time in the job associated with in. If any of these files are never 

used, they are automatically removed from the catalogue when the job corresponding to m 

finishes. 

interrupted: For process p, interrupted(p) is a pair of the form <f.i>, where f is the most recent 

file for which an 1/0 fixup routine was entered, and i is the interrupt information associated 

with file f. 

3.5.1.4 Channel and Device Oriented Sets 

operational: For XE {devices + channels}, operational(x) is true if and only if x is usable by the 

hardware, i.e. "xis up". 

units: For cEchannels, units{c} is the set of addresses of devices on channel c. These addresses 

are hardware imposed names of the devices, and are used to reference the devices in physical 

1/0 statements (see section 2.3.2). 

filehandledby: For dEdevices, filehandledby(d) identifies the member of programfiles on whose 

behalf d is being used. 

position: This is a device dependent set which for a device d returns the position at which the next 

operation will take place. This set is used primarily for devices { d E devices I device type( d) 

eq tempdisc}. 

rightouse: For dEdevices,. rightouse(d) is an atom used by the operating system for controlling 

macro operations on d. Since macro operations may consist of several suboperations, it is 

the atom which becomes free as the direct result of an 1/0 interrupt. The operating system 

will free a physical device d only when a full monitor request on dis completed. 

mounted: For dE devices, mounted(d) identifies the volume logically mounted on device d, unless 

there is no volume on d, in which case mounted(d)=D. 

ready: This is the set of devices on which an assigned volume has been mounted by the operator. 

A device d can be used for I/ 0 if and only if d E ready. 

3.5.1.5 Maps with Domain programfiles 

deviceaddress: This set provides a map from program file name space to device address space. 

userfile: This set provides a map from program file name space to user file name space. 

savecause: For each rEprogramfiles, savecause(r) is the information concerning the most recent 

interrupt caused by file r. 

filewait: For r E programfiles, filewait(r) is true if and only if the process to which r belongs is 
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suspended waiting for an interrupt signal announcing the completion of an I/0 operation 

· performed on file r. 

fixup: This set provides a map between program file names and user-level I/0 interrupt handling 

routines. 

logicalposition: For r E programfiles, if r is stored on disc, logicalposition(r) describes the logical 

position within the file at which the user's program assumes that the read/write head is 

located. The physical position of the read/write head can then be computed by using this 

information in combination with catalogue( userfile(r)). 

rel: For rEprogramfiles, rel(r) is true if a monitor release is in effect for r (cf. 3.3.2). 

disable: For rE programfiles, disable(r) is true if the fixup for file r is not to be automatically 

executed at the termination of 1/0 operations on filer. 

3.5.2 Remarks on the Uniprogrammed System 

Our operating system is organized as a sequence of subprograms. The first subprograms presented 

are the so called major components. The coding style used in these portions of the operating 

system closely resemble conventional SETL programs, and do not employ PSETL extensions 

extensively. As one progresses along the sequence of subprograms, PSETL notions play an 

increasingly important role, and the reader must keep in mind that several processes are 

execution". 

11· m 

A major difference between these subroutines and many of the SETL algorithms published to date 

is the relative absence of iteration headers. For most paths through a portion of the operating 

system, there is simply a sequence of computations to be performed, and iterations play a minor 

role; when they do occur, they have short scope and modest range. On reflection, this is desirable 

in an operating system, especially the nucleus, if the operating system overhead is to remain small. 

A call for operating system service should only involve the execution of a small number of machine 

instructions. The most often traversed portion of the operating system is its interrupt handling 

section. The fact that our algorithms for interrupt handling are relatively free of iteration gives 

hope that these efficiency-crucial sections of code can have efficient realizations. 

Succinct, comprehensible expressio.n of the data-processing specifications in our system is attained 

with SETL. Searches over the system's structures are easily expressed in terms of 3-conditionals. 

Thus, there is no need, from a specification point of view, to maintain maps whose sole purpose is 

to invert other maps. 

In general, we have tried to avoid redundant structures in our system. For example, at various 

points, we need a.map from program file names to devices. Such a map could easily have been 

constructed in the subprogram 'assign'. However, we compute the map whenever needed in terms 

of other structures as follows: 

deviceaddress(pfn) = catalogue(userfile(pfn)) ('deviceaddr'); 

The advantage of this construction is to simplify the maintenance of the various system structures. 

In the above example, we would have had to consider modifying the additional map whenever 

'catalogue' or 'userfile' changed, in order to keep the maps consistant. 
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SETL's strict adherence to reference-by-value does pose serious problems for operating system 

specification. Some objects, such as process environments and files, which must be manipulated, 

can be very large. For example, since file variables include all the data in a file, rather than a 

pointer to the data, it becomes impractical to construct a list of files, since this implies generating 

copies of all the data in the files. Input spool does require such a construction, and it resorts to 

using a list of program file names, together with provisions for re-opening and repositioning files. 

These representation-dependent computations are not in keeping with the spirit of SETL, but they 

are unavoidable if we don't want to specify an unrealistic copying of files. 

The PSETL definition of disabled blocks removes any doubt whether the system will leave the 

disabled state, at the expense of greatly restricting the dictions which can be used in a disabled 

block. The lack of subroutine calls is particularly frustrating, and leads to repetitive code, as for 

example, the time accounting at the beginning of the various interrupt handlers. The lack of 

while-blocks sometimes requires V-iteration headers which SJ?ecify an overestimate of the number 
of iterations of the block. · 

· 3.5.2.1 Input Reader 

The subprogram "inputspool" is initiated once for each device which the operator designates as a 

system input device. Thus as many processes will execute "inputspool" as there are system input 

devices. Each "inputspool" process is passed a user file name which has been initialised to address 

the physical input device which that process is to use. The private variable "reader" is used as the 

program file name corresponding to the input device. Whenever a new job is encountered, a new 

mover is created. A user file is created to hold the job-associated JCL. 

By reading jobs from external, non-random access sources, such as cards, and storing the jobs on 

disc storage, the input processes create a reservoir of work for the scheduler to choose from. This 

makes jobs to be run available in a manner implying the absence of any essential time difference in 

selecting one job over another, and on a medium from which input records can be read at speeds 

better matched to processor speeds than a card reader would allow. At the same time, the input 

readers extract certain key job characteristics, such as estimated running times and the names of 

the required files, and keep these in main memory. As input is stored on temporary disc, certain 
modifications to the source material are made in it. We allow JCL macros, or 'proc's (see 3.2.2); if 

such a macro occurs, it is expanded by the input reader, which copies the necessary macro 

expansion from the user's or from a system library. Data included in a "job deck" (such as a 

source program to be compiled) are written to separate data files, and not included in the disc 

storage copy of the job. Hence the disc copy of the job contains only JCL statements. 

In order to guarantee that job steps have unique names and still allow a single macro to be invoked 

several times within a job, the following technique is used. During JCL expansion, step names are 

prefixed by x+'.' where x represents the label on the input JCL 'exec' statement which initiated 

macro expansion. Thus, the use of unique labels in the source deck is sufficient to guarantee 

unique step names after macro expansion. The variable 'qualifierprefix' holds the string to be 

prefixed to JCL labels in accordance with this scheme. 

Since input can come from either the system input device or from a JCL macro library, the tuple 

'source' is used as a stack of input sources, with source(l) being the current input device. The 

predicate #source eq 1 (or equivalently, the macro, readingprimarysource) is used to distinguish 
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whether input is being read from the system reader or a JCL macro library. 

The main loop of the input reader starts at 'mainloop'. At this point a JCL statement is read and 

copied onto a temporary file, following which an appropriate section of code depending on the 
JCL command encountered is executed. 

Control reaches the label 'endcard' when a JCL 'end' statement, or the header statement of a 

second job in encountered. (A header statement not preceeded by an end card serves the dual 

purpose of signalling the end of the present job and the beginning of the next.) If macro expansion 

had been in progress when the end card was read, the previous input source again becomes the 

current input source, and the main loop continues. 

If a JCL error has been encountered during reading of the job, the job is rejected out of hand. In 

this case, the temporary input file, which now also contains error indications, is sent to 'outspool' 
for printing, and all table entries and temporary files for the rejected file are purged. 

'exec' statements are checked for the 'proc' parameter. If present, then the user's library as well as 

the system library are searched for the JCL macro. The user's library is searched first, so that a 

user written JCL macro will take precedence over one with the same name supplied by the system. 

It is assumed that the procedure library, both for the user and the system, is named 'proclib'. 

In handling file statements, various steps may utilize the same program file names; JCL macros, 

consisting of several steps whose details are not known to the user, create this situation. To 

guarantee unique program file names, the program file name on the file statement is prefixed with 

the step identifier. The processing of file statements falls into two main classes. 

If the user file name con ta ins a '. ', then a reference is being made to a previously encountered file 

statement, and a check is made to insure that the referenced file statement had indeed been 

encountered (see 3.2.3). 

If the user file name is given as'*' or if it is omitted (for a scratch file), a userfile name is generated 

for the file. If the user file name is found in the catalogue, then items not specified on the file 
statement are given default values based on catalogue entries. Otherwise, a new catalogue entry is 

made, and parameters not specified in the file statement are defaulted from the user's profile. 

Finally, if the user file name had been given as '* ', space is assigned for a new file, and the input is 

copied into the new file, until an end statement is encountered. 

3.5.2.2 Output Writer 

The subprogram 'outspool' is initiated once for each device which has been designated as a system 

output device. To illustrate the direct use of monitor supplied 1/0 functions and interrupt 

facilities, this subprogram is written using the primitive monitor calls described in 3 .4.1. 7, rather 

that the common SETL I/0 statements. (The usual SETL J/0 really invokes subroutines which 

must be actually coded in much the same style as the output writer.) Given a user file, 'ufn', to be 

printed, a program file name, 'pfn', is assigned to the file. The bulk of processing takes place in the 

fixup routines which receive control on completion of 1/0 operations. Control returns to 

mainstream either when the end of file for·the input is reached ('eof' is true) or during a read error 

recovery attempt ('eof' is false), in which case mainstream merely re-enters the wait condition. 
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On disc 1/0 interrupt, if the record has been successfully read, another read is immediately 

initiated into the other buffer (determined by 'useleftbuffer'), and a wait is entered for the printer. 

Thus, control reaches 'printerfixup' without ever returning to mainstream. The appropriate buffer 

is printed, and the program waits for the reading of the next disc record to be completed. 

3.5.2.3 Scheduler 

Only one instance of the scheduler exists (as opposed to the multiple instances of input readers and 

output writers). Items are placed on the scheduler's workqueue when an input reader finishes 

reading a job which is JCL error free, when a non-setup job is needed to overlap mounting time 

for an already scheduled job, and when a job terminates. 

New jobs from an input reader are kept in 'backlog' which is ordered according to job priority, and 

within each priority class, according to age, so that the first item in 'backlog' is the oldest job 

having the highest priority, and the last item is the youngest job having the lowest priority. Each 

item in 'backlog' specifies the mover for the new job, and its temporary input file. 

In response to a request for a non-setup job, the first such job in 'backlog' whose running time is 

less than the estimated mounting time, if one exists, is selected and is fowarded to the process 

'jobcontrol' for execution. 

For other requests, if no other user program is running, the first item of 'backlog' is selected. 

Provided that a sufficient number of devices for the job are present on the system, the job and its 

input file are fowarded to a newly created process for the new job's mover, called 'jobcontrol'. 

3.5.2.4 Job Control 

Job control reads the JCL statements for one jobstep of a job, sets up the files and loads the 

required programs. Job control is activated as a process belonging to the mover for which the next 

jobstep is to be run. The subprogram is passed the user's jcl file name and output file name as 

parameters. There is structural similarity to the input reader, since JCL statements are being read 

and interpreted, but procedure libraries are no longer involved since the input reader has already 

expanded all JCL macros. , 

For all file statements, if the reference is to a previously defined program file, the file description is 

obtained through the map 'userfile' and the catalogue. If the file is already mounted, nothing 

further need be done. Otherwise an appropriate available device is selected, a mounting message is 

sent to the operator, and one minute is added to the estimated mounting time for the jobstep. 

The end of step is signalled by an end statement, or by the next 'exec' statement. If there is going 

to tie delay due to device mounting, the scheduler is invoked to select a non-setup job, and it is 

passed the estimated mounting delay as a parameter. 

Finally, loading of the program is performed. This is too strongly dependent on the 'standard' 

form of compiler output and structure of the hardware to be shown in complete detail. However, 

the general nature of the loading process is shown from the statement at 'loadloop' to the if 

statement following the while block. The variable 'progstobeloaded' is initialized to contain the 

names of the programs to be loaded, and 'missing' initialized to nl. All items in 'progstobeloaded' 
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are searched for, first in the user's program library, then in the system's. The actual loading of a 

found program is accomplished by the routine 'fetch', and the machine dependent parts of loading 

are accomplished therein. We also assume that for any program being loaded, as many inter­

program references as possible are resolved. Reference to a program which is not already loaded 

and not given in 'progstobeloaded' is noted by placing the name of such a program in 'missing'. 

Inability to find a program in either user or system catalogue also results in the program being 

noted in 'missing'. So long as only new names enter 'missing', 'loadloop' is repeated. Failure to 

find a program results in termination of the job step. It is also assumed that 'fetch' initializes the 

variable 'main' to the entry point of the (composite) loaded progrnm. 

The final block of code in job control sets up the time constraints which bound the running of the 

job step just loaded, and which would force return of control to 'jobcontrol' in the event of a time 

overrun. 

3.5.2.5 Resource Allocation 

The four subroutines, assign, unhook, allocate, and relinquish, are involved in maintaining maps 

between program file name space, user file name space, and physical storage such as disc space and 

tape reels. 

The subprogram 'assign' establishes the correspondence between a program file name and a user 

file name. Several system structures are updated in establishing the correspondence. The program 

file name being defined is put into 'programfiles', the set of program file names which are currently 

associated with user file names. The map 'userfile' is updated to indicate the user file name 

associated with the program file name. 

The program 'unhook' breaks the relation between a program file name and a user file, and also 

destroys the catalogue entry if the disposition field of the catalogue does not indicate that the file is 

to be kept in the system. 

The subprogram 'allocate' assigns space on a disc pack or a tape reel to a file. If the catalogue 

entry for the file contains a volume entry, no action is taken. Otherwise, if the device type for the 

file is disc or drum, an attempt is made to find space on a mounted volume, but if this fails, then 

space on an unmounted volume is sought. A similar strategy is followed for tape files, except that 

an entire reel is always allocated. 

When a disc file is being released, the subprogram 'relinquish' updates the volume table of contents 

of the volume on which the file had resided, to indicate where additional available space may now 

be found. A system structure, 'volumes', is also updated to reflect the additional available space. 

3.5.2.6 Operator Services 

When the operating system itself begins execution, the opera(or services process is given control. 

It's first task, handled in the initially block, is to initialize the three interrupt handlers. An initial 

environment with system privilege, 'osenvironment', is given to these processes. 

The main loop begins with a read operation directed to the operator's keyboard. The actions 

associated with most of the commands is straightforward. 
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The 'mounted' command, which indicates that the operator has performed a volume-mounting 

operation, is a cue to the system to check whether the action was in compliance with a previously 

issued mounting request message. For disc devices, it may be the case that while the volume had 

been dismounted, files had been assigned to it. In such a case, space allocation for these files can 

now be completed, and the system table which gives the size of the largest block of contiguous 

storage on the volume is correctly updated. In any case, the device is marked as being ready, 

thereby signalling the job control interpreter that a mounting action for which it may be waiting is 

completed, and informing the scheduler which files are currently on-line. 

3.5.2. 7 Monitor Services 

For each monitor-interrupt, a new process to service that interrupt is created by the monitor 

interrupt handler, which then sets itself up to receive another monitor-interrupt. 

The process which requested the monitor service ('caller'), the requested service ('fen'), and 

additional parameters ('parm') are extracted by the new process from information passed to it by 

the monitor interrupt handler via the split statement. The first if-statement separates most 1/0 

requests from the others. An illegal request is treated as an abnormal step termination. 

Step terminations are processed beginning with the code at label. 'endstepaddr'. The cause of the 

termination is put on the workqueue of the job control interpreter process which started the 

terminating step. By not returning the caller to the CPU's workqueue, the caller does not regain 

control of the CPU. The job control interpreter, on the other hand, resumes operation since it's 

await (see 'End of Step' section of code in the Job Control Interpreter) is now satisfied. 

For 1/0 requests, the program file name, paired with the caller's process identifier, produces a 

unique identifier, 'file', for the file involved in the operation. 'file' is used to determine the device 

and channel which are involved in the 1/0 operation. Certain control requests, wait, release, 

enable, and disable, do not physically or logically manipulate the device, and these requests are 

now interpreted without further ado. 

For the other 1/0 requests, the user's program file is first reserved. If the file is busy when the 
reservation is attempted, this process will be delayed until the previous operation on the file has 

been completed. 

Operations which merely reposition the read-write head of disc devices will not result in. physical 

manipulation of the device, but rather, such operations cause system tables to reflect where the 

caller believes the read-write head to be located. This strategy is adopted because the disc drives 

are frequently shared among several files. Moving the read-write head for one file may be futile if 

it is again moved for another file before advantage is taken of it's having been positioned for the 

first file. Thus, for disc files, we will carry out the read-write head positioning only if needed, 

before a read or write operation. For such positioning requests, no further facilities must be 

reserved. 

For all other cases, we reserve the device on which the file resides and the channel through which 

the device communicates with the CPU and main memory ( to prevent concurrent use by compet­

ing processes). We also reserve a blank atom, given by 'rightouse(iodevice)' for device 'iodevice'. 

The need for this facility arises as follows: In response to an interrupt from an 1/0 device, we 
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want the 1/0 interrupt handler to free a facility. If it frees the device itself, then a competing 

process can begin an operat1on on the device. But some 1/0 requests require a sequence of 

physical 1/0 actions on a device without intervening actions from other 1/0 requests. (On discs, 

for example, it may be necessary to issue a read-write head positioning command (see the 

if-statement following the label 'readwrite') before performing a read 01: a write operation.) Thus 

two facilities are needed for each device: one to be used to reserve the device for a process (the 

device identifier, 'iodevice' serves this purpose), and another to coordinate a monitor process with 

its 1/0 operations ('rightouse(iodevice)' serves this purpose). The 1/0 interrupt handler issues 

frees to the second 9f these facilities whenever an 1/0 interrupt occurs (see the code at label 

'ioxpt'). By reserving rightouse(iodevice) a monitor process delays its execution until the current 

physical 1/0 operation has finished. When an 1/0 monitor request has been completed, then the 

monitor service interpretor process frees the other facility, 'iodevice', thereby allowing other 

processes to access that device (see the code at label 'wrapupiorequest'). 
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3.5.3 The Code 

/* 

*/ 

Catalogue of Routines 

inputspool . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 56 

Input spool reads jobs from an input source, abstracts job requirements from 

JCL statements, and saves the job on disc. 

procsearch 

procsearch(a,x) returns the value true if file 'a' contains a JCL procedure named 
X. 

page 61 

jobcontrol ........................................................... page 61 

This process loads memory with programs for a job step, assigns devices to data 

files, and enforces time estimates. 

schedule_r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 66 

The scheduler maintains a list of jobs to be run ordered by priority and time or 

arrival. It selects the oldest, highest priority job when no user program is being 

run, or when there is delay waiting for another job to be set up. 

outputspool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 67 

This routine fetches file names from its workqueue and prints the file's contents 

on an output device. 

operator message analyzer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 69 

This program acts on commands from .the operator. It als.o initializes the 

interrupt routines when the system first starts operation. 

assign ........................................................ · ....... ·page 72 

unhook .............................................................. page 73 

These routines add and delete to the map between program file name space and 

user file name space. 

allocate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 73 

This routine assigns a disc pack or a tape reel to a file. 

relinquish ........................................................... . 
This routine adjm,ts the volume-table, and the volume table of contents to 

indicate that the space of a discontinued file is now available for assignment. 

page 75 

monitorxpt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 76 

Monitor services handle interpretation of I/0 requests. 

timexpt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 84 

The timer interrupt handler determines whether a user-program's estimated step 

time has expired, and terminates overrunning user program steps. 

getwork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 83 

The dispatcher reactivates those processes whose await conditions have been 

satisfied, and it selects a process to control the CPU, giving priority to system 

processes. 

-ioxpt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 83 

The I/0 interrupt handler works in conjunction with monitorxpt in supporting 

the user 1/0 interface. 
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scope operatingsystem; 
macro establish( ufn,pfn,filevar); 

/*For user file ufn, a program file name pfn is established for the running process, and filevar 
becomes a file variable representing the file*/ 
assign( <CPUcontrol,newat> is pfn>,ufn,standardfixup); 
file var=< open pfn, 1 >; 
endm establish; 

macro processparameter; 
/*reference a processes initial argument*/ 

info(initialvar(state( CPU control))); 
endm processparameter; 

macro filesize; 
/*default size of standard system-created files*/ 

100 
endm filesize; 

macro primarysource; 
/*for the input reader, reference to main input device*/ 

hd(source(#source)) 
endm primarysource; 

macro primaryposition; 
/*for input spool position in the primary file next to be read*/ 

( source (#source)) ( 2) 
endm primaryposition; 

macro currentsource; 
/*for input spool, the current input program-file name*/ 

hd hd source 
endm currentsource; 

macro currentposition; 
/*for input spool, the current position in the input file*/ 

(hd source)(2) 
endm currentposition; 

macro readingprimarysource; 
/*true iff current source is the system input device*/ 

#source eq 1 
endm readingprimarysource; 

macro this process; 
/*Amore mnemonic way for a process to refer to its own process identifier.*/ 

CPU control 
endm thisprocess; 

macro deviceaddress(pfn); /*device on which program file resides*/ 
catalogue(userfile(pfn)) ('deviceaddress') 

endm deviceaddress; 

/*The global variables declard below are described in section 3.5.1 * / 
global iowait, mainstate, busystatus,savecause,filewait,f ixu p 

logicalposition,channels,units; 
global 2 volumes, programfiles; 
global 3 devices,type,userprogs,steptimeleft,ready,mounted, 
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deviceaddress,symbolicfile,operational,quickrun; 
global 4 users, owners, defaults, catalogue, maxprio, esttime, 

timeleft,iofixup,workset,userfile,newallocation,budget; 

I* *************************** *I 
/ * INPUT SPOOL * / 
I* *************************** *I 

scope 4 spooling; 
/*This scope contains the procedure which handles input devices such as card readers. Input 
spool has two major functions: 

1. To expand any JCL macros included in jobs. 
2. To verify that the JCL is correct. Errors include illegal 
user name, illegal commands, undefined JCL procedures, and 
duplicated labels. 

For a job being read by input spool, there are two possible outcomes: 
1. One or more JCL errors are discovered. The JCL along with 
diagnostics is printed, and the job is otherwise discarded. 
2. There are no JCL errors. Entries are made in the system 
tables for the job, which becomes enqueued on the scheduler.*/ 

/*Each process which reads input is passed a unique data file name which already corre­
sponds to a physical device acting as a system input reader*/ 

spoolin: device=processparameter; 
catalogue( userfile(pfn)) ('deviceaddress') 
assign( <thisprocess, 'reader'> is inputfilename,device,standardfixup); 
source=< <inputfilename, 1 > >; 

/*'source' is a vector of program file names which is used during macro expansion as a 
pushdown list of names of open files, and infile is always the current file*/ 

infile= <open currentsource, 1 >; 
I* Scan ahead to the next 'job' statement.*/ 

discard: 
(while image('command') ne 'job') infile read image; 

if image eq fl then 
/*End-of-file while looking for the next job. This will be interpreted as ending the 
spooling operation on this device, and the process terminates. If the operator 
wishes to resume spooling on this device, he may issue a command to start a new 
spooling process (see operator commands).*/ 

term; 
end if; 

end while; 
newname: /*Check for legal user name.*/ 

if n (image('name') is username E users) then 
message('***'+ image+' reject:illegal user name'); 
image=nl; 
go to discard; 

end if; 
/*'job' will identify the new job's mover. Note that we can't use the user's name for this 
purpose, since he may have several jobs in the batch.*/ 

job=newat; 
/* initialize 

stepnames (vector of all the job's step names) 
volumesneeded (set of volumes used by this job) 
qualifierprefix (prefix to guarantee unique program file names) 
localfilemap (map from program file names to user file names) 
newfiles (set of files for which new catalogue entry is created).*/ 

stepnames=nult; 
volumesneeded=nl; 
qualifierprefix=nulc; 
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localfilemap=nl; 
newfi!es=nl; 

/*Initialize error flag to show no errors found yet.*/ 
jclerror=false; 

/*Remember that the job card hasn't yet been processed. If another is encountered later, 
it acts as the terminator of the current job.*/ 

jobcardprocessed=false;/*signal jobcard for new job*/ 
/*Set up a temporary file for job's JCL, in which macros are expanded.*/ 

catalogue( <username,newat> is expandedjclcatname)= 
{ <'device' ,tempdisc> ,<'space' ,filesize>,<'disp', {'cat', 'leave'}>}; 

tempfiles= { expandedjclcatname}; 
allocate(expandedjclcatname); /*file to hold job*/ 
establish( expandedjclcatname, 'jclopenclosename' ,expanded jcl); 

· go to mainwrite; 

I* *************************** *I 
I* Main Loop of Input Spool Process * / 
I* *************************** *I 

/* An input statement is read and copied to the expanced JCL file. The command is then 
used to index a branch table, which determines where the statement is further processed.*/ 

mainloop: infile read image; /*read input record*/ 
if image eq Q then 

/*end-of-file -- treat as an end-statement*/ 
go to endcard; 

end if; 
mainwrite: expandedjcl write image; 

if {<'end',endcard>, /*This set is a branch table*/ 

else 

<' job' ,jobcard>, /*for command interpretation.*/ 
<'exec',exec>, 
<'file',filecard> }(image('command')) is loc ne Q then go to loc; 

/* illegal control card -- flag and signal error*/ 
jclerror=true; 
expandedjcl write '***illegal command'; 
go to mainloop; 

end if; 
endcard: 

/* An end statement in a file other than the main input file means end of macro. The 
current program file is closed and the previous one popped up.*/ 

if n readingprimarysource then 
/*end macro expansion*/ 

unhook( curren tsource); 
source=tl source; 
infile= < open cu rrentsource,currentposition>; 

/*remove stepname of the completed macro from prefix*/ 
qualifierprefix= if 3c(i) E qualifierprefix I c eq '.' then 

qualifierprefix(i+ 1:) else nulc; 
go to mainloop; 

end if; 
/*end~of-file or end statement while reading main input source, indicating end of job 
found. If JCL error had been previously discovered, the job is cancelled.*/ 

if jclerror then 
close( expandedjcl,' jclopenclosename '); 

/*Print JCL and error indications*/ 
enqueue expandedjclcatname on outspool for username; 
unhook (' jclopenclosename'); 
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/*Discard the temporary data files which had been submitted with the job unless 
disposition was given as KEEP.*/ 

(VyEtempfiles) unhook (y);; 
/*Discard newly catalogued, but unused files.*/ 

(Vy E newfiles) 
relinquish(y); 
catalogue(y) = rl; 

end Vy; 
go to discard; 

end if; 
/*No JCL errors found with job just read. Update system tables from the saved job 
card.*/ 

job in movers; 
owner(job)=username; /*Setup map showing job's owner*/ 
esttime(job) = tempjobcard('time'); 
priority(job) =tempjobcard('priority') min (maxprio( username)); 
resources(job)=volumesneeded; /*volumes needed by job into system tables.*/ 
newallocations(job)=newfiles; /*Newly catalogued entries due to this job.*/ 
close( expandedjcl, 'jclopenclosename'); 
enqueue <job,expandedjclcatname> on scheduler for username; 

/*Now loop back to read the next job.*/ 
go to discard; 

I* *************************** *I 
I* Job Statement Processing * / 
I* *************************** *I 

jobcard: if jobcardprocessed then go to endcard;; 
jobcardprocessed=true; /*signal job card means end of current job*/ 

/*In the expanded JCL file, defaulted job parameters will be filled in by the following loop 
to their default values. In later examination of the job statement, we can assume that all 
parameters have been supplied.*/ 

(Vy €{'time' ,'priority'} I image (y) eq Q) 
_ image(y)=profile(username,y); 

end Vy; 
/*Save job statement information in a local variable. If the JCL is free of errors, then the 
saved information will be used to update the system's tables.*/ 

tempjobcard=image; 
if image('time') gt budget(username) then 

/*The estimated time exceeds the time allocation remaining for this user. We will send 
him an error message, continue to read his job for possible JCL errors, but not allow 
the job to execute.*/ 

jclerror=true; 
expandedjob write 'Job rejected because the time estimate exceeds your 

current time allocation.'; 
end if; 
go to mainloop; 

exec: 

I* *************************** *I 
I* Job-Step Statement Processing * / 
I* *************************** *I 

if image('proc') eq n then 
if image('label') is !bl ne nulc then 

/*test for duplicate step names*/ 
if lbl +' .' + qualifierprefix Estep names then 
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jclerror=true; 
expandedjcl write '***duplicate step names - job rejected'; 

else !bl+'.' +qualifierprefix in step names; 
end if lb!; 

go to mainloop; 

else /*EXEC statement with proc parameter. Locate JCL macro procedure in a macro 
procedure library. We assume that every user, as well as the system, .has a procedure 
library named 'proclib', which consists of JCL statements. First we make sure that a 
prog parameter is not also included.*/ 

if image('prog') ne Q then 
jclerror=true; 
expandedjcl write '***illegal "prog" field on a "proc" EXEC statement.'; 

else 
(Vy(i) E <username,'system'>) /*search user's library first*/ 

if catalogue( <Y ,proclib>) ne Q then 
/*jcl macro library exists -- generate a program file name, and search the 
library for the desired jcl macro.*/ 

establish( <Y ,proclib > ,macroopenclose,jclmacrofile); 
if procsearch(jclmacrofile,image('proc')) then 

/*The side effects of procsearch are that 'image' holds the first statement of 
the macro-expansion, and the jcl macro file is positioned to read the macro 
expansion.*/ 

go to procfound; 
else unhook (macroopenclose); 
end if procsearch; 

end if catalogue; 
end Vy(i); 
jclerror=true; 
expandedjcl write '*** JCL macro procedure not found'; 

end if image; 
go to mainloop; 

procfound: 
qualifierprefix=lbl +'.' +qualifierprefix; 

/*In the next line -- currentposition is a macro*/ 
currentposition=infile(2); /*remember position in current file*/ 
source=< <macroopenclose,jclmacrofile(2) >>+source; 
infile= jclmacrofile; /*prepare to read from macro file.*/ 
go to mainwrite; 

I* *************************** *I 
I* File Statement Processing * / 
I* *************************** *I 

filecard: 
/* A file statement before any exec statement is an error.*/ 

if stepnames eq nl then 
jclerror =true; 
expandedjcl write 'File jcl statement before step statement.'; 
go to mainloop; /*Ignore misplaced file card*/ 

end if; 
progfilename=image('label'); . 

