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ABSTRACT

Very high level languages are often weakly typed in the sense that different occurrences

of a name can be associated with distinct types. The types of many entities are nevertheless

determinable from the structure of the program, allowing translators for these languages often

to incorporate some sort of typefinding algorithm. Due to problems of algorithmic termina-

tion, however, these algorithms have been unable to type structures of a recursive nature such

as trees. In this thesis we present a method which detects and uncovers the structure of recur-

sive objects, and discuss possible applications of the method to optimization of code. We

examine the run-time type model of SETL and the corresponding data representation sub-

language (DRSL), and present a general critique of the design as well as implementation of

the current data representation sublanguage. The objects expressible by the latter are shown

to be proper subsets of the universe of types assumable by SETL entities at run-time; we

present suggestions for extending the representation sublanguage to allow for complete type

specification.
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CHAPTER 1

Introduction

1. Introduction

The semantic level of a programming language is characterized by the degree to which a

programmer must pay attention to implementation details: the higher level the language, the

less need be supplied and the more natural the expression of the algorithm. In order to facili-

tate the natural expression of algorithms, many high level languages free the programmer

from the burden of statically typing program variables through declarative statements. In

addition, data types far removed from those actually implementable via the hardware are pro-

vided, again to mask questions of implementation. Thus, compare the classical concordance

program written in PL/I, where table handling is the programmer's responsibility, and in

SNOBOL where the table is a language-defined data type.

SETL is a set-oriented language developed and implemented at New York University. It

is weakly typed and declaration free, and most of its operators are overloaded. As a conse-

quence, there is a substantial overhead in run-time type checking, and only interpretive code

can be profitably generated by the SETL translator. To remove the burden of run-time type-

checking, and allow the translator to generate efficient machine code, a typefinding algorithm

is needed to infer the types of program entities from their use. The static information that

the typefinder yields can then be used by a data-structuring module to find the most efficient

internal data structures with which to represent composite data objects (sets, tuples and

maps). This thesis examines in detail the typing issues present in SETL and proposes sub-

stantial extensions to existing type-finding algorithms and to the current type structure.



1.1. The Type Model of SETL

The type model of a language is one of the central issues of the design of the language.

Depending upon the type structure, bindings between objects and the types allowable by the

language may be possible at translation time or may have to be postponed until run-time. A

weakly typed language is defined as one in which an object may assume different types dur-

ing the course of its lifetime. A strongly typed language, on the other hand, disallows such

freedom, requiring objects to have a single type. This type may be the union of two or more

simpler types but the strong type model requires a controlled mechanism (e.g. the discrim-

inant in an Ada variant record) for determining which of the possibilities is currently in force

. This notion of strong vs. weak typing is independent of whether or not the language is

declaration-free. The programming language B [Meer85], for example, which is strongly typed

is nevertheless declaration-free. The distinction between strong and weak typing closely

reflects the contrast between mainstream languages (e.g. Pascal, Ada and PL/I) and so-called

very-high-level languages.

SETL allows the components of data aggregates (i.e. sets, tuples and maps) to them-

selves be aggregates. This nesting, or embedding, can be extended to an arbitrary depth. Due

to this facility, there is a rich variety of types that can be assumed by entities in a SETL pro-

gram. The introduction of such structures into a strongly typed language is problematic in

that the shape and structure of such entities is most often unknown until run-time and can

therefore not be typechecked. Furthermore, the set of possible shapes such structures can

assume may be infinite posing serious problems in declaring them. There is no problem if

pointers exist in the language but SETL (and APL) have no such notion. Even APL, which is

weakly typed, is unable to incorporate such objects into the language because it restricts

aggregates to be rectangular arbitrarily dimensioned arrays with scalar component types

rather than allowing arrays of arrays. SETL itself has had difficulties with such structures in

that the automatic typefinder incorporated into the optimizer is unable to assign them any



form of meaningful type, and the representation sublanguage, which provides the programmer

with the facility to declare names in the program contains no facility for declaring such enti-

ties.

1.2. Recursive Data Types

This section focuses upon the class of data types that are typically given a recursive

definition. We examine two basic methods of viewing such structures in various programming

languages.

The common definition of a recursive data structure, RD, is one whose components are

homologous to RD. The term recursive often has another meaning within the context of data

• ructures. Given a linked list, we often say that it is recursive if there is a cycle within the

link structure of the list (e.g. a circular list). This definition is of no interest to us and as such

we denote all lists, circular or not, as recursive.

The user's view of a recursive structure within the context of a particular programming

language is biased by whether the language is pointer- or value-oriented. In a pointer

language (such as PL/I or Ada), composite structures whose structure vary dynamically are

not directly supported, but rather are built up of simple structures linked together by

pointers. Those value languages (languages in which objects are not shared, but must rather

be copied) which allow aggregates to be components of other aggregates, on the other hand,

allow for dynamic objects of arbitrary length and depth, and thus recursive structures are

representable in a more direct fashion. The method of programming in the above two environ-

ments is also affected by this distinction. Value based languages are functional in

approach, objects constructed via calls to functions; while pointer based languages are more

dependent upon the side effects of the assignment statement and parameter modifications.

Before discussing the situation in SETL we present three languages: Ada and PL/I which,

though both are pointer based, have totally different philosophies concerning the use of

pointers in a high-level programming language; and pure LISP which is value based.



1.2.1. Pointers

Pointers have two general areas of application: they can be used to achieve a form of

aliasing or overlaying of two variables (most notably of different data types); and they are

also used to maintain references to dynamically allocated objects. The primary discomfort

expressed by language designers with respect to pointers is in the first area of application.

Overlaying allows the programmer to bypass any type protection provided. Pointers as place-

holders to dynamic objects do have the problem of dangling references, but few would argue

to eliminate dynamic objects on these grounds.

Efforts have been made to allow the use of pointers for dynamic variables while at the

same time prohibiting their use in overlaying variables of different types. When used for

overlaying, pointers are viewed as addresses and thus may be assigned any value within the

range of the address space. No thought is given to the type structure of the program. When it

allows pointers to be manipulated in such a fashion, the language normally provides some

function (e.g. ADDR in PL/I) that accepts a variable as its input and returns the underlying

address of that variables as its result. Note that at this point, there are now two ways of

referencing the variable: by its static (or declared identifier), and secondly, via its internal

address. The absence of such a function in a programming language prevents the programmer

from mixing static and dynamic references.

When pointers are to be used to maintain references to dynamically created objects,

their function becomes one of a higher level than that of machine addresses. When a value is

created at run-time, it is nameless in the sense that it has no identifier associated with it and

thus, the reference to it returned by the allocation function must be saved to allow access to

this new object. Whether the reference to the object is an address or something else entirely is

of no interest, what does concern us is that it is uniquely associated with the object just allo-

cated.



1.2.2. Recursive Structures in PL/I

Of the pointer-oriented languages we shall examine, PL/I [PL/176] has the loosest type

structure with regard to pointer references. Its pointers are said to be untyped, i.e. pointers

are merely viewed as machine addresses without any regard to the logical type structure

imposed by the declarations upon the corresponding referenced objects. Pointers are simply

declared as such and can reference any type of entity in the language. One can additionally

declare a variable as BASED on some pointer, with the effect that that variable is then an

alias for any object the pointer is currently referencing. Variable overlaying is then easily

accomplished as in:

DECLARE X POINTER
Y CHARACTER (4),

Z FIXED BINARY BASED (X);

X = ADDR(Y);
X-> Z = 15;

PUT LIST (Y);

The above is a violation of whatever type restrictions PL/I does possess in that it allows the

assignment of an integer into an object declared as a character string. One saving grace in

favor of PL/I is that it does prohibit arbitrary arithmetic to be directly performed upon

pointers.

It is clear from the above that there is no means by which the type of a referenced vari-

able can be determined in PL/I without additional software support on the part of the

applications programm

One advantage of this scheme is to allow the construction of heterogeneous linked struc-

tures but at the cost of a total inability to perform any type-checking on pointer-manipulated

variables. A related problem, alluded to above, is the inability of the programmer to deter-

mine what form of object the current pointer being manipulated is referencing. As a result,

what one often encounters in programs dealing with such structures is a LISP-like system,

with separate list and atomic nodes, the list nodes being identical in format and containing



type descriptors for the atomic nodes they point to.

1.2.3. Recursive Structures in Ada

Ada [Ada83{, following PASCAL [\Virt7l], is strongly typed with respect to its pointers

(called access types in Ada). When declaring an access object, the type of object being

accessed must also be specified. Pointers are in this manner partitioned as to their use: vari-

ables used to reference one type of object may not be used to reference another type. In

order to achieve the effect of a nonhomogeneous structure, variant records must be employed.

Thus, Pascal and Ada have transformed the pointer into the higher level object discussed

above, one whose purpose is to reference dynamically allocated objects. It is for this reason

that the designers have chosen to call such an entity an access type, rather than using the

term pointer which has a machine address connotation associated with it. As an example, we

present the declaration of a recursive type in Ada [Ada83 pg 3-41]. A record type, CELL, is

declared, to represent a typical node of a doubly linked list. An access type, LINK, is also

declared, which can point to objects of type CELL:

type CELL;
type LINK is access CELL;

type CELL is

record
VALUE : INTEGER;
SUCC :LINK;
PRED :LINK;

end record;

The first declaration of CELL is known as an incomplete type declaration and allows the

declaration of LINK to specify the type of object it may point to.

1.2.4. Recursive Structures in LISP

In both of the above languages, the programmer, in order to construct and manipulate a

recursive structure, must deal directly with the underlying representation, i.e. it becomes his

responsibility to manipulate the pointers linking the structure together. It is far more



desirable for the programmer to ignore such details and instead concentrate upon the abstract

properties of the structure used. Pure LISP [McCa65] allows the programmer such facility. A

list is viewed as a sequence of items, some of them lists themselves. High-level operations are

provided to allow the programmer to manipulate such lists at their conceptual level, e.g. to

insert an element into the list, concatenate two lists together, etc. The fact that internally

such structures are maintained in linked format for efficiency reasons is of no concern to the

programmer.

The primitive data structure in LISP is the linked list, itself a recursive structure. Trees

and more general structures can be easily realized by allowing the elements of a list to be

themselves lists. Such constructs are viewed in LISP as being single entities, rather than the

linked structures of their counterparts in pointer languages. Indeed, the list structure of LISP

is maintained as a binary tree with head (CAR) and tail (CDR) selectors. Such structures vary

their shape and size dynamically allowing for a convenient and flexible manner in which to

program recursive data structures

In addition, pure LISP is value-oriented, i.e. objects are never shared. This implies that

whenever modification to one structure might affect the value of another, a copy needs to be

made to ensure the system's integrity.

In such a system, the problems associated with programming recursive structures in

pointer-oriented languages disappear [Hoar75] Allocation and deallocation of storage is no

longer the concern of the programmer, but rather becomes the responsibility of the language

processor. Side effects to other structures are no longer possible. Dangling references (i.e.

pointers to deallocated storage areas) cannot occur.

If pure LISP is extended with the functions SET, REPLACA and REPLACD, which

allow explicit pointer modification of the CAR and CDR values of a list, LISP loses its func-

tional value. Using these functions, it is possible to make a change in one structure and in

doing so change the values of other structures. Using these selective updating operations, cir-
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cular structures can be created, and true object sharing can be achieved introducing side-

effects and argument modification. It is for this reason that REPLACA and REPLACD are

normally used for special-purpose programming only (e.g. garbage collection procedures).

1.2.5. Recursive Structures in SETL

SETL allows for both implementations of recursive structures: pointer and value

oriented. While essentially a value-semantics language, the flavor of pointers can be gotten

through use of the atom data type as in the abstract, pointers establish an explicit mapping

between a tag and some corresponding value. In this role whether the pointer is implemented

as a physical address or not is irrelevant. The atom data type of SETL is akin to the LISP

gensym, in that each invocation of its generator (newat in SETL) yields a name distinct

from all others in the program. These can then be used as domain elements of maps to pro-

vide the same effect as that of pointers. As an example, a binary tree can be represented in

SETL, using the data representation sublanguage by the following three maps:

LEFT : map (ATOM) ATOM;
INFO : map (ATOM) INFO_TYPE;
RIGHT: map (ATOM) ATOM;

where map (d) r denotes a map with domain d and range r. LEFT and RIGHT in this exam-

ple play the roles normally assumed by pointers.

In addition, SETL also allows for the high-level form of recursive structure representa-

tion via arbitrarily nested tuples. Using this approach, each node of a binary tree, for exam-

ple, can be represented by a tuple, of length 3, whose first value is the left subtree, itself

represented in the above fashion; the second element being the information contained in this

node, and the last element representing the right subtree:

tree: tuple(tree, SOME_TYPE, tree)

SETL, however, does not provide any facility for selective updating, i.e. partial

modification of a structure, in the manner that LISP allows with REPLACA and REPLACD.



Thus, the statement:

x(l):=x;

has the same effect as:

x := [x, x(2), x(3), ..., x(#x)]

and thus no circular structures or side-effects can occur when programming in this manner.

The above two representations are characteristic of two diametrically opposed ways of

programming in SETL. The second, using nested tuples, reminiscent of LISP, takes a func-

tional approach, in which new copies of the structure are created for any modifications that

are made to the structure. A typical algorithm traversing such a structure will extract com-

ponents of the structure when traversing it, and upon unwinding the recursion reforms these

components into new structures. As an example, consider the following fragment that inserts

an element x into a binary search tree:

procedure insert (tree, x);

$ Handling of leaf cases

[val, left, right] := tree;

if x < val then
left := insert(left, x);

else

right := insert (right, x);

end if;

return val, left, rightj;

end procedure:

in the situation where the node being examined is not a leaf, requiring a traversal further

down the tree (i.e. inserting the new element into either the left or right subtree), the three

components of the current node are extracted. The appropriate child (left or right) is

traversed. Upon returning from the recursive call to insert, a new tuple is formed, consisting

of the data element of this node, and the two children, one of them modified.

The first method, employing the maps LEFT and RIGHT as successor functions, is

characteristic of programming in a more conventional language, one in which pointers are
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readily available, the major distinction being the use of logical atoms rather than physical

pointers. Modifications are made to the structure in this model, not by creating a new

updated copy of it, but rather by making changes to the domains or ranges of the maps. As

an example, a typical routine to insert a value into a tree represented by the three maps

LEFT, INFO and RIGHT looks like:

proc insertftree, x);

if tree = om then $ Empty tree

z := newat;
INFO(z) :=x;
tree := z;

return;

elseif x < INFO(tree) then $ Left insertion

if LEFT(tree) = om then $ Leaf node

z := newat;

INFO(z) := x;

LEFT(tree) := z;

return;

else $ must go down further

insert(LEFT(tree), x);

end if LEFT(tree);

else $ right insertion

if RIGHT(tree) = om then $ Leaf node

z := newat;
INFO(z) := x;

RIGHT(tree) := z;

return;

else $ must go down further

insert (RIGHT(tree), x);

end if RIGHT(tree);

end if x < INFO(tree);

end proc insert;

An interesting observation is that SETL is closer to FORTRAN or Algol 60 in this area

than to Pascal or PL/I, in that the data structure is 'flattened' into one map per field of all

the nodes, rather than a set of records, each containing only the fields pertaining to one node.

This is due to SETL's (like FORTRAN and Algol) lack of a record type.

Upon examination of these two modes of programming recursive data structures, it

becomes obvious that the pointer-oriented method is the more efficient. This is because less

run-time allocation need be performed as successive copies need not be created. If nested
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tuples are used, a new tuple must be allocated every time a new node is to be added. Addi-

tionally, tuples are generated on an extremely temporary basis, producing much garbage, i.e.

leading to increased storage reclamation. In the case of maps however, modifying the struc-

ture by changing the range value of some item in the domain need not require storage alloca-

tion activity.

With regard to programming clarity, elegance, and data structure integrity, the func-

tional approach is preferable. When maps are employed, there is no guarantee of a one-to-one

correspondence between nodes in the successor map. For example, given the above binary tree

representation, it is possible for the programmer to inadvertently assign the same node as the

child of two different parents. This potential hazard is due to the programmer introducing

pointers (represented by atoms) into his program, bringing with it the problems of aliasing

and side-effects. This cannot occur when programming in a functional value oriented style, as

identical children of two distinct parents are maintained as distinct objects.

The above two paragraphs make it clear that we consider it preferable to program

recursive structures using nested tuples, and yet want to have the implementation in terms of

pointer based structures. Indeed, that is the essence of copy optimization. The typefinding

algorithm presented in the first part of this thesis provides us with information that assists us

in this change.

1.3. Previous Work

Initial work on typefinding was done by Tenenbaum [Tene74] and his algorithm is the

basis of the typefinder used in the current SETL optimizer. In essence, the algorithm passes

iteratively over the program deducing type information until no new information is obtained.

In the examples presented, the typefinder assigned to 77% of the variables the best type

description possible The remainder were correctly- but overconservatively typed due to

'imprecisions' resulting from the typefinder not exploiting semantic information present in

conditional statements.
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Jones and Muchnick [Jone76], in presenting the design philosophies of a programming

language with late binding times, develop a typefinding algorithm, allowing the programmer

to be freed of declaration and data-type restrictions, while at the same time enabling the

language translator to implement the program in an efficient manner. Their approach is

simpler and more general than Tenenbaum's, though requires more storage, as the resulting

system of equations is larger. Kaplan and Ullman [Kapl78] also develop a general method of

typefinding and show that their algorithm is yet more comprehensive than Tenebaum's or

Jones and Muchnick's.

None of the above algorithms correctly type recursive structures such as trees or linked

lists, because the solutions of systems containing structures is infinite and therefore the algo-

rithms may not terminate. Jones and Muchnick [Jone8l] subsequently developed a method to

discover the type structure of various LISP-like structures. They accomplish this using tree

grammars which handles the infinite systems as well as the finite ones. The effect of each

statement in a program is regarded as a production in a grammar. Their method, however,

does not allow for recursively defined functions, but rather works on a LISP-like language

with sequential execution (i.e. the PROG feature of LISP).

Recently, strongly typed languages have been developed which allow the programmer to

omit declarations. As static typechecking is mandatory in such a language, typefinding

becomes a necessary portion of the translation process and not just an optional part of the

optimizer. In addition, typefinding in such a language amounts to checking type compatibili-

ties between the various operands of an operation, as opposed to infering types of individual

name occurrences, as is the case when performing typefinding in a weakly typed language.

ML [Miln83], is a strongly typed language in which most declarations are unnecessary. A

typefinding method [Card85] has been developed based upon Robinson's unification algorithm.

The method performs tree equivalencing of types, checking types for consistency. Meertens

jMeer83] has developed independently a similar method for the programming language B
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[Meer85]. With regard to recursive data structures, ML requires explicit declarations of recur-

sive data types, while B disallows structures whose depths vary dynamically.

1.4. Thesis Overview

Chapter 2 of this thesis examines the current state of automatic typefinding in SETL

and the inability of the typefinder to strongly type recursive structures that are constructed

using nested tuples. An algorithm is presented to remedy this deficiency and its implications

discussed. Chapter 3 presents an overview of the data representation sublanguage of SETL, a

facility allowing programmer-supplied declarations and aggregate representations. Features

currently missing from the sublanguage but which are necessary if recursive structure typing

is to be permitted are discussed as well as several other facilities to provide the programmer

with the capability to type the objects of the program in a more precise manner. A proposed

syntax is suggested to incorporate these changes into the language. Chapter 4 is an implemen-

tation, written in SETL, of the typefinder presented in Chapter 2. Chapter 5 presents a

variety of example displaying the power of the typefinder, and Chapter 6 presents our conclu-

sions and discusses further research in this area.



CHAPTER 2

A Typefinding Algorithm for Recursive Data Structures

2. A Typefinding Algorithm for Recursive Data Structures

Declaration-free languages are a twofold convenience to the programmer: first, programs

are easier to write by not having to include declarations for objects; second, the lack of

declarations allows the programmer to defer representation decisions. This latter feature is

particularly true for languages in which operators are overloaded. Thus, if the syntax for

array access and table (or map) access are identical, the programmer can defer whether to

represent a particular structure via a table or array until later in the programming lifecycle.

In addition, internal representations for composite structures (such as sets and maps) can be

deferred until after the algorithm has been tested.

Unfortunately, there is a price to pay with regard to run-time overhead if declarative

information is omitted from a program. Given an overloaded operator, in the absence of any

additional information, the code generated for that operator is a call to a run-time library

routine which determines the appropriate operation to perform, based upon the actual types

of its operands. This run-time decision is unnecessary if the types of objects are determinable

at translation time, in which case type-specific operations, possibly implemented using the

hardware instructions, can be inserted into the code.

The basic method of eliminating run-time typechecking is to have the translator deter-

mine from the structure of the program the possible types a variable can take (assuming that

the program is correct). The problem differs for weakly and strongly typed languages in that

the typefinder of strongly typed language has the additional knowledge that the same variable

must be of the same type throughout the program and thus the task of the typefinder is to

perform type consistency checks. Weakly typed languages must also take into account for

14
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the possibility of the same variable assuming objects whose types differ at various points in

the program. This requirement has an impact upon the design of the language itself. For

example, B which is a strongly typed, declaration-free language requires upon input a 'sample'

value corresponding to the type of the input variable (e.g. READ n, s EG 0, "). Without this

value, the typefinder would be unable to check for consistent usage of that variable.

2.1. An Informal Introduction to Typefinding in SETL

The basic technique of typefinding is to scan the program examining the manner in

which variables are defined and used and to determine from such information the set of possi-

ble types assumable by each variable. The information regarding types is obtained in two

separate steps: a forward analysis of the program in which type information is propagated

from definitions, and a backwards analysis in which types are deduced from the manner in

which objects are manipulated.

In the case of SETL, the result of typefinding a variable may be a set of types, rather

than a single type. Furthermore, determining a useful subset of the universe of all possible

types may not always be possible. In the following program:

program p;

read (a):

print (a);

end program:

the variable a must of necessity remain untyped.

However, in many instances variables are initialized by means of constant values which

betray their types, and defined or used in operations that are type specific (e.g. x := #t,

where # is the cardinality operator, implies that x is an integer). Furthermore, if structured

programming style is employed, the majority, if not all of the variables in a program will be

given a single specific type, as the user will employ a variable for one specific purpose only.

As mentioned previously, if types can be assigned to such variables, the specific operation can

be inserted into the object module as opposed to a call to a general run-time routine.
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The presence of weak typing in the type model requires us however, to assume the worst

and consider the possibility that a variable is used in an arbitrary fashion and assumes

disparate types at various points and times during execution. Thus, given the following:

if somecondition then
x := ... $ an expression of type tl

else

x := ... $ an expression of type t2

end if;

some use of x $ having type tl or t2

since the language is weakly typed, rather than checking the two definitions of x for con-

sistency, we are forced to take the union of their types as the potential type of x prior to the

subsequent use.

In spite of the seemingly pessimistic system that we have to work with, structured pro-

grams will not contain such quirks and the two definitions to x will typically be of the same

type, resulting in a strict type even after the union, with the exception of recursive types.

There are also situations in which type errors can be flagged despite the weak typing of

the language. Consider:

x :== 3;

y := arb x; $ extract an arbitrary element from x

arb is a type specific operator used for set extraction. As the only possible type for x from its

prior definitions is integer prior to performing the arb, the typefinder can safely indicate an

error.

We noted above that nothing can be said about the type of a variable that is read in.

However, if we examine the subsequent uses of that variable, we may infer the set of possible

types that variable may assume and still be consistent with its uses. It is still not the case

that we can strongly type the instance, but we may move the type check from the point of

use back to the point of definition (the read in this instance), and in all probability reduce

the number of type checks performed, given that the uses being executed are typically more
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frequent than the definition.

2.2. Terminology

The predefined elementary or primitive data types of SETL are integers, reals,

strings, atoms, and om (the undefined value). These are combined into more complex

objects using set and tuple constructors in conjunction with the special primitives nullset and

nulltup which represent the null set and null tuple (or sequence) respectively. Implicit

conversions are not performed.

Given a type, t, a set whose components are of type t is denoted set(t). A tuple of known

length with component types tl, t2, ... tn is written as sequence(tl, t2, ..., tn). A tuple of

unknown (i.e. arbitrary) length with component type t is written as tuple(t).

When dealing with types, we employ the above notation, rather than denoting a set of

component type as {t}, and a tuple as [tl, t2, .. tn] to make clear the distinction between

the type of an object and the object itself. That is, an object that is a set of integers might be

denoted as {1, 2}. while its type is denoted by set(integer)

Given types tl and t2, their alternation, tl
|
t2, is the type consisting of the union of the

sets of domain values valid for tl and t2. If a type symbol t is expressible into the form tl
|

t2, then t is said to be an alternated type, Otherwise it is called an elementary type, tl

and t2 in the above are called the alternands of t.

Examples:

set(integer
|
string) corresponds to a set whose components may be either integers or

strings.

sequence(integer, integer) is a pair, both of whose elements are integers.

tuple(real) is a tuple of arbitrary length with real components.

The above notation is insufficient to type exactly many structures. For example, to

represent an unknown length tuple whose first element is a string followed by an arbitrary
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number of integer components, we have no recourse but to write tuple(string
|
integer). As

another example, a binary tree represented via arbitrarily nested sequences, has as its

representation an infinite number of alternands. Employing the above notation forces the tree

to remain untypeed, resulting in quite a loss of knowledge about this data structure. Note

that programming a recursive structure using explicit links (e.g. using atom based maps), can

be easily represented as the range and domain of the maps are uniform. It is only for recur-

sive structures represented as dynamically nested tuples that no representation can be given.

For purposes of typefinding, we assume the SETL program to be schematized, i.e. to be

transformed into some standardized form convenient for analysis. We employ an extended

form of quadruple, where a typical binary operation is represented by an operator followed by

an output variable and two input operands. Since SETL is weakly typed, and as such a vari-

able may assume more than one type through its lifetime, we type individual instances of the

variable rather than the variable as a whole. The variable's type is subsequently the union of

the types of its instances. The appearance of a variable in an instruction is said to be an

occurrence of that variable. If it is the output of the instruction, it is called an ovariable

(or ovar), otherwise it is said to be an ivariable (ivar). Ovariables are also known as

definitions and ivariables as uses. Given an occurrence of a variable v in statement i, we

denote that occurrence by vi. If there is more than one occurrence of the same variable in the

same statement, we number them sequentially from left to right. Instances that are denota-

tions have the denotation bracketed in tildas. For example in the statement:

(4) x := {y, 5} + x

the occurrences from left to right are x, ,, v., " 5"
A , x, „.4.14 4 4.2

A definition, v., is said to reach a use, v., of the same variable if there is a path clear of any

further definitions to that variable from v. to v..
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2.2.1. The BREACHES Chaining

The typefinding algorithm presented in this thesis requires a more general form of value

reaching than the one defined above, akin to the value-flow analysis presented in [Schw75a].

Intuitively, we are interested in all occurrences that are dependent, in any manner upon a

particular value. If the value in instance v. reaches instance v. in this sense, we say v.

value-reaches v.. For example:

(1)
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The major distinction is that crpart only takes into account component embedding an extrac-

tion to propagate values while BREACHES propagates values across all operations.

2.3. Tenenbaum's Typefinding Algorithm

Given the potential program speed-up achievable by moving typechecking from run-

time to compile time, the development of a typefinder for SETL programs is an important

issue in the implementation and optimization of the language. As mentioned previously, the

original algorithm was developed by Tenenbaum, and though improved upon, the basic struc-

ture has remained the same since its original description.

A lattice (a partially ordered set with join and meet) of types is presented, which

describes a useful subset of the types assumable by SETL variables during execution. This set

is similar to the one described in the previous section, with the addition of two primitives

which are not actual types in the languages but rather reflect levels of knowledge about the

type of a variable. The type symbol error is used to denote an erroneous type (either because

of an uninitialized value or a usage that is incompatible with the variable's definitions). The

type symbol general is used to indicate that the type of an instance is unknown. This can

arise in two different ways. First, the instance may be the output variable of a read, in which

case nothing can possibly be known about the type of the instance. Second, the type of a

variable may become too complex or require some representation that the lattice structure

does not possess and may thus be forced to general. The first is unavoidable, we attempt to

eliminate occurrence of the latter.

The constructors set, tuple, sequence and
|
are syntactic symbols used to create new

lattice elements from already existing ones (as opposed to operators which given an existing

element would result in another existing element). The elements of the lattice consist of sym-

bols constructed from the primitives and constructors, - with the restrictions that set and

tuple constructors can be composed with each other to some maximum nesting, and the

length of known length sequences is also limited (the value used in the SETL optimizer for
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both instances is 6). Levels and sequences beyond that limit are collapsed into general and

any relevant type information is therefore lost. This is necessary, as is seen below, to ensure

termination of the typefinding algorithm.

Unlike many other data flow analysis methods, the typefinder requires the definition of

both a meet and a join operation. The join operation, V, or dis (disjunction), represents the

coarsening of type information provided by two type symbols. This corresponds to the merg-

ing of two execution paths into a single one. Beyond the point of merging, the type of a vari-

able can be the type of that variable on either of the two paths prior to the merge point.

Intuitively, the result of joining two type symbols is no more than the type symbol resulting

from the two original symbols separated by the alternation constructor. However, the actual

result is often some less precise type, for reasons of efficiency or because no practical use can

be made of the more precise information For example, dis(tuple(tl),tuple(t2)) collapses

into tuple(tl
|
t2) rather than tuple(tl)

|
tuple(t2).

The meet operation, A., or con (conjunction), reflects the refining of type symbols into a

more precise symbols. One programming situation that calls for the application of this func-

tion is in determining the type of a variable from its uses. If several uses of a variable are all

unconditionally executed after the same definition of that variable, then the type of the

definition can be made more precise by taking the meet (or intersection) of the type symbols

of the uses. As an example

(1) read (x,y);

(2) w := x + y;

(3) z :== arb x;

Forward analysis provides us with little information, x and y are assigned general because

of the read. The instance w
2
can be either integer, real, string, set or tuple, which is not

much of an improvement over general, z, must be an integer (by definition of the length (#)

operator). Working backwards, however, we see that x„ must be a set (as that is the input

type legal for #), and x and y must be integer, real, string, set or tuple. As both
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statements 2 and 3 are executed unconditionally following the read, the type of the value

read in for x must be a legal one for execution of both of those statements. The type of x is

therefore the conjunction (or intersection) of the types of x and x , resulting in set.

Finally, a partial order, <, is defined on the lattice as:

tl < t2 = dis(tl, t2) = t2

that is, if t2 is a type generalization of tl. Imposing a limit upon the nesting of the set and

tuple constructors together with limiting the length of known length sequences guarantees

that all chains in the lattice (defined by the above ordering) are finite in length [Tene74 Sec-

tion 1.2, Theorem 2, and Section 1.6, Theorem 8).

While the meet and join operations are used to reflect the merging and diverging of pro-

gram flow between the basic blocks of a program, a set of functions are needed for the propa-

gation of type information through the blocks themselves. A pair of such propagation func-

tions is defined for each operator: one corresponding to the forward flow of type information

from input variables to the output variable of the operation; the other used to determine the

type of an input variable given the types of all other operands of the operation.

The typefinder functions in two phases. First, type information is propagated in a for-

ward fashion through the flow graph. During this phase, the first of the above two propaga-

tion functions are applied. Constants are assigned their a priori types and operands of type

specific operations are also assigned types. The information generated by this phase is based

upon the manner in which variables are defined in the program. During this phase, only the

join operation is employed.

The second phase of the typefinder uses the information of the first phase as well as exa-

mining the manner in which variables are used in the program. Type information is pro-

pagated in both directions in this phase. This is to allow information obtained from back-

wards analysis to be propagated forward again resulting in more precise typing. In the preced-
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ing example, once the type of x is discovered to be integer, that information should is pro-

pagated forward to x and again to w
2

, and finally from w backward to y In this phase,

variables within input statements can be assigned the set of types they might assume and still

be used legally in later statements.

The information derived from the first phase of the typefinder allows the compiler to

replace run-time calls to generic library routines with low level, type-specific code sequences

if a variable is strictly typed (i.e. its set of types is a singleton other than general or error).

Type information from the second phase allows typechecking to be moved away from the use

of a variable back towards its definition (which presumably is executed fewer times), but does

not strictly type the variable (i.e. the user may still supply an illegal value for x in the data).

In both phases, the algorithm is iterative and based upon a workpile [Hech77]. As new

information is derived, all variable instances which potentially might be affected by such

information are placed on the workpile for subsequent processing. The lattice being bounded

(all chains are finite due to manner in which the meet and join operations are defined and the

limitations upon nesting and sequence length) together with the fact that in the first phase

the types of variables are monotonic increasing and in the second monotonic decreasing,

guarantees that the workpile will eventually become empty. Due to the nature of the work-

pile, the phases proceed in a semi-chaotic (i.e non-deterministic) fashion. That is, little can be

said about the order in which the variable occurrences are processed.

2.4. Limitations of Tenenbaum's Typefinding Algorithm

As we have seen, Tenenbaum's typefinding algorithm is based upon creating a lattice of

type symbols corresponding to the possible types a SETL object might assume at run-time.

In order to ensure that the type lattice used in the typefinder be bounded, certain

simplifications must be made to the actual type model. The first such change is the limit on

the nesting depth of objects. Tenenbaum arbitrarily chose 3 as the maximum depth main-

tained by the typefinder for any object. Beyond that, compression of levels is performed, the
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innermost type symbols transformed into general. For example, if in the following code frag-

ment the type of t is set(set(set(integer))):

s := {t};

then the result type (of s) is:

set(set(set(general))),

rather than:

set(set(set(set(integer)))

A second area of simplification is in the disjunction of tuples of differing length. Two

tuples whose lengths are known but not identical are merged into a tuple of unknown length

with a component type consisting of the disjunction of all component types of the two origi-

nal tuples:

dis(<tl tj>, <tl', ... tk'>) =
[dis/[tl tj, tl', ...tk']] -where j /= k.