/*Check that a label, giving the program file name, is included.*/ 
if progfilename eq Q then 

jclerror=true; 
expandedjcl write '***Program file name not given in above line.'*/ 
go to mainloop; /*quit processing this erroneous statement.*/ 

end if; 
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userfilename=if image('name') eq Q 

then newat /*scratch file-invent user file name*/ 
else image('name'); · 

/*The fully qualified programfilename is the concatenation of the prefix and the program­
filename given by the user.*/ 

fullprogname=qualifierprefix+ '.' +progfilename; 
/*Check that the program file name is unique*/ 

if fullprogname E jobfiles then 
jclerror=true; 
expandedjcl write '***Duplicate program file name in this step.' 
go to mainloop; /*quit processing erroneous statement.*/ 

end if; 
if (3c(i) E userfilename I c eq '. ') then 

/*External file name containing a'.' means that it is an indirect reference to a program 
file name in a previous step.*/ 

if userfilename E jobfiles then 
fullprogname in jobfiles; 

/*put fully qualified program file name, and associated user file name in expanded 
jcl file, to avoid recomputing the relationship between program and user file names 
during job control language interpretation. localfilemap maps fully qualified 
program file names into user file names. It is needed to handle indirect references 
to previously declared files (see section 3. 2.3). * / 

localfilemap(fullprogname) = localfilemap( userfilename); 
expandedjcl write fullprogname,localfilemap(fullprogname); 

else jclerror=true; 
expandedjcl write '***reference to previously defined file 

cannot be resolved.'; 
end if; 
go to mainloop; 

end if; 

/*else, if not a reference to a previously declared file, * / 
fullprogname in jobfiles; 

/*If the data for the file follows this FILE statement, a blank atom will serve as it's user 
file name.*/ 

if userfilename eq '*' then userfilename=newat;; 
/*Note that the construction in the following statement, and the definition of the data file 
statement of section 3.2.3 do not provide for one user to access files of another user. The 
richer command language introduced in Chapter V remedies this deficiency.*/ 

localfilemap(fullprogname) = <username,userfilename >; 
expandedjcl write fullprogname,localfilemap(fullprogname); 

/*If the file is already catalogued, parameters absent in the JCL statement are filled in 
from the catalogue. Later, one needn't worry about absent parameters on the JCL 
statement.*/ · 

if catalogue( <username,userfilename>) ne Q then 

else 

(Vs E {'device', 'disp' ,'space'}) 
if image(s) eq Q then 

image(s) =catalogue( <username,userfilename> )(s); 
end if; 

end Vs; 
/*Force volume specification to agree with catalogue.*/ 

image('volurne') =catalogue( <username,userfilename>) ('volume'); 

/*For a new file, parameters not specified in JCL are taken from defaults. If the user 
has not specified defaults for volume or space (the usual case), then the allocate routine 
will find space for the file.*/ 

(Vs E {'device' ,'space', 'volume' ,'disp'}) 
if image(s) eq Q then image(s)=default(username)(s);; 
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end if; 

catalogue( <username,userfilenarne> )(s)=image(s); 

/*In order to be able to drop newly catalogued files in the event that a job aborts or 
does not even pass input spool's JCL validity checking, we keep track of such file 
names.*/ . 

<username,userfilename> in newfiles; 
end Vs; 

/*'allocate' checks that a volume is assigned. If none is, then it will find space, and 
indicate the volume in the catalogue.*/ 

allocate ( <username,userfilename>); 
/*Keep track of volumes needed for this job.*/ 

catalogue( <username,userfilename>) ('volume') in volumesneeded; 
/*If the job contains a data file, copy the file onto the disc.*/ 

if image('name') eq '*' then 
establish(< username,userfilename > ,newfileopenclose,newfile); 
newfileopenclose in tempfiles; 
if n readingprimarysource then /*resume reading from primary source*/ 

currentposition=tl infile; 
infile= < open primarysource,primaryposition>; 

end if; 
rd: infile read line; 

if line('command') ne 'end-of-file' then 
newfile write line; go to rd; 

end if; 
close(newfile,newfileopenclose); 
unhook(newfileopenclose); 

/*If we had been reading from a macro library, then we temporarily close the 
primary source, and continue reading from the library.*/ 

if not readingprimarysource then /*continue from library*/ 
primaryposition=tl infile; /*mark position in primary source*/ 
infile= <open currentsource,currentposition>; 

end if not readingprimarysource; 
end if image; 
go to mainloop; 

defirtef procsearch( a,x); 

/*This routine searches a JCL macro library for a JCL procedure named x. The library 
consists of JCL statements. An EXEC statement having a 'prog' parameter x is the first 
statement in the expansion of the JCL macro x. If such an EXEC statement is found, 
procsearch returns true, has the side effect of leaving the library positioned to read the next 
sequential record in the expansion of x, and sets the variable 'image' to the first record in 
the macro's expansion.*/ 

(while n endoffile(a)) 
a ready; 
if<y('command'),y('prog')> eq <'EXEC',x> 
then image=y; 

return true;; 
end while; 
return false; 
end ptocsearch; 

end spooling; 
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scope 3 jobsequencing; 

I* *************************** *I 
I* JOB CONTROL INTERPRETER * / 
I* *************************** *I 

/*'jobcontrol' is passed the JCL and output files for a new job. For each step, it establish­
es mappings between program file names and user file names, determines whether steps are 
to be run or skipped, and loads the necessary programs. On encountering a step, a second 
process with the same mover as the current mover of the job control interpreter is set up. 
The second process has less privilege than the job control interpreter, so that it cannot 
interfere with the operating system. It is this process that ultimately executes the job step. 
When all the JCL for the step has been read and when the necessary code has been loaded, 
the interpreter makes the second process dispatchable, and it waits for that process to 
terminate before starting to interpret the next job step.*/ 

jobmonitor: <input,outfile> =processparameter; 
/* Assign program file names to the job's input and output files, positioning the output file 
beyond that portion already written.*/ 

establish(input,inputname,source); 
establish( outfile,outputname,output); 
output(2) =#( output( 1)) + 1; /*position at end of output file.*/ 
mov=hd CPUcontrol; 
timeleft(mov) =esttime(mov); 

/*Get the process identifier for the user program*/ 
userprocess= <mov ,userprogs(mov) >; /*See Scheduler for creation of 'userprogs'* / 
user=owner(mov); · 

/*Initialize error return code to show that no previous error had occured. The variable 
'fault' is used by abend to communicate with the job control interpreter, and info extracts 
the cause of the termination (see 2.4.3.8). * / 

info(fault)=0; 
startstep: stepstarted=false; 

/*'stepstarted' becomes true when a step statement is encountered. A subsequent step 
statem:ent acts as an 'end' for the current step.*/ 

waittime=0; /*Initialize device mounting time estimate.*/ 
reader: source read image; 

jump: 

/*We know that the JCL is syntactically correct, for otherwise input spool would have 
aborted the job. Thus, we don't check for valid JCL statement types. Of course, this 
assumes perfect transmission between disc and main memory, and perfect recording on 
disc. The non-JCL items written by input spool always follow FILE statements, and are 
read during file statement processing.*/ 

go to { <'end' ,end>, /*branch table for commands*/ 
<'job',reader>, /*job card can be ignored*/ 
<'exec' ,exec>, 
<'file',file>} (image('command')); 

exec: 
if stepstarted then 

/*If we encounter two exec statements without an intervening end statement, the 
second exec ends the previous step. We must reposition the input file so that it will be 
re-read when JCL interpretation resumes. Backspace one record.*/ 

source(2)=if (source(2)-2>3n>l I (hd source)(n) eq er) then n+l else 1; 
go to end; 

end if stepstarted; 
if image('proc') ne !J then 

/*Since JCL macros have been expanded by inputspool, ignore statements with 'proc' 
parameter.*/ 

go to reader; 
end if image; 
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file: 

/*save EXEC statement information in local storage for later use.*/ 
progstobeloaded=image('prog'); /*Save name of program to be loaded.*/ 
args=image('parm'); /*JCL input data to the job step*/ 
steptimeleft( userprocess) = timeleft(mov) min image('time'); 
output write image; · 

/*Test condition on JCL statement to determine whether to run this step. The return code 
from the previous step is in info(fault). eval (not shown) checks the cond parameter 
against the error return code info(fault). * / 

if n eval image ('cond') then 

else 

output write 'step skipped - condition false'; 
skip: source read image; 

if image('command') E <'file','end'> or image('command') eq Q then 
go to skip; 

else 
go to jump; /*Next step found.*/ 

end if image; 

s te pstarted =true; 
end if; 
go to reader; 

/*Inputspool has inserted a second JCL file statement for every file, giving the fully 
qualified program file name and user file name.*/ 

source read pfn,ufn; 
/*The disposition of a file may change from step to step (e.g. the last step to use a tempo­
rary file should specify NOCAT to drop the file from the system's catalogue.*/ 

catalogue(ufn) ('disp') =image('disp'); 
ufn out newallocations(mov); /*New file no longer unused.*/ 
reserve(allocflag); /*Prevent other allocation action.*/ 
if not(3dselected E devices I mounted( dselected) eq image('volume')) then 

/*If volume is not mounted, select an appropriate device and estimate mounting time at 
1 min. Normally, the scheduler has determined that enough devices are available, so 
that the following statement will succeed. If one wishes to take device failure into 
account, more care will be needed below.*/ 

dselected=arb{ d,d E devices I type( d) eq image('device') and mounted( d) eq nl}; 
mounted( dselected) =image('volume'); 
dselected out ready; /*device is not ready until operator says it is.*/ 

/*Send console message to the operator to mount the appropriate volume on the 
chosen device. It is understood that he will dismount whatever is currently mounted on 
device dselected. * / 

operatormessage 
('mount' +image('volume') + 'on device' ,dselected, 'for user'+ user); 

waittime=waittime+oneminute; 

end if; 

/*Even if this step requires a volume mounting, we continue to interpret JCL until we 
reach the end-of-step, in case additional volume mounting requests are discovered for 
this step.*/ 

catalogue( ufn) ('deviceaddress') = dselected; 
/* Associate program file name with user file name*/ 

assign ( < userprocess,image ('label')>, uf n,standardfixup); 
free allocflag; /* Allocation completed.*/ 
go to reader; 

/* An 'end' statement or an 'exec' statement bring control here. If there is no step started, 
then the end card represents the end of job. Otherwise, it is time to check that all 1/0 is 
ready, and to load the program.*/ 

end: if n stepstarted then go to endjob;; 
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/* 

/*If there is a setup delay, try to find a non-setup job to run during the delay.*/ 
if waittime gt O then 

quickrun=true; /*Signal scheduler to try for non-setup jobs. 
Enqueue the expected time for setup completion on the scheduler. The scheduler will 
use this time as an upper bound for the completion time of short runs which it will try 
to run to overlap the set up time for this job.*/ · 

enqueue(waittime+clock) on scheduler for scheduler; 
(VxEdevwait) await xneady;; 

/*Now all devices are ready. Signal scheduler to cease looking for non-setup runs.*/ 
quickrun=false; 

/*Wait for non-setup job to finish, if one is running. 'userprogs' is the set of user­
processes which the scheduler has set up and which have not concluded. Normally, this 
is a singleton set consisting of the user process controlled by the job control analyzer 
process. But while setup is being overlapped with a non-setup job, there are two items 
in 'userprogs'. Waiting for 'userprogs' to become 1 is the means by which this job 
control process waits for a non-setup job to complete. The scheduler will not attempt 
to start any additional short jobs; since 'quickrun' has been set to false.*/ 

await #userprogs eq 1; 
end if; 

/*We go on to load the routines needed for the step which is now to be carried out.*/ 

Loader */ 

/*'progstobeloaded' holds names of programs to be loaded for the current step. 'fetch' is a 
machine dependent routine that resolves interprogram references and which places in 
'missing' the names of referenced programs which have not yet been loaded.*/ 

loadloop: missing= progsto beloaded; 
/*Initialize 'loadertable', the table used by the loader to store subprogram entry point 
locations, and 'codevect', the bit string which the loader will build into the executable 
program.*/ 

loadertable=nl; 
codevect=nult; 
(while missing ne nl doing progstobeloaded=missing;) 

(Vx E progstobeloaded) 
(Vy(i) E <user,'sys'>) 

if catalogue( <y,proglib+'.'+x> is c) ne fl then 
x out missing; 

/*'fetch' (not shown here) moves machine language text for the program x 
into the appropriate portion of memory, and extablishes communication 
between x and previously loaded programs. If x requires other programs to 
be present, 'fetch' puts these program names into 'missing'. 'fetch' stores 
the entry point into 'main', unless there is not sufficient room for the pro­
gram, in which case 'main' is set to fl. A table of entry points for all subpro­
grams is built in 'loadtable'. In the uniprogrammed case, we assume that the 
loader has been initialized with the size of the largest allowable program 
string. 'codevect' is built into the executable program by the loader.*/ · 

fetch ( c,missing,main,codevect,loadertable); 
. continue Vx; 

end if; 
end Vy(i); 

end Vx; 
if missing*progstobeloaded is nf ne nl then 

/*Some required programs can't be found!*/ 
output write 'missing routines:'+nf+'. Step skipped.'; 
info(fault)=notloaded; /*notloaded is given some numeric value.*/ 
go to stepskipped; /*Treat as an abnormal termination.*/ 

end if; 
end while; 
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/* 

/*Test whether there was enough room for the program to be loaded.*/ 
if main eq n then 

output write 'Not enough space to load this job step.'*/ 
info(fault) =notloaded; 
go to stepskipped; 

end if; 

/*If and when the program is fully loaded, The new user process is given a standard 
environment, to which 'standardenvironment' is assumed to be initialized, and whose 
description is machine dependent. We assume that 'fetch' has placed the executable 
program in the appropriate area in storage, starting at 'origin', and that the entry point was 
computed by 'fetch' and stored in 'main'. initialstate is set to the initial state for the user 
process.*/ 

(disable) 
loctr(standardenvironment) =main; /*main entry computed by fetch*/ 
code(standardenvironment)=codevect; /*Moves loaded-code into environment*/ 
initialstate= <userprocess,standardenvironment>; 

/* Assume that the entire step time estimate will be used.*/ 
timeleft(mov) = timeleft(mov )-steptimeleft( userprocess); 
budget( user)= budget( user )-steptimeleft( userprocess); 
split to initialstate(args) for thisprocess; /*start execution of job step.*/ 

End of Step */ 

/* Await execution termination report from 'abend'. In response to an abend monitor-call, 
the numeric code for the termination gets queued on the job control interpreter process.*/ 

await getfirst(thisprocess) is fault ne n; 
/* A normal termination or abend will satisfy the above wait condition. Restore the 
balance of the step's time to the time remaining for this job.*/ 

timeleft(mov) =timeleft(mov) +steptimeleft( userprocess); 
budget( user)= budget( user) +steptimeleft( userprocess); 

stepskipped: 
ifinfo(fault) ne O then 

/* Abnormal end -- write termination message.*/ 
output write'*** step stopped', info(fault); 

end if timeleft; 
kill userprocess; /*In any case, remove the user process*/ 
(Vfiles E programfiles( userprocess)) 

/*release all programfiles for the completed job step.*/ 
unhook (files); /*If the file's disposition was not 

'keep', then space for the file will be released by unhook.*/ 
end Vfiles; 
if timeleft(mov) le O then 

/*The job has used up all of it's estimated running time.*/ 
output write 'Time estimate exceeded.'; 
go to endjob; 

end if; 
/*Even if a step abends, the run may continue, as determined by the 'cond' parameter of 
the next 'exec' statement.*/ 

go to startstep; 

/* At the end of a job, the output file is passed to output spool.*/ 
endjob: close (hd output,outputname);; 

unhook(outputname); 
enqueue outfile on outspool for mov; 
unhook(inputname); 
(Vy E newallocations(mov)) 

/*Remove from the catalogue, all new files which have not been used during the 
execution of this job.*/ 
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relinquish(y); /*give up space.*/ 
catalogue(y)=Q; 

end Vy; 
userprocess out userprogs; 

. resources(mov)=Q; 
/*Items enqueued on the scheduler from job control interpreters signify that a user job has 
terminated. The scheduler will respond by attempting to schedule another job.*/ 

enqueue nl on scheduler for thisprocess; 
term; 

/*This job control analyzer process is now completed and thus terminates itself.*/ 

I* *************************** *I 
I* SCHEDULER *I 
I* *************************** *I 

/*The scheduler is enqueued when: 
a) input spool has read a new job, when 
b) jobcontrol terminates a user job, and when 
c) jobcontrol seeks work to overlap setup time.*/ 

schedule: await #workset { this process}) >0; 
request= getfirst ( thisprocess); 

/*The queue on the scheduler is the communication medium between the scheduler and its 
callers. When the ancestor of an enqueued item is a user, a new job has just been read, and 
is placed at the end of the vector 'backlog', which contains all jobs to be run in the order 
received ( except for rearrangements due to operator-issued priority commands.*/ 

if ancestor(request) is requestor E users then /*true for case a*/ 
if (3x(i) E backlog I priority(x) <priority(hd info(request))) then 

/*insert new item after all jobs having the same or higher priority but ahead of jobs 
having lower priority*/ 

backlog(i:) = <info(request) > + backlog(i:); 
else backlog(#backlog+ 1) =info(request); 
end if; 

end if ancestor; 

if requestor eq thisprocess then 
/*True, by convention, for case c, c.f. the lines of code following the label 'end' in the 
job control interpreter, above. The scheduler uses the identification of its caller to 
determine which of the above cases hold. Case c arises when the scheduler itself is the 
requestor, case a arises when a user is the requestor, and all other cases are case b. * / 

timelimit=info(request); /*record time before which job must end*/ 
end if; 
if quickrun and #userprogs eq 1 then 

. /*Since (#userprogs) eq 1, no non-setup job has yet been scheduled, and therefore we 
look for a short non-setup job.*/ 

if(3x(i)E backlog, Vrnesources(x(i)), 3dE devices*ready I 
(mounted(d) eq r) and (esttime(x(i,l))+clock le timelimit) then 

/*a job exists with estimated running time less than the estimated setup time, 
and with all resources ready, i.e. no mounting time.*/ 

<jobid,input> =x; 
backlog(i:) = backlog(i+ 1:); 
go to startup; 

else 
go to schedule; 

end if (3x; 
end if quickrun; 
/*cases a and b reach this point*/ 

next job: 
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/* 

if (#userprogs gt 0) or #backlog eq O then go to schedule;; 
/*If a user program was running, then uniprogramming discipline prevented further 
scheduling at this time.*/ 

< <jobid,input> ,backlog>= <backlog( 1),backlog(2:) >; 
/*First job on scheduler's queue is now selected.*/ 

assign(newat is file,input,nl); 
if notenough(jobid) then 

monitor(rewind,file); 
monitor(write,file,'*** insufficient number of devices to run job'); 
enqueue input on outspool for schedule; 
go to nextjob; 

end if; 

Job Selected */ 

/*Define an output file for the job which has been scheduled to run.*/ 
startup: catalogue( <jobid,newat> is output)= 

{ <'device' ,tempdisc>, <'space' ,filesize>, 
<'disp', {'cat' ,'leave'}>}; 

allocate (output); 
/*Set up process identifier for the user's programs.*/ 

userprogs(jobid) =newat; 
/*Having just catalogued the job's output file, a job control process is started which loads 
job steps and links program file names to user file names.*/ 

split to < <jobid,newat> ,jobmonitor> ( <input,output>} for thisprocess; 
go to schedule; 

definef notenough(job); 
/*Returns true if there are not enough tape or disc drives to run this job.*/ 

(VtE {'tape', 'tempdisc'}) 
ndev=#{vEresources(job) I hd (volumes(v)) eq t}; 
if ndev gt #{dE devices I type(d) eq t} then 

return true; 
end if; 

end Vt; 
return false; 

end;. 

end jobsequencing; 

I* *************************** *I 
I* OUTPUT SPOOL *I 
I* *************************** *I 

scope 4 ospooling; 

/*Output spool illustrates the use of the facilities described in section 3.4.1.7 for perform­
ing I/0. The SETL I/0 could have been used instead, and the main loop would then be: 

pfn read line; 
(while line ne Q) 

print line; 
pfn read line; 

end while; 
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Instead, we indicate the. way that a fairly conventional double buffering scheme can be 
represented in our language. 

Each process which prints system output files is first passed the name of a file which 
already corresponds to a physical printer.*/ 

outputspool: device= processparameter; 
<bufl,buf2,intbuf>=<newat,newat,newat>; /*Blank atoms to point to 1/0 buffers.*/ 
assign( <thisprocess,newat> is printer,device,printerfixup); 

top: await (getfirst(thisprocess) is ufn) ne r.l; /*wait for work*/ 
assign(<thisprocess,newat> is pfn,ufn,discfixup); /*Relate a program file name to the file to 

be printed, and indicate that this process has an 1/0 fixup routine at 'discfixup' to which 
control will be forced at the end of each disc operation.*/ 

useleftbuffer=true; /*initialize buffer switch*/ 
eof=false; /*initialize end of file switch*/ 
monitor('read',pfn,bufl); /*read initial record*/ 

/*The above monitor request started a read operation. When it is physically complete, 
control is forced to discfixup. In this way, action can be taken on the physical completion 
of an 1/0 operation. In this program, the action is generally to start to read the next 
record, while printing the record just read. A standard double buffering scheme is used.*/ 

nconsecreaderrors=0; /*initialize reading error count*/ 
/* The following idle loop relinquishes control of the CPU (unless an end of file has 
occured). Control is forced to discfixup when the end of a disc operation occurs.* l 

idle: monitor('wait' ,pfn); 
/*discfixup will set eof to true when the end of file has been reached. The printer is spaced 
to a new page, and another request for printing is awaited.*/ 

if n eof then go to idle;; 
monitor('wait' ,printer); 
monitor('space',printer); /*space printer to new page*/ 
unhook(pfn); /*release user's output file*/ 
go to top; /*look for more work*/ 

I* *************************** *I 
I* Fixup Routines * / 
I* *************************** *I 

/* All the real work is done in the fixup routines. Control normally does not reach main­
stream until the end of the disc file has been encountered. The waits in the fixup routines 
prevent returns to mainstream, for on satisfying the wait, control is forced to another fixup 
routine.*/ ' · 

discfixup: 

/i *************************** *I 
I* Disc Fixup * / 
I* *************************** *I 

/* 'endoffile' is a macro which is true if end of file is indicated in the 1/0 interrupt bits. It 
is a machine dependent macro.*/ 

monitor('iointerrupt',intbuf); /*Determine cause of 1/0 termination.*/ 
int=buffer intbuf; 
if endoffile(int) then 

eof=true; /*file finished*/ 
monitor('endfixup'); /*return to mainstream*/ 

end if; 

/*'ok' is a machine dependent macro which is true if the 1/0 interrupt bits do not indicate 
an error.*/ 
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if n ok(int) then /*disc error fixup follows*/ 
(while nconsecreaderrors It 10) 

nconsecreaderrors=nconsecreaderrors+ 1; 
monitor('backspace' ,pfn); 
monitor('release' ,pfn); /*presume backspace ok, ignore interrupts*/ 
monitor('wait' ,pfn); 

/*'useleftbuffer' determines into which buffer to read.*/ 
if useleftbuffer then 

monitor('read', pfn, bufl ); 
else 

monitor('read', pfn, buf2); 
end if; 
monitor('wait', pfn); /*wait for reread, then re-execute discfixup* / 

end while; 
if useleftbuffer then /*print error message on unreadable record*/ 

buffer bufl='**unreadable record**'; 
else buffer buf2='**unreadable record**'; 
end if; 

end if n ok; 
useleftbuffer= n useleftbuffer; /*switch buffers*/ 
nconsecreaderrors=O; /*Previous errors are now forgotten.*/ 
monitor('wait' ,printer); 

/* Note: If the printer is not busy, which is the case after the initial read, control falls thru 
to the printer fixup anyway, and the most recently read disc record is printed.*/ 

I* *************************** *I 
I* Printer Fixup * / 
I* *************************** *I 

printerfixup: 
if eof or count gt O then monitor(endfixup);; 

/*Read into the buffer whose contents had just been printed out. Then print the 
contents of the other buffer into which a disc read had just been completed.*/ 

if readleftbuffer then 
monitor('read' ,pfn,buf2); 
monitor('write' ,printer,buf 1); 

else 
monitor('read' ,pfn,bufl); 
monitor('write' ,printer ,buf2); 

end if; 
monitor('wait' ,pfn); /*Prevents printer interrupt being processed before disc.*/ 
go to discfixup; 

end ospooling; 

I* *************************** *I 
I* OPERATOR MESSAGE ANALYZER *I 
I* *************************** *I 

scope 2 allocation; 
/*This process acts on operator generated messages. The process waits to read a message, 
and then executes a short block of code to satisfy the request. 
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It is also the first section of code executed when the operating system starts running, so 
that it initializes the interrupt handlers and the scheduler.*/ 

initially 
(disable) 

/*Generate a process state with full privileges by copying the state of the current 
process. This will be used to generate the initial states of the interrupt processes.*/ 

osenvironment=state( thisprocess); 
/*Set up timer-interrupt handler*/ 

loctr( osenvironment) = timexpt; 
interrupt( timer)= osenvironment; 

/*Set up monitor-call interrupt handler.*/ 
loctr( osenvironment) =monitorxpt; 
interrupt(monitor) = osenvironemnt; 

/*Set up 1/0 interrupt handler.*/ 
loctr( osenvironment) =ioxpt; 
interrupt(io) =osenvironment; 

/*Start the scheduler.*/ 
loctr( osenvironment) =schedule; 
schedstart= < <moverpart(thisprocess),newat> is scheduler, osenvironment>; 
split to schedstart for thisprocess; 

/*Start the dispatcher process*/ 
loctr( osenvironment) = getwork; 
dispstart= < <moverpart( thisprocess) ,newat> is dispatcher, osenvironment>; 
split to dispstart for thisprocess; 

end disable; 
/*Open the operator's console keyboard for 1/0. * / 

establish< <sys,' keyboard'> ,keyboardopen,keyboard); 
end initially; 

/*Now, read from the console keyboard. An eventual start command will get input spool 
working.*/ 

operation: keyboard read msg; 
if msg('command') E hd ( { <'start' ,start>, 

<'add',addnewuser>, 
< 'mounted' ,readymounted>, 
<'givetime',addtime>, 
< 'drop' ,dropuser>, 
<'priority',hipriority>} is list) then 

go to list(msg('command')); 
else 

/*illegal command*/ 
keyboard write 'illegal command'; 
go to operation; 

end if; 

start: 

/*The operator's commands, 
{ <'command' ,'start'>,<'device' ,d>,<'action' ,'cardin'>} 
or { <'command','start'>,<'device',d>,<'action','printer'>} 

designate device d as a system input or a system output device. These commands are used 
to initiate spooling.*/ 

/*The 'type' table classifies devices by type (See 3.5.1.1). The device type of uf will be 
either 'cardin', or 'printer'. The type of uf must agree with the 'action' parameter.*/ 

if type(msg('device')) eq msg('action') /*and device is idle*/ 
and (Vp E programfiles I deviceaddress(p) ne msg('device')) then 

<'sys' ,newat> is uf in datafiles; 
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catalogue(uf)= { <'deviceaddress' ,msg('address') >, 
<'device' ,type(msg('device'))>}; 

split to (if msg('action') eq 'cardin' then inputspool 
else outspool) (uf) for CPUcontrol; 

else keyboard write 'inappropriate device';; 
go to operation; 

/*The comma.nd { <'command','add'>,<'user','u'>,<'profile',< ... > >} adds u to the set of 
system users, and establishes u's defaults as given in the profile parameter.*/ 

addnewuser: 
/*Here, we check that msg('profile') is a tuple of pairs of character strings, and reject the 
command if the profile is of the wrong form. In actual practice, a more precise check 
would be desireable. * / 

if type msg('profile') eq tupl and 

else 

(Vt(n) E msg('profile'), e Et I . 
type t eq tupl and #t eq 2 and type e eq cstring) then 

msg('user') is u in users; 
default( u) =msg('profile '); 

keyboard write 'Bad format for defaults. Command rejected.'; 
end if; 
go to operation; 