The first restriction prevents infinite chains of the form:

tg >= {tg} >= {{tg}} ...

while the second guarantees that although there is an infinite number of known length tuple

type symbols in the lattice, an infinite number of such symbols cannot appear in a chain.

The above two changes to the actual type model, while necessary to the algorithm for

the purposes of termination, result in the loss of information concerning the types of certain

objects. Some of these objects, those that continually embed their previous values within their

current values and are thus composed of an unbounded number of alternands, are the cause of

the above changes and would exceed any nesting depth chosen. Other objects are classified as

general by virtue of the fact that they exceed the chosen depth even though they can be

expressed as a finite number of alternands.
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Examples:

a Given the following code fragment:

1 s := 5;

2 (while some_condition)

3 s := {s};

4 end;

The occurrence s is placed onto the workpile by the initialization phase since its right

hand side is a constant. Calculation of its type as Integer (via the propagation func-

tion for an assignment statement) causes the occurrence s to be placed onto the pile.

It is assigned the type integer (the disjunction of error - occurrence s and integer -

occurrence si). Occurrence s is then assigned the type set(Lnteger). Without impos-

ing a nesting depth, the type symbol of s would continually be changing, increasing in

the number of its alternands, each iteration producing an alternand which is a set whose

component type is the previous iteration's type symbol:

integer
|

{integer}
|

{{integer}}
|

....

b. In the following fragment:

s := [1, [2, [3, [4, 5]]]]

(a LISP-like representation of a linked list), the innermost tuple is collapsed to general

as its depth exceeds the maximum level. It is important to note, however, that s could

be typed without fear of nontermination of the algorithm. It is only because of the

imposition of an arbitrary limit upon the nesting of objects that the innermost type of s

is transformed into general (and not due to an infinite number of alternands).

We therefore see that there are two flavors of objects for which information is lost:

a) Objects that would cause the algorithm to loop infinitely producing for them an ever-

increasing number of alternands.
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b) Objects that 'innocently' trigger the nesting limit but are not intrinsically threatening

to the algorithm's termination.

Type symbols which can generate a potentially infinite number of alternands given a

finite set of initial types (those of part a), we denote as nonconvergent types as they do not

converge using Tenenbaum's algorithm. Such objects need to be eliminated from the

typefinding mechanism to guarantee convergence. The second category of types (part b), how-

ever, are transformed to general due to their static complexity It has been noted by [Fong75]

that a superset of the set of nonconvergent types can be detected in a program in several

ways, most notably by looking for variables with type self-dependencies. Fong, Kaplan and

Ullman construct a directed acyclic graph (DAG) of the type dependencies and search for

situations in which there is a path in the graph from the type of an instance prior to a loop to

the type of the instance within the loop and which passes through a tuple or set former. Such

variables produce a new type upon each iteration over the graph, the new type being the pre-

vious type embedded in either a set or tuple constructor. Our approach is to look for variable

instances that are elements of their own BREACHES* (see next section). Once it is deter-

mined which variables are in this class, they can be immediately set to general. This can be

achieved as a preprocessing pass to the typefinder proper. In such a fashion, arbitrary nesting

depths can be eliminated from the typefinding algorithm, as all nonconvergent types will be

known to be general a priori, and therefore types falling into category b above will not be

made general because of such limits.

Among the class of nonconvergent types is a subclass which we designate as recursive

data types, i.e. types containing references to homologous structures. As these variables are

nonconvergent, they will be set to general by the typefinder, regardless of whether it is sup-

plemented by the above preprocess phase.

A second subclass of the nonconvergent types is the class of dynamic tuples, i.e. the

set of sequences whose length cannot be determined a priori without executing the program
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with its input. Tenebaum's typefinder is able to properly type such objects as arbitrary

length tuples. However, in doing so, the algorithm also classifies an object that assumes a

sequence of length two and length three as an arbitrary length tuple due to the simplification

made to the disjunction of disparate length tuples mentioned above. This simplification is

necessary in order to prevent code fragments such as:

t :=
[];

(while some'-ondition)

read (x);

t := t with x;

end:

from generating an infinite sequence of types of the form:

sequence(general)
|
sequence(general, general), ...

We thus see that there are two flavors of structure that pose a problem to Tenebaum's

typefinder: recursive data structures which are depthwise nonconvergent, and dynamic tuples,

whose length is unknown.

2.5. An Accurate Typefinding Algorithm in the Presence of Recursive Data Struc-

tures

The primary obstacle to detecting recursive data types using Tenenbaum's typefinder is

that the type lattice is infinite and the type of an occurrence which embeds itself will not con-

verge with the standard workpile algorithm. An occurrence embeds itself if its value at some

point of program execution is later assigned to one of its components. It is this lack of conver-

gence that we overcome with our method, thus allowing recursive types to be uncovered. The

new algorithm also distinguishes, in many instances, between dynamic tuples and those that

only superficially appear dynamic.

To accomplish this, we first note that the only instances that are candidates for noncon-

vergence are those that value-reach themselves The class of occurrences covered by this

definition also includes useless cases of the form:
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(1) (while somecondition)

(2) x := x + 1

(3) end while;

since x„
2
€ BREACHES*(x

2 ) by definition of BREACHES*. To avoid treating these as

recursive (following the method in [Fong75]), we require that the path from an instance to

itself contain some form of embedding operator (e.g. tuple former).

We initially detect the set of such self-dependent occurrences and flag them as poten-

tially nonconvergent. This task can be accomplished, in the crudest manner, by examining

each and every occurrence in the program and testing it for membership in its own

BREACHES*.

Once we have found such an occurrence, we assign it a unique, newly generated type

symbol which we designate as a recursive type symbol. Associated with this symbol is a

type structure, representing the underlying internal structure of the recursive type symbol.

When this occurrence is embedded into some larger entity, it is the recursive type symbol,

rather than the actual structure of the type that is used. This level of indirection prevents the

nonending production of more deeply embedded symbols. To see this, consider the following

code fragment:

1 t := 3;

2 (while somecondition)

3 t := [t]; $ t embeds itself

4 end while;

Traditional typefinding types the ivariable t of statement 3 successively as:

integer, tuple(integer), tuple(tuple(integer)), ...

The recursive structure typefinder, upon discovering that the ivariable t is self-

dependent, assigns some new type name, e.g. REC_1, to it. The type structure of REC_1 will

then be initialized to error much as the type of a nonrecursive occurrence is given the error

value as its initial value. We thus distinguish between the type name of a recursive
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occurrence, which is used for embedding, and the type structure which is employed every-

where else. The tuple forming operation of statement 3 will thus have as its result type

sequence(REC_l)

regardless of the values assigned to the structure of REC_1. When the ovariable t
3

reaches

the ivariable t its type structure will have the type sequence(REC_l) added to it. How-

ever, when the result type across the assignment (i.e. the type of the ovariable t
3 „) is calcu-

lated this second time (and for all future processings of this instruction) the result type will

remain sequence(REC_l), and thus the types of both ivar and ovar converge.

Our choice to selectively assign recursive type symbols to ivariables alone results in a

Ampler set of type equations for the program. The last section of this chapter examines this

decision in more detail.

We have shown how the distinction between the symbol of a type and its actual struc-

ture eliminates the infinite production of type symbols in the program. However, there are

situations when the internal type structure of a recursive variable needs to be examined. Con-

sider:

(1) t:=5;
(2) (while somecondition)

(3) t := [t];

(4) end;

(5) x := t(l);

(6) y := x(l);

when processing x , we get as its type REC_1, and therefore when processing y g
we must

examine the structure of REC_1 too determine the type of its first component so that we can

assign it as the type of y e
.

This need to examine the internal structure of a recursive symbol can cause problems in

ensuring that type information is propagated to all points of the program. In Tenenbaum's

algorithm, whenever new type information is produced, all occurrences which might be
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immediately affected by the change are marked for further processing. Thus, if a ivariable's

type is modified, the ovariable is so marked, as its type is dependent upon that of the ivar.

Similarly, if an ovar is assigned a new type, all subsequent uses of that definition must be

reprocessed. Changes in the types of these marked instances will mark yet other instances and

in this fashion the type information is propagated through the program. To determine which

instances to mark, use-definition chains are sufficient.

However when recursive symbols are introduced, UD and DU chains no longer guarantee

that new information will be correctly propagated. To see this, consider the above example.

The recursive instance is t . The operation at that instruction is a tuple-former and thus, if

we assign the type symbol REC_1 to t
3
„, the type of t

$1
becomes sequence(REC_l) (by

definition of the propagation function for tuple-forming). This type never changes regardless

of changes to the internal structure of REC_1 and thus t
3

(and therefore t
5

, x
6

, x
6

,
and y 6 )

will never be marked for reprocessing due to a change in the structure of REC_1. Note how-

ever, that as discussed above y does have its type affected by changes to (the first component

of) REC_1. It is because variable instances at arbitrary points in the program (such as y.

above) may require information about the structure of recursive symbol that UD chains are

no longer enough to guarantee complete type propagation.

This necessity to occasionally examine type structures requires us to revise the manner

in which we place new items onto the workpile. As before, when an ovar is processed, all

immediate uses of that occurrence are placed on the workpile. Similarly, when an ivar is pro-

cessed (and a change in its type discovered), the ovariable corresponding to the instruction

containing that ivar is placed upon the workpile. While these occurrences are still clearly

affected by changes in the processed occurrence, as we have noted above, there are other

occurrences that must be placed on the pile (e.g. in the above example, y is affected by

changes to the structure of instance t ), to obtain a complete type propagation.
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To solve this problem, we modify the manner in which occurrences are placed into the

workpile for further processing. Traditionally, the UD chains determine which occurrences

require reexamination. We extend this to include occurrences whose values have to be reexam-

ined because of a change in the type structure of a recursive type. We thus define a new map

occurrences_dependent_upon, which takes as its domain, the set of recursive type names

and as its range the set of occurrences. When the type structure of a recursive type (which is

always associated with an ivariable) is modified, those occurrences which belong to

occurrences_dependent_upon for that name are placed into the workpile, in addition to the

corresponding ovariable. This map is updated with any occurrences that needs to examine the

type structure of a recursive type symbol.

When examining the type structure of a recursive type symbol, it is possible that one of

its alternands is itself a recursive type name. In such an instance, that symbol's type structure

must also be looked at. Fortunately, there are only a finite number of such recursive type

names in a program (at most the number of ivariables in the program as recursive symbols

are generated only when a self-dependent ivariable is discovered) and we can maintain a stack

of all types already examined with respect to the ivariable being processed, and thus we avoid

entering any cycles in the type structures. Additionally, we can always omit an appearance of

a recursive type name in its own type structure as that is nothing more than an identity. As

an example, suppose we have the following recursive symbols:

REC_1 : set(REC_2)
|
REC_3

|
integer

REC_2 : string
|
tuple(REC_l)

REC_3 : real
|
sequence(REC_3)

then the internal structure of REC_1 is:

set(REC_2)
|
integer

|
real

|
sequence(REC_3)

Note that we need not unfold recursive symbols that are not top-level (e.g. set(REC_2))

as the propagation functions never descend below the component level of a type.
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Algorithmically, this examination of the structure of a recursive symbol is as follows:

To examine the structure of recursive symbol R:
- set result to the structure of R
- while there exists a recursive symbol R' in result:

remove it from result, place it on a stack,

merge its structure with result, and remove from

result any recursive symbols present on the stack

- result now contains the structure of R

The SETL code for the above can be found in procedure collect_types in the SETL imple-

mentation of the typefinder presented in Chapter 4 of this thesis.

Also note that we never have to go deeper than one level into the structure of a type

due to the fact that nested subscripts in the original SETL source are already unrolled at the

quadruple level. That is, once the program is decomposed into quadruples, opcodes examine

either an operand proper or one of its top level components. Composed subscripts in the origi-

nal SETL source are transformed into successive subscripting operations using temporary

objects to maintain intermediate results.

In the implementation of his algorithm, Tenenbaum states that routines are coded in-

line, eliminating the need for interprocedural analysis. However, for purposes of typefinding,

treating parameter transmissions as assignments is sufficient. Indeed, for recursive routines,

we do not want the types of individual activations of parameters, but rather their overall

structure taking into account the recursive nature of the routine. The current SETL optimizer

notes this as well, and treats the parameter transmission operations in the same manner as

assignments.

The resulting algorithm to typefind recursive data structures is as follows:
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Input:

Ql (quadruple) code of SETL program together with UD chains.

1) The workpile is initialized to any ovariables that have a constant right hand side. A

map, occurrences_dependent_upon, is initialized to the empty set. The domain of

this map is the set of recursive symbols and its range is the set of instances in the pro-

gram.

2) Whenever an embedding operation (set or tuple formers, with, and assignment to a

component of a tuple - t(l) := ...) is encountered, the FREACHES* of each ivariable of

that operation is calculated. If an ivariable appears in its own FREACHES*, it is

nagged as self-dependent.

3) All self-dependent ivariables are given new, unique type names which are flagged as

being recursive. A map type_structure is created whose domain consists of all such

recursive types.

4) The type of all nonrecursive, nonconstant occurrences are set to error. The

type_structure of all recursive type names is set to error.

5) An occurrence is removed from the workpile and processed.

5a) If the occurrence in question is an ovariable, calculate its type using the propagation

function appropriate to the opcode of the associated instruction. Furthermore, if the

ovariable needs to examine the type_structure of any recursive symbol, place the

occurrence in the occurrences_dependent_upon set for that type name. If the type of the

ovariable has changed, place into the workpile all subsequent uses of that ovariable.

5b) If the occurrence being processed is an ivariable, calculate its type as the disjunction of

all definitions reaching that occurrence. This value becomes the type if the ivariable is

nonrecursive, and the value of the type structure otherwise. If this value has changed

since the last time this occurrence has been processed, place into the workpile the asso-

ciated ovariable, as well as any occurrences in occurrences_dependent_upon if the
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ivariable is recursive.

6) Repeat step 4 until the workpile is empty.

In step 5a, examination of the type_structure of a recursive symbol occurs for most

operations. It is only in the event of an embedding operation that the structure of a recursive

symbol can be ignored. In all other cases, however, the structure must be examined to deter-

mine if any of the types within it are legal as input to the operation. For example, if the

operation in question is a +, and one of the input operands has as its type the recursive sym-

bol REC_1, and the other operand is of type integer
|
set(real), then the structure of

REC_1 must be examined to see whether it can assume integer or a set as its type.

2.6. Termination of the Typefinder

Intuitively it is clear that the algorithm should terminate. The operations that cause an

infinite number of types to be generated are tuple and set formers, and any other embedding

operators (such as with). Furthermore, these produce a nonconvergent set of type symbols

only in the event that the value of the output variable of the operation reaches one of the

input variables. It is precisely for such input variables that a recursive type symbol is intro-

duced (via the self-dependency test). Since it is this name that is propagated across the opera-

tion, and not the underlying structure, if the type name reaches one of the defining variables,

it will be embedded at at most one level (if there are further tuple formers along the path

from the output variable back to the input variable, they will generate other recursive type

names that will replace the original recursive name). For example, in the following code frag-

ment:

(1)

(2)
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both y and x are found to be self-dependent and are therefore each assigned its own recur-

sive type symbol, say REC_1 and REC_2 respectively. x
3

is then assigned

sequence(REC_l) That symbol is propagated to x
4

where it is placed into the

type_structure entry for REC_2. y 4
is then assigned set(REC_2) When the operation is

again processed, its result type will be identical to the previous result type, namely the recur-

sive type name with whatever transformation is performed by the operation.

Tuple and set forming can no longer expand their result types indefinitely and extrac-

tion operation (e.g. arb, subscripting) merely introduce types that had been embedded in

already existing types and in any event are of a monotonically decreasing nature. Thus, only

a finite number of type symbols can be generated by the propagation functions of the pro-

gram. Since these functions are monotonic, all types must eventually converge. In terms of

the generator propagator analogy, what we have accomplished is to eliminate nonconvergent

generators from the type equations.

We now present a more formal proof that shows that there is a bound on the nesting

depth and length of the type symbols producible by a program. This implies that a program

must have a finite number of type symbols, and this fact, together with the monotonicity of

the propagation functions guarantees eventual convergence.

We give a precise definition of the nesting depth, nd, of a type symbol:

nd(scalar_type) =

where scalar_type = real, hit, atom, boolean, ..., any recursive type symbol, error and

general.

nd(tuple(t)) = nd(set(t)) = nd(t) + 1

nd(sequence(tl, t2, ..., tn)) =
max(nd(tl), nd(t2), ..., nd(tn)) + 1

nd(tl
|
t2

|
...

|
tn) = max(nd(tl), nd(t2), ..., nd(tn))
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this function is originally introduced in [Tene74] for the purpose of placing the limit upon a

depth of type symbols and thus bounding the lattice.

We similarly define the length of a symbol as:

ln(scalar_type) = ln(set(t)) = -1

ln(NULLTUP) =

ln(tuple(t)) =

ln(seq(tl, ..., tn)) = n

We show that the nesting depth of any type symbol in a program as well as its length is

bounded by the length of the program (in Ql form). We accomplish this by a case by case

analysis of the forms of occurrences that can appear in a program. The analysis concerns

itself with ivariables only - if they can be shown to be bounded, ovariables follow immediately

(the nesting depth of an ovariable can be at most one more than the maximum nesting depth

of its inputs, while the length can be at most the sum of the operand lengths).

Recall that an occurrence is said to be self-dependent if it lies on its own

BREACHES* path. The occurrences of a program can be divided into two classes: those that

are self-dependent and those that aren't. These two categories can be further subdivided in

the following manner:

I. Self-dependent

A. Operand of an embedding operation (depth increasing operand)

B. Operand of a concatenation operation (length increasing operand)

C. All other self-dependent occurrences

II. Non self-dependent

A. Constant (literal)

B. Variables without prior definitions (undefined uses)
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C. All other non self-dependent occurrences

Case IIA: Constant.

Composite constants (such as constant sets or tuples) are built up from the individual

constants using operators such as set or tuple formers. Therefore, the only constant

occurrences are those whose types are scalars, i.e. integer, real, etc. The nesting depth

of such an object is and the length is -1

Case IIB: Variable with no prior definition.

The type of this use will remain error, and it will be flagged as a use of an uninitialized

variable. For example:

z := x + 5

.Assuming there is no definition of x prior to its use in defining z, the typefinder results

in a type of error for this occurrence of x. We can regard this as a constant (wrt to the

typing process) whose implicit type is error and as such has a nesting depth of and a

length of -1.

Case IA: Self-

dependent and operand of an embedding operation (recursive, depth-

increasing occurrence).

The typefinding algorithm assigns a new recursive type symbol to this occurrence whose

nesting depth is (by definition) and whose length is -1.

The above three cases have self-defined nesting depths and lengths. The (maximum)

nesting depths and lengths of the other three cases can be computed by calculating their

distance (in terms of statements) from an occurrence belonging to one of the previous

three categories.



38

Case IB. Operand of a concatenation operation (length increasing operand)

The typefinder flags any cyclical length-increasing operands and transforms any

sequence type symbol assigned to them into tuples (whose length is 0). With regard to

nesting depth, they are the same as Case IC (below).

Case IC: All other self-dependent occurrences.

We examine each LID path leading backwards from this occurrence until we encounter

an occurrence of type IA, IIA or IIB. If after traversing d nodes along such a path, we

encounter such an occurrence, the nesting depth of the type symbol constructed along

that path is at most d.

For example, given the following code sequence:

1 a := 5;

2 x := {a};

3 (while somecondition)

4 read (y);

5 x := x + {y};

6 end;

Examining the path:

X
5.2

~* X
2.1 ~* a

2
~* a

i
~^ 5

1

we note that the (recursive) type structure of x has constant nesting depth of 1.

We must however, examine in some detail the possibility that we do not encounter one

of the three kinds of self-defining occurrences but rather arrive back at our starting

node (this is a definite possibility as we are dealing with a self-dependent occurrence).

This occurs in our above example along the path:

v — x — xA
5.2 5.1 5.2

Note that if we are able to reach the occurrence in question by traversing a UD path,

none of the occurrences along that path could be operands of an embedding operation,

for were that the case, such an occurrence would be a self-dependent operand of an
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embedding operation, one of our self-defining cases, and our backwards traversal would

stop at that point. Therefore, the path from the occurrence back to itself must contain

no operations that increase the nesting depth of a type symbol (since we are able to

traverse its length) and it follows that such a path can be viewed as having no effect

upon type symbols (wrt their nesting depth). In the above example, for the cyclic path

to increase the nesting depth of x, there would have to be some embedding operand

along that path, but that would be a occurrence whose depth is self-defined. The same

argument holds if during the traversal we encounter a self-dependent nonrecursive

occurrence, distinct from the one being analyzed. The only paths that need be examined

are the noncyclic ones. We see therefore, that full-cycle paths can be ignored.

Case IIC: All other non self-dependent operands.

The analysis is the same as Case IB, but we do not have to concern ourselves with a

cycle as the occurrence is not self- dependent.

Note that in the above two cases, we assumed that eventually we would reach one of

the self-defining cases. This must be the case, as there are only a finite number of

occurrences satisfying Case IIC, and none of them can lead into a cycle (as they are not

self-dependent). Furthermore, we are ignoring full cycles in Case IB and as such are only

dealing with paths that are non-cyclic. QED

2.7. Completeness of the Algorithm

Our typefinding algorithm accepts the intermediate code and UD-chains of a SETL pro-

gram and produces a set of type equations for the variables of that program. The method

employed is quite similar to Tenenbaum's typefinding algorithm, the primary innovation

being the typing of recursive structures which is made possible by assigning names to such

composite types and distinguishing between the name and actual structure of such an object.

The disjunction function now allows for the existence of recursive symbols. Given such a sym-

bol, if the second operand of the disjunction function can be determined to be a subset of its



40

internal structure, the result is merely the recursive symbol; otherwise the result is simply the

alternation of the two inputs. For example:

dis(REC_l, integer) = REC_1 if REC_1 = integer
|
set(integer)

while

dis(REC_l, string) = REC_1
|
string

Therefore, the disjunction function remains monotonic in nature and no alternands are lost

when disjuncting two type symbols. Similarly, the propagation functions are the same as

before, with the exception that recursive types are unfolded when necessary so that the propa-

gation functions act upon nonrecursive symbols (i.e. integer, set(...), etc.). The only time a

recursive symbol is not unfolded before being presented to a propagation function is when the

operation is question is an embedding. In that case the symbol is merely enclosed in the

appropriate constructor (e.g. set( ), or tuple( )) and no examination of the internal structure

is necessary. What remains is to show that type information does indeed reach all points of

the program.

Completeness, i.e. all type information reaches all occurrences, is guaranteed by the fact

that each instance I keeps track of all other instances F affected by any changes made to I.

Theorem: The structure occurrences_dependent_upon correctly propagates complete type

information to any occurrences requiring that information.

Proof: There are three situations for which a variable occurrence must be placed into the

workpile for processing due to a change in some type. These are:

1) The type of an ivariable is modified. In this instance, the ovariable of the instruction

containing that ivariable must be (re)processed.

2) The type of an ovariable has been modified. The types of all subsequent uses (ivariables)

of that definition must be recalculated to take into consideration the change.
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3) As part of the propagation function of an operation, the internal structure of some

recursive type symbol, R, must be examined. This occurs if R is an alternand of one of

the ivariables of the operation in question. For example, in the statement:

(4) x := z + 3;

if one of the alternands of z is R, when calculating the type of x . we must examine the

structure of R to see whether one of its alternands is integer.

Situation 1 is handled by dumping the ovariable of an instruction into the workpile

whenever the type of an ivariable of that instruction is modified. For case 2, the members of

the DU set of an ovariable are placed into the workpile whenever the type of the ovariable

changes. In case 3, we must show that if an alternand t, is added to the type structure of R,

that information will be propagated to o prior to termination of the algorithm.

As shown above, the internal structure of a recursive type symbol R is examined when

calculating the type of an ovariable in an instruction one of whose ivariables, say i, has R as

an alternand. When R is initially made an alternand of i, o is immediately placed into the

workpile (this is an instance of case 1), and when subsequently processed, o wil be inserted

into the occurrences_dependent_upon set for R. Thus o will become part of the

occurrences_dependent_upon set for R prior to algorithm termination.

We now show that an alternand, t, added to R's structure causes the type of o to be

recalculated. If t is inserted into R's structure after o has been made placed into the

occurrences_dependent_upon set for R, then the insertion of t (i.e. a modification to the struc-

ture of R) causes o (as well as all the other members of occurrences_dependent_upon for R) to

be placed in the workpile for type calculation. On the other hand, if t is placed into R's struc-

ture prior to o's insertion into R's occurrences_dependent_upon set, then at some later point

of the analysis (when R is made an alternand of i), o will placed into the workpile. When o's

type is then calculated, t is already a part of R's structure and will therefore be taken into

consideration in the calculation of the type of o. QED
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Assuming that the propagation function act in accordance to our intuitive understand-

ing of type propagation (i.e. that the semantics of the operation accept only certain types as

legal inputs and based upon those types produce a result with some specific type), the result

types generated by any operation will be correct. Furthermore, the output variables will be

entered for processing whenever a type affecting them is modified, regardless of its location in

the program.

(What we are essentially doing is constructing recurrence relations relating the types of the

variable occurrences of the program. Unlike most other applications that deal with recurrence

relations which must then solve the relations for a closed form, the recurrence relations that

we construct are themselves the solution to the problem. For example, if we were to attempt

to calculate the size of structures in a SETL program, we might introduce some length func-

tion, len. If the length of some structure within a loop was dependent upon its size in the

previous iteration through the loop, e.g.:

(for i in [1 .. 10])

read (x);

t := t with x;

end for;

we set up the system:

len(x ) :=

len(x
n+1 )

:= len(xj+l

where x. is the value of x on the i'th iteration through the loop. We would then solve, in

closed form, form x to obtain the length of x upon exit from the loop.

For the purposes of typefinding however, once the system of equations is constructed,

they provide the solution to the typefinding, and it is not necessary to solve for any closed

form.)

The auxiliary structure, occurrences_dependent_upon, that determines which

occurrences are dependent upon which recursive symbols is a generalization of the UD and
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DU chains traditionally employed in data flow analysis. Indeed, its size (if implemented as a

bit string) is the same as these chains and in fact all three can be merged to form a new

structure adding a touch more uniformity to the algorithm. Use-definition chains have long

been the triggering mechanism for workpile algorithms in data flow analysis, and one can

speculate whether such a generalization aids in the simplification or production of other data

flow algorithms.

If the flow graph is traversed using R-postorder, UD chains are sufficient, as nonconver-

gence of a pass over the graph forces the visiting of every node another time.

2.8. Choice of the Recursive Instance

In the above algorithm, only the ivariables of embedding operations were made candi-

dates for the self-dependency test and therefore for having recursive type symbols assigned as

their types. The corresponding ovariables then receive a type dictated by the propagation

function associated with the operation in question. We could alternatively test only the

ovariables of embedding operations and allow their types to propagate back to the ivariables.

The type equations that result are correct with respect to the program, but are quite different

from those obtained by employing ivariables as the recursive instances. As an example in the

construction of a linked list:

(1) 1:=5;

(2) (while somecondition)

(3) 1 := [5, 1];

(4) end while;

choosing the ivariables as recursive instances produces:

1 : integer

1, a
: REC_1

1, : seq(integer, REC_1)

where

REC_1 = integer
|
sequence(integer, REC_l)
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while having the ovariable (1 ) be the recursive instance results in:

1 : integer

1
3 „: integer

|
REC_1

I31 : REC_1

where

REC_1 = sequence(integer, integer
|
REC_1)

Both sets of equations produce the same domain of types for both 1
3

and 132 , however,

the equations themselves are quite different. The definition of REC_1 in the first case retains

more of the flavor of a recursive definition of a linked list while the second case seems remin-

iscent of an undiscriminated variant record. Proving termination for the ovariable case is

similar to the proof of termination presented above.

2.9. Typetesting Predicates and Typefinding

SETL provides a set of typetesting functions consisting of a function, type, that returns

(as a string) the type of its argument, as well as predicates, is_integer, is_real, is_set, etc.,

to test whether an object is of a specific type. The information present in these predicates is

not used in the present typefinder. This section explores the manner in which such informa-

tion may be exploited.

The problem with using typetesting operations is that to employ information they pro-

vide requires knowledge not only of the basic block structure of the program (which until now

we have been able to ignore, using UD chaining exclusively), but furthermore the true/false

tagging of the successor block mapping (i.e. for a given successor of a basic block, is it a suc-

cessor on a true branch, false branch or unconditionally?)

However, if this information is available we are able to get more precise type informa-

tion in many cases. As an example, consider the following fragment that constructs a linked

list:
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(1)
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the one used for testing type equivalence in Algol68 [Kost69], to determine whether the two

are one and the same, but this step can be postponed to a postprocessing phase after the for-

ward pass has completed.

The backwards pass however uses the meet (or intersection) operator. Taking the inter-

section of two recursive type symbols requires the examination of the structures of both sym-

bols to determine what alternations they have in common (if any) and this operation cannot

be postponed. That is, when it is necessary to take the union of two recursive types, RECl

and REC2, to calculate some type t, if the internal type structures of RECl and REC2 are

ignored and we assign to t the type RECl
|
REC2 (i.e. we do not perform a structural

equivalence test), the worst that happens is that t contains duplicate alternands (e.g.

tuple(integer)
|
tuple(integer)). On the other hand, when it is necessary to perform a con-

junction (intersection) of two recursive types in order to calculate some type t, we must

examine the internal structures of the two types in order to determine what alternands they

have in common, as those are the only ones to be assigned to t. To overcome this difficulty

of comparing recursive types for purposes of conjunction, there are several alternatives to the

manner in which the backwards pass might be handled.

First, we can keep the backwards pass unchanged. As the current version has no notion

of recursive type symbols, all that is required is that as a preprocessing phase all such type

symbols be set to general. No information is lost over Tenenbaum's forward pass as any such

occurrences are assigned general by that algorithm.

Alternatively, we can attempt to perform intersections involving recursive type symbols.

Conjuncting a recursive with a nonrecursive symbol requires checking whether the nonrecur-

sive symbol is an alternand of the recursive one. Intersecting a recursive symbol with itself is

trivial. In order to intersect two different recursive symbols we can either perform the struc-

tural equivalence test mentioned above, or, more simply, revert to general (which is what

would occur in the Tenenbaum version).
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The above discussion assumes that the detection and construction of the recursive data

types had already been accomplished by the forward pass. A separate issue affecting the back-

wards pass is examination of programs in which the forward pass produces no recursive struc-

tures. Given large-scale systems involving several phases, intermediate data structures may

be written out to mass storage devices by one phase and later read in by a subsequent phase.

In such cases, the structure is used (and not defined) by the second phase and therefore the

forward pass, which determines types from definitions, produces no information about the

structure. As an example, a compiler whose syntactic and semantic checks are performed in

separate passes might build the parse tree in the syntactic phase and write it out to a file.

The semantic phase, which is to annotate and validate the tree would then have the initial

statement:

read (parse_tree);

The forward pass has no choice but to assign general to parse_tree.

The question remains whether the techniques introduced in the forward pass, namely

the separation of name and structure, can be incorporated into the backwards pass as well

and thus allow for the typing of recursive structures by examination of the manner in which

they are subsequently used. .As the processing is done in a backwards fashion, extracting com-

ponents rather than constructing structures, it may be necessary to introduce notation and

symbols into the type lattice to allow one to express the fact that t is the type of the i'th

component of the sequence t'. We might then apply a method similar to that used in the for-

ward pass, i.e. finding all self-dependent instances, and rather than propagating actual com-

ponent types through the program, keep that information in a separate structure and instead

propagate the relationship of a component to the tuple from which it was extracted. Thus, if

a self-dependent instance, i, is the third component of some tuple t, use as the type of i the

symbol t(3) (i.e. the type of i is the type of the third component of type symbol t), and collect

the actual type of i (e.g. integer) in a separate structure. We plan to examine this area in the
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immediate future.

2.11. Comparison with Other Algorithms

2.11.1. Tenenbaum's Typefinder

As seen above, the algorithm presented in this thesis performs substantially better than

Tenenbaum's in the presence of recursive data types, and produces more precise type infor-

mation. The actual processing of variable instances is performed in an identical fashion to

Tenenbaum's algorithm (with the exception of examining internal structures of recursive type

symbols which we discuss below) and this method has been shown to require an arbitrary

number of iterations over the instances of the program [Shar78], In addition, with regard to

the number of iterations over the program, our algorithm does no worse than Tenebaum's,

and indeed depending upon the arbitrary nesting limit may converge in fewer iterations. This

is because the introduction of recursive symbols forces immediate convergence of the type of

the ovar of the statement in which such a symbol occurs, whereas Tenenbaum's algorithm

requires the appropriate depth to be reached before convergence (through transformation to

general) occurs. For example, in the following fragment:

(1) 1:=5;

(2) (while somecondition)

(3) 1 := {1};

(4) end while;

our typefinder results in the following processing sequence:

1 : integer

1
3 2

: REC_1 $ REC_1 : integer

lal : set(REC_l)

l" : REC_1 $ REC_1 : integer
|
set(REC_l)

following which the algorithm converges. On the other hand, given a limit of 3 upon nesting

depth, Tenenbaum's algorithm produces:

1 : integer
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3 , : integer

3 j
: set(integer)

„ : integer
|
set(integer)

3 x
: set(integer)

|
set(set(integer))

3
: integer

|
set(integer)

|
set(set(integer)))

l
: set(integer)

|
set(set(integer))

|

set(set(set(integer)))

3 2
: integer

|
set(integer)

|
set(set(integer))

|

set(set(set(integer)))

: set(integer)
|
set(set(integer))

|

set(set(set(general)))

3 2
: integer

|
set(integer)

|
set(set(integer))

|

set(set(set(general)))

at which point the algorithm converges. Had the nesting limit been larger, the nonconvergent

variables 1
3

and lgo would have been processed a larger number of times.