/*The command { <'command','priority'>,<'user','u'>} elevates the first of user u's jobs 
in the backlog to be the first job in the backlog.*/ 

hi priority: 
(disable) /*to avoid race condition with the scheduler*/ 

if (3x(i) E backlog I owner(hd x) eq msg('user')) then 
backlog=x+ backlog(l :i-1)+ backlog(i+ 1 :); 
priority(hd x)=9; /*Highest priority*/ 

end if; 
end disable; 
go to operation; 

readymounted: 
/*The command, { <'command' ,'mounted'>,<'volume',v>,<'device',d>} communicates 
to the system that the volume v has been mounted on device d by the operator, and that it 
is ready for use. The system must now complete any space allocation on this volume that 
was left incomplete by the 'allocate' routine. Since allocation may be done as a result of 
this command, 'allo.cflag' must first be reserved. (See the storage allocation routines.)*/ 

reserve ( allocflag); 
if mounted(msg('device') is d) eq msg('volume') then 

/*The operator has mounted the volume which the operating system has been expect­
ing. Now complete any incomplete allocations, and then indicate that the device is 
ready for use.*/ 

if type(d) eq 'tempdisc' then /*Complete allocation of disc files on this volume*/ 
/*Note that 'deviceaddress' is a macro defined at the beginning of Section 3.5.3. * / 

(Vpfn E programfiles I deviceaddress(pfn) eq d 
and catalogue(userfile(pfn))('extents') eq Q) 

/*Lack of extent field in catalogue entry for the file indicates that allocation of 
the file is incomplete.*/ 

if spacefound(d,userfile(pfn)) then 
continue Vpfn; 

/*else there is an error in the use of the disc pack, because the volume table of 
contents is inconsistent with the system table, 'volumes'. Note that 
'spacefound' (code for which is shown below) updates the catalogue to show 
the newly assigned file 'extents'. 'allocate' had earlier decided that sufficient 
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space e?(isted on this volume. The resolution of this problem is not shown 
here.*/ 

end if; 
end Vpfil; 

end if type(d); 
msg('device') in ready; 

else if mounted(msg('device')) neQ then 
/*The operator has mounted the wrong volume. Inform him of the correct volume to 
be mounted.*/ 

operatormessage('Mount volume' +msg('volume') + 'on device' +msg('device')); 
else 

/*The operator has mounted a volume on a device which did not hold a required 
volume. Mark the device as being ready.*/ 

msg('device') in ready; 
end if mounted; 
free allocflag; 
go to operation; 

addtime: 
/*The command, { <'command','givetime'>,<'user',u>,<'time',t>} allocates an additional 
t units of time to user u. * / 

(disable) 
if msg('user') is u E users then 

budget(u) = budget(u) +msg('time'); 
else 

keyboard write 'improper user specified.'; 
end if; 

end disable; 
go to operation; 

dropuser: 
/*The command, { <'command','drop'>,<'user',u>} causes the user u to be removed from 
the set of authorized system users. Any work in progress for u is purged, as well as system 
structures related to u. * / · 

if msg('user') is u E users then 

else 

(Vp E processes I owner(hd p) eq u)) 
/* Remove all active processes associated with user u. First, make sure that all 
user files ai-e detached, and not involved in 1/0 operations (done by subroutine 
'unhook'.)* I 

(Vfiles E programfiles(p)) 
unhook(files); /*Stop 1/0 action, disconnect file from process.*/ 

end V files; 
kill p; 

end Vp; 
catalogue{ u} =Q; 
defaults(u)=Q; 
datafiles( u) = St; 
maxprio(u)=Q; 
budget(u)=Q; 
u out users; 

keyboard write 'Improper user specified.'; 
end if; 
go to operation; 

end operator; 
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I* *************************** *I 
/ * FILEMAP MAINTENANCE * / 
I* *************************** *I 

define assign(programfilename, userfilename,fix); 
/*This subroutine establishes 'programfilename' as the program file name for the user 
file 'userfilename', and specifies 'fix' as the location of programfilename's interrupt 
fixup. * / 

programfilename in programfiles; 
userfile (programfilename) =userfilename; 
fixup(programfilename) =fix; 
return; 

/*Initialize the maps used for monitor services relating to I/0 on this file. (cf. sections 
3.5.1.5 and 3.5.2.7)* / 

disabled(programfilename) =false; /*File to cause logical interrupts.*/ 
rel(programfilename)=false; /*Interrupt information is not to be discarded.*/ 
filewait(programfilename)=false; /*Program is not waiting for I/0 on file to end.*/ 

end; 

/*This subroutine undoes the effects of 'assign' and uncatalogues the file if necessary.*/ 
define unhook(programfilename); 

/*If the program file, programfilename, has an uncompleted operation in progress, prevent 
an interrupt from going to the user-program's fixup, by establishing the system's standard 
fixup as the file's interrupt handler.*/ 

monitor('fixup' ,programfilename,standardfixup); 
monitor('wait' ,programfilename); 
if n ('cat' E (catalogue(userfile(programfilename))('disp'))) then 

relinquish( userfile(programfilename)); /*Give up space on volume.*/ 
catalogue( userfile(programfilename)) = Q; /Delete file from catalogue.*/ 

end if; 
/*Indicate that the unhooked file is no longer active on the physical device on which it 
resides. If no program files are assigned to the device, indicate that the device is not 
logically mounted.*/ 

if Vpfncprogramfiles I catalogue(userfile(pfn))('volume') ne mounted(d) then 
mounted(d) =rl; 

end if; 
/*Note that 'deviceaddress' is a macro. See the start of Section 3.5.3. * / 

deviceaddress(pro gramfilename) = Q; 
userfile (programfilename) = Q; 
fixup(programfilename-)=rl; 
disabled(programfilename) = Q; 
rel(programfilename) =rl; 
filewait(programfilename) = Q; 
file out programfiles; 
return; 

end; 

I* *************************** *I 
/ * EXTERNAL STORAGE ALLOCATION * / 
I* *************************** *I 

define qd allocate(userfilename) on allocflag; 
/*This routine assigns a disc pack or tape reel to a file. This routine, as well as the 
following one, is queued to prevent simultaneous attempts to allocate or free space on 
devices by different portions of the operating system. We assume that allocflag is an atom 
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which has been made a member of facilities. If a volume is already assigned, there is 
nothing to do.*/ 

if catalogue(userfileriame)('volume') ne Q then go to quit;; 
if catalogue(userfilename )('device') E discs then 

/*Disc space allocation*/ 
if catalogue(userfilename)('space') eq Q then 

/*assign a size to the file if not already done. Note that 'filesize' is a macro-name."'/ 
catalogue( userfilename) ('space') =filesize; 

end if; 

/*Search mounted packs for available space.*/ 
(VdEdevices I type(d) eq catalogue(userfilename)('device')) 

/*Try to find sufficient space for the file on the volume mounted on device d. * / 
if spacefound(d,userfilename) then 

/*Note that 'spacefound' updates operating system's table of space free on vol­
ume.*/ 

go to quit; 
end if; 

end Vd; 

/*Having failed to find space on any volume mounted on a disc drive, we now search for 
any dismounted pack having sufficient space. If such a volume is found; assignment of 
space will be· made later when the volume is mounted. The request for mounting will come 
from the J CL interpreter.*/ 

if (3vEvolumes I v(2) eq catalogue(userfilename)('device') and 
v(3) ge catalogue(userfilename)('space')) then 

catalogue( userfilename) ('volume') =v( 1); 
volumes( v( 1) ,v(2)) =v(3 )-catalogue( userfilename) ('space'); 

end if; 
go to quit; 

/*Tape volume assignment.*/ 
else if catalogue(userfilename)('device') eq 'tape' then 

/*First, search the tape drives to see if an unassigned reel is 
mounted. If one is, it is assigned to the file.*/ 

if (3di:::devices I type(d) eq 'tape' and 
volumes(mounted(d),'tape') eq 'empty') then 

catalogue( userfilename) ('volume') =mounted( d); 
volumes(mounted( d), 'tape') =userfilename; 
catalogue(userfilename)('deviceaddress')=d; go to quit; 

end if; 
/*If no mounted, unassigned tape reel is found, a dismounted 
reel is assigned. Request for mounting will be issued by the 
JCL interpreter.*/ · 

if (3v EVolumes I v(2) eq 'tape' and v(3) = 'empty') then 
catalogue( userfil~name) ('volume') =v( 1); · 
volumes(v( 1 ),v(2)) =userfilename; 

end if; 
end if; 

quit: 
free allocflag; /*Make allocate and relinquish routines available.*/ 
return; 

end allocate; 
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define qd relinquish( userfilename) on allocflag; 
· /*This routine alters the space map on a disc to show that the space for a discontinued file 

is available for assignment*/ 

d= ( catalogue(userfilename) is item) ('deviceaddress'); 
establish( d,tocopenclose,toc); 
toe read volname,map; 
map(userfilename)=!J; /*space no longer allocated to file*/ 
<'empty' ,item('extents', 1),item('extents' ,2) > is tin map; 

/*Previously allocated space is now empty. If two or three empty regions are now contigu­
ous, combine them into one large empty region.*/ 

if 3grn1ap I (g(l:2) eq <'empty',t(2)+t(3)>) then 
gout map; 
tout map; 
<'empty',t(2),t(3)+g(3)> is tin map; 

end if; 
if 3ge:map I (g(l) eq 'empty' and t(2) eq g(2)+g(3)) then 

gout map; 
tout map; 
<'empty',g(2),t(3)+g(3)> in map; 

end if; 
toc(2)=1; /*Rewind the table of contents file*/ 
toe write volname,map; /*and write out the updated table of contents.*/ 
close ( toe, tocopenclose); 
unhook ( tocopenclose); 

/*Indicate in the system's tables the largest free space that exists on this volume.*/ 
volumes(volname,type(d))=[max: ge:map I g(l) eq 'empty'] g(3); 
free allocflag; 
return; 

end relinquish; 

definef spacefound( d, userfilename); 
/*This function returns true if the volume mounted on device d has sufficient space to hold 
file userfilename. If there is sufficient space, then the volume table of contents are updated 
to show the area on the pack which has been assigned to the file. If there is not sufficient 
space, then the routine returns false.*/ 

if n (de:ready) then return false;; 
establish( d,tocopenclose, toe); 
toe read volname,map; 

/*We assume that all volumes start with a table of contents, which consists of a character 
string read into 'volname', giving the volume's identification, followed by a set read into 
'map', which consists of triples, <file,start,length>, where 'file' is a user file name, 'start' 
its starting position on this volume, and 'length' is the size of the area. A triple with first 
component 'empty' describes available space.*/ 

if not (3x E map I x(l) eq 'empty' and 

else 

x(3) ge catalogue(userfilename) ('space')) then 
return false; 

x out map; 
/*If the space found is too large, indicate that the remaining space is still available.*/ 

if x(3)-catalogue(userfilename)('space') is t gt O then 
<~(1),x(2)+x(3)-t,t> in map;; 

<userfilename,x(2) ,catalogue(ds) ('space')> in map; 
toc(2) = 1; /*Rewind space-map*/ 
toe write map; /replace space-map*/ 
close( toc,tocopenclose); / *with updated version*/ 
unhook( tocopenclose); 
catalogue( userfilename) ('volume')= volname; 
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catalogue( user filename) ('deviceaddress') = d; 
mounted( d) =volname; 
<x(2),catalogue(userfilename) ('space')> in catalogue( ds) ('extents'); 
volumes(volname,type(d))=[max: xe:map I x(l) eq 'empty'] x(3); 
return true; 

end if; 
end spacefound; 

end allocation; 

I* *************************** *I 
/ * MONITOR SERVICES * / 
I* *********~**********~****** *I 

/*Control goes to monitorxpt on an interrupt caused by a request for monitor service. A 
new disabled process handles the interrupt by spawning an enabled process to handle the 
request, after which the disabled process terminates itself. See also, section 3.3. * / 

macro filebeginning; /*extracts position on disc where file starts*/ 
catalogue(file) ('extents', 1) 
endm filebeginning; 

macro waitnotbusy(d); /*By re-reserving busystatus(d), the monitor*/ 
reserve(busystatus(d)) /*request handler effects a 'wait' until d has*/ 

endm waitnotbusy; /*finished it's 1/0 operation.*/ 

macro maxposition; /*extracts maximum file size*/ 
catalogue(file) ('extents' ,2) 
endm maxposition; 

macro filepart(parm); / *Extract program file identifier from arguments to monitor services.*/ 
parm(l) 

endm filepart; 

macro buffpart(parm); /*Extract buffer to be used for monitor service operation.*/ 
parm(2) 

endm buffpart; 

macro labelpart(parm); / *Extract location of fixup routine from arguments.*/ 
parm(2); 

endm labelpart; 

monitorxpt: 
(disable) 

/*For an overview of the code which follows, cf. section 3.5.2. 7. * / 
/*First, keep track of time used by problem program.*/ 

if resmne E userprogs then 
/*Compute the time remaining in the user's jobstep, and charge a fixed rate, 
'overhead', for the monitor service. Alternatively, we could compute the actual 
time to perform the monitor service, and charge for it on completion. 'overhead' 
should be defined by a macro to be the appropriate number of clock ticks to charge 
for the average monitor service (often on the order of 1 ms).*/ 
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steptimeleft(resume)=timer - clock - overhead; 
end if; 

/*Having received a monitor call, we split off a new process which will follow the 
requested monitor service through to its end, and then at once set up to receive the next 
monitor call. We assume that 'cause' is of the form <fcn,parm>, where fen specifies 
the monitor function and parm gives any additional parameters. Recall that 
'osenvironment' represents an operating, system environment, including system privi­
lege.*/ 

loctr( osenvironment) =lookatrequest; /*'lookatrequest' is a label 
occurring a few lines IJelow. * / 

/*Start a privileged process to interpret the monitor service request. Attach the 
process to the mover of the requesting process.*/ · 

state( <moverpart(resume),newat>is newprocess) = osenvironment; 
split to newprocess(cause) for resume; 

/* We cheat the dispatcher in what follows, by dispatching the newly spawned process 
ourselves to replace the disabled monitor interrupt handler, and at the same time, we 
force the monitor interrupt process to start at the head of the disabled block the next 
time it becomes activated.*/ 

remove(CPU,newprocess); /*Now the dispatcher can't act on 'newprocess'* / 
<CPUcontrol,loctr(state(thisprocess)) > = <newprocess,monitorxpt>; 

end disable; 

/*The newly spawned process which handles the monitor request starts here.*/ 
lookatrequest: 

<fcn,parm>=info(thisprocess); /*save parameters*/ 
caller=ancestor(thisprocess); /*save id. of calling process*/ 
if {<'read',io>, /*Alll/Orequestsgoto*/ 

<'write',io>, /*the label 'io' first.*/ 
<'backspace',io>, 
<'rewind',io>, 
<'space',io>, 
<'wait',io>, 
<'enable',io>, 
<'disable',io>, 
<'release' ,io>, 
< 'endfixup' ,endfixup >, 
< 'iointerrupt' ,giveinterruptcause >, 
< 'endstep' ,ends tepaddr > 
<'fixup' ,fixupaddr>, 
<'abend' ,setabend>} (fen) is loc ne Q then go to loc;; 

/*Illegal monitor call. Let control flow through to the abend monitor call routine, with 
'parm' indicating termination due to an illegal monitor call. (Assume that the variable 
'badparameter' indicates this reason for termination.*/ 

parm = badparameter; 
go to setabend; 

endstepaddr: parm=0; /*Code to indicate normal completion.*/ 
setabend: /*Determine the ancestor of the abending process, and put the cause of termination on 

the ancestor's work queue. (Recall that the ancestor is the job control analyzer process 
which had set up the user job, and awaits a termination report.) This action will awaken the 
ancestor which will terminate any 1/0 which might still be in progress for the terminating 
process, and which will start the next job step or terminate the job.*/ 

io: 

jcinterpprocess= ancestor(initialvar(state( caller))); 
enqueue parm on jcinterpprocess for nl; 
term; 
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file = <caller,filepart(parm)>; /*The name in program file name space is unique because it is 
the pair formed by the unique process identifier and the program-generated name. Thus, 
several processes using the same program name at the same time, will be able to access 
separate files. See the construction of the 'userfile' structure during file statement process­
ing in the job control interpreter.*/ 

if not(file E program files) then 
/*I/0 request for a non-existent program file. Abend the calling process. Assume that 
the variable 'badfileid' indicates this reason for termination.*/ · 

parm= badfileid; · 
go to setabend; 

end if not; 
iodevice = deviceaddress(file); /*device on which file is mounted. See 3.5.1.1 and 3.5.1.5, 

and the macro definition for deviceaddress. * / 
chan = arb{cEChannels I iodeviceEunits(c)}; /*Channel used for the file.*/ 

/*Control functions that do not require the ability to physically manipulate an I/0 device 
can now be executed.*/ 

if {<'wait',wait>, 
<'release' ,release>, 
<'enable' ,enable>, 
<'disable',disable>} (fen) is loc ne Q then go to loc;; 

/*control functions: wait, release, enable and disable are identified by the above 'if'. 
These functions do not require synchronization to avoid race conditions. The remain­
ing requests, read, write, backspace, rewind, and space, are handled here.*/ 

reserve (file); 
/*The 'type' tabie classifies I/0 devices by type. c.f. 3.5.1.1 * / 

if fcnE {'read' ,'write'} or n(type(iodevice) E discs) then 
/*For disc read/write operations and for rewind, etc. operations on other devices (such 
as tapes) the physical I/0 device on which a file is mounted must actually be reserved. 
On the other hand, for discs, control operations such as backspace and rewind are not 
physically carried out; the new position of the read-write head is simply recorded in 
system tables. Physical positioning takes place only when actually needed before a 
read or write request, since the read-write head may be repositioned due to activity for 
another file sharing this device. Thus, since no physical I/0 will take place, the device 
need not be reserved. But for operations requiring the use of the physical device, we*/ 

reserve(iodevice); /*reserve physical device*/ 
/* A monitor call may result in a sequence of operations on a device (for example, a 
disc read requires a head-positioning operation, followed by a read operation), with the 
requirement that the device not be operated by other processes during this sequence of 
operations. Thus the system's I/0 interrupt handler will not free iodevice when it 
completes an operation, since this will allow a competing process to sieze iodevice. 
Instead, we associate a blank atom with each device via the map rightouse, and reserve 
that blank atom, also. Each completion of a physical I/0 operation will result in this 
atom being freed. Thus, the busy status of the blank atom can be used by the monitor 
services routine to synchronize itself with 1/0 operations. Only when a request is 
completed, will the monitor service process free iodevice, at which time iodevice 
becomes available for competing processes.*/ 

reserve(rightouse(iodevice)); /*The above-mentioned blank atom.*/ 
filehandledby(iodevice)=file;/*When an interrupt is received resulting from the comple­

tion of the 1/0 operation on iodevice, the quantity filehandledby(iodevice) will be used 
by the I/0 interrupt handling process to determine the program file for which the 
operation was performed. Because all processes reserve iodevice and 
rightouse(iodevice) in that order, and release them in reverse order, deadlock cannot 
occur [Hav], so long as 1/0 operations run to completion and cause an 1/0 inter­
rupt.*/ 

reserve(chan); /*get control of channel*/ 
end if; 
go to { <'read',readwrite>, 

<'write' ,read write>, 
<'backspace', backspace>, 
< 'rewind' ,rewind>, 
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<'space',space>} (fen); 

readwrite: /*Treatmeant of 'read' and 'write' requests.*/ 
if type(iodevice) E discs then 

/*For discs, we must first position the read/write mechanism to where the user 
believes it to be. This is necessary since the disc drives may be shared by several 
processes, each of which causes the read/write mechanism to be positioned unknown 
to the other processes. It is the operating system's function to make this invisible to its 
users. Note that 'maxposition' and 'filebeginning' are macros introduced at the begin­
ning of the monitor services section of code.*/ 

position= logicalposition (file)+ file beginning; 
if logicalposition(file) ge maxposition then 

/* At this point, in a more advanced system, an additional extent could be allocated 
to the file. In that case, the computation of 'position' above becomes more compli­
cated. However, we will merely signal an 1/0 error for this case.*/ 

savecause(file)=badio; /*signal error if positioned*/ 
free rightouse(iodevice); /*beyond area allocated to the file*/ 
go to wrapupiorequest; /*and return to caller.*/ 

end if; 
seek(iodevice,position); /*physical operation to position the*/ 
waitnotbusy(iodevice); /*read~write mechanism; wait for completion*/ 

end if; /*end of special processing for discs*/ 

/*In a read or write request, the second element of parm gives the blank atom that is 
associated on the caller's workqueue with the data which is transmitted. See Section 
3.3.2.*/ . 

if fen eq 'read' then 

else 

read(iodevice,localbuffer); /*'hardware' read, see Section 2.3.2. * / 
/*'localbuffer' is a local area within the 1/0 service process, into which information 
will be read.*/ 

putfirst( CPU ,caller); /*Operation initiated -- allow caller to procede. * / 
waitnotbusy(iodevice); / *Delay monitor service process until operation*/ 
putfirst(caller,<buffpart(parm),localbuffer> ); /*is complete, then return data read.*/ 

findfirst( caller, x, hd x eq buffpart(parm)); 
if x eq g then 

/*Buffer containing output data does not exist. Error.*/ 
savecause(file) = badio; /*Simulate error interrupt.*/ 
free rightouse(file); 
go to wrapupim;equest; 

end if x; 
remove(caller,x); 
write(iodevice, x(2)); 
putfirst (CPU, CJiller); 
waitnotbusy(iodevice); / *Delay until operation is complete.*/ 

end if fen; 
/*Control returns here when physical I/0 operation is complete.*/ 

go to wrapupiorequest; 

backspace: /*Treatment of 'backspace' requests.*/ 
putfirst( CPU ,caller); 

/*for discs, backspace is not physically carried out, instead, we just record where the 
user thinks he is positioned*/ 

logicalposition(file)= 0 max (logicalposition(file) - 1); 
savecause(file)=goodio; /*simulate successful backspace*/ 

else backspace(iodevice); 
waitnotbusy(iodevice); 

end if; 
go to wrapupiorequest; 
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rewind: /*Treatment of 'rewind' requests.*/ 
(disable) 

putfirst( CPU,caller); 
/*For discs, we have only to rewind the file 'logically'.*/ 

if type(iodevice) E discs then 
logicalposition(file) =0; 

else 
/*For tapes, a physical rewind operation must be issued.*/ 

rewind(iodevice); 
waitnotbusy(iodevice); 

end if; 
end disable; 
go to wrapupiorequest; 

space: /*Treatment of 'skip record' requests.*/ 
(disable) 

putfirst( CPU,caller); 
if type(iodevice) E discs then 

else 

logicalposition(file) = (logicalposition(file) + 1) min maxposition; 
savecause(file) = goodio; 

space(iodevice); 
waitnotbusy(iodevice); 

end if; 
go to wrapupiorequest; 

end disable; 

/*Now, the entire monitor request is completed, and the iodevice may be free'd for use by 
other processes.*/ 

wrapupiorequest: free iodevice; 
transmi tioin ti fan y: 

/*This point in the code may be reached in two ways: 
1. As the result of a logical 1/0 operation terminating, or, 
2. As the result of a monitor-enable request to a file which has a stacked interrupt, in 
which case the interrupt gets unstacked (i.e. processed). Note that in this latter case 
the actual unstacking operation is done by 'enable' 
If the process 'caller', which owns the logical file 'file' has been in I/ 0-wait for the file 

'file', then the process is made dispatchable, and the interrupt for 'file' is processed. If the 
1/0-wait was for another file, then the interrupt for 'file' is stacked. 

Otherwise, if 'caller' is already in an 1/0 fixup, or if 'file' is disabled for interrupts, the 
interrupt is stacked. In all other cases, the interrupt is processed. 

In processing an interrupt, if 'file' had had a monitor-release request issued, the 
interrupt is ignored. Otherwise, the location counter for 'caller' is forced to 'file's fixup 
routine, and the main stream environment is saved if 'caller' was not in another 1/0 fixup 
at the time. 

In any case, the logical file 'file' is now available for further operations. 

Note in connection with the following code that user interrupt routines are not logically 
interruptable except in the case when a monitor-wait request has been issued in a fixup 
routine. In that case, if an interrupt had already been stacked for 'file', or, if 'file' is busy 
and has not had a monitor-release request issued for it, when the operation on 'file' 
terminates, the fixup routine for 'file' is executed as a co-routine to the fixup in which the 
wait request occured. Control does not return to the fixup routine which requested the 
wait. 

cf. section 3.5.1.5 for some of the maps which are used here.*/ 

(disable) 
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flow (iowait(caller))? 
(filewait(file))? ( disabled(file) or ioint( caller))? 

(iowait( caller) =false;)+ stack, stack, interrupt, 
(putfirst(CPU,caller) ;) + 
interrupt; 

interrupt: 
if rel(file) then 

/*Ifa release request had been made for 'file', ignore the interrupt.*/ 
rel(file)=false; /*Now we can forget that the release had been requested.*/ 

else 
/*Interrupt the process which owns 'file'.*/ 

( if not ioint(caller) then 
/*Process was in mainstate. Save it for restoration on 'endfixup' request.*/ 

mainstate(caller) =state(caller); 
end if not ioint( caller); ) 

/*In any case, force location counter to fixup routine for 'file'.*/ 
loctr(state( caller)) =fixup(file); 

end if rel(file); 
filewait(file)=false; /*Wait is no longer pending.*/ 

/*Save file i.d. and cause of the most recent I/O interrupt.*/ 
interrupted( caller)= <file,savecause(file)>; 

stack: 
if rel (file) then 

rel(file) =false; 
else 

putlast( <caller,io>,file); 
end if rel(file); 

end flow; 
free file; /*Monitor operation complete -- free program file.*/ 
term; 
end disable; 

wait: /*Treatment of 'wait' request.*/ 
(disable) /*Find first stacked interrupt for the file, if any.*/ 

findfirst( <caller,io>,x,x eq file); 
if x ne Q then 

/* An interrupt is stacked for this file. Force the user process to its I/O fixup routine 
for this file.*/ 
remove(< caller,io >,file>; 

/*Note: The 'wait' service is the only manner in which an interrupt routine may 
interrupt another interrupt routine. In this case, the interrupt routines work as 
co-routines, and the second routine never returns control to the first.*/ 

if n ioint(caller) then 
mainstate( caller) =state( caller); 

end if; 
loctr(state( caller)) =fixup(file); 
interrupted(caller) = <file,savecause(file) >; 
free file; 
ioint( caller)= true; 
putfirst(CPU,caller); 
term; 

end if; 
if file E busy then 

iowait( caller) =true; filewait(file) =true; 
/*The caller's process is not returned to the CPU's workqueue. When the awaited I/O 
operation ends, then the caller will be returned to the CPU's workqueue. * / 
term; 

end if; 
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endwait: putfirst(CPU,caller); 
term; /*Monitor service action for wait is completed.*/ 

end disable; · 

giveinterruptcause: 
/*Return via the caller's workqueue, the status information associated with the most 
recently processed 1/0 interrupt belonging to this caller. In this sense, 'most recently 
processed' means either having entered a fixup routine, or having satisfied a wait condi­
tion.*/ 

putfirst(caller, <buffpart(parm), interrupted(caller) >); 
go to endwait; 

enable: /*Treatment of 'enable file' request.*/ 
disabled(file) =false; /*initialized in subroutine 'assign'/ 
putfirst( CPU ,caller); 
findfirst( <caller,io>,x,x eq file); 
if X ne n then 

/*Release the first interrupt which was stacked for 'file' while it was disabled.*/ 
remove( <caller,io>,file); 
go to transmitiointifany; 

else /*No interrupts were stacked for the file.*/ 
term; 

end if; 

disable: /*Treatment of 'disable file' request.*/ 
disabled(file) =true; 
putfirst( CPU ,caller); 
term; 

release: /*Treatment of 'release file' request.*/ 
(disable) 

/*Previous interrupts for this file are forgotten, and if an operation is in progress, the 
interrupt resulting from the logical end of operation will be discarded without forcing 
control to the user's fixup routine.*/ 

reports= {x E workset{ <caller,io>} Ix eq file}; 
("vxE reports) remove( <caller,io>,x) ;; 
rel(file)=true; 
putfirst( CPU ,caller); 
term; 

end disable; 

endfixup: /*User program e·xits from I/0 fixup routine.*/ 
if not ioint( caller) then 

/*The caller was not in an 1/0 fixup routine. We elect to ignore the request.*/ 
go to leave; 

end if; 
state(caller) =mainstate( caller); 
ioint( caller) =false; 
findfirst( <caller,io>,file, n disabled(file)); 

/*Other program files await user interrupt processing. Take the enabled-file which 
completed it's operation first, and treat it as though a wait had just been issued for it.*/ 

if file ne n then 
go to wait; 

end if; 
/*There are no interrupts stacked for enabled files.*/ 

leave: 
putfirst(CPU,caller); /*Caller may reume operation.*/ 
term; /*Monitor service completed.*/ 
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fixupaddr: /*Establish label of fixup routine associated with the file.*/ 

/*For 'filepart' and 'labelpart', see the macro definitions on page 76. * / 
fixup(filepart(parm)) = labelpart(parm); 
putfirst( CPU,calier); 
term; 

*************************** 

I/0 INTERRUPT HANDLING 

*******************~******* 

/*control reaches 'ioxpt' on I/0 interrupts*/ 

ioxpt: 
(disable) 

/*First, do time accounting if a user program was interrupted.*/ 
if resume E userprogs then 

steptimeleft(resume) = timer - clock; 
end if; 

/*The interrupted process, which is independent of the just completed I/0 operation, 
is returned to the head of the CPU's workqueue. * / 

/*Notes: 'devaddr' extracts the address of the device causing the 1/0 interrupt from 
cause. channelfree(cause) is true iff the interrupt signals that the channel has switched 
from the active to the free state. Similarly for devicefree and its argument. 

Only when a monitor routine (above) finishes interpreting an 1/0 request, does it cause 
control to go to 'wrapupiorequest', where the physical device is finally free'd, and made 
available to other processes. Here, it is also determined if the user should process the 
interrupt in a fixup routine.*/ 

putfirst( CPU ,resume); 
iodevice=devaddr(cause); /*extract address of interrupting device*/ 
if channelfree(cause) then 

free channelpath(iodevice);; /*release channel if interrupt 
indicates that channel became free*/ 

if n devicefree(cause) then term;; 
/*Make the device available for other monitor services.*/ 

free rightouse(iodevice); 
*See the comment on page 78 following 'reserve(iodevice);'. We don't free the device 
itself at this point in case it is being used by monitor serces for a sequence of operations 
which cannot be .disturbed by other actions.*/ 

savecause(filehandledby(iodevice)) =cause; 
<CPUcontrol,loctr(state(thisprocess) )>=<dispatcher, ioxpt>; 

end disable; 
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I* *************************** *I 
I* DISPATCHER *I 
I* *************************** *I 

getwork: waitcopy=waitset; /* processes with awaited conditions*/ 
/*First, we recheck all awaited conditions. cf. 2.4.3.1 for a discussion of the await 
verb.*/ 

loop: if waitcopy ne nl then 
s from waitcopy; 
L=loctr(state(s)); /*retest awaited condition*/ 
CPUcontrol=s; /*control to process testing condition*/ 
if isok then s out waitset; 

putlast(CPU,s); 
else loctr(state(s)) =L; 
end if; 
go to loop; 

end if; 
/*Now we attempt to find a job to dispatch. Processes enqueued on 'CPU' are candidates. 
Non-user processes, i.e., system processes, are given priority.*/ 
I* if waitcopy eq nl then * / 

(disable) 
findfirst (CPU,s,not(sEuserjobs)); /*gives s as output*/ 
ifs ne Q then 

remove (CPU,s); 
CPUcontrol=s; 

else if getfirst( CPU) is s ne Q then 
/*The process just found must be a user-process, since our search for non-user 
processes had failed to find any, and, since we are disabled, no other process could 
have sneaked another process on the CPU workqueue. As a check on the software 
and the CPU, we could check that indeed, sEuserjobs, but we chose to omit this 
check for the meantime.*/ 

/*Prepare to stop user if time estimate is overrun.*/ 
timer=clock +steptimeleft(x); 
CPUcontrol=x; 

end if; 
end disable; 
go to getwork; 

I* *************************** *I 
/ * TIMER INTERRUPT HANDLER * / 
I* *************************** *I 

timexpt: 
(disable) 

if resume E userprogs then 

else 

/* A user's program has run out of time. Determine the process-id of the JCL 
interpreter corresponding to this user program, and notify it that the user has run 
out of time.*/ 

interpreter=ancestor(initialvar(state(resume))); 
enqueue timeisup on interpreter for resume; 
steptimeleft(resume)=O; /*Indicate that time has run out.*/ 

/* A system program was interrupted. Set the timer to interrupt in one second, and 
restore the interrupted process to the head of the dispatcher's list.*/ 
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putfirst(CPU,resume); 
timer=clock + onesecond; 

end if; 
/*Give control to the dispatcher, and at the same time, set up the timer interrupt 
routine to start at 'tirnexpt' at the next timer interrupt.*/ 

<CPU control, loctr(state( this process))>=< dispatcher, tirnexpt>; 
end disable; 

end operatingsystern; 
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Chapter IV 

A Multiprogramming System 

4.1 System Objectives 

The second operating system to be described is intended to run on a single CPU configuration 

operating in a non-interactive environment in a multiprogramming mode. 'Multiprogramming' will 

be taken to mean that more than one user run may be in progress at a given- time. 'Being in 

progress' should be understood to mean that execution of a user job has commenced but not all the 

user processes associated with the job are concluded. 

By adopting a multiprogramming design, one makes it possible to utilize a greater fraction of a 

computing system's resources than a single job is likely to require at any given time. This can give 

greater throughput from a computing system than is achievable by a uniprogramming design such 

as that described in Chapter III. (We observe at this point that even the simple uniprogramming 

system of Chapter III really utilizes multiprogramming in so far as several processes coexist in that 

system. However, at most one of these is a user process.) By keeping several processes available 

and allowing them to compete for resources we increase the likelihood of processes being en­

queued on a resource; then when one process releases a resource, it can be utilized at once by 

another. 

If it is unlikely that a user job requires as much as half of main memory, then there will generally 

be room for more than one user job to be resident in main memory at the same time. In this case, 

the objective of overlapping setup time with the execution of a non-setup job becomes relatively 

less important, since the multiprogramming activity of our system will probably keep one or more 

user jobs in progress during setup anyway. Thus, 'setup time overlapping' will not be provided 

explicitly in the next system to be described. 

We shall wish to minimize the burden of change imposed upon a user who moves from unipro­

gramming to multiprogramming. In making this move, the user gets no increase in fuctional power; 

his gain lies in the greater availability of computing resources due to their better utilization. 

In a multiprogramming system, symbolic referencing of I/O devices becomes mandatory. Several 

jobs are now to run concurrently, and the probability that two jobs can coexist will decrease 

markedly if jobs could demand to use a specific member of a set of functionally identical devices. 

4.2 Multiprogramming Strategy Considerations 

For multiprogramming to succeed in increasing system utilization, we must have programs 

concurrently in storage which are capable of using diverse resources. To take an extreme example, 

if all programs use only the CPU, multiprogramming cannot possibly reduce the total program 

running time. Contrariwise, if we are given a group of programs using several resources, then to 

the extent that a single program cannot concurrently use resources (e.g. CPU idle waiting for I/O 
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completion), idle resources become available to other processes. Recaptured critical resource idle 

time is a measure of the advantage gained by running a set of jobs in multiprogramming mode. 

We want to enable our scheduler to select jobs for concurrent execution in a manner facilitating 

the overlapped use of several resources [C]. Suppose that with each job, we are given estimates of 

CPU time, disc transmission time, and tape transmission time. Then, for the total family of jobs in 

the system, we can compute the estimated workload for each of these resources. It is clear that the 

shortest estimated time to completion for the total collection of jobs is at least as great as the 

estimated workload on the busiest resource. (If there are several identical elements such as disc or 

tape channels, and assuming that the work can be evenly distributed among functionally identical 

elements, we divide the estimated load on the resource by the number of identical elements which 

can operate concurrently and which are available.) 

Now consider some subset of jobs which can coexist on the computing system, that is to say, a 

subset whose total memory requirement does not excede the machine's memory capacity, whose 

total tape drive requirement does not excede the total number of drives, etc. For this subset, 

compute the estimated workload, which will be a triple. If the busiest resource of the subset is not 

the busiest of the entire workload, then the subset is out of balance with the total workload, and 

running it will surely increase the running time for the entire workload. 

To aid in determining a good subset of jobs to run concurrently under multiprogramming, we wish 

to attach a measure m to a subset of jobs so as to indicate attractiveness of concurrent execution. 

That is, if P and Qare two sets of jobs, we would like m to have the property that if m(P)<m(Q), 

then P is a better subset of jobs for multiprogramming than Q. We will call such a measure a 

figure of merit. 

If we make the optimistic assumption that the heaviest loaded resource can be kept busy all the 

time by means of multiprogramming, we can estimate the fraction of time that a subset of jobs will 

keep each resource busy. For example, suppose that the estimated workloads for CPU, disc and 

tape are 10, 5, and 3 minutes respectively. Then the shortest time in which the subset can run is 

10 minutes (if the CPU can be kept busy), and the CPU, disc channels and tape channels would be 

busy 100%, 50%, and 30% of the time. 

To define out figure of merit, we compare these loadings, calculated for a job subset, with the 

loading calculated for the entire workload, and penalize a subset of jobs for each resource which 

(when the workload for the subset is normalized to make the load on the heaviest used resource 

equal to 1) is underloaded as compared to the total workload (normalized the same way). No 

credit is given for resources which are loaded more thoroughly in the subset than in the total job 

set. Thus, if L=<l 1,12 ,13> is the total workload of the full set of available jobs, and ML=max{L}, 

if P= <p1,p 2,p3> is the total workload of.a subset S of jobs, with MP=max{P}, then as a figure of 

merit for the subset S we will take: 

[ +: 1 ::;i::;3] max {0,L(i)/ML- (P(i)/MP)} 
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We consider the jobs in priority order, and we add to the collection of running jobs the oldest job 

of highest priority for which the figure of merit of the enlarged collection is not larger than the 

figure of merit for the current collection of running jobs. 

4.3 Job Control Language 

In keeping with our objective of imposing minimal transition difficulties on our users, the JCL of 

section 3.2 will be used with only minor changes in our multiprogramming system. 

The TIME parameter on the job statement will be given as an n-tuple, where the first component is 

the estimated CPU time, and the remaining components are the estimated requirements of the 

other system resources. 

A SPACE parameter will be included on the job statement to specify the amount of contiguous 

main memory space which the job requires. 

4.4 Organization 

The overall structure of our multiprogramming system will be similar to that of the uniprogram­

ming system of Chapter III. That system already employed multiprogramming in order to run 

several operating system processes concurrently with at most one user program. Thus, in order to 

multiprogram among several user jobs, we expect that the main changes will be to the scheduler, so 

that it can provide several user programs for concurrent execution. 

The input reader must be modified to accept a more comprehensive time estimate, and to update . 

the system's running estimate of the backlogged workload. Only minimal change to the handling 

of job cards is required. The output writer is unaffected by multiprogramming considerations. 

The. scheduler is the component which is the most affected by multiprogramming. It must 

recompute the system's w_orkload ahd figure of merit whenever a new user job is encountered or a 

user job terminates. It must then determine if jobs exist which can run with only the system's 

unused resources and which would also not degrade the system's figure of merit. If such a job 

exists, it is sent to job control for execution. 

The dispatcher must also be reworked to account for multiprogramming. First, system processes, 

all of which are known to use CPU bursts of short duration, will be given priority over non-system 

processes. If there are no system processes in the CPU's workqueue, we will choose the oldest 

user process. There are many alternative dispatching algorithms depending on the operating 

system's objectives. The dispatcher we will use tries to get jobs completed in FIFO order. 

Among the factors which must be assessed in determining whether a program can be added to a set 

of running programs is the amount of main storage which it requires. The management of main 

memory can be a complex matter, and it is strongly dependent on the addressing characteristics of 

the machine. We will assume that the job statement specifies the amount of contiguous space 

which the job requires, and that object programs are "relocatable", that is, that a program can run 
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in any portion of main memory provided that sufficient contiguous space is available. We will also 

suppose that a job holds onto a fixed amount of memory from start to finish. Of course this is by 

no means the only strategy available. We could elect to swap programs between main memory and 

disc storage, or to move programs from one part of main memory to another to create large blocks 

of contiguous storage, provided that the machine architecture allows programs to be relocated 

after loading and partial execution. 

In this system, we assume that the machine architecture does not allow relocation of a program 

after partial execution. The system described in Chapter V does assume that dynamic relocation is 

possible. It would be a minor matter to incorporate the code at label 'getblock' of section 5. Tin 

the scheduler, which is responsible for memory allocation in this system. 

To allocate resources one must partition main memory and 1/0 devices among competing jobs. 

Deadlocks can arise when several programs are allocated resources from a common pool. Dead­

lock occurs when two or more processes are waiting for resources held by the others. Neither can 

until it gets the additional resources which it needs. There are several ways to avoid this situation, 

but one must be aware of the ways in which deadlock can occur in order to avoid it. In our system, 

had we left resource allocation to the job control analyzer, we would have faced the possibility of 

deadlock, since several job control analyzer processes can be in operation concurrently. Instead, 

this function was reserved to the scheduler, of which there is only one instance in the system. 

Besides allocating a portion of available main memory to a job, our system must insure that the job 

is confined to its allocated memory. A component of the environment will be used to specify the 

memory areas available to a process. The boundaries will be given as a set of triples of the form 

<m,n,x> to indicated that n contiguous words of memory beginning at m are accessable to the 

process. An attempt to violate boundary restrictions results in a memory-protect interrupt. x 

specifies the types of accesses which the process may make to the memory area. We consider any 

combination of the following types of accesses: execution, read-data, and write-data. 

If our programs were carefully constructed by the compiler to keep data areas separate from 
executable code, then the loader can specify user boundaries to make the executable code have 

only "execute" access, user defined constants to have only "read-data" access, and user defined 

variables to have both "read-data" and "write-data" access. Such a mechanism makes it impossi­

ble to execute data due to a wild branch, or to accidentally modify a program or constant due to 

faulty indexing, or to modify a constant by using it as an argument to a subroutine with side 

effects. An attempt to violate boundary restrictions results in a memory-protect interrupt. 

When the loader sets up the user program, the user space which the loader uses as a data area has 

both read-data and write-data access. The loader then can partition the user space into execute 

only, read only, and read-write areas before the job step executes. Of course, this implies that the 

programs being loaded carry sufficient information to allow the loader to determine the partition­

ing. 

We can now fill in a gap in Section 3 .4 regarding the ring structure of our operating system. 

Innermost ring processes, the interrupt handlers, start with read-write-execute access to all main 

memory. It is conceivable that such processes restrict their own access as the nature of their task 
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develops. Thus, while the monitor interrupt handler and I/O interrupt handlers have maximum 

access privileges, the processes which they invoke should have limited memory access. Allocation 

routines, scheduler and job control do not require write access to the special sets de.scribed 111 

Section 2.4.1, with the exception of workset, nor execution access to the interrupt routines. 

Since so much of the uniprogrammed system carries over to the multiprogramming case, only those 

routines which are extensively modified will be presented in their entirety below. For routines 

having only minor modifications, only the modifications will be given. 
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4.5 The Code 

I* *************************** *I 
/ * INPUT SPOOL * / 
I* *************************** *I 

/* The only changes to input spool involve the new SPACE parameter and the modified TIME 
parameter, which is now a triple, giving CPU, disc, and tape time estimates. Refer to input 
spool routine for uniprogramming, page 56. 

For each job j, esttime(j) is a triple giving the estimated usage for CPU, disc, and tape. The 
tuple estwork is maintained by the operating system to be the vector sum of the elements of 
esttime, so that at all times, 

estwork = [ +,1 ::;i::;3]<[ +,v(j)Eesttime]v> * / 

jobcard: if jobcardprocessed then go to endcard;; 
/*The next job card encountered will mean end of current job.*/ 

jo beard processed= true; 
(Vy E {'time', 'priority', 'space'}) 

if image(y) eq Q then 
image(y) = profile( username,y); 

end if; 
end Vy; 
go to mainloop; 

endcard: 

/*No JCL errors found with job just read. In the multiprogramming version, we also must 
adjust the workload estimate when a JCL error free job has been read. If the time parame­
ter is not a 3-tuple, we use a default time-estimate vector for it.*/ 

job in movers; 
owner(job)=username; /*Setup map showing job's owner.*/ 
esttime(job) =if type tempjobcard('time') ne tuple 

or #tempjobcard('time') ne 3 
or 3est(i) E tempjobcard('time') I type est ne integer then 
profile(username, 'time') 

else tempjobcard('time'); 
if type tempjobcard('space') ne integer then 

/*Improper space specification, use profile.*/ 
tempjobcard('space') =profile(username, 'space'); 

end if type; 
if type tempjobcard('priority') ne integer then 

/* Improper priority specification, use profile.*/ 
temp jobcard('priority') = profile( username, 'priority'); 

end if type; 
space(job)=tempjobcard('space'); /*User's estimate of maximum space required.*/ 
priority(job) =tempjobcard('priority') min (maxprio( usernarne)); 
resources(job)=volumesneeded; /*volumes needed by job into system tables.*/ 
newallocations(job) =newfiles; /*Newly catalogued entries due to this job.*/ 
close( expandedjcl.' jclopenclosename'); 

(disable) 
(Vy(i) E esttime(job)) /*update total workload estimate*/ 

estwork(i) =estwork(i) +y; 
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/* A corresponding decrease of estwork is made when a job terminates. See the 
V-block following the label 'endjob', below.*/ 

end disable; 
enqueue <job,expandedjcl> on scheduler for username; 
if image('command') eq 'job' then go to newname; 
else go to discard;; 

I* *******************~******* *I 
/* SCHEDULER *I 
I* *************************** *I 

/* The scheduler is enqueued when: 
a) input spool has read a new job, and when 
b) job control terminates a user job 
Replaces scheduler, page 66. * / 

schedule: await #workset{thisprocess} gt O; 
c= getfirst( this process); · 
if ancestor(c) E users then /*true for case a*/ 

if (3x(i)E backlog I priority(x(l)) It priority(info(c))) then 
/*insert new item after all jobs having the same or higher priority but ahead of jobs 
having lower priority*/ 

backlog(i:) =info( c) + backlog(i:); 
else backlog(#backlog+ l)=info(c); 
end if 3x(i); 

end if ancestor( c); 

/*Note that in case b, for which no explicit code is provided in what follows, we put an 
item on the scheduler workqueue to 'awaken' it. After 'awakening', it may find that 
additional work can be scheduled, since the termination of an old job will have freed some 
resources.* I 

newmerit: 
if #backlog eq O then 

/*There are no jobs to consider for scheduling.*/ 
go to schedule; 

end if; 
m = merit(workload); 

/*If no resources_ are underloaded and there are at least two user programs running 
concurrently, the scheduler waits to have another request enqueued on it.*/· 

if m eq O and #userprogs gt 1 then 
go to schedule; 

end if; 
/*find first job for which there are enough resources and which does not increase the 
figure of merit*/ 

(Vx(i) E backlog) 
<job,input> =x; 

/*Set 'testmerit' to the figure of merit of the set of currently scheduled jobs augmented 
by the candidate job, 'job'. If the figure of merit does not improve, i.e., diminish, then 
consider a different candidate.*/ 

testmerit=mcrit([ + :z(j) E esttime(job)]<z+workload(j) > is testworkloacl); 
if testmerit gc 111 then continue Vx(i);; 
(disable) /*to preserve integrity of space tables*/ 

/*For a potential job to be run, first determine whether there is sufficient main 
storage.*/ 

if not(3y(k) E freesize I y ge space(job)) then 
continue Vx(i); 

end if; 
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/*Now form the set of devices needed, and for each device, the set of files for this 
job on that device.*/ 

newdevices=nl; 
(Vvol E resources(job)) 

if (Vdevicec devices*ready I mounted(device) ne vol) then 
/*Volume must be mounted.*/ 

dev=arb{ d E devices I type(d) eq catalogue(vol) ('device') 
and mounted(d) eq nl}; 

if dev ne Q then /*job might be selected*/ 
< dev, vol> in newdevices; 

else /*Not enough devices for this job now.*/ 
continue Vx(i); /*Look at the next job.*/ 

end if dev; 
end if (Vdevice; 

end Vvol; 
/*Sufficient resources, and an improvement of the figure of merit. Prepare to 
interpret JCL. First, update the tables to account for the main memory to be used 
by the selected job.*/ 

< origin,freesize(k) ,freeloc(k) > = 
<freeloc(k) ,freesize(k)-space(job ),freeloc(k) +space(job) >; 

if freesize(k) eq O then 
freesize(k:) =freesize(k + 1:); 
freeloc(k:)=freeloc(k+ 1 :) ; 

end if; 

/*Create output file for the new job.*/ 
catalogue( <job,newat> is output) = 

{ <'device',tempdisc>,<'space' ,filesize>, <'disp', {'cat' ,'leave'}>}; 
allocate (output); 
userprogs(job) =newat; 

/*Create a job control analyzer process.*/ 
split to < <job,newat>, jobmonitor> <input,output,origin> for thisprocess; 
workload= testworkload; 

/*Issue mounting messages for volumes required by the selected job.*/ 
(Vvols E newdevices) 

mounted(hd vols is dev) = newdevices(dev); 
operatormessage('mount' ,mounted(dev), 'on device' ,dev ,'for 'user' ,user(job) }; 

end Vvols; 
go to newmerit; /*one job found -- now look for more*/ 

end disable; 
end Vx(i); 

/*No more jobs can be scheduled at present.*/ 
go to schedule; 
end scheduler; 

I* *************************** *I 
/ * JOB CONTROL INTERPRETER * / 
I* *************************** *I 

define jobcontrol; 
/* Job control now has an additional parameter transmitted through initialvar, the origin of 
the memory space assigned to the job. The size of the memory space is in the system table 
called 'space'.*/ 

jobmonitor: 
<input,output,origin> = process parameter; 
timeleft(mov) =esttime(mov) ( 1); 
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end job: close (hd output,outputname); /*User's output file is complete.*/ 
unhook(outputname); /*Detach it from job control interpreter.*/ 
enqueue outfile on outspool for mov; /*Pass output to output spool.*/ 
unhook(inputname); 
userprocess out userprogs; 
enqueue nl, on scheduler for thisprocess; /*Reawaken the scheduler!*/ 
resources(mov) =Q; /* Allow job's volumes to be released.*/ 

(disable) 
/*Update the estimated workload*/ 

(Vy E esttime(job)) 
estwork(i) =estwork(i)-y; /*Overall workload*/ 
workload(i) =workload(i)-y; /*Multiprogramming-set workload*/ 

end Vy(i); 
esttime(job) =rl; 

/*Update the system table of available memory space by marking the space of the termi­
nated job as free. If two or three blocks of free memory are contiguous, combine them into 
one large free block.*/ 

i= [max:x(k) E freeloc I x lt origin] k 
if i eq Q then 

if origin+space(mov) eq freeloc(l) then 
freesize( l) =freesize( 1) +space(mov); 

else 
freesize =<space (mov) > + f reesize; 
freeloc= <origin>+ freeloc; 

end if; 
else if freeloc(i) + freesize(i) = origin then 

freesize(i) =freesize(i) +space(mov); 

else 

if freeloc(i) + freespace(i) eq freeloc(i + 1) then 
freesize(i+ 1:)=freesize(i+2:); 
freeloc(i + 1 :) =freeloc(i + 2:); 

end if; 

freeloc(i:) = <origin> +freeloc(i:); 
freesize(i:) = <space(mov) > +freesize(i:); 

end if; 
term; 

end disable; 

I* *************************** *I 
/ * FILE MAP MAINTENANCE * / 
I* *************************** *I 

define unhook(programfilename); 

/*Indicate that the unhooked file is no longer active on the physical device on which it 
resides. If no program files are assigned to the device, indicate that the device does not 
have a volume logically mounted. However, volumes required by the scheduler as 
indicated by resource(job), are unaffected.*/ 

if VpfnEprogramfiles I catalogue(userfile(pfn))('volume') ne mounted(d) 
and not(mounted( d) nesources[moverpart{ user jobs}]) then 
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I* *************************** *I 
/ * FIGURE OF MERIT * / 
I* *************************** *I 

/*See the discussion of figure of merit in section 4.2. * / 
definef merit(v); 

/*em is the estimated workload of the heaviest loaded resource in the total workload of the 
system.*/ 

em= [max:x(i) E estwork]x; 
/*vm is the estimated workload of the heaviest loaded resource in the subset of jobs whose. 
load-vector is given by v. * / 

vm=[max:x(i) Ev]x; 
return [ + :x(i) EV ](0 max (x/vm-(estwork(i)/em))); 
end merit; 
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4.6 Possible Enhancements to the Batch Systcins 

A variety of enhancements to the systems presented in Chapters III and IV can be made with 

reasonable effort and without changing the systems' overall structure. 

The input spool readerassumes that JCL is presented in standard SETL format (see Appendix A). 

This assumption is made for pedagogical reasons to avoid cluttering the code with parsing routines 

which are only incidental to the system's structure. To accept conventional input, the SETL read 

statements at 'mainloop' and 'discard' in input spool should be replaced by the SETL record 

statement to get the JCL statement as a string of characters, followed by a call to a parsing routine 

which converts the string to SETL structures. A more versatile JCL macro system which allows 

additional parameters to be passed appears in the interactive system of Chapter V. 

The set of operator commands is quite limited. Rather than just allowing a 'hi priority' command 

to advance a selected job to the head of the scheduler's queue, we can allow the operator to 

request the following: 

a) Reassign priorities to jobs in the scheduler's queue, 

b) Terminate running jobs, 

c) Remove jobs before beginning execution, 

d) Prevent printing the output of a completed job, 

e) Terminate the printing of undesirable output. 

Enhancement a) requires that we overwrite priority(j) for job j based on the operator's input. To 

be effective, the scheduler must also be modified to take the priority data structure (which is 

already being maintained by the system) into account. 

Modification b) requires that we determine the process-id of the job which the operator wishes to 

terminate, and simulate a "monitor('abend');" statement. Enhancements c) and d) merely involve 

examining the workqueues for the scheduler and output spool, and purging the appropriate item. 

In case c), we also require some bookkeeping operations which purge certain system data­

structures of items related to the cancelled job. 

It is more difficult to implement a command allowing the operator to suspend a running job until a 

later time, while allowing other jobs to run. Device-positioning must be saved in case other 

volumes are mounted on a suspended job's I/O units, and, if our multiprogramming system runs on 

hardware which does not support moving executing programs from one place in memory to 

another, then the job will have to occupy the same memory locations when it is resumed. 

The operator can also play a greater role in describing the status of the various hardware compo­

nents to the operating syslem. By declaring certain components as being unavailable, the operat­

ing system could continue in a degraded mode in which jobs requiring the unavailable devices 

would be delayed, while other jobs could be run. We could also allow the operator to override the 

system's device allocatioi1 given in mounting messages, although this can be tricky, since the 

system amy have made additional allocation decisions based on the one which the operator has 

overridden. 
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The device allocation features of our batch systems can be strengthened in several ways. First, a 

better choice of device on which to mount a volume can be made by trying to balance the load on 

all channels having identical devices. This is a relatively easy modification, requiring use of the 

'channel', 'units', and 'estwork' data structures. Alternatively, the operating system need not 

dictate to the operator which of several identical units to use for volume mounting. The operator 

can indicate his choice of unit via a command, or, if the hardware generates a distinguished 

interrupt at the conclusion of mounting, the software can deduce the device chosen without further 

interaction by the operator. 

Another allocation problem arises when a data file being written becomes larger than the declared 

file size. The 'readwrite' section of the monitor services routine detects this condition when the 

logical file position is compared to the maximum file size. At this point, the 'allocate' routine 

would have to be invoked. Some care in design is needed to avoid endless recursion, since 

'allocate' uses I/0. The 'allocate' routine should probably give preference to free space on the 

volume(s) on which the file already has its extent(s). The catalogue's structure already permits 

multiple extents for a file (i.e. non-contiguous blocks), but our systems do not exploit this. 

Several alternatives exist to the scheduling and dispatching algorithms used in the systems which 

have been presented. In our sample code, all scheduling decisions are reserved to the scheduler, 

with very minor interaction from the JCL interpreter in the uniprogramming system to achieve 

overlap of setup time. Hence, experiments with schedulers can probably be carried out with no 

structural change. Dispatching decisions are almost entirely confined to the dispatcher. In some 

instances, after a monitor service routine completes an activity, it does reactivate its caller by 

placing it directly on the CPU workqueue. In experimenting with dispatchers, some care regarding 

such modifications of the CPU workqueue may be needed. 

More difficult, pervasive changes are required to add consistency checks to the operating systems. 

Such checks are almost totally absent in the code presented here, although these checks are the 

only software analogue to hardware error detection circuitry. As an example, the rereading of JCL 

by the JCL interpreter has no error checks, because it operates on the assumption that input spool 

would have rejected the job if it contained JCL errors. This assumption ignores possible 1/0 

errors on the one hand, and possible processing errors on the other. There are also many instances 

in the 1/0 interpretation part of our code where the system data structures are assumed to always 

correctly represent the state of the 1/0 devices, although this can be checked by interrogating the 

1/0 devices' status. 

System support functions are lacking. A bootstrap loader is required to load the first portion of the 

operating system when the console load-button is pushed at the start of operations. Because of the 

extreme machine dependence of such programs, no dictions have geen put into PSETL to describe 

the necessary actions. 

In any actual operating system it will from time to time be useful to reclaim unused space on 

shared secondary storage volumes. That is, the files should be rearranged so that all the unused 

space is contiguous. A program to carry out this function can be written to run under the operat­

ing system, provided it can be given special privilege to access the system's catalogue. It can be 

implemented most easily as a 'stand-alone' program, that is, a program not multiprogrammed with 
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other activity. However, it can also run multiprogrammed, but it must then interact with the 

scheduling and allocation routines to avoid disrupting files already in use. 

Our systems have been written as though all the system's data structures were resident in main 

memory. Often this is impractical, and the operating system must resort to I/O to access these 

structures. With some care, our implicit assumption about main memory residence can be removed 

without major modification of the code. References to non-resident data structures become 

subprogram calls, and for each such structure a subprogram is required to manage it. If this 

approach is adopted, then some care will be required to conform to our restrictions on the use of 

disabled blocks. 

In reality, computing systems have finite storage resources. In recognition of this limitation, users 

cannot be allowed to specify arbitrarily many files of arbitrary size which are to be catalogued by 

the system. A limit should be set on the total storage which a user's files may occupy; this limit 

should be enforced by 'allocate'. Similarly, a limit should be placed on the number of files which a 

user can enter into the system catalogue, for to do otherwise would require the catalogue to grow 

to unmanageable proportions, and the time to access information in the catalogue would become 

excessively long. Among the methods which can be employed to determine each user's limits are: 

divide the available resources equally among all users, require the system administrator to specify 

maximum allocations for each user, assign additional space to users who access a high percentage 

of their files, and require owners of inactive files to copy them from shared volumes to private tape 

and to drop the file from the catalogue. 
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Chapter V 

An Interactive System 

5.1 Introducation 

Our previous operating system examples were oriented to batch processing, in the sense that the 

systems were not designed to allow the user to interact with his running program. We shall now 

describe an interactive system, which allows the user to remain an active participant during the 

computer's execution of the job. 