Of course, there is the additional overhead of testing for self-dependency in the initiali-

zation phase and collecting the internal structures of recursive type symbols when it is neces-

sary to examine them. The first of these is quadratic with respect to the number of variable

instances in the program (i.e. every operation may be a self-embedding one requiring the self-

dependency test to be performed upon all ivariables in the program). The second may in the

worst case (again all ivariables are self-dependent) require examination the structure of all

recursive type symbols (which can be as many as the number of ivariables in the program) in

the program each time an ovariable is processed. Nevertheless, in actual programs the

number of recursive type symbols generated is quite small (example 9 of Chapter 5 which is a

simple parser requires 4 recursive symbols), and therefore the overhead seems reasonable.

If the check for self-dependency presented in [Fong75] is employed, information regard-

ing recursive structures is even worse than that derivable from Tenenbaum's original algo-

rithm. This is because the discovery of a self-dependent embedding operand causes it to be

assigned general prior to actual typefinding and thus no information regarding its structure
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can be obtained. Without this enhancement, the algorithm does produce some additional

(though incomplete) information regarding the type (see the above example).

2.11.2. Type Unification

In contrast with the weak typing of SETL, B and ML are strongly typed; this is the pri-

mary reason for the different approach to typefinding which is used in these languages. As

mentioned earlier, type unification consists of intersecting possible type templates of variables

to insure that they are consistent, while the initial pass of SETL's typefinder uses union as its

basic operation. This is due precisely to the differences in the type models. We can think of

type unification as being equated with the second (backward) pass of the SETL typefinder,

the chief distinction being that whereas B and ML use the derived information to flag type

errors, SETL can do no more than use the backward pass to insert consistency checks due to

its weak typing. Furthermore, while SETL makes a distinction between the forward and back-

wards passes, the forward typing via definitions, the backwards via usage, in B and ML a

definitions and usages are used simultanaeously to produce type equations that are to be

unified.

To summarize in a different light, B and ML, have no need to deal with the union of

disparate types at the entrance to a block and do not require a disjunction operation. Furth-

ermore, since they need only check for strong typing, they need not uncover possible types

(through a forward pass that propagates definitions) but rather ensure type consistency. It is

therefore clear that the backward pass of the SETL typefinder plays the same role as the

unification algorithm with respect to what it uncovers. The forward pass is there because of

the weak type model. On the other hand, it is precisely the weak model that allows SETL to

support the recursive structures we have been examining. B is unable to do so because the

variety of shapes that such structures assume violates its strong type model. ML does allow

recursive structures but only in the presence of explicit definitions.
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In terms of complexity, it therefore clear that SETL's typefinder is by necessity more

expensive.

2.12. Applicable Optimizations

Typefinding of recursive data structures allows us to determine the data types contained

within the data structure and the internal structure and relationship among the individual

data elements comprising the structure. This allows an increased number of variables in the

program to be strictly typed.

Tenenbaum's typefinder, when presented with a program containing recursive data

structures, types those structures as general. In addition, all variables directly, or indirectly

deriving their values from such a structure are also made general. Thus, in a application

working with a tree, all nodes including the leaves become general, as well as any objects

manipulating the data elements at the leaf level. Note that the leaves themselves may very

well be strongly typed, but as the internal nodes of the tree (represented by arbitrarily

nested tuples) must go to general, and the leaf type is itself an alternation of the tree type as

a whole, the leaf will be absorbed into the type general

Once we are able to type the tree, the escape clause (i.e. those alternands of the recur-

sive type symbol which do not contain recursive type symbols), which corresponds to the leaf

type, gives us strong type information concerning the leaves and, indirectly, all variables

extracting values from the leaves. In our binary tree typefinding example, objects deriving

their value from leaf nodes can be typed as integer

To examine a simpler example, consider the following fragment:

1 1 := 3;

2 (while somecondition)
3 1:=[S,1];
4 end;

Tenenbaum's algorithm results in:
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1 „: integer
|
tuple(integer, general)

which, though it does allow typing of the data element of the list (i.e. the first component of

the tuple), provides this information only for the top level node. All information concerning

the second component is lost and furthermore, variables assigned the second component

(i.e. a variable later used to traverse the list) are typed as general.

Our algorithm however provides much more precise information:

132 : REC_1

where

REC_1 = integer
|
sequence(integer, REC_1)

and therefore no information concerning the type or structure of the linked list is lost. The

next subsection discusses to what advantage the optimizer can use this information with

respect to generating more efficient code.

The difference is even more pronounced when the program contains trees and more

complex structures. In the instance of a tree, for example, the return value of the con-

struction subroutine (see example 7 of Chapter 5) is either a leaf, a node with a right son, a

node with a left son, or a more general subtree. In the last three cases the representative

tuples are of differing lengths, the general subtree and right son cases being of length 3, and

the right son case of length 2. Tenenbaum's disjunction function unifies such fixed length

tuples into a single unknown length tuple, whose component type is the disjunction of all

components of the input tuples.

The effect of performing typefinding upon recursive structures can be summed in a

simple statement: type general is no longer introduced into the type equations of a program

except through the read statement or the use of external routines that have no type

specification for their parameters. Previously, type general appeared in a program when-

ever the recursive structures (or constructs resembling such structures) were present.
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2.12.1. Storage Applications

The current SETL implementation is interpreter-based with little emphasis given to

storage efficiency. In a more static environment, the precise typing provided by recursive

typefinding can result in more efficient representations.

Currently, if a variable can be strictly typed, in-line code can be generated for opera-

tions upon that variable. Otherwise, a run-time descriptor capable of denoting any SETL

object is carried along with the variable and is used to determine which operation is appropri-

ate to the object the variable currently contains. If it can be determined that a variable can

contain at most two types of objects, rather than maintaining the full run-time descriptor, a

single bit can be maintained and the test for which operation to be performed can again be

venerated in-line.

When a tuple is allocated at run-time, extra storage is assigned to it to allow the tuple

to expand. Recursive typefinding provides us with the capability to determine that the tuple

representing a recursive structure (e.g. a tree) is of fixed size and therefore, the exact amount

of storage can be allocated to it.

Finally, the fact that we are able to determine that a structure is uniform (e.g. in the

case of a tree, each level consists of a tuple of three components, the first component an

integer, followed by two tuples of the identical structure) may allow for more efficient code

generation techniques and run-time storage management. We hope to examine this area of

research in the future.

2.13. Addendum: The Advantages of Not Assigning Recursive Symbols to Ovari-

ables of Embedding Operations

The initialization phase of the algorithm only assigns a recursive type symbol to ivari-

ables that are members of their own BREACHES* set. This is because flagging ovars as recur-

sive will produce additional types that are unnecessary, as they are nothing more than subc-
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lasses of their right hand counterparts. For example, in the following code fragment (taken

from section 2.6):

1 t := 3;

2 (while somecondition)

3 t := [t]; $ t embeds itself

4 end while;

the ovariable t above is nothing more than REC_1 without the scalar type integer alter-

nand. Since we are concerned with recursive structures that are constructed with embedding

operations, it is clear that a recursive ovariable whose defining operation is an embedding

operation will not be able to assume a primitive leaf type. Consider the above example; if the

ovar t was assigned its own type name, its structure would be sequence(REC_l). First,

this gains us nothing, as that is precisely what the above analysis provided us with but

employing one less recursive type (we will see that this is desirable); second, this type is noth-

ing more than REC_1 without the integer leaf type. Furthermore, these are two instances of

the same variable and they require subsequent merging, a task made more difficult by the

introduction of the second type name.

To see this more clearly, if we type both self-dependent ivariables as well as ovariables

in the above example, we produce:

t = int

t
3 „ = REC_1

t
3 j
= REC_2

where

REC_1 = int
|
sequence(REC_2)

REC_2 = sequence(REC_l)

which while correct, is murky.

We see therefore that the self-dependency test need only be applied to ivars, as those

are the only occurrences to which we assign new type symbols.
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We next note that the only occurrences that truly need to be assigned new type names

are those that are actual operands to the embedding operations. Occurrences that are simply

assigned the embedded value along the circular path from use back to itself do not introduce

any new levels of nesting and thus pose no problems. It is only those operands of these

embedding operations that produce result types that may not converge. Eliminating the non-

convergence in these instructions will therefore remove the problem in general.

The above reasoning can be made clearer if we borrow from the terminology of

hardware arithmetic. Ivariables whose associated operations are nonembedding can be thought

of as nonconvergent propagators, that is, they cannot introduce a new nonconvergent instance

into the program, but will propagate the nonconvergent instance's existence if they are

assigned its value. Operands of embedding operations, on the other hand are nonconvergent

generators, capable of producing new nonconvergent types. If we prevent the generators from

producing such types, the propagators present no problem. Therefore, it is only the operands

of embedding operations that have to be considered for new type names.



CHAPTER 3

Explicit Typing in SETL: The Representation Sublanguage

3. Explicit Typing in SETL: The Representation Sublanguage

Although SETL is declaration-free, a data representation sublanguage (DRSL) is

provided to allow the programmer to inform the system as to the types of variables. Using

this information, the compiler can generate appropriate in-line code for some of the operations

whose operand types are known. The representation sublanguage also provides the user with

the facility to choose particular internal representations for some of the language-defined com-

posite types. Thus, even in the absence of any typefinding optimizations, the programmer

can achieve a speedup in his code.

These two facilities provided by the DRSL are logically independent of each other.

Thus, it is quite reasonable to have a programmer specify type information and omit data

structure representation; and conversely structural relationships (e.g. which variables are used

to access the maps in a program) among variables in a program can be provided without giv-

ing any clue to the actual types assumable by those variables.

The typing and structuring facilities also require different levels of knowledge, both of

general data structures and internal SETL representations, on the part of the programmer.

The typing representations perform the same function as declarations in lower level

languages: binding of variable and type at compilation for code generation purposes and com-

piler type checking for program reliability. The data structure representations, or basing

declarations, allow the programmer to specify, at some time after the algorithm has been

written and tested, the internal representations composite objects and their elements should

assume.

56
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(We coin the term repering, to denote the act of declaring an identifier to be of a

specific type. The token repr is used to signal the beginning of the optional declarative sec-

tion of a SETL program.)

3.1. Basings

In addition to type specification, the data representation sublanguage provides the pro-

grammer with the facility to declare relationships among objects in a SETL program. This

capability can be divided into two areas: elaboration of access relationships between the vari-

ous objects; and specification of the internal representations of composite objects (i.e. sets,

tuples and maps).

The standard data structure used for maintaining sets in the SETL run-time system is

the hash table. Elements are hashed using some system-wide hashing function, and placed in

the corresponding bucket of the table. Membership testing as well as most other set opera-

tions therefore require a hash as well as a possible traversal along the bucket's chain.

To eliminate the ubiquitous hashing, the representation sublanguage provides the pro-

grammer with the ability to set up universes of objects and subsequently declare program

entities as being elements or subsets of these universes. For example, given a program mani-

pulating graphs, a universe of nodes may be declared (possibly of a specific type, e.g. atom),

with successor and predecessor relations based upon this universe. Furthermore, noncompo-

site entities (e.g. variables used to hold single nodes) may be declared to be elements of the

universe of nodes. The above is expressed as:

base NODES;
successor : map (elmt NODES) elmt NODES;
x : elmt NODES;

The internal representation of the universe (or base) is also a hash table containing all

elements of the base. When an entity, say x, declared as an element of the base is assigned a

new value, that value is inserted into the base (if necessary) and a pointer to the value's entry
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(or element block) in the universe table is assigned to x (rather than the value itself). To

access any information in the table entry for x (e.g. the value of some mapping f(x)), only a

dereferencing operation need be done, as opposed to a hashing operation.

In order to take full advantage of the basing facility, the programmer is able to further

specify the internal form of any sets or maps that that have the base as their domain or

range. There are three such representations: local, remote, and sparse.

1 The local format stores the characteristic bit (the characteristic bit of an element in a

universe wrt some set is 1 if the element is a member of the set and otherwise) for a

set directly in the table entry of an element in the base, a) To test an object x, which

has base b, for membership in set s, which is declared as based upon b, the pointer in x

needs only be dereferenced and the appropriate bit in the element block of x be

checked, b) For maps, the range value is maintained in the element block of the

corresponding element of the domain.

2 A field is statically reserved in each element block for an object declared local, and so

entities made a part of other objects are precluded from being represented in such a

fashion since no other object can share that field. Furthermore, set operations, such as

union and intersection are cumbersome to perform when sets are represented in local

format. To alleviate this, an alternative representation, remote, is supplied which pro-

vides an array-like representation. Each object inserted into the universe is assigned a

unique number in sequential order. When an entity is declared remote, an array (whose

size is that of the base) is allocated. The entry for the object whose assigned number is i

is maintained at cell i of this array. This entry is a bit for sets and the range value for

maps. Using this representation, set operations are trivially carried out via bit string

operations.

3 Finally, there is the default representation, sparse. This format is identical to the

unbased representation (i.e. a separate hash table for the set or map), but the entries in
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the hash table are pointers to the appropriate element blocks in the base.

3.2. A Critique of the Representation Sublanguage

There are two levels at which a critique of the representation sublanguage can be

directed. First, there is the conflicting goal of utilizing the power of SETL's weak type model

in achieving a natural expression to the solution of a problem vs. the strong typing required

for repering and efficient code generation. Second, there are specific problems posed by the

current representation sublanguage: incompleteness, lack of local bases, etc. (many of which

are direct consequences of the first and more general problem). We first address the former

and then discuss the more specific problems together with some proposed solutions. Emphasis

is on the typing aspect of the representation sublanguage as opposed to the data structure

selection facility.

3.2.1. Reprs and Strong Typing

At the forefront of the repering problem is the fact that SETL is a weakly typed

:anguage supplemented by a representation sublanguage which, as it currently stands,

attempts to impose strong typing. The basic motivation for performing automatic type-

finding in a weakly typed programming language is that good (i.e. structured) programming

style does not use the same variable for different purposes and surely not for objects of

different types, and therefore the majority of variables can be assigned a definite and unique

type.

This argument, while true in a majority of situations, most notably those for which the

SETL coding is very close to the corresponding program in some lower level, more conven-

tional language, does not apply to algorithms which involve entities that are polymorphic. It

is precisely in such instances that the power of SETL is exploited in expressing the algorithm

in its natural fashion. A clear example of this appears in the prototype Ada/Ed translator

[Kruc84]. Given a name (identifier) at a specific point of an Ada program, the corresponding
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entity might not be unique (as a result of overloading), and thus can be either a single entity

or a set of such items. The obvious approach in SETL is thus to allow the variable desig-

nating that entity to be either the unique name of the entity in question, or a set of such

unique names. Such a variable must then be repered under the current system as general.

Indeed, to address the above problem in such a way as to permit repring would defeat

much of the purpose of using SETL in the first place.

Another area in which weak typing is natural is that of generic procedures. There is

no reason why a SETL program should have more than one sort procedure, regardless of the

components types of the tuples that have to be sorted (the overloading of the comparison

operator on numeric and string types makes this possible). Sorting a tuple of numbers or a

tuple of strings is syntactically identical, except for the declaration of the component type of

the tuple (a fact which often motivates the introduction of generic procedures into otherwise

strongly typed languages, Ada for example). Since 'pure' SETL does not include declarations,

having two such routines would be totally redundant. Of course the design of a system might

take into account the eventual introduction of reprs into the system, and thus incorporate

two routines, but this would be in violation of the concept of using SETL as a means of

ignoring implementation questions.

One of the fundamental goals of the data representation sublanguage is that declara-

tions must be semantically neutral from the rest of the program. That is, the design of an

algorithm in SETL should avoid having to take into account typing and data structure issues.

If such issues are incorporated into the design of the program, much of the appeal of SETL as

a prototyping language is lost. A conscientious user is far less inclined to take advantage of

the weak typing or absence of declarations in SETL if using such features is done at the cost

of program reliability. Optimally, these issues should be later addressed via the DRSL. How-

ever, from the above discussion it is clear that in order to be able to strongly type vari-

ables under the current data representation sublanguage, some degree of forethought (with
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respect to typing) has to go into the design of the algorithm. To do so however is to steer

oneself away from thinking in terms of SETL and designing programs at a level closer to PL/I

or Algol. Generic style routines, variable length as well as varying format heterogeneous

tuples and arbitrarily nested tuples might be avoided, all because there is no facility to

specify such data types in the current system.

Part of the above problem is due to SETL having a natural syntax. Thus, operator

overloading is extensive (e.g. + is used for addition of integers and reals set union and string

and tuple concatenation). Maps and tuples are manipulated in a syntactically identical

fashion, requiring a reader to trace back to the structure's initial assignment to see its type.

Though these facilities are a great convenience to the programmer, allowing him to avoid

exact type decisions to a large degree, they have a detrimental effect upon static type valida-

tion.