There are several factors which motivate allowing users "on-line''. First, it is often difficult to 

anticipate the outcome of a job step, and even more difficult to anticipate the correct remedial 

action in the event of a job step's failure. The JCL mechanism provided in the preceeding systems 

allow job steps to be sequenced in the absence of the user, but JCL is clearly not a powerful 

language. Giving JCL greater flexibility would increase the problem of debugging JCL code. This 

difficulty can be resolved by allowing the user to sit at a console and determine the appropriate 

actions as various situations arise. 

Moreover, even when a program is debugged, the data we wish to give it may depend on the results 

of previous job steps. The user likes to be in a position to see partial results and enter new data. 

Using terminals, several interactive users can share a computer by the use of multiprogramming, 

but some radical adjustments have to be made to the systems of Chapters III and IV before we 

have a reasonable time sharing system. Two of our multiprogramming strategies have to be 

completely replaced: we do not only wish to permit a subset of jobs to run concurrently if the total 

resource requirements of the subset does not exceed machine capacity, and we may have other 

aims in scheduling than simply to optimize a performance figure of merit. With users on-line, the 

delays associated with batch processing are unacceptable for certajn interactions which are known 

to take very little computation. Thus, requests recently received should have relatively high 

priority for scheduling. Conceivably, every new request might get dispatched almost at once, but 

since this would overcommit main memory and CPU resources, some form of preemption must be 

possible, and substitute memory must be used for a preempted job. The dispatcher must adjust its 

priorities; a job which uses substantial resources is clearly not one for which quick response should 

be expected, and such a job's priority may decrease to make possible quick response to "trivial 

requests". 

Note that, as is now conventional, we view the system's storage as a hierarchy of memory devices. 

The fastest, smalle.st of these devices is main memory. Then, in order of decreasing performance 

and cost per bit but increasing capacity, are devices such as slow bulk core storage, drum, disk and 

tape. These devices will be called secondary storage. Only main memory (and in some cases, bulk 

core storage). has the property of being directly accessible by the CPU. If the total memory 

requirement of the scheduled jobs exceeds main memory capacity, some of the main memory 

images must be kept on the slower devices in the form of files. Then, a main memory image must 

be copied from secondary storage to main memory before the corresponding user can execute his 

program. Likewise, it may be necessary to move a program from main memory to secondary 

storage to make room in main memory for another user's program. The strategy for memory 
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management depends on many factors: performance requirements, limitations on the fraction of 

primary storage available to any one user, and the hardware addressing scheme. 

Device Type Access Time Capacity (bits/ device) 

Bulk core storage 1 to 10 µ,s. 106 to 108 

Drum 2 to 30 ms. 107 to 108 

Disk 30-300 ms. 107 to 109 

Tape 7 ms-I min. 107 to 109 

Table 5. I Typical Memory Hierarchy Device Characteristics 

5.2 Command Language 

Since the user is interacting with the system, there is less need for him to put together a sequence 

of commands to be performed without further user action. Commands will therefore be treated as 

imperatives, to be executed immediately. The command language will be significantly richer than 

that defined for our batch system; we will introduce a more general command structure which 

allows each user to also introduce his own commands. 

A command will have the form: 

where cname is the command's name (the verb of an imperative, so to speak), and a1,a2, ... ,a0 are 

arguments. Corresponding to 'cname', there must exist a file in a library, which consists either of 

an executable program, or of a sequence of more primitive commands. In the first case, the 

program is executed and passed the parameters. In the second case, each command in turn gets 

executed with the arguments substituted for parameters in the library commands. We will also 

provide for commands to- be invoked from running programs by means of monitor calls. The 

command shown above can be invoked from a running program as follows: 

With this facility the user can be spared the trouble of issuing standard commands; an auxiliary 

program can do this for him. 

In the system to be described, the code needed for carrying out the various commands is not . 

generally kept in main memory. Command interpretation makes use of a loader which moves the 

appropriate code to carry out the command to an available portion of main memory. 

The interactive system to be described avoids many of the JCL-related complications which arose 

in connection with the previous systems, because commands are analyzed only once. In the batch 

system, JCL is first analyzed by 'input spool', which collects information about a job into system 

tables. The scheduler uses these tables to make its scheduling decisions, and the job control 
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interpreter checks these statements again, perhaps bypassing conditional job steps, and also 

specifying the devices on which certain files should be mounted. 

In the interactive system, commands are executed immediately after analysis. A reference to a 

dismounted file will cause an operator message to be issued, and the user will experience a delay 

until the mounting can take place. However, in a well designed time-sharing system, the vast 

majority of active files are always kept on-line. To make this possible, the operating system must 

include code which allocates on-line secondary storage among users and which causes inactive files 

to be automatically moved to archives which either are on-line but have very long access times, or 

which are off-line. (This aspect of storage hierarchy management is not shown in the code which 
follows.) 

Having said all this, we now go on to list and describe. the most significant 'primitive' commands, 

all of which we assume to be provided with the system. 

5.2.1 Logon 

The logon command has the form: 

<'logon' ,user-name> 

where user-name is the string of characters by which the user identifies himself to the system. The 

logon command must be the first command issued in a user session. (A "session" is the interactive 

analogue to the batch system's "run".) If the logon-program finds that the user's name is in its set 

of valid user names, it will ask the user to produce a password, i.e. a second identifier known to 

the user, but presumably not to any other user of the time sharing system. The password provides 

an extra measure of security for the interactive user against unauthorized use of his files or his 

resource budget. 

We point out that a password as a means of identification is necessary, because it will be inconven­

ient to have users keep their user-names secret. It will be advantageous to have users communicate 

among themselves, and the user-names will be the means by which they identify themselves and 
the other users with whom .they wish to communicate. 

If the password given is correct, the logon-program executes the command 'setup'. This allows the 

user to automatically have certain actions performed on his behalf whenever he starts a session, 

rather than to have him reissue commands manually for these actions. Of course, it is the user's 

responsibility to define a file called 'setup'. If none exists, then no additional action is taken by the 

logon-program. After 'setup' is executed, the system awaits a command from the user. 

5.2.2 Logoff 

The logoff command has the simple form: 

<'logoff'> 

It is used to end a session, and is a signal to the system that memory space and CPU time will no 

longer be needed by the user who logged-off. In addition, if there is a hierarchy of devices on 

which files are stored, the user's files may be moved to a slower level of the hierarchy. 
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5.3 Main Memory Structure 

If we were to assume that the programs for all active users fit into main memory, then certain very 

significant problems of memory allocation and performance which arise in connection with 

interactive systems would be hidden. We therefore choose to represent 'memory management' 

issues explicitly, and to assume that the total user demand for main memory exceeds the supply. 

The memory management scheme chosen for use in connection with any particular timesharing 

system will always depend on the nature of the hardware. For simplicity in the treatment to 

follow, assume that our hardware has a base and bound relocation mechanism, in which a base B 

and a bound L are specified. A reference to main memory location x will be treated by the 

hardware as a reference to x+B, provided that x<L. An error interrupt results if x~L. 

We will assume that there is a component of the environment called relocate which contains the 

appropriate pair <B,L> for the process. The code for a running process p may be moved from 

one contiguous area of memory to another, • so long as the first component of 

relocate(environment(p)) is adjusted accordingly. Such a relocation scheme makes it possible to 

force all running processes to one end of main memory in order to leave a contiguous block of 

unused memory of maximum size. 

Long running processes may be preempted in order to permit newly started commands to be 

executed (see 5.1). Such processes may have their main storage contents copied to a slower level 

of the memory hierarchy until the scheduler tries to resume execution of the process, at which time 

the memory contents are copied back to an appropriately large, available, block of main memory, 

but not necessarily the same area it had occupied previously. 

When the operating system exploits the memory relocation feature, it will move user areas within 

main memory, or between main memory and secondary storage. To show this code, we need a 

diction which allows us to reference specific locations in the main memory. We will use a special 

variable, memory, to represent all of main memory as a vector. Consecutive components in the 

vector are contiguous locations in main memory. References to memory are not relocated; thus the 

operating system can control memory even if its relocation base is non-zero. Processes which do 

not have system privilege c·annot access memory. 

5.4 The File System 

Users, communicating with the computing system from a terminal, possibly at a remote site, will 

prefer to keep their data in the system's memory hierarchy between sessions. This data includes 

not only information to be processed by the user's programs, but also his programs, both in source 

and object forms, partial results for future computations, and files of commands. We will refer to 

this collection of information as the 'file system'. 

The file system is the most important component of a time sharing system. With its loss, a user 

community would have to reconstruct all its data and programs to become operational. With the 

file system intact and a loss of the CPU, a substitute CPU would enable the user community to 

work; since the users are remote from the CPU, the substitute CPU need not even physically 

replace the original one. If all user programs are in a higher level language in which underlying 

-102-



machine details are suppressed, a user community could operate on several dissimilar CPUs, 

provided only that compilers for the higher level languages are available for the various types of 

CPUs: 

5.4.1 File Names 

We allow file names to be simple names or compound names, where the components of the name 

are separated by periods, e.g. 'source.squareroot'. Compound names can be used to differentiate 

in a consistant manner between several files relating to the same object. For example, associated 

with a square root routine may be the source program in SETL, the object program in a form 

suitable for use by a program loader, and a listing of the program as produced by the SETL 

compiler, showing the translation produced as well as diagnosti_cs. In this example, we've identi­

fied three different files associated with the square root routine, and these might be named 

source.squareroot, text.squareroot, and listing.squareroot, respectively. Then, in order to compile, 

one might issue a command such as: 

<'compile', 'squareroot'> 

and the compiler, itself, will issue a file command for source.squareroot to obtain its input, and 

text.squareroot and listing.squareroot for its machine language and printed outputs. The user, in 

communicating with the loader, need just reference 'squareroot' again, because the loader, by 

convention, accesses only files with compound names beginning with 'text'. 

5.4.2 Commands for the File System 

Files, especially those kept in the memory hierarchy previously described (as opposed to being 

stored externally) are the most important objects in the time sharing system. All of a user's 

information is kept in files from session to session. As before, we must distinguish between user 

file names and program file names. A file command is provided to give a user-name to a file. The 

most .common form is: 

<'file',f> 

Such a specification defines a file with user file name f to be in the storage hierarchy and sufficient 

space will be found for the file within the user's limits for his total storage allocation. No further 

parameters are ordinarily necessary although the other parameters of section 3.2.3 are still 

available for defining files not in the storage hierarchy which is managed automatically by the 

system. Files remain in the storage hierarchy from session to session, unless removed by the 

command: 

<'erase',f> 

The relation between a program file name and a user file name is established by the define 

command: 

<'define',p,f> 
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In the above example, the program file name p is associated with user file f. The relation between 

a program file name and a user file name holds only throughout one session or until the program 

file name is redefined during the session. 

Since commands may be executed by running programs, many programs will be designed to issue 

file, erase, and define commands and relieve the user from explicitly giving such commands from 

the terminal. 

5.4.3 Communication between Users 

In our previous discussions of operating systems, there had been a strong emphasis on the 

separation of users. The boundaries portion of an environment (cf. section 4.4) was devised to 

limit a user's reference to his own portion of main memory; the relocation mechanism (Sec. 5.2) 

likewise restricts a user to his allocated memory. The file naming scheme of section 3.2.3 and the 

supporting table structure of 3. 5 .1 prevent a user from accessing files other than his own. 

With multiple users on-line, the use of the computing system as a communication medium becomes 

feasible. First, we can simply allow messages to be passed from one user to another by a simple 

command such as: 

<'message' ,ul ,'text'> 

This would result in 

'From u2: text' 

printing on u 1 's terminal, where u2 is the user-name of the user who had given the 'message' 

command. 

A more interesting aspect of communication is the sharing of files. We. provide a command by 

which a user may specify that a certain file may be used by other users: 

<'permit' ,f ,s,c> 

where f is a user file name, s is a set of user names, and c is a set of codes designating the types of 

access which may be made to the file, e.g. read, write, execute, or erase. In the case of execution 

access, the file is available only to the system loader when used by a sharer. That is to say, read or 

write requests will be rejected if issued by a sharer's process. 

A user u2 who is· permitted access to a file belonging to ul indicates the name he gives to the 

shared file by a command such as: 

<'share' ,ufn2,u 1,ufn 1 > 

where ufn2 is the user file name by which user u2 will refer to the file, and ufnl is the name which 

the owner ul had given to the file. The effect of permit and share commands remain in force 

across user sessions, until permission to share is withdrawn by means of a permit command 

specifying no access codes, or by dropping the user file name of a shared file from the catalogue. 
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We also allow a user who is sharing a file to permit others to share the file, providing that he only 

allows those types of access which he himself had been permitted to use. 

To support file-sharing we must use a more complex catalogue than would otherwise be necessary. 

For each file f, catalogue(f)('permit') is a set of pairs of the form <u,x>, where u is a user (other 

than the owner), and r is the set of access rights which user u has to file f. For an unshared file, 

catalogue(f) ('permit') is nl. If a file g results from sharing user v's file h, then 

catalogue(g)('share') eq <v,h>, whereas if g does not result from sharing, catalogue(g)('share') eq 

n. 

5.4.4 Libraries 

Related data files may be organized into a structure ·which we will call a library. A library is a file 

whose contents is a list of file names. This structure facilitates transmission of a set of files to a 

subprogram or to another process. Libraries may be shared between users in the same way as 

ordinary files are. When a user is allowed to share a library, all the files in its index become 
accessible to the sharer. 

The operating system itself consists of several libraries, some of which only it may access, and 

some of which are accessible to users. The subprograms which interpret the various operating· 

system commands are kept in a library of relocatable programs. Programs of use to the general 

user community are kept in system libraries to which all users have read and execute access 

privileges. A user who develops a package of routines which he feels is useful to others can create 

a library and permit similarly general use of it. 

Certain system routines will search sequences of libraries for particular files. Examples of such 

routines are those involved in command interpretation, program loading (subroutine libraries), and 

compilation (macro libraries). Associated with each such routine and each user is a vector of 

library names. Initially, the vector may contain only the name of the system supplied library. By 

using a 'searchorder' command, the user can replace the vector with one of his own, thereby 

causing his libraries to be searched. To avoid his having to remember the name of the system's 

library, an'*' is used instead. Thus, if a user wants two of his libraries to be searched in program 
loading, one before the system library and one after it, he would give the command: 

<'searchorder','loader' ,'libl ','*','lib2'> 

The effect of a searchorder command remains in force until another searchorder command is 

issued for the same function, or until the end of the current session, whichever comes first. If a 

user wishes to establish certain library search orders as a matter of course, then corresponding 

commands should be made part of that users 'setup' file (see 5.2.1), so that they will be issued 

automatically at the start of each session. 

5.5 Organization 

Our system will be divided into three major portions: a nucleus, privileged system commands, and 

non-privileged system commands. The nucleus is always present in main memory, has a relocation 

base of O and access to all main memory. Privileged commands and non-privileged commands 

have a non-zero relocation base and thus cannot directly access all the system data, but special 
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monitor services enable them to access part of this data. Non-privileged commands are indistin­

guishable from user programs. 

5.5.1 The Nucleus 

The nucleus consists of interrupt handling programs which are largely concerned with scheduling, 

the timer, dispatching, creation and termination of sessions, main memory management and 

command interpretation. There are monitor services which allow user and less privileged portions 

of the system access to I/O and timer functions, etc. (See 3.3 for a description of these services). 

In addition, there are monitor services which allow privileged commands access to system data. 

All unused terminals are monitored by a special nucleus process, which upon reading a line from a 

terminal verifies that a valid user has issued a logon command. Ip this case, a mover is created, and 

that mover is initialized to execute the command interpreter. 

The scheduler selects a subset of non-waiting processes as eligible to run. Multiprogramming takes 

place only over this subset, under control of the dispatcher, until the scheduler alters the subset of 

eligible processes. This subset is altered when a process terminates or is created, when demand on 

the memory hierarchy changes, or when a member of the current set of eligible processes exceeds a 

bound on the amount of service received. When a new process becomes eligible, memory 

management may be invoked to make room for the process, either by moving main storage areas 

for running processes toward the lowest numbered memory locations in order to create a large 

block of unused main memory, or by copying the memory of ineligible processes onto secondary 

storage. 

The dispatcher allocates CPUs to eligible processes. A clock and a11 interval timer are used to 

control the amount of uninterrupted CPU time given to a process; the dispatcher generally gives 

short bursts or quanta of CPU service to the eligible programs in round-robin fashion. 

The command interpreter for our time sharing system (which comes into play once logon has been 

successfully completed) uses the user's vector of command libraries to determine which libraries to 

search for the file defining a particular command. If a command file consists of further commands 

rather than a program, then the command interpreter is invoked recursively. If a command file is a 

program, a block of contiguous memory of appropriate size is allocated to the user, the system 

loader moves the program into this block, and control is given to the program, which is initially 

given high priority for scheduling consideration. The base and bound for the program are set so 

that direct reference can only be made to main memory allocated to the program. If the program 

was loaded in response to a privileged command, then the program has additional monitor services 

available to manipulate system data. 

5.5.2 Privileged System Commands 

Privileged system commands include 'logoff', the file system commands described in 5.3, and 

memory hierarchy management commands. These commands, being privileged, can use PSETL 

disable blocks to guarantee orderly use of shared sets, such as the catalogue. In this implementa­

tion, these commands are interpreted by subprograms to the command analyzer which are in the 

scope of the system nucleus. Thus, the system data structures (see 2.4.1, 3.5.1, and 5.7.1) are 

accessible to these subprograms. 
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(In a more general implementation, the privileged commands could be executed by loading and 

executing system modules much in the same manner as user modules are loaded and executed. In 

such a case, the addressing structure of our machine would make the system data unaddressable by 

these modules, and special monitor commands, usable only by privileged commands, would be 

required to enable these system modules to access and modify system structures.) 

5.5.3 Non-privileged System Commands 

The non-privileged system commands provide utility services to users but do not differ from 

ordinary user-written programs. Examples are compilers, sorting routines, and file editors. 

Because such utilities do not have any characteristics peculiar to operating systems, these programs 

will not be further discussed or shown. It should be noted, however, that these utilities are often a 

user's principal interface with the interactive system. The success of a time sharing system is 

strongly affected by the quality of utilities of this type. File editors, in particular, are very 

important utility programs. 

5.6 Remarks on the Interactive System 

In some respects, the code for the interactive system is easier to follow than that for the two 

previous systems. For the non-interactive systems, JCL is used to specify a sequence o{ job steps 

and the interrelationships .among the job steps are established through the file· system. The 

interactive system is oriented more toward handling single commands, and the mechanisms which 

relate file references from one command to the next are not as elaborate. Scheduling decisions are 

also simpler, since optimization of resource usage over substantial periods of time is not being 

attempted. Preemptive assignment of main memory removes the necessity of long range schedul­

ing for that resource. Dispatching of processes does become more sensitive, since processes are 

originally assumed to be short running and given priority on that basis. If the assumptions of small 

resource requirements proves incorrect, dispatching and scheduling must be adjusted. 

5.6.1 Logon 

The iogon process operates from a workqueue on which idle terminals are queued. The process 

initializes itself by putting all the terminals on its workqueue. 

Reads are issued at label 'idle' for all idle terminals. When the process is notified of completion of 

the read by means of an I/O interrupt at 'termfixup', it checks for a valid user logon. Not only 

must the user's identification be valid, but he must not already be logged on. If a valid user logon 

command has been accepted, he must next enter his password. The terminal handling to this point 

has employed asynchronous basic monitor functions (see 3 .3) so that one process can control 

multiple devices without any implicit waiting for completion of terminal read operations. The bulk 

of terminal input processing then takes place in the I/O fixup routine. After a user has identified 

himself and given the correct password, a process which accepts and interprets commands for that 

user's session is created. The log-on process detaches the user's terminal from itself. 

5.6.2 Command Analyzer 

For each process (user session) executing the command analyzer, an initial block searches the 

system's profile library to get the defaults and library searchorder for the user on whose behalf the 
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process is running. Initialization ends by executing a 'setup' command;this automatically executes 

the user's setup procedure if one exists, after logon. 

In the command analyzer routine 'source' is a vector of input file identifiers, the first component of 

which is the current input file. This vector serves as a pushdown stack of file names, new names 

being added to the head of the stack whenever a command invokes a file of commands; names are 

dropped from the head of the vector whenever the end of a file of commands is reached. 

With the exception of the simulated read of the setup command, all command reading takes place 

at the label 'readdata'. If the command is read from a command file rather than the terminal, 

references to parameters are replaced by tl).eir values. Parameters are encoded by a'$' followed by 

an integer. The integer describes which of the arguments of the command which invoked the 

current input source is to be substituted. The string of arguments from that command are saved as 

the first component of 'argumentstack'. 

Analysis of a command begins at the label 'lookup'. If the command name is that of a built-in 

command, then the code corresponding to that command is executed. Otherwise, the libraries 

pertaining to commands, modules, and text are searched, in that order, for an object whose name 

agrees with the command name. 

If a command-file is found whose name agrees with the command name, then at label 'foundc' that 

file becomes the new input source for the command analyzer, and the remainder of the original 

command gets saved as the first component of 'argumentstack' to substitute for parameters· 

encountered in commands read from the new source. 

If a command name is found to refer to an executable main memory image (we shall call these 

images 'module files'), a block of main memory of sufficient size is reserved for the module, and 

the module is read into main memory. A state description for a user program is created, and 

relocation boundaries are set up to restrict memory references to the block of storage just obtained 

for the module. A process for the module is initiated, and the command analyzer (that is, the 

command analyzer instance working for the user whose command was just read) waits for an item 

to be placed on its workqueue. 

There are two ways in which an item can become enqueued on the command analyzer's 

workqueue. When a user process terminates execution (see the 'abend' and 'endstep' monitor calls 

at the end of the code of Sec. 5.7.2), the terminating condition is enqueued on the command 

analyzer and the ancestor of the terminating condition is set to nl. 

When the command analyzer is being invoked recursively by a user process, then the arguments for 

the command are enqueued on the command analyzer on behalf of the process which issued the 

monitor call (see section 5.2). The current user process is suspended, and a new user process is set 

up. Then (at 'readdata'), after the recursive command has been obeyed, the former user process is 

reactivated. 

To prevent endless recursion of commands and to limit the amount of secondary storage space 

~hich a user can occupy, a maximum of ten levels of recursion are allowed. If an eleventh is 

requested, execution of all levels of recursion terminate, after which the user may enter a new 

command from his terminal. 
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If a text-file's name agrees with the command name, then an object file (that is, the machine 

language output of a language processor) exists tci carry out the command. The distinction 

between a text file and an module file is this: the module is an image of the initial state of main 

memory of code which can be executed. A text-file is the output of a compiler, and may have to 

be combined with compiler output for missing procedures before an executable memory image 

exists. This processing is carried out by the loader. When a command refers to a text file, the code 

at label 'foundt' prepares to load the system module corresponding to the loader, and then causes 

the loader module to be fetched. The loader, when it executes (not shown here) takes the 

command data as input to determine which text files are to be loaded. 

5.6.3 Main Storage Management 

The procedure getblock is a queued subroutine which finds and allocates a block of main memory 

to a process. If the size of the requested block is too large, then getblock immediately returns rl. 

The getblock procedure uses three vectors to describe storage allocation. The vector memloc gives 

the starting locations for all memory blocks, the vector memsize gives the sizes of the blocks, and 

the vector memown identifies the processes which own the blocks. 

First getblock attempts to satisfy the request without relocating any blocks of memory. If an 

unowned block of at least the requested size exists, a memory block of the required size is 

allocated to the process specified by P. 

If a sufficiently large block of contiguous storage does not already exist, then the disabled block 

following the label 'addup' computes the total amount of unused storage, and if enough storage 

exists, then the allocated blocks of memory are moved to lower addresses in order to collect all the 

unassigned memory into a contiguous block. As each assigned memory block is moved, the 

relocation portion of the environment of the process associated with that storage block is adjusted 

to reflect the new base of the process's main storage. 

If insufficient free storage exists even after compacting used storage, then those blocks of main 

storage belonging to processes which are considered ineligible for scheduling are marked as 

belonging to the requesting process, and the contents of those blocks are saved in secondary 

storage. The statement: 

must=3y(j) texts tore I y eq pr; 

sets j to the number of the block in secondary storage which is devoted to holding the memory 

image of a process pr which is being displaced. The string 'secondarystorage' represents the 

system file which holds the memory images of processes which have been preempted from main 

memory, and extstore is the map which determines where in the secondary storage area a process's 

memory image is saved. 

In any case, once a block of storage has been found, control reaches the block of code labelled 

'final', where the memory maps are updated to reflect the assignment just made. 
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5.6.4 Scheduling and Timing 

An eligible process is one which can run given main memory .space and control of the CPU, but is 

not momentarily being considered for control of the CPU by the dispatcher. The scheduler uses 

two work queues of eligible processes. The first queue, 'hiprio', contains the identifiers of 

processes which the system assumes are of high priority. System processes, and processes which 

had been started as the result. of commands issued from a terminal but which have not used more 

than a predetermined amount of resources are queued in 'hiprio'. Processes which have exceeded 

the threshhold which separates quick running from long running interactions are queued in 
'lowprio'. 

The scheduler waits until 'hiprio' and 'lowprio' are not simultaneously empty. It then calls a 

subroutine, sched, passing the highest priority, non-empty work: queue as an argument. Note that 

sched and getblock must not interfere with each other during execution. Without care, this could 

occur, since getblock looks for eligible processes which have main memory blocks assigned, and 

seizes these blocks to carry out its function, while sched must determine if the process it has 

selected is already in main memory. To avoid interference, both subroutines are queued on the 

same facility, 'blockflag'. If sched determines that the selected process is not in main memory, it 

calls getblock to reserve a memory area of sufficient size, and adjusts the relocation portion of the 

selected process's environment for its new memory assignment. Finally, sched resets the time used 

in the current time slice to zero, and it places the scheduled process at the end of the CPU's 

workqueue. The scheduler attempts to schedule more processes so long as processes remain in the 

queues hiprio or lowprio, and so long as memory is available. 

Control goes to the block of code labelled 'timexpt' whenever there is a timer interrupt. If a user 

program was interrupted, the time used since the interrupted process has been dispatched is 

computed, and added to the total time used during the current timing period. If this total exceeds 

the time "quantum" allowed for the process then the CPU time used during the current timing 

period is added to the total CPU time used by the process. If additional quanta remain in the time 

slice, a new timing period is begun for the process (usednow=O;), and the process is placed at the 

end of the dispatcher's queue. If no quanta remain, then the process's time slice has ended. 
Subsequent timeslices will .consist of one second, and the process is placed at the end of the low 

priority queue of eligible processes. 

The timer interrupt handler then terminates, which forces control to the dispatcher, which will, in a 

round robin fashion, select the next dispatchable process. The purpose of dividing time slices into 

quanta is to guarantee that among dispatchable processes, none must wait an intolerable amount of 

time before gaining access to the CPU. Thus a trivial request which can execute in one quantum 

will always appear to respond quickly ( once it is made dispatchable). 
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5. 7 Coded Interactive System 

5. 7 .1 System Structures 

In the code which follows, we assume the existence of the system data structures which were 

previusly described in Section 3.5. l. Descriptions of additional system structures used by the 

interactive system follow below. 

usernamegiven: In 'log-on', usernamegiven is a map from terminals on which a valid log-on has 

been received, to user names. The map is defined only for those terminals still waiting for a 
password. 

waitingset: In 'log-011', waitingset is the set of terminals for which a 'read' command had been 

issued, but on which the read has not yet been completed. 

bufferfor: In 'log-on', bufferfor is a map from terminals to corresponding buffers which the 

terminals use for I/ 0 in conjunction with monitor service commands. 

extstore: extstore is a vector whose components are user processes. The position of a process in 

extstore determines where in secondary storage the process's memory image is kept, when it 

is necessary to swap the process's main memory image to secondary storage. 

msg: For uEsignedon, msg(u) is a vector of character strings. Each character string is a message 

to be typed at the user's terminal, when the current command completes execution. 

memown: At any given time, main memory is partitioned into a number of blocks of contiguous 

storage. memown is a vector having as many components as there are blocks. The kth 

component of memown gives the process to which the k th blcok is assigned. If the block is 

unassigned, the component is Q. 

memsize: memsize is a vector which gives the sizes of the blocks of main memory. 

memloc: memloc is a vector which gives the starting locations of the blocks of main memory. 

size: For each user process p, size(p) is the amount of main memory which that process requires. 

quantum: For each user u, quantum(u) gives the amount of uninterrupted CPU time which u's 

processes may use before the dispatcher will give the CPU to another process which is on 

the dispatcher's work queue. 

mquant: For each user u, mquant(u) gives the number of quanta which u will be allowed before 

being removed from the dispatcher's work queue. 
nquant: For each user u, nquant(u) gives the number of quanta which u has used (including the 

present, unfinished quantum), since being put on the dispatcher's work queue. 

usednow: For each user u, usednow(u) indicates how much time of the current quantum has been 

used by u's processes. 
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5. 7 .2 The Code 

/* 
Catalogue of Routines 

Log-on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 114 
The logon process controls all terminals which are not in active use. It will 
initiate a user session for a user who completes a logon sequence on any such 
terminal. 

Command Analyzer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 117 
Each user session is controlled by a command analyzer process. The command 
analyzer reads an:d interprets user commands, and can also be invoked recursive-
ly from a running program. 

Logoff . . . . . . .. . . . . . . page 124 
Logoff ends user sessions. 

Message Commands . . . . . . page 124 
The message commands are used to send messages from one user to another, and 
to suppress or accept messages from other users. 

File Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 125 
These subprograms interpret the commands pertaining to files, including 
'permit' and 'share'. 

File . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 125 
This routine sets up a file description in the catalogue. 

Define . . . . . . . . . . . . . . . . . . . . . . . . . . . page 126 
This routine establishes a program file name for a user file name. 