The above issues can be succinctly expressed in terms of the underlying type model of

SETL. As it currently exists, the data representation sublanguage is capable of expressing

only a proper subset of the full type model of SETL. With the exception of type unions and

recursive structures, the majority of those structures that cannot be directly typed do not fre-

quently occur. (For example, the case of a tuple consisting of a single string followed by an

arbitrary number of integers cannot be strictly typed, even in the presence of an alternation

operator. However, most programmers would not use such a structure anyway, but rather a

two component tuple, the first element being a string, the second a tuple of integers.) In addi-

tion, many of these structures are too complex to gain any efficiency from strictly typing

them, as a run-time check on their structure is required regardless. However, typechecking

has in recent years been recognized as having a second and equally important function:

enforcing a reasonable type structure upon the programmer in order to increase program relia-

bility. In light of this, the attitude that any type mode which cannot be specified in the

DRSL, but which exists in the actual type model must be typed as general may be reason-



62

able for code efficiency depending upon the actual implementation (since any object which

has an alternated type must in any event be checked for its current type at run-time), but for

purposes of rigorous type validation precise typing facilities is desirable. For SETL and the

DRSL to be logically independent in the fullest sense, at the same time providing the user

with a well enforced type environment, the DRSL must be capable of expressing all reason-

able type modes that can arise at run time. Again, this capability should be provided even in

situations where the only beneficial result is in terms of program documentation (i.e., no code

generation optimization can be performed and thus the DRSL types the object as general).

This inability to specify certain type structures is felt strongest in the areas of type

unions and specification of recursive structures. Names are occasionally polymorphic due to

the nature of the algorithm and there should be a facility to specifiy the valid sets of values

assumable by these names. Given the ability to specify a type using a recursive declaration,

recursive data structures can be given clean and uniform declarations, as opposed to having to

declare them as tuple(general).

There is, in addition to the above, an underlying problem to the question of type

specification using the representation sublanguage, and that is the degree of skill required to

use it properly. Directing our attention to the internal representation facility, we see that

there are no clear guidelines as to what representation to assign to a particular data structure.

(In fact, in the automatic data structuring facility, the criteria upon which to base the choice

as to which of the three representations, local, remote or sparse to choose are coarse, fre-

quency of access and object size information currently being unavailable). However, one

expects that type specification should be a straightforward task, which if would not speed-up

the code, would at least not slow it down. Yet such does not seem to necessarily be the case.

Consider the following program structure:

program test;

read (a,b);

s(a,b);
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procedure s(a, b);

if x = then
tl(b);

else

t2(b);

end if;

end procedure s;

{procedures tl & t2 which each contain

uses of formal parameters bound to b}

end program test;

Assuming that the values of a and b are to be integers throughout, one should be able to

include:

repr

a : integer;

b : integer;

in the main program and each of the routines and expect a speed-up in each case. Note that

routine s merely acts as a pipeline for variable b and involves no uses of its value which

would require a run time check. Furthermore, programmer type specification of a variable

causes type checking to be moved from point of usage back to the point of definition. There-

fore, declaring a and b to be integers in the main routine causes an insertion of a type check

at the read (for the main program) and at the initial parameter assignment (for s) whereas

prior to repering no typechecking needed to be performed for b in either of those two routines

as they involved no use of b that required such a check.

It would thus seem that under certain circumstances, type declarations could yield need-

less code. To avoid this should not be the responsibility of the user but rather that of the

optimizer itself (e.g. check for uses of that variable and if none exist, delete the type check at

definition). As mentioned previously, type declarations have a documentation purpose that is

necessary to the reader, and thus declarations should not be omitted simply for the sake of

object code efficiency.
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3.3. Extending the Representation Sublanguage

As seen above, the current facilities provided by the representation sublanguage are

inadequate for the expression of many of the data structures that SETL is particularly suited

for. For example recursive relationships among variables cannot be expressed. An extension

to the sublanguage must therefore allow for such specifications.

In the following discussion, we distinguish between changes in the DRSL that require a

change in the SETL programming language proper, and changes that can be effected entirely

within the data representation sublanguage. In all instances however, we require that

specifications made within the DRSL be transparent with respect to the original SETL code.

3.3.1. Recursive Specifications

The first part of this thesis presented an algorithm that automatically types and discov-

ers the internal structure of recursive data types. It is therefore only natural that the pro-

grammer have the capability to declare such objects using the representation sublanguage.

We introduce a new operator into the DRSL, alternation, |, which allows one to declare an

object as capable of denoting more than one data type. In the current DRSL, such an object

has to be declared as general. The following section deals with the generalities of alternation;

for the present we are merely interested in it as a means of specifying a recursive type.

Recursive types must be declared as modes, i.e. they may not be directly defined as the

type of a specific variable. To declare a binary tree, for example, one writes:

mode tree : integer
|

$ leaf type

sequence(integer, tree, tree) $ internal node

(sequence denotes a fixed length tuple). This mode can then be used in the same manner as

any other, for variable or parameter declaration:

parse_tree : tree;

semantic_pass : proc(tree);
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Mutually recursive definitions are also allowed. For example:

RECl : integer
|
sequence(integer, REC2)

REC2 : sequence(string, RECl)

(See example 2 of Chapter 5 for a program in which these types appear.) The only restriction

is that there must be one definition in the chain that contains an alternation without a recur-

sive reference.

3.3.2. Type Alternation

Alternation has other uses besides providing the DRSL with the capability to specify

recursive data types. With respect to the general problem of weakly typed variables, it

seems that some means of specifying a list of alternative valid types is in order. The chief

advantage of typing a variable is in the fact that one can then verify the validity of assign-

ments to that variable and thus subsequent uses of the variable can be assumed correct; in

addition, operations involving it may be determinable at compile time allowing for the gen-

eration of actual machine code to perform the operation Allowing a list of valid types might

still reduce some of that run-time overhead, (depending upon the implementation of the run-

time routines) possibly at the expense of having several additional in-line tests. At the same

time it is appropriate to have a maximum number of allowable alternatives supported and

have the system treat any variables with more than that number of possible data types as

being of type general. Two alternands seem to be t maximum number that would gain by

placing the code in-line. Finally, in terms of program reliability, giving the programmer the

capability to specify the exact set of alternative types a variable can assume allows the com-

piler to perform some degree of type checking. For example given the following SETL frag-

ment:

x := fund;

y := func2;
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z := x + y;

If fund and func2 are external routines (and therefore without type specification from the

programmer must be typed as general) and furthermore fund returns either an integer or a

set of integer, while func2 returns either a character string, the system can flag the assign-

ment to z as a definite error, assuming that type alternatives can be expressed. The current

declarative system, however, requires x and y to be specified as being of type general, and

thus any information about the type(s) of x is essentially lost.

Furthermore, in following the value and type flow of variables throughout a large

scale system, it is useful to maintain specific information (rather than immediately

resorting to general) as it may later allow one to collapse a list of alternatives back into a

single type along a particular path in the program. The Ada/Ed compiler is a good example

of a program where such a facility, even if only for documentation purposes would have

been useful. As mentioned above, due to the overloading facility in Ada, names and opera-

tors are ambiguous until resolution. Thus variables that denote the unique name(s) of an

identifier are either simple strings denoting the unique name corresponding to that identifier,

or sets of such strings. Thus the function whose task is to determine the unique name(s) of a

particular instance has to be repred as returning a type general. If upon returning from this

function, the invoking procedure performs a set extraction upon the returned value, having

the ability to specify the return type of the function as being string or set(string) informs

the reader immediately that the extracted element is a string, whereas a return type of gen-

eral tells us nothing.

This notion of type alternation is similar to the type union of Algol 68. In both

instances, the types are free unions, i.e. there is no explicit tag field to control the current

type of the object, but rather the system maintains its own internal tag. In Algol 68, however,

the programmer is required to place any code manipulating such a type in a case statement

with each possible type assumable by the object handled by one of the cases. This cannot be
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done in SETL without violating the transparency of the DRSL, as a programmer need not

declare the type of an object at all, and thus the system has no way of knowing whether all

possible cases have been covered.

3.3.3. Polymorphic Procedures

Many algorithms accept a data structure as a parameter and operate upon it in identical

fashion regardless of the type of the data elements contained within the structure. Such algo-

rithms include sorting and searching methods, various data structure primitives such as push

and pop, etc. In each instance, the problem is that of manipulating what may best be called

the 'location' of the datum rather than its actual value. It is clear that the binding of such an

algorithm to the type of the informational element is not dictated by the guidelines of strong

typing. Several languages, Ada among them, have acknowledged this fact and as such, have

incorporated into the language design a facility to express such type independent algorithms

in a manner that does not clash with the rest of the strong typing model.

These generic procedures, as they are commonly known, are a convenience to the pro-

grammer as they eliminate the need to maintain multiple copies of routines that are identical

up to of the data type they manipulate. In addition, in terms of system documentation and

structure, a single source routine is cleaner to an overall perception of the system. However,

when the question of implementing such a routine arises, the design goals of a language that

imposes strong typing must be taken into consideration. Besides helping to maintain the

integrity of program variables, strong typing allows for the generation of efficient object code,

in which the run-time representations of objects together with the code sequences correspond-

ing to operations can be determined at compilation. Generic routines are therefore not imple-

mented as type-free blocks of code whose data elements and operations remain typeless until

run-time. Instead, the generic capability can be viewed as an enhanced macro facility reliev-

ing the programmer of the redundant work of recoding nearly identical routines.



68

3.3.3.1. The Generic Facilities of PL/I and Ada

PL/I offers what it terms a generic capability through its GENERIC attribute,

although in actuality the facility is extremely limited. An identifier is designated as a GEN-

ERIC entry and acts as an alias for several subroutines whose parameter lists differ in type

and/or number of arguments. It still remains the programmer's responsibility to write the

individual routines, while the translator determines from the calling argument list which is

the appropriate routine to be invoked. Thus the macro replacement occurs only at the point

of call. System maintainability is therefore for the most part as it would be without the

GENERIC declaration. The primary advantage is to allow for a uniform invoking name for

several logically related algorithms (e.g a single calling identifier for several I/O routines

whose parameter types are different).

Ada provides a more comprehensive generic facility, one in which types and operations

can be manipulated as limited first class entities even though the remainder of the language

disallows such manipulation. The programmer writes the algorithm, leaving as symbolic

parameters those types and operations which vary between invocations of the procedure.

When the algorithm is required for a particular data type, it is instantiated with the type and

any associated operations that are required for actual compilation and subsequent execution.

At the source code level, there is only one copy of the algorithm, while generated object code

might contain one copy per instantiation. Type checking is only needed once, at definition.

All usage is guaranteed correct.

3.3.3.2. Polymorphic Procedures in SETL

For strongly typed languages such as Ada, the generic facility acts as a sort of widening

operator, allowing the programmer to express type independent algorithms without violating

the type model of the language. SETL obviously requires no such facility as the types of

parameters are not bound until run time and therefore any algorithm is in essence generic as

long as the operators used in the routine are consistent with the type of the actual
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parameters. A generic routine, however can be viewed from the standpoint of SETL as a nar-

rowing operator, allowing a controlled and limited use of type general. Currently, any rou-

tine which could be given diverse parameter types requires a declaration of general for its

formal parameters. However, there is a loss of information involved in doing this. Consider a

routine which is to sort tuples of integers or reals. Declaring the input tuple as being of type

general necessitates full run time type checking. In particular, when comparing two elements

of the tuple, a check must be performed that an ordering exists for their types. If the input

type to the sort procedure is instead declared to be either a tuple exclusively of real or one of

integer, the run time test for type compatibility of tuple elements can be eliminated. With

the addition of an alternation operator, the semantic ability to express this would exist in a

restricted fashion in the data representation sublanguage. As an example, a sort routine whose

input is either real or integer could be declared as:

sort : procedure(tuple(real)
|
tuple(integer))

The semantics of this form, however, does not allow for a full generic capability. If the

sort routine can be used for any type of input, there will be no way of expressing that fact.

Furthermore, there will be no way to bind the types of local variables (such as a temporary)

within the routine, whose values are derived from the formal generic parameter to that of the

actual parameter. As an example of this problem, if a generic bubble sort is written, it is

desirable to have the temporary variable used in the swap declared as being of the same type

as the component type of the array.

A solution is to introduce a new type, which we call generic. This type is not a new

element of the underlying type lattice, in fact in terms of the lattice it is identical to type

general. Logically however, generic has an additional constraint: the alternation is exclusive,

that is, a compound object can have as its component type any valid type, but once a com-

ponent type is selected, all other types are excluded for the rest of the lifetime of the object,

i.e. once the object is destroyed, upon exiting a procedure, for example, the object, when next
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created, can again be assigned any type. This notion corresponds somewhat to the typing

rules of the B language in which objects are strongly typed by assignment. Generic can be

used directly in a variable declaration or to define a new mode. The former use is sensible

only for sets, maps and tuples and denotes the fact that component types can be anything,

but must be homogeneous. The latter usage provides the capability of relating the types of

several variables without actually specifying the types (somewhat similar to polymorphic type

variables). Thus, the above sort example can be rewritten:

mode arr_element : generic;

sort : proc (tuple(arr_element));

and as a local declaration in the sort procedure:

temp: arr_element;

When used in the mode form, assigning an object to a variable declared to be of that mode

restricts the type of the mode to the type of that object for the the lifetime of the procedure

in which the mode is declared. Thus, if within the procedure sort we have the declaration:

mode arr_element : generic

the mode arr_element exists for the lifetime of the procedure sort. The first assignment of an

object of type t, to a variable declared as arr_element restricts the type of all other assign-

ments to variables of mode arr_element to t. When sort is exited, the mode is destroyed, and

if sort is subsequently reentered, the type of arr_element is again open to an assignment of

any type object.

In order to allow the parameters of a procedure to be related via a generic mode, mode

declarations can now precede the parameter declarations in a procedure specification. Thus, to

specify a procedure, insert, which accepts a tuple of some arbitrary type, and an element of

that same type we write:

insert : proc (mode list_element : generic,

tuple(list_element),
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list_element);

The mode list_element is visible within insert and exists for the lifetime of the procedure.

In the sort example, a translator can then use the knowledge that all array elements as

well as the temporary are of the same type to eliminate the type compatibility test between

components of the input tuple.

3.3.4. Exclusive Alternation

As noted previously, the programmer should have the ability to distinguish between a

tuple with components of integer or real, and either a tuple of integer or a tuple of real.

Though the representation sublanguage allows for such distinctions, the transformation func-

tions of Tenenbaum's typefinder combine the latter two tuples into the former. As seen

above, the programmer could declare the two cases as:

tuple(integer
|
real)

and:

tuple(integer)
|
tuple(real)

It would be convenient to allow some form of shorthand for the second case, i.e. allow

the tuple aspect of the declaration to be factored out. To do this, an 'exclusive or' operator,

@, is introduced. Any object whose type is declared using the @ operator can be typed with

either of the operands of @, but once so typed, remains as such for the remainder of its

existence. The preceding example could thus be expressed as:

tuple(integer @ real);

Again, this can be used to define a new type mode, and like generic, the first value assigned

to an object declared as being that mode fixes the type of that mode. In fact, this notion is

closely related to that of the mode generic, indeed, generic can be expressed as:

tl @ t2 @ t3
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for all type symbols in the program's lattice, while general can be similarly expressed as:

tl
|
t2

|
t3 ....

Interestingly enough, this list may be potentially infinite if recursive structures are present in

the program.

3.3.5. Typing of Constants

Though the gross data type (i.e. integer, real, etc.) of a constant is obvious, it is desir-

able to allow the programmer to specify basing information concerning the constants in a pro-

gram. As an example, given a variable that contains a character string and is declared to be

an element of some base, B, if that variable is repeatedly compared with a constant string,

being able to specify that the constant is in the base allows equality testing of the two quanti-

ties to become nothing more than a pointer equality test, as opposed to a hashing operation

followed by a character comparison.

It is possible that the same constant appears more than once in a program, and is to be

based differently in each instance. If that is the case some provision must be made for distin-

guishing between the various instances. The basing information could be placed at the point

of occurrence of the constant, but insertion of declarative information into the algorithm

proper should be avoided. However, a preferred alternative has not been suggested, and a pre-

cedent has already been set in a declaration-free language inserting type information into the

program text. B requires a representative denotation to be supplied with every input variable,

allowing the translator to deduce the type to be input. Rather than requiring the constant to

be typed within the text of the program, we propose that constant that the programmer

wishes to be placed in a base be assigned to a variable (in the init section of the SETL pro-

gram) and then declare the variable to be an element of the base.
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3.3.6. Sequences and Tuples

The current representation sublanguage has a minor ambiguity in that tuple(integer)

could either mean a fixed length tuple of length 1, or an arbitrary length tuple, in both

instances the component type being integer. Practically speaking, the point is minor as a

tuple of length one is essentially useless. However, a syntactic distinction should be made, if

only for the reader, between fixed length tuples, whose purpose is similar to that of a record

in Pascal or Ada, and that of a dynamic tuple. The former is often heterogeneous in its com-

ponent types, while the tuple, with few exceptions, is homogeneous.