Share . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 126 
This routine makes the necessary entries in the catalogue to allow one 
user to share a file of a second, so long as the second had previously given 
permission to the first user. The routine is recursive to al]ow all members 
of a library to be shared by merely sharing the library file. 

Permit ....................................... page 127 
This routine is called when a user gives permission to other users to 
access his files. The routine is recursive to allow all members of a library 
to be permitted by just naming the library itself. 

Erase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . page 128 
This routine removes a file from the catalogue and relinquishes space held 
by the file. 

Getblock .. page 130 
Getblock finds and allocates a block of contiguous storage for a process. It may 
move other process's storage blocks in main memory or from main to secondary 
storage to satisfy the request. 

Scheduler ......................................... page 133 
The scheduler selects the highest priority non-dispatchable process, causes 
memory space to be allocated to that process, and puts the process at the end of 
the dispatcher's queue for CPU service. 

Dispatcher ......................................... page 133 
The dispatcher makes those processes in waitset whose wait condition have been 
satisfied, dispatchable. It then selects a process to run on the CPU. 

Timer Interrupt . . . . . . . . . . . . . . . . . . . . ................. page 134 
User processes whose execution time exceeds a threshhold are put into the 
scheduler's low priority queue. 

Monitor Services . . . . . . . . . . . . . . . ................. page 134 
These processes interpret I/0 requests, command termination, and recursive 
invocation of the command analyzer by running processes. 

*/ 
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scope interactivesystem; 
macro establish( ufn,pfn,filevar); 

/*For user file ufn, a program file name pfn is established for the running process, and filevar 
becomes a file variable representing the file*/ 
assign( <CPUcontrol,newat> is pfn> ,ufn,standardfixup); 
filevar=<open pfn,l>; 

endm establish; 

macro processparameter; 
/*reference a processes initial argument*/ 

info(initialvar(state( CPU control))); 
endm processparameter; 

macro filesize; 
/*default size of standard system-created files*/ 

100 
endm filesize; 

macro primarysource; 
/*for the input reader, reference to main input device*/ 

hd(source(#source)) 
endm primarysource; 

macro primaryposition; 
/*for input spool position in the primary file next to be read*/ 

(source(#source)) (2) 
endm primaryposition; 

macro currentsource; 
/*for input spool, the current input program-file name*/ 

hd hd source 
endm currentsource; 

macro currentposition; 
/*for input spool, the current position in the input file*/ 

(hd source) ( 2) 
endm currentposition; 

macro readingprimarysource; 
/ *true iff current source is _the system input device*/ 

#source eq 1 
endm readingprimarysource; 

macro thisprocess; 
/*Amore mnemonic way for a process to refer to its own process identifier.*/ 

CPU control 
endm thisprocess; 

macro deviceaddress(pfn); /*device on which program file resides*/ 
catalogue ( userfile (pf n)) ( 'deviceaddress ') 

endm deviceaddress; 

macro dataread; /*to access data read from terminal*/ 
buffer bufferfor(terminalname) 

endm dataread; 

macro devicepart(x); /*program file causing interrupt.*/ 
x(l) /*first component of X; cf. 3.3.2* / 

endm devicepart; 
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macro writetoterminal(terminal, message); 
buffer bufferfor(terminal) = message; /*Set up terminal buffer*/ 
monitor ('write', terminal, bufferfor(terminal)); 

endm writetoterrhinal; 

macro maxmem; 
10000 /*Machine and operating system dependent -maximum size of a main storage block 

which can be assigned to a user process.*/ 
endm maxmem; 

macro freesecondarystorage(p) /*Releases secondary storage held by process p. * / 
(disable) 

must= 1 ~ 3j ~ #extstore I extstore(j) eq p; 
/*The above statement sets j to the position in extstore corresponding to the user 
process p. If p is a user process, then j will be defined.*/ 

extstore(j) = Q; /*Release secondary storage space.*/· 
end disable; 

endm freesecondarystorage; 

macro tick; /*short time slice quantum*/ 
100000 /*0.1 sec for CPU with a lµs. timer.*/ 

endm tick; 

macro onesecond; /*The number of timer units in one second*/ 
1000000 /*assuming a CPU with a lµs. timer.*/ 

endm timer; 

macro xquant; /*Number of quanta we will allow a process at high priority*/ 
5 

endm xquant; 

macro moverpart(pr) /*extract mover i.d. from a process i.d. * / 
hd pr 

endm moverpart; 

macro suspendedprocess; 
/*Most recently suspended user process, gotten from top of procvec. * / 

procvec(l)(l) 
endm suspendedprocess; 

macro recursiondepth; 
/*Depth of recursion when most recently suspended user process started.*/ 

procvec(1)(2) 
endm recursiondepth; 

macro pair(x); 
/*This macro generates a boolean expression which is true if and only if x is a tuple of two 
elements.*/ 

( type x eq tuple) and #x eq 2 
endm pair; 

/*The global variables declard below are described in section 3.5.1 * / 
global iowait; mainstate, busystatus, savecause, filewait, fixup logicalposition, channels, units, 

volumes, programfiles, devices, type, userprogs, steptimeleft, ready, mounted, deviceaddress, 
symbolicfile, operational, users, owners, defaults, catalogue, maxprio, esttime, timeleft, 
iofixup, workset, userfile, newallocation, budget; 

/ *The global variables declared below are described in section 5. 7 .1. * / 
global extstore, msgon, msg, secondarystorage; 
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I* ***********************i*** •I 
/• LOG-ON •/ 
I• *************************** •I 

scope logon; 

/*Initialization of the logon procedure. First, all terminals in the system are put onto 
logon's workqueue. In the main body of 'logon' for every item on it's workqueue, the 
'logon' procedure starts a logon sequence by issuing-a read command to the terminal. After 
initialization, terminals are returned to logon's workqueue whenever a user ends a terminal 
session.*/ 

(lftE devices I type(t) eq 'terminal') 
/*Enqueue terminal on this process*/ 

putlast( thisprocess,t); 
end 1/t; 

/*Initialize map from terminals to user-names. This map only has entries for users who 
have given a logon command, but have not yet given their password.*/ 

usernamegiven=nl; 
waitingset=nl; /*Initialize the set of terminals for which a log-on related read operation is in 

progress.*/ 

/*The command interpreter has the same environment as log-on, but starts at label 
'command'. We set up a state object for the command interpreter, which we split to for 
each user who successfully logs on. See the code following the label 'checkpassword'. * / 

commandenv= < thisprocess,state( thisprocess) >; 
loctr( commandenv) =command; 

/* Main loop of Log-on * / 

/*The log-on routine is inactive so long as no terminals are on it's workqueue, or all its 
read operations are incomplete. It is necessary to wait for the alternation of conditions, 
for if we only waited for the first of them, i.e., for items to be stacked on the 
workqueue, then the log-on process could remain in waitset (cf. 2.4.3.1), even after a 
read operation. On the other hand, if the await is satisfied by a read operation being 
completed, then the terminal fixup routine at label 'termfixup' would be executed as 
soon as the log-on process is removed from waitset and is made ·dispatchable, by virtue 
of the call to 'assign' below. The statement following the await would be executed only 
after the fixup routine terminates.*/ 

idle: await (#workset{thisprocess} gt 0) or (waitingset-busy ne nl); 
/*For each idle terminal, we issue a read via monitor call, so that the read operations 
are overlapped, The 'assign', executed below, specifies that at the conclusion of a 
'read', control will be forced to 'termfixup'. * / 

if #workset{thisprocess} eq 0 then 
/*No new terminals were enqueued on log-on. Interrupts from read operations caused 
the set (waitingset - busy) to be non-null. These interrupts were processed by a forced 
transfer to 'termfixup' as soon as the waiting state ended. Thus, workset{thisprocess} 
can be empty even when the await at 'idle' has been satisfied.*/ 

go to idle; 
end if; 
terminaltologon = getfirst( this process); / *idle terminal id*/ 

/*Set up program file name for terminal which desires logon. All such terminals will use 
the monitor 1/0 services (cf. 3.3.2), so that the logon process does not have to logically 
wait for a read to be completed. Whenever a read operation does terminate, control goes 
to 'tennfixup', where the data read gets processed.*/ 

assign( <thisprocess, newat> is tfn,terminaltologon,termfixup); 
bufferfor(tfn)=newat; /*Identifies buffer which 'tfn' will use for I/0. * / 
errorcount(tfn)=0; /*initialize consecutive error count to 0* / 
tfn in waitingset; /*Indicate that xis waiting to read input for log-on.*/ 
monitor('read' ,tfn,bufferfor( tfn)); /*read probable logon command*/ 
go to idle; 
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/* terminal interrupt handler. 
Processing to check logon command and password takes place in interrupt routine. 

Note that since interrupt routines are logically non-interruptable, there can be no race 
conditions in the following code, even if several users attempt to log-on with the same user 
i.d. * I 

termfixup: 
/*We define a function usernamegiven from terminals to user names. It is defined only for 
terminals which have received a valid logon-command, and are expecting a password.*/ 

monitor('iointerrupt' ,interruptbuf); /*get cause of interrupt*/ 
interruptreport = buffer interruptbuf; /*See 3.3.2 for a discussion of the buffer function.*/ 
terminalname=devicepart(interruptreport); /*programfilename which caused interrupt*/ 

/*cf. page 113 for the macro 'devicepart'* / 
tenninalname out waitingset; /*remove terminal from the set of terminals 

which have a log-on read outstanding.*/ 
/*'dataread' macro extracts line just read from terminal's buffer*/ 

image=dataread; 
/*'error' is a machine dependent macro which generates a true boolean expression if and 
only if the interrupt report indicates an error.*/ 

if error(interruptreport) then 
errorcount( terminal name) =errorcount( terminalname) + 1; 
if errorcount(tenninalname) le 10 then 

writetotenninal(terminalname,'transmission error, repeat line'); 
else /*Excessively many errors.*/ 

/*Try to warn user that his terminal is not working properly.*/ 
writetoterminal(terminalname,'bad terminal or line, removed for CE'); 
operational(deviceaddress(terminalname))=false; /*cf. 3.5.1.4 for 'operational'*/ 

/*Warn operator that terminal requires attention.*/ 
operatormessage('terminal' +deviceaddress(terminalname) + 'requires attention'); 
unhook(terminalname); /*Release file name representing terminal*/ 
usernamegiven(terminalname) =fl; /*No longer expecting a password.*/ 
monitor('endfixup'); 

end if; 
else if usernamegiven(terminalname) ne Q then 

go to checkpassword; /*password is expected*/ 
else if not (pair(image) and hd image eq 'logon') then 

write to terminal ( terminalname, 'improper logon'); 
else/* Attempt first step of logon operation -- verify that user i.d. is valid.*/ 

username=image(2); /*identify user*/ 
if username E ( users - signedon) then 

/*We have a valid user, who is not already logged on. Note that since l/O fixups 
are not logically interruptable, even if several terminals simultaneously issue logons 
with the same user i.d., only the first terminal to have its interrupt processed will be 
considered valid!*/ 

username in signedon; 
usernamegiven(terminalname)=username; /*indicate next read is to get password*/ 

else 
writetoterminal(terminalnaine,if usernameE users then 'already signed on' 

else 'invalid user-id'); 
end if useri1ame; 

end if error; 
reread: 

monitor('read' ,terminalname,bufferfor(terminalname)); 
terminalname in waitingset; /*Indicate that a 'read' is again outstanding.*/ 
monitor('endfixup'); 

checkpassword: 
errorcount(terminalname)=0; /*Reset error count, since previous read was okay.*/ 

/*Check the password.*/ 
if image ne password(usernamegiven(terminalname) is username) then 
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/*Wrong password -- start the logon sequence all over.*/ 
writetoterminal(terminalname,'bad password, re-issue logon and try again.'); 

/*Having had a bad logon attempt, we set up the terminal to start a new logon se­
quence.*/ 

putlast( thisprocess,deviceaddress( terminalname)); 
/*usernamegiven(terminalname) will be dropped below.*/ 

username out signedon; /* Another logon for 'username' can now be accepted*/ 
else 

/*Password is okay.*/ 
moverid=newat; /*mover-id for user*/ 
owner(moverid) = username; 
process part( commandenv) = <moverid,newat>; 

/*Here we are assuming that 'commandenv' is the description of the command 
analyzer's initial environment. Only the processpart must be given a unique initial 
value to start the command analyzer for the new user who has just logged-on.*/ 

split to commandenv(deviceaddress(terminalname)) for thisprocess; 
end if; 
usernamegiven( terminalname) = Q; /*Remove from map -- not waiting for password.*/ 
unhook( terminalname); 
monitor('endfixup'); 

end logon; 

I* *************************** *I 
/ * COMMAND ANALYZER * / 
I* *************************** *I 

scope commandanalyzer; 

/*For each user who has successfully logged on, a command analyzer process has been 
created. This process reads commands from the user's terminal or from a command-macro 
library, and interprets these commands by: 

1. obeying the command directly, 
2. loading a program, 
3. accepting commands from a macro-library. 

When executing programs (case 2), a user process, of lower privilege, is created. This 
less-privileged process controls the CPU during the execution of the user's programs. A 
user program can also execute commands by using the monitor services (cf. 5.2.)* / 

commandsetup: 

I* *************************** *I 
I* Initialize User Defaults * / 
I* *************************** *I 

terminalid=processparameter; /*get user's terminal identifier*/ 
/*Establish 'terminal' as a file name for the user's terminal.*/ 

assign( <thisprocess,newat> is terminal,terminalid,standardfixup); 
movid=moverpart( thisprocess); 
userprocess= <movid,newat>; /*Identifier for lower privileged process which will run user 

programs. All processes for this user session will belong to the mover movid. * / 
userid=owner(movid); /*Derive the user's identification.*/ 

/*Each user is assumed to have a file called 'profile', which contains two structures: .the 
user's defaults for required parameters, and the user's library search order.*/ 

if <userid;'profile'> E datafiles then 
/*The user has defined a profile file.*/ 

establish( <userid, 'profile'> ,profileopenclose,userprofile); 
else 

/*The user doesn't have a profile file. Use the system's.*/ 
establish( <'system', 'profile'>, profileopenclose, userprofile); 

end if; 
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userprofile read default; 
userprofile read searchorder; 
unhook(profileopenclose); /*user profile is no longer needed*/ 

/*Initialize the stack of input sources used for recursive invocations of the command 
analyzer. 'source' is a vector whose components are pairs, each pair giving the program file 
name of a file from which commands are being read and the location within the file from 
which the next command is to be read. Implementation note: In this code, items are added 
to and taken from the front of vectors which represent stacks.*/ 

source=<< terminal, 1 > >; 
/*'argumentstack' is a vector whose components are vectors of arguments to be used in 
macro-command expansion. When a macro is being expanded, the components of 
argumentstack(l) are used for parameter substitution. See the code below, near the label 
'moreparms'. * / 

argumentstack= <nult>; 
/*Initialize procvec, which is a vector of pairs of the form <p,n>. Each p represents a 
process, initiated by the command analyzer, which has.been suspended while a command 
issued by it (i.e. p) is being executed. n represents the number of recursive invocations of 
the command analyzer which had already been issued when process p issued the command 
being interpreted. n is used near 'readdata', below, to determine when p's command has 
been completed.*/ 

procvec=nult; 
infile = < open currentsource, 1 >; / * currentsource is a macro*/ 

/*extstore is an auxiliary data structure used to map active user processes into secondary 
storage. When an active process must be swapped out into secondary memory, the user's 
position in extstore determines the location in secondary storage reserved for the process 
image. The form of extstore is a vector of process identifiers. The position of a process-id 
in the vector is used by the 'getblock' routine to determine where in secondary storage the 
user's swap area is.*/ 

(disable) 
if extstore eq Q then 

extstore= <userprocess>; 
else if (1 <3j<#extstore+ 1 I extstore(j)eq Q) then 

/*Note that the preceeding 'if' cannot fail to be satisfied.*/ 
extstore(j) = userprocess; 

end if; 
end disable; 

/*In the main loop of the command analyzer, 'image' will hold the line read from the 
terminal. We initialize it to the string 'setup' so that the user's setup command is executed 
immediately. cf. Sec. 5.2.1. * / 

image=<'setup'>; /*Simulate reading of 'setup' command*/ 
go to lookup; /*to begin handling the 'setup' command forced into the input stream just 

above.*/ 

readdata: 

I* *************************** *I 
I * Main Loop of Command Analyzer * / 
I* *************************** *I 

/* At this point, a prior command has just completed, and we read the next command 
from the topmost command file or from the terminal, substituting parameters to get its 
'true' form if necessary. 

Before reading, however, we must determine whether a recursive use of the command 
analyzer, invoked by a running program, has been completed.*/ 

if procvec ne nult then /*recursive use of command analyzer*/ 
/*Recall that the top element of procvec gives n, the number of recursive invocations 
of the command analyzer at the time when the most recent program-initiated invoca­
tion of the command analyzer was received. If the level of recursion is now n, then the 
interpretation of a run-time command is completed. The current temporary user 

-118-



process may be released, and the suspended process, also given by the top element of 
procvec, resumes operation.*/ 

if #source eq recursiondepth then /*Command completed. (See macro defs.)* / 
kill userprocess; 

/*Release swap-space for killed process.*/ 
freesecondarystorage(j); /*See macro definitions for next two statements.*/ 

/*Restart suspended process*/ 
userprocess = suspended process; 
procvec=_procvec(2:); /*Remove top element from stack.*/ 
putlast( CPU, userprocess); / *Resume the suspended process.*/ 
go to waiting; 

end if; 
end if; 

/*Read the next command, but first test for messages stacked waiting to be sent to the 
terminal user. If there are such messages, they will be transmitted to the user just before 
we accept additional from the user's terminal.*/ 

if msgon and readingprimarysource then /*if user is willing to receive messages*/ 
( while #msg(userid) gt 0) /*and there are any messages,*/ 

writetoterminal(terminal,hd msg( userid)); /*transmit them!*/ 
msg(userid) = ti msg(userid); 

end while; 
end if; 

I* *************************** *I 
I* Read Next Command * / 
I* *************************** *I 

infile read image; 
if image eq Q then /*test for end-of-file*/ 

if readingprimarysource then /*EOF from terminal*/ 
image=<'logoff'>; /*force end of session*/ 

else 
go to lookup; 

/*End-of-file expanding a command macro, go back to reading previous source file, 
or.from the terminal.*/ 

unhook( currentsource); 
source=tl source; 

/*Drop the file on which the EOF was encountered, and re-open the file which 
contained the macro which was just expanded.*/ 

infile= < open cilrrentsource,currentposition>; 
argumentstack=argumentstack(2:); /*remove stacked parameters*/ 
go to readdata; /*resume reading from previous file*/ 

end if; 
end if; 
if not readingprimarysource then 

/*Execute subroutine to substitue values for parameters in command just read.*/ 
substparams; 

end if; 

lookup: 

I* *************************** *I 
I* Command Examination & Execution * / 
I* *************************** *I 

if type image ne tuple then 
/*Command has wrong format*/ 

go to commanderror; 
end if type; 
command= hd image; 
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short: 

/*First, we look for built-in commands. All built-in commands are treated as subprograms 
to the command analyzer, and they return character strings, which are transmitted to the 
user as a response to his command.*/ 

if {<'share' ,sharecom >, 
<'file',filecom>, 
<'define' ,definecom>, 
<'permit' ,permitcom>, 
< 'searchorder' ,searching>, 
<'logoff' ,logoffcom>, 
< 'message' ,messagecom>, 
< 'holdmsg' ,holdmsg>, 
<'releasemsg',releasemsg>} (command) is routine ne Q then 

/*Command found. Execute built-in command and write the resulting message to 
the user's terminal if the command was issued directly from the user's terminal. All 
built in commands are functions callable by the command analyzer. These func­
tions return character strings.*/ 

result=routine(userid,userprocess, ti image); /*Interpret command*/ 
if readingprimarysource then 

/*If the command was issued from the terminal, then write the resulting 
message to the user's terminal. If there were no errors, the resulting 
message is nulc. * / 

terminal write result; 
end if; 
go to readdata; /*Get next command.*/ 

end if; · 

/*Not a built-in command. The command libraries are searched next (for possible macro 
expansion), then the module libraries are searched (for a file containing an executable 
program), and finally the text library is searched (for compiler output, which must first be 
processed by a loader (not shown here) to supply missing subroutines).*/ 

('v'libtype(i) E <'command' ,'module' ,'text'>, library(j) E searchorder(libtype)) 
if library eq '*' then 

/*Use the system library. A share command is needed to make the system library 
accessible to this process, which is running for a user's mover. cf. Sec 5.4.3. * / 

monitor(' share',' library.'+ libtype,system,' library.'+ libtype); 
establish('library.' + libtype,tempopenclose,templib); 

else 
establish('library.' + library,tempopenclose,templib); 

end if; 
templib read list; 
if type list ne set then 

/*Ignore the library if it is in the wrong format.*/ 
continue 'v' libtype; 

end if type; 
unhook( tempopenclose); 

/*See if the required command is in the list of library routines.*/ 
if(3commandfilenameElistl commandfilename eq (libtype+'.'+command)) then 

/*library file found*/ 
go to { <'command',foundc>, 

<'module',foundm>, 
<'text',foundt>} (libtype); 

end if; 
end 'v'libtype; 

/*The command cannot be fourid. It is neither built in, nor a macro command, nor a 
module, nor a text file. Warn the user, and go on to the next command.*/ 

commanderror: 
terminal write 'illegal command:'+ image+ 'from file', currentsource,'. ignored'; 
go to readdata; 
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foundc: /*Enter here when a command refers to a file of subcommands.*/ 
/* read commands from the command file named by the just-received command until an 
end-of-file is detected at readdata. * / · 

currentposition~infile(2); /*remember position within current file*/ 
/*Redefine 'infile' to refer to the library file which holds the macro-expansion of the 
command just read.*/ 

establish( commandfilename,commandopenclose,infile); 
source=< <commandopenclose, 1 >>+source; /*Update the stack of input files.*/ 

/*Put the parameters from the current command on top of the parameter stack.*/ 
argumentstack= <image(2:) > +argumentstack; 
go to readdata; 

foundm: /*Enter here when a command refers to an executable module.*/ 
assign ( <thisprocess,newat> is tempopenclose,commandfilename,standardfixup); 

fetchmodule: modulefile= <open tempopenclose, 1 >; 
/*We assume that modules are self describing files of- two records. The second record 
contains the code to be loaded and executed; the first record gives the length of the 
second.*/ 

modulefile read bound; 
/*'maxmem' is a macro giving the size of the largest block of contiguous storage available 
for assignment. It is machine dependent.*/ 

if bound eq Q or bound It 1 or bound gt maxmem then 
terminal write 'bad module size'+command+dec bound; 
go to readdata; 

end if; 
/*Secure a memory block for the module. This is always possible in principle, since we 
have already checked that the amount of space being requested is not excessive, and no 
other program will be allocated space until this request is fulfilled. We could test 'base ne 
Q' after the next statement as a software check.*/ 

base= getblock(bound, userprocess); 
(disable) 

/*Construct initial state for the program to be run.*/ 
state(userprocess) =userstate; /*Standard non-privileged state.*/ 

/*Location and size of allocated main memory into environment.*/ 
relocate (state ( userprocess)) = (base, bound); 

/*Read module into assigned memory locations. Recall that memory is a vector represent­
ing all of main memory. cf. section 5.3* / 

modulefile read rnernory(base: bound); 
/*Initialize timing information. xquant is a macro giving the number of times the user­
process is to be scheduled at high priority in a round robin fashion at the start of a com­
mand. Each time s-cheduled, the process will be allowed one 'tick', where 'tick' is defined 
via a macro. A typical value might be 0.1 sec.*/ 

if readingprimarysource then 
/*The command being interpreted was entered directly from the user's terminal. Start 
the user process at high priority. For other commands, invoked recursively or by 
running processes, this then-clause is skipped, and the previous timing parameters 
remain in effect. Thus, if the most recently issued user command has used a great deal 
of CPU time (0.5 seconds, in this version), the user's processes will continue to run at 
low priority, until he enters his next command from the terminal.*/ 

mquant(movid)=xquant; /*See macros for 'xquant'* / 
quantum(movid) =tick; 
nquant(movid) = 1; /*Indicate this is the first quantum*/ 
usedriow(movid) =0; /*and that no time has been used so far*/ 
putlast(hiprio, userprocess); / *put process at end of scheduler's hi priority list.*/ 

end if readingprimarysource; 
/*We assume that execution starts at relative location 0. * / 

loctr(state( userprocess)) = O; 
size ( userprocess) =bound; 

/*Place ancestor and initial parameters into the user process environment. Include the 
terminal i.d. in the set of initial parameters.*/ 
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split to userprocess(<terminal>+image(2:)) for thisprocess; 
end disable; 

unhook( tempo pen close); / *Release file containing program module.*/ 
/*Wait for the user-process to terminate. We could, at this point, associate, with the user's 
terminal, a fixup routine which, on recognizing an attention request from the terminal, 
reads a line from the terminal to determine whether the execution of the user-command 
should be preemptorily terminated.*/ 

waiting: ' 
await getfirst(thisprocess) is fault ne Q; 
if ancestor(fault) eq nl then 

else 

/*Command is complete. Read next command.*/ 
go to readdata; 

/ *Interpret command for running program issued via a monitor call.*/ 
if #procvec ge 10 then 

/*Recursion too deep -- notify user.*/ 
terminal write 'recursion too deep, command terminated.'; 

/*Release all user processes resulting from recursive use of the command analyz­
er.*/ 

(while #procvec gt 1) /*Release all user processes*/ 
kill userprocess; 
freesecondarystorage(userprocess); /*Give up swap space for process.*/ 
userprocess = suspended process; 
procvec= procvec( 2:); 

end while; 
if #source gt 1 then 

unhook( currentsource); 
/*When recursion is too deep, the terminal becomes the input source again, and 
all other input sources, which are in the source stack, are dropped. Remember 
that the terminal is on the bottom of the stack, i.e., the last item in our indexing 
scheme for stacks.*/ 

source=source(#source: 1); 
in file=< open curentsource, currentposition>; 
argumentstack= <nult>; 

end if; 
go to readdata; 

end if; 

/*Recursion is not too deep.*/ 
image=info(fault); /*The actual command.*/ 
procvec= <userprocess,#source > +procvec; 
userprocess= <movid,newat>; /*New process to execute command, if needed.*/ 
(disable) /*Get additional storage for new process.*/ 

if (1 ~ 3j ~ #extstore+ 1 I extstore(j) eq S1) then 
/*Note: The preceeding 'if' cannot fail to be satisfied.*/ 

extstore (j) = userprocess; 
end if; 

end disable; 
substparams; /*replace parameters with values/ 
go to looktip; /*Examine and interpret command*/ 

end if; 

foundt: 
/*If the command name refers to a compiler output file, the loader is run as the user's 
program. The loader, whose internal details are not shown here, will load the text corre­
sponding to the command, supply missing routines (see a sketch of this in the uniprogram­
med system's job control language interpreter) and then give control to the module just 
constructed.*/ 

monitor('share',' module.loader' ,system, 'module.loader'); 
assign ( < thisprocess ,newat>, < userid, 'module.loader'> ,standardfixu p); 
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image=<loader>+image; /*so that code at foundmodule 
sets up data for the loader correctly.*/ 

go to fetchmodule; 

define substparams; 
/*This subprogram substitues values taken from the top of the argument stack for 
parameters appearing in 'image'.*/ 

moreparms: 
if(3y(i)E image, n(j) E y In eq '$') then 

/* possible parameter, field starts with'$' * / 
k= j+ 1; /*k will point beyond parameter*/ 
m=O; /*Develop m into parameter number.*/ 
(while y(k) E {O, 1,2,3,4,5,6, 7,8,9} doing k=k+ 1 ;) 
· m= lO*m+y(k); /* develop parameter number*/ 

end while; 
if m gt O and m le #argumentstack(l) then 

/*valid reference to a parameter, substitute its value*/ 
image(i)=y(l :j-1 )+argumentstack(l )(m) +y(k:); 

else/*nonvalid parameter, disguise it 'til later.*/ 
image(i) (j) =er; 

end if; 
go to moreparms; /*Look for more parameters*/ 

end if; 
/* Now remove any ers that were used to temporarily replace$ * / 

(Vy(i)Eimage, n(j)Ey In eq er) 
image(i) (j) ='$'; 

end V; 
return; 
end substparams; 

I* *************************** *I 
I* Linkage to Command Interpreters * / 
I* *************************** *I 

/* The following routines interpret file handling commands. Their principlal function is to 
prefix userfile names with user-ids to form a valid, unique user file identifier, and to prefix 
program file names with mover identifiers to form valid, unique program file identifiers. The 
user should not be concerned with such requirements, and the command language does not 
permit him to form such names directly. After restructuring their arguments, these routines 
call on the file handling subprograms which follow below. The subroutines whose parameters 
are 'username, userprocess, param' are all called by the command analyzer near the label 
'short'. The command analyzer uses a fixed parameter list, hence some of these subroutines 
have unnecessary parameters.*/ 

definef filecom(username,userprocess,param); /*file command*/ 
/*Call the system file-definition subroutine, using arguments taken from the current 
command being interpreted. username should be a system user, and param should be a 
pair.*/ 

if not ((usernamu users) and pair(param)) then 
/*Parameters have wrong form*/ 

return image + 'command rejected, improper arguments.'; 
end if not; 
return file (<<username,param(l)>, param(2)>); 
end; 

definef definecom( username,userprocess,param); /*program file definition command*/ 
/*Interpret a 'define' command by calling the system's filedef subprogram, using argu­
ments taken from the command being interpreted. username should be a user of the 
system, and param should be a pair.*/ 
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if not((usernamec users) and pair(param)) then 
return image+' command rejected, arguments have wrong form.'; 

end if not; 
return(filedef(<userprocess,param( 1) >,<username,param(2) >)); 
end; 

definef sharecom(username,userprocess,param); /*share command*/ 
/*Interpret a share command by calling the system's share routine, using arguments taken 
from the command being interpreted. username should be a system user, and param should 
be a triple.*/ 

if not (usernameEusers) or type param ne tuple or #param ne 3 then 
return image+' command rejected, arguments have wrong form.'; 

end if not; 
return (share( <username,param(l)>,param(2:2))); 
end; 

definef permitcom(username,userprocess,param); /*permit command*/ 
/*Interpret a permit command by calling the system's permit subroutine, using arguments 
from the command. username should be a system user, and param should be a triple.*/ 

if not( username E users) or type param ne tuple or #param ne 3 then 
return image+' command rejected, arguments have wrong form.'; 

end if not; 
· return (permit( <username,param(l)>,param(2),param(3 ))) ; 

end; 

definef erasecom(username,userprocess,param); /*erase command*/ 
/*Interpret an erase command by calling the system's erase subprogram. username should 
be a system user, and param should be a tuple of one element.*/ 

if not( username E users) or type par am ne tuple or #param ne 1 then 
return image+' command rejected, argument has wrong form.'; 

end if not; 
return erase( <username,param> ); 
end; 

I* *************************** *I 
I* LOGOFF *I 
I* *************************** *I 

define logoffcom(u,userprocess,param); /*logoff command*/ 
/*Ignore parameters*/ 

terminal write 'logoff command accepted.'; 
(Vp E processes{moverpart( thisprocess) is m}) 

freesecondarystorage(userprocess); /*Release swap space for process.*/ 
/*Release all program file names for this user session.*/ 

(Vpfn E programfiles{ p}) 
unhook (<<m,p>,pfn>); 

end if; 
if <m,p> ne thisprocess then kill <m,p>;; 

end Vp; 
/*Recall that the initial parameter passed to the command interpreter process was the 
device being used as a terminal by the user. That terminal is now enqueued on the logon 
process as being available for a new user.*/ 

enqueue processparameter on logon; 
term; 
end; 
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I* *************************** *I 
I* User-to-user messages * / 
I* **********************~**** *I 

definef messagecom( username,userprocess,param); 
/*Interpret message command by calling the system's message subroutine. param must be 
a pair, and username and param(l) must be system users.*/ 

if not( ( username E users) and pair(param)) then 
return image+ 'command rejected, aruments have wrong form.'; 

end if not; · 
if param( 1) E users then 

return message(param(l),param(2)); 
else return (param(l)+' is not a user of the system.'); 
end if; 
end; 

definef message (receiver, text); 
if type text ne string then 

return 'Message to be sent is not a character string.'; 
end if type; 
if receiverE signedon then 

if #msg(receiver) ge 10 then 
/*Reject request, too many messages already queued on receiver.*/ 

return 'Request rejected. Too many messages backlogged. Try again later.'; 
end if #msg; 
msg(receiver) = msg(receiver) + < owner(moverpart( this process))+ text>; 
return nulc; 

else return 'user not logged on'; 
end if; 
end; 

definef holdmsg( username, userprocess,param); 
/*Inhibit messages from being typed on the user's terminal. None of the parameters are 
used by this routine.*/ 

msgon=false; 
return nulc; 
end; 

definef releasemsg( username, userprocess,param); 
/*Permit messages to be typed on the user's terminal. If any are presently stacked, they 
will start to print when the next command is interpreted. None of the parameters are used 
by this routine.*/ 

msgon=true; 
return nulc; 
end;. 

I* *************************** *I 
/ * FILE HANDLING SUBPROGRAMS * / 
I* *************************** *I 

define file(par); 
/* par is of the form <fid,attr>, where fid is a file identifier of the form <uid,ufn> where 
u is a user identifier and ufn is a user file name, and where attr is a set of pairs describing 
file attributes*/ 

if not(pair(par)) then 
go to badcall; 

end if not; 
fid=hd par; 
if not(pair(fid)) and fid(l) EUsers and type fid(2) eq string) then 
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go to badcall; 
end if not; 
uid=hd fid; 
if catalogue{fid} ne Q then 

return 'file already exists, first erase old one.'; 
end if catalogue; 
if 3attrEpar(2) I (not(pair(attr)) or type attr(l) ne string) then 

/*attribute list has wrong format*/ 
go to badcall; 

end if 3attr; 
/*'standardfiledescription' is assumed to have been initialized to · a standard default 
catalogue description of a file. Some of the items in such a description would indicate that 
the storage device is to be disc, and that the file's disposition is permanent (i.e. keep from 
session to session). cf. 3.2.3* / 

(VattrE standardfiledescription) 
/*take standard file description except if parameter is given by caller*/ 

(if (3yEpar(2) I hd y eq hd attr) then y else attr) in catalogue(fid); 
end Vattr; 
allocate (fid); /*assign physical storage to file*/ 
return nulc; 

badcall: return image + ' command rejected, arguments have bad form.'; 
end file; 

define filedef (pfid, ufid); 
/* pfid is a program file identifier of the form <pid,pfn> where pid is a process identifier 
and pfn is a program file name. ufid is a file identifier of tbe form <uid,ufn>, where uid is 
a user identifier and ufn is a user file name.*/ 

if not(pair(pfid) and pfid(l) E processes and type pfid(2) eq string) then 
return image + 'first parameter is not a program file i.d.'; 

end if not; 
if userfile(pfid) is uf ne Q then 

/ *program file name already corresponds to a user file name.*/ 
if uf eq ufid then 

/*The requested assignment has already been made. Warn the user, and otherwise 
do nothing.*/ 

return 'assignment already made'; 
else 

/*'pfid' had been the program file name of another file. Disassociate 'pfid' from 
that file.*/ 

unhook (pfid); 
end if; 

end if; 
if catalogue (ufid) eq Q then 

return 'the user file name is not in the catalogue. no action taken.'*/ 
end if; 

/* Assignment may be made.*/ 
assign(pfid, ufid, standardfixup); 
return nulc; 

end filedef; 

definef share( ufid,sfid); 
/*In order that file sharing may be transmitted through several levels of induction, this 
routine is coded recursively. The set done contains all the sets for wbich share commands 
have been issued in obeying the original share request. This is necessary to avoid endless 
recursion in case a shared library contains a reference to itself. This routine initializes done, 
and then uses the auxilliary routine, share rec to actually do the work.*/ 

global done; /*For use by inner routine, sharerec. * / 
/*Check that parameters are user file i.d.'s. * / 

if ( catalogue( ufid) eq Q) or catalogue(sfid) eq Q then 
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return image+ 'command rejected, some arguments are not user file i.d.s. '; 
end if catalogue; 

/*initialize done*/ 
done = { ufid}; 

/*call on the recursive inner routine to do the real work.*/ 
return sharerec(ufid, sfid); 

definef sharerec( ufid,sfid); 
/* ufid and sfid are user file identifiers. The owner of ufid wishes to use file sfid, calling it 
ufid(2), provided that sfid's owner has given permission.*/ 

ownerf=hd ufid; /*owner of ufid* / 
/*Determine if ufid's owner is permitted access to file sfid, * / 

if ownerf E hd[ catalogue(sfid) ('permit')] then 
/*Permission granted*/ 
/* test if file ufid already exists.*/ 

if catalogue (ufid) ne Q then 
/*if file exists, is it shared to sfid?* / 

if catalogue(ufid)('share') eq sfid then 
return nulc; /*if yes, okay*/ 

else 
/*ufid is already defined, but not equivalenced to sfid. Warn the user but do 
nothing.*/ 

return 'file'+ ufid+ 'already exists'; 
end if; 

end if; 
if (ufid(2))(1:8) eq 'library.' and ((sfid(2))(1:8) eq 'library') then 

else 

/*Special case for shared library. All members become shared, too. Put all shared 
file names into 'done' to avoid endless recursion.*/ 

establish(sfid, tempopenclose, temp); 
temp read list; 
unhook (temp); 
(Vmember E (list-done)) 

member in done; /*mark member as shared to avoid loop caused by circular 
libraries. Then share members of the library, giving the caller the same file 
names as those used by the owner of the library.*/ 

sharerec ( <hd ufid,member>,<hd sfid,member> );; 
end if; 
catalogue(ufid)('share')=sfid; /*Point to file being shared.*/ 
catalogue( ufid) ('access') =catalogue(sfid) ('permit' ,ownerf); 
return nulc; 

return 'access not permitted to file' + sfid; 
end if; 
end sharerec; 

end share; 

definef permit(ufid, sharers, rights); 
/*In order that permission to share files may be .transmitted through several levels of 
induction, this routine is coded using a recursive auxilliary routine. The structure of this 
routine is similar to that of the share routine above.*/ 

global done; /*for use in the inner routine*/ 
/*Check for improper arguments.*/ 

if catalogue(ufid) eq Q /*ufid is not a user file*/ 
or sharers-users ne nl /*sharers· is not a subset of users*/ 
or type rights ne set /*access rights have wrong format*/ 
or 3rnights I (typer ne string) then 

return image+'cornrnand rejected, arguments have wrong form.'; 
end if catalogue; 

/*Initialize done to be the user file ufid. * / 
done= { ufid}; 
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/*Call inner routine to do the work.*/ 
return permitrec(ufid, sharers, rights); 

definef permitrec( ufid,sharers,rights); 
/* ufid is a file identifier of the form <uid,ufn>, 'sharers' is a set of user names which are 
to be permitted access to file ufid, and 'rights' is the set of access rights which the members 
of 'sharers' have. If members of 'sharers' already have access to ufid, then we must check 
whether access rights have been reduced, in which case we must restrict access for such 
members of 'sharers', as well as to other users who were given access to ufid by such 
members of 'sharers'.*/ 

uid=hd ufid; /*file owner*/ 
if catalogue {ufid} eq Q then 

return 'file does not exist';; 
if (ufid(2))(1:8) eq 'library.' then 

/*When permission is granted to access a library, give access permission to all mem­
bers, too. All permitted file names are put in 'done' to avoid endless recursion due to 
cirular libraries (cf. 5.4.4).*/ 

establish ( ufid, tempopenclose, temp); 
temp read list; 
unhook (temp); 
(VmemberE (list-done)) 

member in done; 
permitrec ( <hd ufid,member> ,sharers,rights);; 

end if; 
if catalogue {ufld,'permit'} is perm eq nl then 

I* The easy case. There are no former permissions outstanding for this file.*/ 
catalogue(ufid) ('permit')= { <suid,rights> ,suid E sharers}; 

else/*the messy case*/ 
limituse( ufid,hd[perm]*sharers,rights); 

end if; 
return nulc; 

define limituse( ufid,sharers,rights); 
/* ufid is a file i.d. of the form <uid,ufn>, 'sharers' is a set of user ids. All members of 
'sharers' are restricted to the access rights in the set 'rights', and the members of 'sharers', 
in turn, can only give permission to other users to use file ufid with access rights which are 
included in the set 'rights'. We omit parameter checking because this routine is called by 
'permitrec' with previously checked arguments. As an additional check on 'permitrec' and 
on the integrity of the catalogue, parameter checking could be added.*/ 

(V suid E sharers) 
d=catalogue(ufid)('permit',suid); /*former access rights*/ 
catalogue(ufid) ('permit' ,suid) =rights; /*new rights*/ 

/*Now look for users to whom 'suid' may have given the right to use 'ufid', and make 
sure that such users' rights don't exceed 'suid's rights. In the following statement, note 
that hd [catalogue] gives all the user-file identifiers. As coded, the next step involves a 
search, which might be very inefficient, over the whole catalogue. However, if the 
catalogue were restructured as a 2-parameter map catalogue(username, filename) 
rather than as the present catalogue( <username, filename>), this objection would be 
removed.* I 

(Vmemberd1d [catalogue] I hd member eq suid and 
catalogue(member)('share') eq ufid) 

limituse(member, hd {catalogue(member)('permit')} ,d*rights); 
end Vmember; 

end Vsuid; 
end limituse; 
end permitrec; 

end permit; 
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definef erase(fid); 
./*Check that there is a cataogue entry for 'fid'* / 

if catalogue(fid) eq Q then 
return image+ 'command rejected, improper argument.'; 

end if catalogue; 
/* A shared file can only be erased if permission had been given to do so.*/ 

if catalogue(fid)('share') ne Q and 
not('erase' E catalogue(fid)('access')) then 

return 'file cannot be erased';; 
files= {fid} is handled; 
(disable) 
(1 :::;Vi:::;#catalogue) 

/* An upper limit on the number of iterations to avoid a while-diction in a disabled 
block. This loop finds all file i.d.'s which refer to the file fid by means of sharing. The 
set 'files' is initialized to the singleton 'fid'. During each execution of the loop, the set 
'files' is augmented by all file i.d.'s which are shared with members of 'files'. Once 
'files' fails to grow as a result of this process, it contains all file identifiers which refer 
to the file being erased. Clearly, the number of.iterations cannot excede the number of 
catalogue entries, and usually just one or two iterations suffice. Much the same 
comment concerning efficiency of this loop can be made as w.as made above, concern­
ing a similar loop in the 'limituse' routine.*/ 

files=files+({hEhd[catalogue] I catalogue(h)('share')Ehandled} - files is handled); 
if handled eq nl then 

/*We failed to find new files shared to members of 'files'*/ 
quit Vi; 

end if; 
end Vi; 
end disable; 

/*Recall that userfile is a map from program file names to user file names (cf. section 
3. 5 .1. 5). All program file names which refer to the file being erased are removed, in case 
running programs attempt to use this file. files is now the set of all user file identifiers 
which refer to the file being erased.*/ 

(VufidE files) 
(while 3pfmapo1serfile I ti pfmap eq ufid) 

/* A program file name is defined to be the file being erased.*/ 
unhook(hd pfmap); /*Program file name is now undefined*/ 

end while 3pfmap; 
if ufid ne fid then 

catalogue { ufid} = Q; /*Delete shared entry from catalogue.*/ 
end if; 

end Vufid; 
relinquish fid; /*Give up file's space.*/ 
catalogue{fid} =Q; /*Now drop erased file from catalogue.*/ 
return nulc; 
end; 

definef searching( username, userprocess,param); 
/*Interpretation of the 'searchorder' command.*/ 
/*First check that param is a tuple, and 'username' is a system user.*/ 

if not (type param eq tuple and username E users) then 
return image+' command rejected, improper arguments.'; 

end if not; 
/*Next check that all components of 'param' are strings.* I 

if 3p(i) E param I type p ne cstring then 
return 'Rejected, argument'+dec i+'is not a string'; 

end if; 
/* All arguments have correct form.*/ 
/*Next check that all libraries exist.*/ 

liberror=false; /*Initialize indicator that there are missing libraries.*/ 
(Vlib(i) E param(2:)) 
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if lib eq '*' then continue Vlib(i);; 
if catalogue(<username,'library.'+lib>) ne Q then continue Vlib(i);; 
liberror=true; 
terminal write 'library'+lib+'does not exist'; 

end Vlib(i); 
if liberror then 

return 'searchorder command rejected'; 
else 

searchorder(param ( 1)) = param(2:); 
return nulc; 

end if; 
end searching; 

end commandanalyzer; 

I* *************************** *I 
I* Get block of Main Storage * / 
I* *************************** *I 

. definef qd getblock (L,P) on blockflag; 
/* L is the length of the desired block, P is the identifier of the process to get the block, 
function returns base B of the block if available, otherwise, Q * / 

share secondarystorage; 
/*The above share statement declares secondarystorage to be shared among all processes 
executing this subroutine.*/ 

initially /*get disk pack for swapping programs*/ 
if secondarystorage ne .Q then quit initially;; 

/*This initially block is done only the first time that this routine is entered, not once 
per process. 

In the next three statements, 'swapfile' becomes the name of the system's file for 
swapping memory images between main memory and secondary storage, 'swapspace' 
becomes the program file name of that file, and 'secondarystorage' represents all the 
data on 'swapspace'. * / 

monitor('file' ,'swapfile', { <'space' ,'all'>}); 
· monitor('define', 'swapspace', 'swapfile'); 
secondarystorage = open (' swapspace '); 

end initially; 

if L It O or L gt maxmem then 
/*Request is for negative space, or too much space.*/ 

free blockflag; 
return Q; 

end if; 
/*First, search for an available memory block which is large enough.*/ 
if (3s(k) E memsize Is ge Land memown(k) eq Q) then 

/* A block which is large enough has been found.*/ 
reclaimed=s; 

j=k+l; 
/*At 'final', the kth block gets assigned to process P. If the kth block is too large, 
the remainder becomes an unassigned block which is contiguous to the k th . All the 
blocks from the j th to the last become contiguous to the kth (or the k+ ist, if the k th 

was larger than the amount requested for P. * / 
go to final; 

end if; 
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/*Perhaps memory is too fragmented. The used memory now gets compacted by moving 
toward lower-numbered cells. If and when a large enough unused block is created, the 
memory request is fulfilled.*/ 

addup: reclaimed= O; 
foundsome=false; 

/* reclaimed=amount of reclaimable memory, i.e. size of contiguous, available space, 
foundsome=true when some reclaimable memory has been found*/ 

'(Vblocks(i) E memloc) 
if memown(i) eq Q or-memown(i) eq P then 

/*Note that some blocks may already be assigned to P by the code at preempts­
torage, below. This occurs if during a previous execution of this block of code, 
insufficient free storage had been found.*/ 

reclaimed=reclaimed+memsize(i); 
if not foundsome then 

/*This is the first free block found*/ 
k=i; 
foundsome=true; 

end if not; 
if reclaimed ge L then 

/*Enough memory fragments exist. Compact used storage to create a large, 
free block.*/ 

B=memloc(k); /*first unused location*/ 
(k<Vj<i) 

if n(memown(j) eq Q or memown(j) eq P) then 
/*move useful block to lower memory to create larger contiguous 
unused block in higher memory. Note that since I/0 does not go 
explicitly via variables in a process's memory, but rather through a 
buffer in a workqueue managed by the operating system, we dont't 
have to first wait for I/0 to finish before relocating a process's 
storage. With a more conventional storage model, such a wait would 
be required. Recall that memory is a vector to access all of main 
memory directly. cf. section 5.3.*/ 

memory (B: memsize (j)) = memory(memloc(j): memsize (j)); 
/* Adjust the relocation portion of the environment of the process 
whose memory area was just moved.*/ 

hd relocate(state(memown(j))) = B; 
memloc(k)=B; 
memsize(k) =memsize(j); 
memown(k) =memown(j); 
B=B+memsize(j); /*readjust location of free storage*/ 
k=k+l; 

end if; 
end Vj; 

/* Allocate free block to the caller.*/ 
j=i+ 1; /*j points to block after allocated block*/ 
go to final; /*where memown, memsize, and memloc get compressed.*/ 

end if; 
end if; 

end Vblocks(i); 

preemptstorage: 
/*Search for processes owning memory blocks, but not dispatchable. Such blocks are 
members of workset{lowprio} + workset{hiprio}.* / 

(Vpr(i) E niemown I pr ne Q) 
if prEworkset{lowprio} or prEworkset{hiprio} then 

/*pr is a process waiting to be scheduled, but not yet on the CPU's workqueue. 
Pre-empt its storage. Since the scheduler and this subprogram are both enqueued 
on 'blockgflag', the scheduler will not be able to pass any processes to the dispatch­
er until 'getblock' terminates. Thus, in extreme cases, every dispatchable user 
process will exhaust its timeslice and get put into one of the scheduler's work 
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queues, upon which this loop pre-empts its main storage! Passing the test 'L gt 
maxmem' at the beginning of this subprogram guarantees that eventually enough 
storage will be reclaimed.*/ 
memown(i)=il; 

end if; 
/*Determine where in secondary storage to copy memory contents. The following 
conditional must be true for all user processes, and is used to set j to the appropriate 
value from which pr's secondary storage space can be computed.*/ 

must=3y(j) E extstore I y eq pr; 
secondarystorage( (j-1) *maxmem:memsize(i)) =memory(memloc(i) :memsize(i)); 
if reclaimed + memsize(i) is reclaimed ge L then 

/*Enough memory has been preempted.*/ 
go to addup; 

end if; 
end Vpr(i); 

/*Not enough storage has been reclaimed.*/ 
await #workset(hiprio) +#workset(lowprio) gt O; 
go to preemptstorage; 

final: 
/*Make assignment of a block of memory of size L, beginning at B, to process P. Note 
that if the reclaimed block is greater than L in size, the remainder of the reclaimed 
block is kept as an unassigned block of memory.*/ 

memown(k)=P; 
memloc(k)=B; 
memsize(k) =L; 

/*If the unused memory block just assigned is larger than required, keep the 
portion not required as an unused block and remove items between the k th and jth in 
the old vectors.*/ 

memsize(k+ l :)=if L It reclail)1ed then <reclaimed-L> else nult + memsize(j:); 
memloc(k+ 1 :)=if L It reclaimed then <B+L> else nult + memloc(j:); 
if L It reclaimed then 

memown(k+2:)=memown(j:); 
/*Indicate that the unused portion of the reclaimed block has now become a block 
in its own right which is available for assignment.*/ 

memown(k+ l)=il; 
else /*The reclaimed block was exactly the right size.*/ 

memown(k+ 1 :)=memown(j:); 
end if; 
free blockflag; 
return B; 

nonexistent: return Q; 
end getblock; 

I* *************************** *I 
I* Scheduler * I 
I* *************************** *I 

/*Processes are initially placed on workset(hiprio) by the command analyzers. The 
scheduler selects the first process in workset(hiprio), gets the corresponding memory into 
main memory, removes the process from workset(hiprio) and places it at the end of the 
CPU's workqueue. If there are no high priority processes, the same actions are repeated 
for low-'priority processes. See Section 5.6.4. * / 

getmore: 
if #workset(hiprio) ne O then 

/* Attempt to schedule potentially highly interactive processes.*/ 
B=sched(hiprio); 
if B ne Q then go to getmore;; 

end if; 
/*If we cannot schedule an interactive user, try a long-running process.*/ 
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B = sched (lowprio); 
if B ne Q then go to getmore;; 
await #workset(hiprio) + #workset(lowprio) gt O; 
go to getmore; 

definef qd sched(queue) on blockflag; 
/*This routine and 'getblock' must have exclusive use of the memory assignment maps. As 
soon as the scheduler has determined whether or not the next user to run has his program 
in main memory, the 'getblock' routine is free to run*/ 

p= getfirst( queue); /*first eligible user in queue*/ 
if p ne Q then 

if n(3x(i) rn1emown Ix eq p) then 
free blockflag; 
B= getblock(size(p ),p); 
if B eq Q then return Q;; 
hd relocate( environment(p)) =B; 

else free blockflag; 
end if p; 
usednow(x)=O; /*time used in current time slice*/ 
putlast( CPU ,p); 

end if; 
return(p); 

nonexistent: return Q; 
end; 

I* *************************** *I 
I* Dispatcher * / 
I* *************************** *I 

/*ct. 2.4.3.1 * I 
getwork: waitcopy=waitset; /*Copy set of waiting processes*/ 
loop: if waitcopy ne nl then 

s from waitcopy; 
L=loctr(sfate(s)); 
CPUcontrol=s; /*Reevaluate condition for resuming process s. * / 
if isok then 

/*'isok' is communication betweens and the dispatcher.*/ 
s out waitset; 
putlast( CPU ,s); 

else loctr(state(s)) =L; 
end if; 
go to loop; 

end if; 
/*Give priority to system processes.*/ 

(disable) 
findfirst( CPU,s,privilege(s) eq 'system'); 
ifs ne Q then 

remove(CPU,s); 
/*We don't want system routines to be interrupted often by the timer. In the 
following statement, 'onesecond' is a machine dependent macro which specifies the 
number of ticks in a second. ( cf. 2.4.1.13) * / 

timer= clock+ onesecond; 
else 

/*No system processes to dispatch -- choose a user process.*/ 
s= getfirst( CPU); 
if s eq Q then go to getwork;; 
starttime=clock; /*for interrupt handlers*/ 

/*Compute when the quantum ends.*/ 
timer=clock + quantum(moverpart(s) )-usednow(moverpart(s)); 
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end if; 
end disable; 
CPUcontrol=s; /*give control to the chosen process*/ 
go to getwork; 

timexpt: 
(disable) 

I* *************************** *I 
I* Timer Interrupt * / 
I* *************************** *I 

/*'longtime' is a machine dependent macro specifying an appropriately large number of 
clock ticks (cf 2.4.1.13 ). * / 

timer=clock + longtime; 
if n (privilege(resume) eq 'system') then 

/* A user process has exhausted a time quantum. Determine whether additional quanta 
exist in the time slice, or whether the process should be put into a low priority queue 
(cf. 5.6.4).*/ · 

if nquant(moverpart(resume is mov)) It mquant(mov) then 
nquant(mov) =nquant(mov) + 1; /*No. Count quanta used.*/ 
usednow(mov)=0; /*Initialize time used in new quantum to 0* / 
putlast(hiprio,resume); /*Process put at end of hi-priority queue*/ 

else 
/*Time slices other than the first are at low priority.*/ 

mquant(mov)= 1; /*Only 1 quantum per time slice.*/ 
quantum(mov)=onesecond; /*from now on*/ 
putlast(lowprio,resume); / *but a long one*/ 

end if; 
else 

/*System interrupted. Prepare to resume system process.*/ 
putfirst( CPU,resume); 

end if; 
/*Give up control to the dispatcher.*/ 

< CPU control, loctr( thisprocess) > = <dispatcher, timexpt>; 
end disable; 

monitorxpt: 
(disable) 

I* *************************** *I 
/ * MONITOR SERVICES * / 
I* *************************** *I 

/*First, keep track of time used by user*/ 
if resume E userprogs then 

usednow(resume) = usednow(resume) + clock - sta_rttime; 
end if; 
fcn=hd cause; 
if fen E {'read', 'write', 'backspace', 'rewind', 'space', 'wait', 'enable', 'disable', 'release', 

'enclfixup', 'fixup', 'abend'} then 
/*'inputrequest' is a label found below.*/ 

loctr( osenvironment) =lookatrequest; 
/*Start a privileged process to interpret the monitor request. Attach this new 

· process to the mover of the requesting process.*/ 
state( <newat,newat>) is servicesprocess = osenvironment; 
split to servicesprocess (cause) for resume; 
remove( CPU,servicesprocess); 
< CPU control, loctr(state(thisprocess)) > = <servicesprocess,monitorxpt>; 

/*The then portion of this if-statement is meant to treat the same commands as 
were treated by the monitor services section of the uniprogramming system of 
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else 

Chapter III. The commands arc handled essentially the same way as in Chapter III, 
except that in interpreting I/O requests for shared files, the access rights of the user 
must be checked. 

/*Probable command. Enqueue the parameters on the command analyzer; no 
monitor services process need be split off.*/ 

enqueue cause on ancestor(resume) for resume; 
< CPUcontrol,loctr(state( thisprocess)) >=<dispatcher ,monitorxpt>; 

/*See the code in the command analyzer, at labels 'waiting' and 'readdata', for 
recursive use of the command analyzer resulting from this monitor call.*/ 

end if; 
end disable; 

lookatrequest: ... 
/*Here, the remainder of the monitor interrupt handling code of the uniprogramming 
system, should be inserted. This includes all the code from the label 'lookatrequest' up to, 
but not including, the dispatcher. Also needed from the uniprogramming system are the 
operator message analyzer, external storage allocation, and file map maintenance sec­
tions.*/ 

end interactivesystem; 
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Chapter VI 

Summary 

6.1 Classification of PSETL Extensions 

PSETL represents an attempt to extend SETL for operating system description. The extentions, as 

described in Chapter II, proceded in two directions: the definition of global data objects, and the 

addition of control structures. 

Fourteen global data objects were defined. Several of these, such as interrupt, resume, and clock 

correspond closely to hardware features found on most computers. Others, such as workset, 

waitset, facilities, and state are abstractions of objects which operating system software manipu­

lates. These objects do not correspond closely to hardware components; rather, they correspond 

to higher level objects which operating systems control. These PSETL objects are sets or tuples 

and may be manipulated as ordinary SETL objects. Thus, algorithms involving such data struc­

tures (e.g. a search for a non-busy facility) can use the full power of SETL. 

Four primitive control structures are provided. The initially block is extended to provide execution 

for initial execution of a subprogram by each disticnt process. The disabled-block provices for 

uninterruptable code. The share declaration provides for information sharing between distinct 

processes executing the same body of code. The special variable CPUcontrol, like the previously 

mentioned distinguished data structures, can be used in SETL expressions; when it is the object of 

a storage operator, the result is to switch control of the CPU from one process to another. 

Several additional control operations (see section 2.4.3), such as await, enqueue, free, and the 

queued subprogram are particular to PSETL, but these can be expanded as macros in terms of the 

PSETL data and control extensions of sections 2.4.1 and 2.4.2. Thus, these are not primitive, 

although it is convenient to think of them as atomic operations, and they are used freely in this 

text. 

The examples in Chapters III-V serve as test cases for coding in the PSETL defined by this family 

of extensions. 

6.2 Experience with PSETL 

Before commenting on my experiences using PSETL, some remarks on my previous operating 

system experience are appropriate. My experience bas been limited to operating systems for IBM 

computers, but range over a wide variety of machines. The system includes an experimental 

operating system for the IBM 704, an experimental multiprogramming system for the IBM 7030 

(STRETCH), FMS and IBSYS for the IBM 7090, an operating system to control coupled IBM 

7040's and 7090's, OS/360 and CP/CMS for IBM System 360 and System 370. All these 

operating systems have one characteristic in common: they are coded in assembly language. 

-136-



When I embarked on coding in PSETL, I was at the same time making my first attempt at using a 

high level language for expressing operating system algorithms. My initial attempts felt clumsy and 

were discarded. This probably would have been the case with any higher level language since any 

such language, by tending to suppress some details, would present me, the designer and implemen­

tor, with a different, generally cleaner, view of the computing system than I had been used to. 