Our extended DRSL uses the mode constructor sequence to denote fixed length tuples,

while tuple is reserved for such entities of arbitrary length. For example:

stack : tuplefinteger
|
string)

is a declaration of a name which can assume objects that are arbitrary length tuples with

integer and string components, while:

symbol_table : sequence(string, integer, set(string))

declares a fixed length tuple, whose components are a string, integer and set of strings respec-

tively. The question of field specification in sequences is addressed in the next section.

3.3.7. Field Names for Heterogeneous Structures

One cannot directly program a heterogeneous structure in SETL, but must rather resort

to using a tuple. The various fields are then accessed using numeric subscripts, and to make

this more readable, macros are typically written with names corresponding to the manner in

which the components are used. It is more convenient to have the capability to label these

fields with their appropriate names when declaring the types of the fields in the DRSL. As an

example, in the Ada/Ed compiler the symbol table is maintained as a heterogeneous tuple

with several components: name and type of the entity, parameter and discriminant lists, con-

straint information, etc. The semantic pass, which manipulates this structure defines a series
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of macros that allows more convenient access to the various fields. A suggested syntax for this

capability is:

person_info : tuple(name : string,

address : tuple(street : string,

city : string,

state : string,

zip : integer))

allowing the programmer to then write:

name(person_info) or

street(address(person_info))

If field names are forced to be unique within the name scope of macros, then the above facil-

ity could be implemented as a special instance of macro processing; that is, the field names

could be declared as macros of the following form:

macro name(t) =
t(l)

endm;

macro address(t) =
t(2)

endm;

macro street(s) =
s(l)

endm;

Of course, implementing field names in the above fashion leaves open much room for pro-

grammer error; a particular field name is not constrained to be used exclusively with a vari-

able repr'ed with that 'record' type. A more appropriate implementation would be to incor-

porate the field naming facility into the representation sublanguage proper. As a field may

play more than one role (in addition to assuming more than one type during its lifetime) mul-

tiple field names may be associated with a particular component. Introducing discriminants

for such 'variant records' is meaningless as the rest of the language is type free.
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3.4. Summary

We present in this section a summary of the changes proposed in the above sections. We

give a syntax as well as a semantic explanation for each of the new constructs.

< declarative section > ::=

repr

<declaration;>

{declaration;}

end repr;

<declaration> ::=

<base declaration >
<type mode declaration >
<object declaration>

<base declaration> ::=

base <name list> : < optional type>

<type mode declaration > ::=

mode <name list > : <type>

< object declaration > ::=

<name list > : <type>

<name list > ::=

<identifier> {, <identifier> }

<type> ::=

<single type> {< alternation operator> <single type> }

<single type> ::=

integer

real

string

atom
boolean
general

generic

set < optional type list

>

<map type> <optional type list> <optional type>
tuple < optional type>
sequence < component list

>

proc < optional parm list > < optional type>

op <optional parm list> <optional type>

<alternation operator> ::=

I



76

<map type> ::=

mmap
|
smap

<optional type> ::=

<type>

I
«

<type list> ::=

<type> {, <type>}

<optional type list> ::=

( <type list>
)

I «

<optional parm list > ::=

( < optional mode list> <type list> )

|
(

< optional mode list > ::=

<type mode declaration > ,
{<type mode declaration> ,}

I «

<component list > ::=
( <component> {, <component>

)

<component> ::=

< optional field name list> <type>

<optional field name list > ::=

<identifier> {, <identifier>} :

I «

A declarative section is bracketed by the keywords repr and end repr. The are three

forms of declarations: bases, type modes and objects. Bases are declared with an optional type

associated with them, if omitted, the base defaults to type general. Object declarations

allow for the type specification of program objects. Type mode declarations take the same

form as object declarations but with the keyword mode prefixed to the declaration.

The types are straightforward, * is an abbreviation for general, and wherever a type is

optional, if omitted, it defaults to general. Declaring an object to be generic allows it to be

initially assigned any type, but its type is then restricted to that type for the remainder of of

the scope of the object so declared. Declaring a mode to be generic allows for the creation of

type-related objects. The first object declared to be of that mode restricts all other objects of
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that mode to its initial type. The type restriction imposed by the generic mode declaration

exists for the lifetime of the procedure within which the mode is declared.

The exclusive alternation operator acts in the same fashion as type generic, in that it

restricts the type of the object to it initial type. In addition, it allows for a restricted set of

possible types to be specified.



CHAPTER 4

A SETL Implementation of the Typefinder

4. A SETL Implementation of the Typefinder

4.1. Introductory Remarks

The following program is an implementation of the typefinder presented in this thesis.

It is a standalone program, not interfaced with the existing SETL optimizer and therefore

several simplifications were made. The read statement is handled as a primitive operation as

opposed to a built-in function. The input to the typefinder is the original SETL source of a

program which is read in as a comment, followed by the intermediate operations which have

been hand-coded. The UD chains are also supplied to the program as data. In a working ver-

sion incorporated into the optimizer, all this information would be provided by the front end.

78
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4.2. The Algorithm

program type_finder;

$ The following is a prototype implementation of a typefinder capable of

$ detecting recursive data structures.

$ Typefinding works in the following fashion:

$

$ An initialization pass is performed over the code. This pass types any

$ constants, places in the workpile any ovariables that have constant right hand

$ sides and assigns recursive type names to any nonconvergent ivariables.

$ It also tests the input variables of any embedding operation (e.g. Ql_TUP)
$ for recursiveness (i.e. whether the definition being constructed reaches

$ the input variable). Each new (recursive) type is mapped via TYPEjSTRUCTURE to

$ a type representing its structure - which is initially set to TYPE_ERROR. The

$ TYPEJDF map for any variable flagged as nonconvergent is set to the recrusive

$ name it is assigned.

$

$ Forward analysis proceeds by removing an element from the workpile. If the

$ element is an ivariable, the types of all definitions reaching that ivariable

$ are 'joined' and the result is placed in TYPEjOF if the ivariable is not

$ nonconvergent and in TYPEJSTRUCTURE otherwise. For ovariables, the procedure

$ forward is invoked which calculates the result type based upon the input

$ types. The type used for nonconvergent ivariables here will simply be their

$ type names. The exception to this rule is when a recursive type

$ which is an input argument must have its component types

$ examined (e.g. for a tuple or set extraction). In that

$ case, the structure is unfolded one level to allow the appropriate component

$ to be accessed.

$

$ After the occurrence has been processed, if any change has occurred (to

$ TYPEJDF for ovariables and ivariables that are not nonconvergent, or to

$ TYPEJSTRUCTURE for nonconvergent ivariables), affected occurrences are

$ dumped into the workpile.

% The above process continues until the workpile is empty.

$ Types

$ ===

$ The version of the typefinder that detects recursive data structures maintains

$ more precise information concerning types of variable instances than its

$ predecessor. As such, the data structure used to contain type information is

$ more detailed..

$ The primitive types are: boolean, real, integer, string, atom, the nullset,

$ the nulltuple, set, seq (knoum length tuple), and tuple ('homogeneous' tuple).

$ Each elementary type sytnbol (i.e. non alternated) is represented by the

$ format:
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$ grossjtype for scalar types

$ [gross-type, component-type] for set, tuple and seq

$

$ The component type is itself a type symbol and thus a recursive walk is

$ required to analyze the full type symbol. If the gross-type is a sequence, the

$ component type is a tuple with the i'th component representing the type symbol

$ of the i'th element of the sequence.

$ Examples:

$ integer - integer

$ [set, integer] - set(integer)

$ [tuple, integer] - tuple(integer)

$ [seq, [integer, string]] - tuplefinteger, string)

$ fset, [seq, [string, integer]]] - map(string) integer

$ An type symbol is maintained as a set containing the elementary type symbols

$ that compose its alternands.

$

$ Example:

% {integer} - integer

$ {integer, string} - integer
\
string

$ {integer [set, integer]} - integer
\
set(integer)

$ Disjunction operator

$

$ The disjunction (meet, union) operator accepts two type symbols and produces

$ a third. To maintain compactness of the type symbols, the following rules

$ hold:

$ - a type symbol may have only one SET elementary type. The result of

$ disjuncting two symbols with SET alternands is a SET with a component type

$ consisting of the disjunction of the two original component types.

$

$ - The above also applies for TUPLE elementary types.

$

% - If a symbol contains a TUPLE elementary type, it should not contain a SEQ
$ type. Thus, if two symbols are disjuncted and one contains a TUPLE type,

$ the SEQ types in the other are compressed (i.e. their positional component

$ types are disjuncted), disjuncted with the component type of the TUPLE,
$ and the resulting type is used as the component type of a TUPLE.
$

$ - SEQ types are merged if their component types are of the same size.

macro TYPES;
T_BOOLEAN,
T_ATOM,
T_REAL,
TJNTEGER,
T STRING,



SI

T.NULLSET,
T_NULLTUP,
T_SET,
T_TUPLE,
T_SEQ,
T_GENERAL,
T_ERROR,
T_OM

endm;

$ Macros used in type information extraction

$ Will return true for everything except TUPLE, SEQ and SET

macro is_scalar_tyP e (t);

not is_tuple t

endm;

$ Returns type for scalar type, T_TUP, T_SEQ, or TJSET otherwise

macro gross_type(t);

(if is_scalar_type(t) then
t

else

t(l)

end)
endm;

$ For compound types returns component types.

macro component_type(t);

(if t = T_GENERAL then $ TYPEJJENERAL has component type of TYPE_GENERA
TYPE_GENERAL

else

t(2)

end)
endm;

macro number_of_alternands(t);

#(t)

endm;

$ Data Structures

$

$ The algorithm assumes the existence of several data structures already

$ calculated by the SETL optimizer (though in possibly different formats).

$ These are:

$

$ UD : multivalued map from a variable use to the set of instances which

$ define that use.
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$ DU : inverse map of ud - calculated from UD.

$

$ Instruction Format

$

$ The program is represented by a set of instructions each tagged with a unique

$ integer. As ud information is assumed, and the algorithm is workpile based,

$ no other relationships regarding the instructions (such as basic block

$ membership or next instruction) need be maintained.

$ Each instruction represented by the maps OPCODE and ARGS. The output variable

$ of the instruction is the first of the arguments.

$ With the exception of the instruction's argument list, all variables are

$ represented as occurrences, i.e. a tuple whose first element is the

$ instruction number and whose second element is the position of the variable

$ in the argument list.

$ Macros for accessing instructions and occurrences.

macro ovar(i); [i, l] endm;
macro ivars(i); [[i, j] :

j in [2 .. #ARGS(i)]] endm;
macro ivarl(i); [i, 2] endm;
macro ivar2(i); [i, 3] endm;
macro ivar(i,n); [i, n+l] endm;

macro is_ivar(occ); occ(2) > 1 endm;
macro is_ovar(occ); occ(2) = 1 endm;

macro arg_num(occ); occ(2) endm;
macro name_of(occ); ARGS(occ(l))(occ(2)) endm;
macro instr_of(occ); occ(l) endm;

macro is_constant(occ);

constant_type(occ) /= TYPE_ERROR
endm;

$ Set of Ql Opcodes

macro OPCODES;

$ Binary Operators

Ql ADD,
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Ql LESS,
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Q1_SIGN,

$ Miscellaneous

Q1JEND,
Q1_SUBST,
Q1_NEWAT,
Q1_TIME,
QlJDATE,
Q1_NA,
Q1_SET,
Q1_SET1,
Q1_TUP,
Ql_TUPl,
Ql_FROM,
Q1_FR0MB,
QlJPROME,

$ Iterators

Q1_NEXT,
Q1JMEXTD,
Q1JNEXT,
QlJNEXTD,

$ Mappings

Ql_OF,
Ql_OFA,
Ql_SOF,
Ql_SOFA,
Q1_SEND,
Q1_SSUBST,

$ Assignments

Q1_ASN,
Ql_ARGIN,
Ql_ARGOUT,
Q1_PUSH,
Q1_READ,

endm;

$ sign

$ Al .— A2(A3 ..)

$ Al .- A2(A3 .. A4)

$ Al :— newat

$ Al := time

$ Al := date

$ Al := # of arguments of current routine

$ enumerative set former

$ iterative set former

$ enumerative tuple former

$ iterative tuple former

$ Al from A2
$ Al fromb A2
$ Al frome A2

$ Al := next element of A3
$ Al := next element of domain A3
$ initialize next loop

$ initialize nextd loop

$ Al := A2(A3)

$ Al := A2{A3}
$ A1(A2) := A3
% A1{A2) := A3
$ A1(A2 ..) := A3
% A1(A2 .. A3) := A4

$ Al .= A2
% assign argument to formal parameter

$ assign back to argument

$ push element for set former

$ kludge for read

var
OPCODE,
ARGS,
TYPE_STRUCTURE,
REPRESENTATIVE_TYPE.
UD,
DU,
INSTRUCTIONS,

$ Instruction's opcode

$ arguments

$ Structure of discovered recursive types

$ Once types are merged, reprsentative type of class

$ Ud chains

$ Du chains

$ tuple of instructions
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TYPEJDF,
VARJTYPES,
workpile,

is_rec_type,

is_recursive,

occ_depends_upon;

$ map of types for each occurrence

$ types for each variable

$ "

$ Boolean map for testing is a type is recursive

$ Boolean map for recursive ivars

const
OPCODES,
TYPES,
TYPE_BOOLEAN,
TYPE_ATOM,
TYPE_REAL,
TYPEJNTEGER,
TYPE_STRING,
TYPE_NULLSET,
TYPE_NULLTUP,
TYPEjGENERAL,
TYPE_ERROR,
TYPE_OM,

$ Operators that increase nesting level

EMBEDDING_OPS = {QlJTUP, Ql_SET, Q1_WITH, Ql_SOF};

$ Initialize global structures

TYPE OF := {}
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print (stmt + ' ');

get (", stmt);

end while;

eject ();

$ Read in instruction tuple and extract various fields

read (INSTRUCTIONS);

(for inst = INSTRUCTIONS(i))

$ Extract fields of the instruction

[-, oped, arguments] := inst;

OPCODE(i) := oped;

ARGS(i) := arguments;

end for inst;

read (UD);

(for u in domain UD)

$ Make sure no errors in input

ASSERT is_ivar(u);

(for d in UD{u})
ASSERT is_ovar(d);

ASSERT name_of(u) = name_of(d);

end for d;

end for u;

DU := {[d,u] : [u,d] in UD}; $ compute DU = inverse UD

initialize_workpile; $ Type constants, find recursive occurrences and

$ place definitions on workpile

eject ();

$ Actual forward analysis

forward_analysis;

$ Merge isomorphic types

merge_recursive_types;

$ Merge instances of the same variable
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merge_instances;

print_results;

stop;

proc print_results;

eject ();

print ('Recursive Type Structures');

print (' ');

(for r in domain TYPE_STRUCTURE)
print (r, ' = ');

pretty_print(TYPE_STRUCTURE(r));
end for r;

print (' ');

print (' ');

print ('Types');

print (' 'j;

(for v in domain VAR_TYPES)
print (v, '

: ');

pretty_print (VAR_TYPES(v));
end for v;

return;

end proc print_results;

proc initialize_workpile;

$ initialize_workpile assigns types to all constant value and places all

$ definitions onto the workpile.

workpile := {};

$ Loop through all instructions

(for i in [1 .. #INSTRUCTIONS])
const_rhs := true;

$ Process ivars of instruction

(for a in ivars(i))

TYPE_OF(a) := constant_type(a); $ Type any constants

if TYPE_OF(a) = T\TE_ERROR then $ Not constant?

const_rhs ;= false;

end if;
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$ If the opcode of the current instruction results in an embedding,

$ test the ivariable for recursiveness. A variable is recursive if

$ the definition it is building reaches it.

if OPCODE(i) in EMBEDDINGJDPS then
is_recursive(a) := test_for_recursiveness(a);

if is_recursive(a) then
newjtype := generate_new_type(); $ new recursive type symbol

TYPE_OF(a) := newjtype;

TYPE_STRUCTURE(new_type) := TYPE_ERROR;
is_rec_type(new_type) := true; $ Flag the type as recursive

end if;

end if;

end for a;

$ Only place into the work-pile those ovars that have a constant right hand

$ side.

if const_rhs then
workpile with:= ovar(i);

end if;

TYPE_OF(ovar(i)) := TYPE_ERROR;

end for i;

end proc initialize_workpile;

proc test_for_recursiveness(instance);

$ To test for recursiveness, see if the instance can reach itself. To do this,

$ we use a workpile which is initialized to the instance. When an item is

$ removed from the pile, if it is an ivar, the corresponding ovar is placed into

$ the pile; if an ovar, all ivars reachable by that ovar are placed into the

$ pile. Furthermore, the removed item is remembered so as not to process it a

$ second time (in the event of other recursive instances on the path).

$ If the original instance ever appears in the pile, it is recursive.

pile := {instance};

seen := {};

(while pile /= {})

occ from pile;

seen with:= occ; $ Remember that this occurrence has been prcessed

$ to prevent infinite loops.