SETL allows detailed coding decisions to be suppressed or deferred, but in my initial attempts, I 

could not overcome my previous training and thus tended to data structures and their manipulation 

in minute detail, and the resultant code looked too much like assembly language with semi-colons. 

I do not want to leave the impression that PSETL is clumsy as a language for expressing operating 

systems; it was only my long experience with assembly language which acted as an initial handicap. 

Many stuctures which operating systems use are expressed very naturally as maps, and SETL is 

very well suited to using and manipulating such structures. The code in Chapter V is better SETL 

than the code in Chapter III, and reflects my increased comfort and ability to use PSETL. 

If we examine the sample operating systems in this text, we find that approximately 10% of the 

lines of code involve PSETL dictions. PSETL dictions are concentrated in those portions of code 

which are involved with the creation and control of processes, and which concern vital interproce­

dural mechanisms such as interrupt handling. For many subprograms, ordinary SETL suffices. 

PSETL dictions fall naturally into three classes: dictions which reference special variables, macro 

operations which start, stop or postpone processes, and dictions which obtain exclusive control or 

exclusive use of data. The first group of dictions is easily incorporated into SETL -- it is as though 

certain objects were globally defined and available for use. The second group also poses little 

difficulty, for they naturally appeal when the system programmer requires a means to synchronize 

processes. The third group, involving exclusiveness, is the most difficult to use, for the need to 

exert exclusive control is not generally apparent when an algorithm is initially being coded. · 

These remarks are best illustrated by an example. Consider the function called 'sched' appearing 

in the scheduler section of code in Chapter V. This function receives as input the identifier of a 

workqueue of processes. If the queue is empty, the function returns Q. Otherwise, the first 
process is removed from the queue. If main memory for that process is already assigned, or can be 

assigned, the function returns the process's identifier; otherwise it returns Q. Straightforward code 

for this function is: 

definef sched(v); 
p=getfirst(v); /*remove first process from queue*/ 
if p ne Q then 

if n(3x(i) E memown Ix eq p) then 
/*if memory is not already 

assigned, try to get it.*/ 
B"= getblock(size(p ),p); 
if B eq Q then return Q;; 
/*indicate new location of memory in the 

relocation portion of the environment.*/ 
hd relocate(environment(p))=B; 

end if; 
return p; 

end if; 

end sched; 
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However, the routine as just shown will not work correctly, since other portions of the operating 

system which use data in common with 'sched' may cause interference. Both 'sched' and 'getblock' 

use the vector 'memown' and the workqueue corresponding to v ( v could be either 'hiprio' or 

'lowprio'). Changes to 'memown' and the possible workqueues occur in disable blocks in 
'getblock'. The execution of code between 

p=getfirst(v); 

and 

if n(3x(i) E memown I x eq p) then 

cannot safely be interleaved with execution of 'getblock'. Here this can be prevented in two ways: 

'sched' can be a queued function on the facility blockflag, as is 'getblock', or the code between the 

two statements cited above can be made part of a a disabled block if 'getblock' also uses the 

workqueues which concern us only in in a disabled block. In this case, the queued function is 

preferable since it will still allow 'sched' to run concurrently with other disabled blocks in the 

system, that is, it is interruptable by other processes, and in a multi-CPU configuration, it can run 

while another CPU is disabled. Furthermore, 'getblock' will not require the use of disabled blocks. 

We must only be careful to free blockflag so that 'sched' can ultimately call upon 'getblock', and so 

that 'sched' or 'getblock' can be reused. Hence, the final form of 'sched' is: 

definef qd sched(v) on blockflag; 
p = getfirst( v); 
if p ne Q then 

if n(3x(i) E memown I x eq p) then 
free blockflag; /*allow getblock to run*/ 
B= getblock(size(p) ,p); 
if B eq Q then return Q;; 
hd relocated(environment(p))=B; 
return p; 

end if; 
end if; 
free blockflag; /*all paths must free blockflag* / 
return p; 

end sched; 

PSETL allowed a simple, straighforward expression of the 'sched' algorithm as given above in the 

first rendition. After considering the possible conflicting use of data, PSETL also allowed a simple 

modification to get the desired exclusive control over two data structures. The expressivity of 

PSETL was well suited for this short example, as indeed, it has been for all the code in this text. 

A PSETL shortcoming which shows in this example was that correct coding required awareness by 

the programmer of possible conflicting use of data. Then, with some care, the necessary PSETL 

dictions were used to prevent the conflict. PSETL makes it easy to write such code, but it does not 

go very far in removing the need for awareness of conflicting reference to common data by 

possibly concurrent processes. In this case, PSETL design follows contemporary computer design 

too closely. 

The disable block of PSETL is the one instance where PSETL breaks away from current computer 

design with some success. The restrictions on the contents of a disable block guarantee the 

termination of a disable condition. Had we extended SETL by means of enable and disable 
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statements, then the common programming problem of assuring exit from the disabled state would 

exist in PSETL also. It is true that the restrictions on the disable block did at times make for 

cumbersome construction, but the burden is certainly no worse than that carried by devotees of 

go-to-less programming. 

63 Future Directions 

The system programmer would benefit from additional extensions to PSETL which would relieve 

him more fully from concern about interaction between concurrent processes. As PSETL now 

stands, data items may be treated as facilities, reserved via the queued subprogram 'reserve' (see 

2.2.6.1), and released via free. However, these mechanisms are voluntary; failure to reserve prior 

to use can lead to unpredictable results, and failure to free can lead to deadlock. The deadlock 

problem also arises if the reserve-free mechanism is carelessly used, since two processes can 

request the same facilities in reverse order. 

Linguistic tools which require reservation of critical data prior to use are needed. A 'reserved 

block' diction such as: 

reserve v; 
block; 

. end reserve v; 

might be appropriate. However, to prevent accidental failure to exit from the block, the same 

restrictions as we have placed on the disabled block would have to apply. Along with the reserved 

block, it is necessary to specify the critical variables which are only to be accessible in reserved 

blocks. A modification of the own declaration might serve this purpose, e.g., 

own reserved v; 

With the modified own declaration, the reserved block becomes identical to Brinch-Hansen's 

critical region [B], in that the compiler can determine whether a variable is used outside the 

reserved block. However, we have been explicit about the types of statements which cannot 

appear within the reserved block because of our desire to have the compiler check that the block's 

execution will terminate. 

Nested reserved blocks must still be used with care to avoid concurrent processes with the 

following structure; 

and 

reserve a; 
reserve b; 

end; 
end; 

reserve b; 
reserve a; 
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end; 

end; 

from becoming deadlocked [CES, Hab, Hav, Hol]. Perhaps nested rese_rved blocks should be 

barred, in favor of requiring all reserved variables to be specified on entry to the block. This 

avoids piecemeal allocation of facilities to a process which is a necessary condition for deadlock to 

arise, but has the drawback of requiring some facilities to be reserved for an unnecessarily long . 

time. 

Alternatively, we could require that facilities be a vector, together with a rule that a process 

attempting to sieze a facility x ( where x eq facilities(i)) could only execute 

x in busy; 

if the following conditional were true: 

(Vf E busy*holds{ this process}, 1 ~ 3j < i I f eq facilities(j)). 

Similarly, we could require that for free to be executed, 

(VfEbusy*holds{thisprocess}, 1 ~ 3j ~ i I f eq facilities(j)). 

Clearly, this would avoid circular waiting, another necessary condition for deadlock. Still another 

approach would make the right to use shared data available only for a limited period of time. In 

such an approach, the first process to access such a variable receives exclusive control of that 

variable for the associated time interval. During this interval, other processes attempting to 

reference it are automatically suspended. Failure to release the variable within the time interval 

results in an interrupt and loss of access to the variable to other suspended processes. If the 

process losing control of a timed variable is in a disabled block, the interrupt and loss of control of 

· · the variable are delayed until the process becomes enabled. This approach avoids non-preemptive 

scheduling, which is also a necessary condition for deadlock. 

The PSETL rule making it illegal to use subroutines from within a disabled block (or the proposed 

reserved block) could be eased as follows: Let D be the class of subprograms which have no 

backward branches and which have no while-blocks. Suppose further that in the prologue of each 

(compiled) program, we include a means whereby a subprogram can determine whether it is in 

class D. Entry to class D programs could then be valid in the disabled state provided that the entry 

is not recursive. All other subprogram entries would be invalid and would cause a distinguished 

interrupt to indica_te forced exit from a disabled block. 

The SETL name propagation rules need strengthening. At present, if a variable is to be made 

known across unnested scopes, the dictions global and include must be used. Once the global 

declaration is made, there is no mechanism in SETL which prevents an include from being used in 

any scope of code. This can make the variable accessible in portions of the operating system in 

which the programmer of that portion of the operating system which owns the variable did not 

mean it to be accessible. SETL should make it possible to specify which processes, or which 

scopes may access data, and what kind of access is to be allowed, e.g. retrieval access or assign-

-140-



ment access. A process owning data should be able to dynamically adjust the access to that data 

which it permits other processes to have. 

SETL, being a value-oriented language, implies inefficiencies when large structures are manipulat­

ed, because of the copying which must be done. Code in which these inefficiencies were deliber­

ately avoided at the expense of clarity of expression is found, e.g., in the command analyzers of the 

code in Chapters III and V, in which several input sources can be suspended during command 

macro expansion. To stack file variables would imply a large copying operation; therefore, in the 

code, the file names were stacked, and the files themselves had to be re-opened on unstacking. 

For structures other than files there exist no names or pointers which can be manipulated instead 

of the structure itself. If PSETL is to be us_ed for realistic expression of operating systems, 

pointers or reference-by-name will have to be be added to the language. 
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Appendix A 

A PRECIS OF THE SETL LANGUAGE1 

In the present section, we summarize the principal basic features of the SETL language, as 

they have been defined in the preceding pages. It is hoped that this precis can serve as a useful 

brief reference. 

Basic Objects: Sets and atoms; sets have atoms or sets as members. Atoms may be 

Integers Examples: 0, 2, -3 

Real Examples: 9., 0.9, 0.9E-5 

Boolean strings Examples: I b, Ob, 77b, 00b777 

Character strings 

Label (of statement) 

Examples: 'aeiou', 'spaces­

Examples: label:, <label:> 

Blank (created by function newat). Q is special 'undefined' atom. 

Subroutine. Function. 

The operator type x returns the type of the object x. 

Basic operators for atoms: 

Integers: arithmetic: 

comparison: 

other: 

+, -, *, I, I I (remainder) -

eq, ne, It, gt, ge, le 

max, min, abs 

Examples: 5l l2 is 1, 3 max -1 is 3; abs -2 is 2. 

Reals: Above arithmetic operations (with exception of I I) 
plus exponential, log, and trigonometric functions. 

Booleans logical: and (or a), or, exor, implies (or imp), not (or n) 

logical constants: t ( or true, or 1 b); 

Character strings: conversion: dee, oct 

Examples: dee '12' is 12; oct '12' is 10. 

Strings ( character or boolean): 

f (or false, or Ob). 

+ (catenation),* (repetition), a(i:j), a(i:) (extraction), 

# (size),.nulb, nulc (empty strings). 

Examples: 'a' + 'b' is 'ab'; 2 * 1 b4 is 110011 00b; 

2 * 'ab' is 'abab', 'abc'(l:2) is 'ab', 'abc'(2:2) is 'be', 

'abc'(2) is 'b', # 'abc' is 3, # nulc is 0. 

General: Any two atoms may be compared using eq or ne; 

1 Reproduced from [S73a, pp 501-509]. The underlined objects in the original text have been 
replaced by boldface type to agree with the typography in this work. 
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atom a test if a is an a Lorn. 

Basic operations for sets: 

E (membership test); nl (empty set); arb (arbitrary element); 

# (number of elements); eq, ne (equality tests); 

incs (inclusion test); with, less (addition and deletion of element); 

npow(k,a) (set of all subsets of a having exactly k elements). 

+ (set union),* (intersection),// (symmetric difference). 

Examples: a E {a,b} is t, a E nl is f, arb nl is Q, 

arb {a,b} is either a orb, #{a,b} is 2, # nl is 0, 

{b} with a is {a,b}, {a,b} less a is {b}, 

{a,b} less c is {a,b}, {a,b} incs {a} is t. 

pow({a,b}) is {nl,{a},{b},{a,b}}. 

npow(2,{a,b,c}) is { {a,b},{a,c},{b,c}}. 

Ordered tuples are treated as SETL objects of different type than sets -- e.g. tuples may 

have some components undefined. 

Operations on tuples: 

Tuple former: If x,y, ... ,z are n SETL objects then 

t = <x,y, ... ,z> is then-tuple with the indicated components. 

#tis the number of components of t 

t(i:j) is the tuple whose components; for 1 :Sk:Sj, are t(i+k-1) 

hd tis t(l) 

tit is t(2:) 

+ is the concatenation operator for tuples 

Examples: hd <a,b> is a. ti <a,b> is <b>, which is not the same object as b. 

If t = <a,b> and T = <a,c> then 

T = t + T = <a,b,a,c>, T(3:2) = <a,c> 

Tuple components may be modified by writing 

t(j) = x; 

An additional component may be concatenated to t by writing 

t(#t + 1) = x; 

Set-Definition: by enumeration: {a,b, ... ,c}. Set-former: 

{e(xp ... ,x~), x1Ee1' x2 Ee2(x 1), ... , x
0

Ee/xp ... ,x
0

_ 1) I c(xp ... ,xn)}. 

The range restrictions x E a(y) can have the alternate numerical form 

min(y) :S x :S max(y) 

when a(y) is an interval of integers. 

If.tis a tuple, the form x(n) E t can be used, see below, 

iteration headers, for additional detail. 

Optional forms include 

{x Ea I C(x)} equivalent to {x,x Ea I C(x)}; and 
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{e(x), x E a} equivalent to {e(x), x E a I t} . Functional application (of a set of 

ordered paris, or a programmed, value-returning function): 

f{a} is {if #p gt 2 then tip else p(2), p E f I if type p ne tupl 

then f else (#p) ge 2 and (hd p eq a)}, i.e. 

is the set of all x such that <a,x> E f. 

f(a) is: if #f{a} eq 1 then arb f{a} else Q, 

i.e., is the unique element of f{a}, or is undefined atom. 

f[a] is the union over x E a of the sets f{x}, i.e., the image of a under f. 

More generally: 

f(a,b) is g(b) and f{a,b} is g{b}, where g is f{a}; 

f[a,b] is the union over x E a and y E b of f{x,y}. 

If f is a value-returning function, then 

f{a,b} = {f(a,b)}, f[a] = {f(x), x E a}, etc. 

Constructions like f { a,[b] ,c}, etc. are also provided. 

Compound Operator: 

[op: XE S] e(x) is e(x 1) op e(J½) op ... op e(xn) , where Sis {Xp···,Xn}. 

This construction is also provided in the general form 

[op: x1 E ei, x2 E ei(x 1), ... , xn E e/x 1, ... ,xn_1) I C(xi,···,xn)]e(x) 

where the range restrictions may also have the alternate 

numerical form, or the form appropriate for tuples. 

Examples: [max: x E {1,3,2}](x+l) is 4, 

[+: x E {1,3,2}](x+l) is 9, 

[ +: x(n) E a]x is SETL form of Lan, 

[ op: x E nl] e(x) is !.1. 

Quantified boolean expressions: 

3x E a I C(x) 

general form is 

Vx E a I C(x) 

3x1 E ai, x2 E ai(x 1), Vx3 E a/x 1,x2), .•. I c(xi,···,x
0

) 

where the range restrictions may also have the alternate numerical 

form, or the form appropriate for tuples. 

Evaluation of 

3x E a I C(x) 

sets x Lo first value found such Lhat C(x) cq t. H no such value, x becomes !.1. 

The alternate forms: 

min :::; 3x :::; max, max ~ 3x ~ min, max ~ 3x > min, x(n) E t, etc. 

of range restrictions may be used to control order of search. 

Conditional expressions: 

if bool 1 then expn 1 else if booii then expn 2 .•• else expnn 

a orm b abbreviates if a ne Q then a else b 
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a andd b abbreviates if n a then f else b 

Statements: are punctuated with semicolons. · 

Assignment and multiple assignment statments: 

a= expn; f{exp} = expn; is the same as 

f = {p E f I (hd p) ne exp} + { <exp,x>, x E expn}; 

f(exp) = expn; is the same as f{exp} = {expn}; 

f(a,b) = expn; f{a,b} = expn; etc. also are provided. 

<a,b> = expn; is the same as a= expn(l); b = expn(2); 

<a,b, ... ,c> = expn; <a,<b,c>, ... ,d> = expn; etc. are also provided. 

<f(a),g{b}> = expn; is the same as f(a) = expn(l); g{bJ = expn(2); 

Generalized forms: 

<f(a), g{b,c}, ... , h(d)> = expn; 

<f(a), <g{b,c},h(d)>, ... ,k(e)> = expn; etc. also are provided. 

Use of general expressions on left-hand side of assignment statements (sinister calls). 

e(xi,···,x
0

) = y; must be a no-op if executed immediately after 

y = e(xi,···,x
0

); and vice-versa. The use 

op op' x = y; 

of a product operator on the left-hand side of an assignment expands as 

t =op' x; 

opt= y; 

op' X = t; 

with similar rules for multiparameter compounding. These rules allow user-defined functions to be 

used quite generally on the left-hand side of assignment statements. The 'left hand' significance of 

a function is often deducible from its standard right-hand side form, but may be varied by using 

specially designated code blocks which are executed only if the function is called from right-hand 

or left-hand position respectively. These have the respective forms: 

(load block); (execution only if function called 

from right-hand side of assignment) 

(store x) block; (execution only if function f called 

is from f(parami,···,param
0

) = x;). 

Commonly used operators having special side effects: 

expn is x. 

x ins; 

x from s; 

x outs; 

has same value as expn and assigns this value to x 

same ass= s with x; 

same as x = arb s; s = s less x; 

same as s = s less x; 

Use of code block~ within expressions. 

If block is a section of text which could be the body of a function definition, then [; 

block] is a valid expression which both defines and calls this function. Such code block expres-
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sions can be used freely within other expressions. 

Control statements: 

go to label; 

if cond 1 then block 1 else if cond 2 then block 2 ... else bloclc"; 

if cond 1 then block 1 else ... else if condn then block"; 

Iteration headers: 

(while cond) block; 

(while cond doing blocka) block; is equivalent to (while cond) block blocka; 

(Vx1 E ai, x2 E a2(x1), ..• , xn E a/x 1, ... ,xn-l) I C(xi,···,xn)) block; 

In this last form, the range restriction may have such al_ternate numerical forms as 

min ~ x ~ max, max 2'. x 2'. niin, min ~ x < max, etc., 

which control the iteration order. 

If t is a tuple, bit string or character string, then the operator of the form 

(Vx(n) E t) block; is available. This is an abbreviation for 

(1 ~ Vn ~ #t I t(n) ne Q)x = t(n); block; 

Iterators of this form may also be used in set formers, 

compound operators, quantifiers, etc.· 

Iterator Scopes 

The scope of an operator or of an else or then block may be indicated either with a 

semicolon, with parentheses, or in one of the following forms: 

end V; end while; end else; end if; etc.; 

or: end Vx; end while x; end if x; etc. 

Loop Control 

quit; quit Vx; quit while; quit while x; 

and 

continue; continue Vx; continue while; continue while x; 

The quit statement tenninates an iteration; the continue statement begins the next cycle of an 

iteration. 

Subroutines and functions (are always recursive) 

To call subroutine: 

sub(param 1 , •.. ,param 2); 

sub[a]; is equivalent to (Vx E a) sub(x);; 

Generalized forms: 

sub(param 1,[param 2,param 3], ... ,paramk) 

are also provided. 

To define subroutines· and functions: 

subroutine: 

define sub(a,b,c); text end sub; 

return; -- used for subroutine return 

function: 
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defineffun (a,b,c); text end fun; 

return val; -- used for function return 

infix and prefix forms: 

define a infsub b; text end infsub; 

definef a infin b; text end infin; 

define pref sub a; text end pref sub; 

definef prefun a; text end prefun; 

Nam es copes 

Scope declarations divide a SETL text into a nested collection of scopes. Scope names 

are known in immediately adjacent, containing, and contained scopes. Other than this, names are 

.local to the scope in which they occur, unless propagated by include or global statements. 

Declaration forms 

scope name; ... ; end name; 

scopes with specified nurnerical level 

scope n name; ... ; end name; 

global declaration 

global namei, ... , namen; 

with specified numerical level 

global n namesi, ... , namen; 

include statement 

include list 1, ... , listn; 

Example: 

include bigscopel(scopel x, scope2(-z), scope3(x, y, u[v])), bigscope2*; 

'*' signifies all elements known in scope, '-' signifies exclusion of those elements listed, [ ] 

modifies the 'alias' under which an element is known in scope in which included. Subroutines and 

functions are scopes of level 0. Macros (see below) are transmitted between scopes in much the 

same way as variable names. The declaration 

owns routname/xi, ... ,xn1), routnamez(yi, ... ,yn2), ... 

states that the variables xj are stacked when routname 1 is entered recursively, the variables Yj are 

stacked when rout name 2 is entered recursively, etc. 

Macro blocks 

To define a block: macro mac(a,b); text endm mac; 

to use: mac(c,d); 

Initialization 

initially block; (block executed only first time process entered) 

Input-Output 

Unformatted character string: 

A SETL file is a pair <st,n> where st is a character string and n an integer indexing one 

of its characters. 

er is end record character; input, output are standard I/0 media; 

the function record(s); -- reads a file <st,n> from position n 

till er character or string-end is encountered in the character 
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string st. 

Standard format I/O 

An interval file f in SETL is a pair <st,n> consisting of a character string st and an index 

n to one of the characters of st. 

f read namei, ... ,namen; using standard format reads from file 

<st,n>, starting at position n 

f print expni, ... ,expnn; using standard forni transfers external 

representation of objects to files = <st,n>, starting at 

position n as above 2• 

The set {si, ... ,sn} is represented as {r1, ... ,rn}, where ri 

is the external representation of si" Similarly, the tuple 

<s 1, ... ,sn> is represented as <ri, ... ,rn>· 
An external file st in SETL is character string catalogued with the operating system supporting 

· SETL under some identifying name catname (which is itself a string). The statement 

x = open catname; 

makes the string st into the value of x. The call 

close(st,catname); 

makes the SETL string st into the contents of the external file named by the string catname. 

2111 this text, we have used write instead of print, since print is often interpreted as meaning 
outputting to a typewriter terminal or a high speed printer. We want our verb to denote a general 
output action, and have therefore chosen the word write. 

-150-



INDEX 

abend 

134 

36-37, 63, 66-67, 81, 96, 108, 

allocate 56, 61, 69, 77, 93, 97, 126 

ancestor 13, 24-26, 68, 81-82, 90, 92, 

122, 134 

application program 1, 5 

assembly language 28 

assign 54-55, 64, 69-70, 76, 113, 115, 

117, 121-122, 126 

automatic operator 1 

await 13, 21-22, 27-28, 65-56, 68, 115, 

122, 132, 136 

backspace 17, 36, 38, 71, 81-84, 134 

base 102,105,109,121,130 

batch 6, 56, 96, 99-101 

block/lag 110, 130, 132, 138 

bound 102, 106, 108, 121 

boundaries 3, 89 

Brinch Hansen, P 26, 28, 71, 139 

buffer 37-39, 71, 113, 116 

buffering 4, 42-43 

busy 12, 15, 20, 22-23, 87, 115, 140 

catalogue 33-35, 41-42, 44, 92, 94, 104-

106, 126-129, 150 

cause 10, 16, 19, 36, 81, 88-89, 134 

clock 16, 20, 65, 68, 80, 88, 90, 133, 

136 

command language 100, 123 

communication 7, n, 41, 43, 104 

concurrent 2, 7, 3 7 

concurrent execution 11, 87-88 

contiguous storage 88, 109, 111 

control operation 17, 136 

CPUcontrol 8-9, 19, 38, 54, 63, 73, 81, 

89-90, 113, 113-134, 136 

critical region 27, 139 

data file statement 31, 33 

deadlock 28, 83, 89, 139-140 

debugging 1, 4, 99 

default 31, 42, 44 

Dijkstra, E.W., 14, 26, 28 

disable 10, 15, 66, 72, 74-75, 80, 84-85, 

87, 90, 106, 134, 136-138 

-151-

disabled block 

138-140 

10, 15, 19-20, 98, 129, 

dispatcher 9, 22-23, 25, 40, 72, 81, 88, 

90,97,99, 106,109,111, 133-134 

Donovan, J. 28 

enable 5, 10, 22, 36, 39, 134 

end-of-data statement 31 

endfixup 36, 40, 71, 81, 88, 116-117, 

134 

endstep - 36, 38, 108 

enqueue 14, 16, 24, 57-58, 65, 67, 69, 

82, 90-91, 93,124,134,136 

environment 9, 13, 19, 24-27, 46, 50, 66, 

89, 102, 104, 109, 121, 131, 137-138 

estimated workload 87, 93-94 

facilities 12, 20, 23, 136, 140 

figure of merit 87-88, 92, 94, 99 

file system 102, 106, 126 

findfirst 12, 25, 37, 84-89, 133 

fixup 36, 39-40, 44-45, 48, 107, 115-

116, 122, 134 

free 13, 15, 23, 27-28, 51, 64, 75, 78-

79, 83-86, 89, 130, 132, 136, 138, 140 

getfirst 12, 16, 25, 66, 68, 70, 89, 92, 

115, 122, 132-133, 137 

Hoare, C. A. R. 26 

holds 12, 20, 140 

info 13, 26 

initial var 

input reader 

inputspool 

insertafter 

insertbef ore 

13, 15, 24, 26, 54, 82, 90, 113 

42, 47-49, 54-55, 88 

47,63, 73 

12,25 

12,25 

interactive computing 3 

interactive system 96, 99-102, 107, 111 

interrupt 9-10, 16, 19, 41, 72 

interrupt facilities 3 

interrupt system 3-5, 9, 39 

iointerrupt 36, 39-40, 71, 81, 116 

JCL 2, 31 

job control language 2, 31, 122 

job statement 31-32 

job step 1, 31-35, 37, 99-100, 107 

label 31-35 



library 2, 30, 41-42, 47-48, 59, 61, 100, 

105,107,117, 120-121, 126-127, 129 

loader 1, 34, 65, 89, 97, 100, 103-106, 

109,120,122 
kill. 14,24,67,75 

loctr 9, 13, 15, 26, 66, 72, 81, 86, 89, 

115, 121, 133-134 

logoff 101, 106, 119, 120, 124 

logon 101, 106-107, 114-117, 124 

machine dependent 5, 7, 16-17, 19-20, 

30, 39-40, 116, 121, 133 

macro operations 18 

Madnick, S. 28 

main memory 2-3, 17, 30, 34, 43, 86-89, 

93, 98-105, 108-109, 111, 121, 130-132, 

137 

map 6-7, 30-31, 33, 40-41, 43 

memory device 99 

message buffers 28 

monitor services 17, 36, 80, 83, 97,105, 

111,117 

movers 8, 18, 57 

multiple extents 97 

multiprocessing 11 

multiprogramming 3, 5-6, 37, 86-90, 96, 

99, 136 

non-interactive 30, 86, 107 

non-privileged 3, 105, 107, 121 

on-line 99,101,104 

operating system 1-3, 86, 88, 96, 99, 

104 
operator communication 41, 72 

output printer 43 

permit 104, 120, 124, 127-128 

physical device 4, 6, 34, 45, 55, 76, 82, 

89,94 

privileged instruction 3, 17 

privileged process 9, 13, 13, 19, 21, 81, 

117, 134 

problem state 3 

process 8 

processes 

processpart 

8-9, 12, 18-19, 75 

9, 13, 24, 26,117 

-152-

program file name 34, 42, 103, 113, 

115, 118, 124, 126, 130 

PSETL 7-8, 11, 16, 97, 106, 136-140 

queued subroutine 12, 20, 22, 111, 115-

116, 134 

read 38, 70, 81-83, 111, 115-116, 134 

readfirst 12, 25 

release 39, 71, 81-82, 87, 134 

relocatable 88, 102, 104-105, 108-109, 

121, 131, 133, 137 

reserve 14, 23, 64, 74, 80, 82-83 

resource allocation 5, 7, 41, 8 9 

resume 9, 19, 80-81, 88, 90, 133, 134, 

136 

rewind 38, 81, 83-84, 134 

scheduler 42, 47-50, 55, 58, 64, 67, 72, 

74, 87-97, 100, 102, 106, 109, 121, 131-

132, 137 

secondary storage 97, 99, 101-102, 106, 

109, 114, 118, 130-131 

semaphore 14, 28 

session 101-102, 104, 106-107, 114, 

117,119 

shared variable 11, 15 

split 13, 23, 51, 66, 69, 72-73, 81, 117, 

122,134 

step termination 36 

symbolic reference 30, 86 

synchronization 4, 13, 14, 20, 29, 38 

system nucleus 40, 106 

term 14, 24, 94 

timer 16, 20, 80, 88, 90, 133 

unhook 50, 57, 67, 75-76, 79, 93,116-

120, 122, 124, 126-129 

uniprogramming 30, 37, 86, 88, 91, 97, 

134 

user file name 33-34, 103-104, 125-126 

virtual memory 4, 6 

wait 38,40, 70, 76,80, 82,86, 134 

waitset 13, 20-22, 115, 133, 136 

workset 11, 19, 28, 44, 89, 136 

write 38, 71-72, 81-83, 97,114,134 


	Abstract
	Preface
	Contents
	I. Introduction to Operating Systems
	II. Parallel SETL
	III. A Simple Operating System
	IV. A Multiprogramming System
	V. An Interactive System
	VI. Summary
	Bibliography
	Appendix A. A Precis of the SETL Language
	Index