$ Ivars send their corresponding ovars onto the pile; ovars send

$ all subsequent uses into the pile.

if is_ivar(occ) then

pile with;= ovar(instr_of(occ));



89

else

pile +:= {use : use in DU{occ}};

if instance in pile then $ Was occurrence in question placed into

return true; $ pile? - if so it's recursive.

end if;

end if;

pile -:= seen; $ Remove any processed occurrences that

$ may have just been placed onto pile.

end while pile;

return false; $ original occurrence never appeared

end proc test_for_recursiveness;

proc fonvard_analysis;

$ Actual routine to perform forward analysis. Items are removed from the

$ work-pile, processed in an appropriate fashion, and all affected items are

$ inserted into the pile.

(while workpile /= {})

occ from workpile; $ Remove an occurrence from the workpile

$ For nonconvergent ivariables, check for change in TYPEJSTRUCTURE, otherwise

$ change occurs in TYPE_OF

if is_recursive(occ) ? false and
is_ivar(occ) then
oldtype := TYPE_STRUCTURE(TYPE_OF(occ));

else

oldtype := TYPE_OF(occ); $ Retain its previous type

end if;

$ Ovars have their types calculated via forward; ivars by taking the

% disjunction of all chained definitions

if is_ovar(occ) then $ occurrence is an ovar

TYPE_OF(occ) := forward(instr_of(occ));

else $ occurrence is an ivar

ASSERT is_ivar(occ);

$ for nonconvergent occurrences, 'join' is placed in TYPEJSTRUCTURE

if is_recursive(occ) ? false then
(for d in LID {occ})

TYPE_STRUCTURE(TYPE_OF(occ)) .DIS:=
TYPE_OF(d);

end for;
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TYPE_STRUCTURE(TYPE_OF(occ)) -:= TYPE_OF(occ);
else

TYPE_OF(occ) := TYPE_ERROR .DIS/

(TYPE_OF(d) : d in UD{occ}];

end if;

end if;

$ Check for change in type of processed occurrence. This change will

$ occur in TYPEJDF for nonrecursive variables and T\TE_STRUCTURE
$ otherwise.

if is_recursive(occ) ? false and

is_ivar(occ) then
if oldtype = TYPE_STRUCTURE(TYPE_OF(occ)) then

continue;

end if;

elseif oldtype = TYPE_OF(occ) then
continue;

end if;

$ Ovariables dump their immediate uses into the workpile;

$ ivars send their corresponding definition together with the

$ image of occ_depends_upon for the type of the occurrence if

$ recursive.

if is_ovar(occ) then $ modified ovar

(foralluse in DU{occ} ? {})

workpile with:= use;

end forall;

else $ modified ivar

ASSERT is_ivar(occ);

o := ovar(instr_of(occ));

workpile with:= o;

if is_rec_type(TYPE_OF(occ)) ? false then
workpile +:= occ_depends_upon{TYPE_OF(occ)} ? {};

end if;

end if;

end while;

end proc forward_analysis;

proc constant_type(occ);

$ Examine an occurrence; if it is a constant, return its type else return

$ TYPE_ERROR as an initial value for variables.

name := name_of(occ); $ Extract identifier name of occurrence

if name = 'OM' then $ om
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result := TYPE_OM;
elseif name = 'NULLSET then $ ntiH set

result := TYPE_NULLSET;
elseif name = 'NULLTUP' then $ null tuple

result := TYPE_NULLTUP;
elseif is_integer(name) then $ integer constant

result := TYPEJNTEGER;
elseif is_string(name) and $ string constant

name(l) = "" then
result := TYPEJSTRING;

else $ variable - not a constant

result := TYPEJERROR;
end if;

return result;

end proc constant_type;

proc generate_new_type;

$ Generate new recursive type symbol of form REG_xxx

new_type := {'REC_' + str newat};

return new_type;

end proc generate_new_type;

proc fonvard(inst);

$ Generate result type of output variable based upon operation and types of

$ input variables

il := ivarl(inst);

i2 := ivar2(inst);

result := TYPE_ERROR; $ Default type

case OPCODE(inst) of

$ Binary Operators

(Q1_IN, Ql_NOTIN):

$ if T2 is a set or tuple, the result is BOOLEAN

t2 := collect_types(i2);

if t2 .INTER {T_SET, T_TUPLE, T_SEQ, T_STRING} /= {} then
result := TYPE_BOOLEAN;

end if,
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(Q1JNCS):

$ if both inputs are sets, the result is BOOLEAN

tl := collect_types(il);

t2 := collect_types(i2);

if tl .INTER {T_SET} /= {} and

t2 .INTER {T_SET} /= {} then
result := TYPE_BOOLEAN;

end if;

(Q1_EQ,Q1_NE):

$ Always returns Boolean

result := TYPE_BOOLEAN;

(Q1_GE, Ql_LT, Q1_P0S):

$ If operands are valid, returns Boolean

tl := collectjtypes(il);

t2 := collect_types(i2);

tempi := tl .INTER {TJNTEGER, T_REAL, T_STRING};
temp2 := t2 .INTER {gross_type(t) : t in tempi};

if temp2 /= {} then
result := TYPE_BOOLEAN;

end if;

(Q1_WITH):

$ If tl is a set or tuple, then its type is the gross type

$ with a component type consisting of the disjunction of the component type

$ of tl and t2. Known length tuples just tack tS onto the back of the

$ component type of tl.

tl := collect_types(il);

t2 := TYPE_OF(i2);

if (typ := tl .INTER {TJ3ET, TJTUPLE}) /= {} then
result := {[gross_type(etyp), component_type(etyp) .DIS t2] :

etyp in typ};

end if;

if (typ := tl .INTER {T_SEQ}) /= {} then

$ if the operand is recursive, transform a known-length

$ sequence into a tuple

if is_rec_type(TYPE_OF(il)) ? false then
result .DIS:= {(TJTUPLE, t2 .DIS/{.DIS/component_type(etyp) :

etyp in typ}]};

else

result .DIS:= {[T_SEQ, component_type(etyp) with t2] :

etyp in typ};
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end if;

end if;

$ If first arg is a null set or tuple, create set or tuple type

if t2 /= TYPE_ERROR then
if (tvp := tl .INTER {T_NULLTUP}) /= {} then

result .DIS:= {(T_SEQ, [t2]]};

end if;

if (typ := tl .INTER {T_NULLSET}) /= {} then
result .DIS:= {[T_SET, t'2]};

end if;

end if;

(Ql_LESS):

$ ;/ tl is a set, the result is same as tl

tl := collectjtypes(il);

if (temp := tl .INTER {T_SET}) /= {} then
result := TYPE_NULLSET .DIS {[T_SET, .DIS/ {componentjtype(t)

t in temp}]};

end if;

(Ql_NPOW);

$ One input is a set , the other an integer, the result is

$ a set of type tl.

tl := collect_types(il);

t2 := collect_types(t2);

if tl .INTER {T_SET} /= {} and
t2 .INTER {TJNTEGER} /= {} then
result := {[T_SET, tl]};

end if;

if t'2 INTER {TJ3ET} /= {} and
tl .INTER {TJNTEGER} /= {} then
result := {[T_SET, t2]};

end if:

(Ql_MAX, Q1_MIN):

tl := collect_types(il);

t2 := collect_types(i2);

tempi := tl .INTER {TJNTEGER, T_REAL, TJ3TRING};
temp2 := t2 .INTER { grossJype(t) : t in tempi};

if temp2 /= {} then
result := temp2;

end if;

(Ql_ADD):

tl := collectjtypes(il);
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t2 := collect_types(i2);

$ Scalars are intersected

tempi := tl .INTER {TJNTEGER, T_REAL, T_STRING};
temp2 := t2 .INTER {gross_type(t) : t in tempi};
if temp2 /= {} then

result := temp2;

end if;

$ Sets have their component types disjuncted

tempi := tl .INTER {T_SET};
temp2 := t2 .INTER {T_SET};
if tempi /= {} and
temp2 /= {} then
result .DIS:= {[T_SET, .DIS/{component_type(t) :

t in tempi} .DIS

DIS/{component_type(t) :

t in temp2}]};

end if;

$ Tuples and sequences are transformed into tuples with

% disjuncted component types

tempi := tl .INTER {TJSEQ, T_TUPLE};
temP2 := t2 .INTER {T_SEQ, T_TUPLE};
if tempi /= {} and
temp2 /= {} then
result .DIS:= {[T_TUPLE, .DIS/{component_type(t) :

t in tempi
|

grossjtype(t) = T_TUPLE} .DIS

.DIS/{.DIS/component_type(t) :

t in tempi
|

gross_type(t) = TSEQ} .DIS

.DIS/{component_type(t) :

t in temp2
|

gross_type(t) = T_TUPLE} .DIS

.DIS/{.DIS/component_type(t) :

t in temp2
|

gross_type(t) = TSEQ}]};
end if;

(Ql.SUB);

tl := collect_types(il);

t2 := collect_types(i2);

tempi := tl .INTER {TJNTEGER, T_REAL}
;

temp2 := t2 .INTER jgross_type(t) ; t in tempi};

if temp2 /= {} then
result := temp2;

end if;

if (typ := tl .INTER {T_SET}) /= {} and
t2 .INTER {T_SET} /= TYPE_ERROR then
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result .DIS:= typ;

end if;

(Q1_DIV):

tl := collect_types(il);

t2 := collect_types(i2);

if tl .INTER {TJNTEGER} /= {} and
t2 .INTER {TJNTEGER} /= {} then
result := TYPE_INTEGER;

end if;

(Q1_SLASH):
tl := collect_types(il);

t2 := collect_types(i2);

tempi := tl .INTER {TJNTEGER, T_REAL};
temp2 := t2 .INTER {gross_type(t) : t in tempi};

if temp2 /= {} then
result := TYPE_REAL;

end if;

(Q1_EXP):

tl := collect_types(il);

t2 := collect_types(i2);

tempi := tl .INTER {TJNTEGER, T_REAL};
temp2 := t2 .INTER jgross_type(t) : t in tempi};

if temp2 /= {} then
result := temp2;

end if;

if tl .INTER {T_REAL} /= {} and
t2 .INTER {TJNTEGER} /= {} then

result .DIS:= TYPE_REAL;
end if;

(Q1_ATAN2):
tl := collect_types(il);

t2 := collectJypes(i2);

if tl .INTER {T_REAL} /= {} and
t2 .INTER {T_REAL} /= {} then
result .DIS:= TYPEJIEAL;

end if;

$ Unary operators

(Q1_N0T):
tl := collectjtypes(il);

result := tl .INTER {T_BOOLEAN};

(Q1_EVEN, Q1J3DD):
tl := collect_types(il);

if tl .INTER {TJNTEGER} /= {} then

result := TYPEJ300LEAN;
end if:
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(Q1JSINT, QlJSREAL, QlJSSTR, QlJSBOOL,
Q1JSATOM, Q1JSTUP, QlJSSET, QlJSMAP):
tl := collect_types(il);

result := TiTE_BOOLEAN;

(Ql_ARB):

$ if tl is a set then the result type is the component type

tl := collect_types(il);

if (typ := tl .INTER {TJSET}) /= {} then
typ := arb typ;

result := component_type(typ);

end if;

(Ql_POW):
tl := collect_types(il);

if (typ := tl .INTER {T_SET}) /= {} then
result := {[T_SET, [tl]]};

end if;

(Q1_NELT):
tl := collect_types(il);

if (typ := tl .INTER {T_SET, T_TUP, T_STRING}) /= {} then
result := {|T_SET, [tl]]};

end if;

$ Assigning Operators

(Q1_ASN):
result := TYPE_OF(il);

$ Map and Tuple Operations

(QUOF):
tl := collect_types(il);

(for etyp in tl)

if gross_type(etyp) = TYPE_STRING and
t2 .INTER {TJNTEGER} /= {} then
result .DIS:= TYPE_STRING;

end if;

$ If tuple, disjunct in all component types

if gross_type(etyp) = T_TUPLE then

result .DIS:= component_type(etyp);

$ If sequence, then if subscript is constant

$ use the corresponding component type, otherwise

$ take disjunction of all component types
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elseif gross_type(etyp) = T_SEQ then
if is_constant(ivar2(inst)) then

result .DIS:=

component_type(etyp)(name_of(ivar2(inst))) ?

TYPE_OM;
else

result := result .DIS/ component_type(etyp);

end if;

$ Check for map access

elseif gross_type(etyp) = T_SET then
(for comptyp in component_type(etype))

if gross_type(comptyp) = T_SEQ and $ have a pair

#(ctyp := component_type(comptyp)) = 2 then
tempi := ctyp .INTER {gross_type(t) :

t in t2};

if tempi /= {} then
result DIS:= ctyp(2);

else

result .DIS:= TYPE_OM;
end if;

end if;

end for;

end if;

end for;

(Ql_SOF):

$ We handle only cases of tuples and sequences

tl := collect_types(il);

(for etyp in tl)

$ If tuple, merge in type of source operand

if gross_type(etyp) = T_TUPLE then
result .DIS:= {[T_TUPLE, component_type(etvp) .DIS

TYPE_OF(ivar(inst,3))]};

end if;

$ If sequence, then if constant subscript, update

$ component type tuple, else merge all component types into

$ one and set gross type to tuple

if gross_type(etyp) = T_SEQ then
if is_constant(ivar2(inst)) then

if 1 <= name_of(ivar2(inst)) and
name_of(ivar2(inst)) <= #component_type(etyp) then
compres := component_type(etyp);

compres(name_of(ivar2(inst))) .DIS:=
TYPE_OF(ivar(inst,3));

result .DIS:= {[T_SEQ, compres]};
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elseif name_of(ivar2(inst)) >=
#component_type(etyp) then

compres := component_type(etyp);

(for i in [#component_type(etyp) ..

name_of(ivar2(inst))-l])

compres(i) := TYPE_OM;
end for i;

compres(name_of(ivar2(inst))) :=
TYPE_0F(ivar(inst,3));

result .DIS:= {[T_SEQ, compres]};

end if 1;

else $ Not constant subscript

result .DIS:= {[TJTUPLE, .DIS/component_type(etyp)]};

end if is_constant(ivar2(inst));

end if gross_type(etyp) = T_SEQ;
end for etyp;

(Q1_SET):

component := TYPE_ERROR;
valid := true;

(for i in [l .. #ivars(inst)])

elemtype := TYPE_ERROR .DIS TYPE_OF(ivar(inst,i));

if elemtype = TYPE_ERROR then
valid := false;

quit;

else

component .DIS:= elemtype;

end if;

end for i;

$ Only form set if all components had non error type

if valid then
result := {[T_SET, component]};

else

result := TYPE_ERROR;
end if;

(Q1_TUP):
components :=

[];

valid := true;

(for i in [1 .. #ivars(inst)])

elemtvpe := TYPE_ERROR .DIS TYPE_OF(ivar(inst,i)),

if elemtype = TYPE_ERROR then

valid := false;

quit;

else

components with:= elemtype;

end if;

end for i;

$ Only form tuple type if all components are not TYPEJERROR
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if valid then
result := {[T_SEQ, components]};

else

result := TYPE_ERROR;
end if;

(Q1_READ):

$ *** Kludge for read, since we're not handling built-in functions.

result := TYPE_GENERAL

;

end case;

return result;

end proc forward;

proc collect_types(occ);

$ collect_types examines the type structure of an ivariable for use by the

$ forward propagation functions. If the variable is nonrecursive it examines the

$ TYPEjOF map. otherwise its looks at the TYPE_STRUCTURE map.

$ collect types also updates the occ_depends_on map which determines which

$ occurrences are affected by changes to the TYPE_STRUCTURE of a recursive type.

ASSERT is_ivar(occ);

typ := TYPE_OF(occ);
inst := instr_of(occ);

$ if recursive ivariable, get types from its TYPE_STRUCTURE

if is_rec_type(typ) ? false then
occ_depends_upon{typ} := occ_depends_upon{typ} ? {} with ovar(inst);

typ := TYPE_STRUCTURE(typ);
types_seen := typ;

else

types_seen := {};

end if;

$ // there is in the set of types collected a recursive symbol, remove

$ it and replace it with its TYPEJSTRUCTURE

(while exists etyp in typ
|

(is_rec_type({etyp}) ? false))

types_seen with:= etyp;

typ .DIS:= TYPE_STRUCTURE({etyp});
typ -:= types_seen;

occ_depends_upon{{etyp}} := occ_depends_upon{{etyp}} ? {} with

ovar(inst);

end while;
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return typ;

end proc collect_types;

proc merge_recursive_types;

$ merge recursive types that are name equivalent into classes. To do this

$ first bring in the TYPEJSTRUCTURE of any recursive type name at the top level

$ of TYPEJSTRUCTURE. Then use the TYPEJSTRUCTURE values as criteria for

$ two types being equal. If they are, replace one type name by the

$ representative type of that class.

(for rectyp in domain TYPE_STRUCTURE)

$ types_seen is used to ensure that the bringing in of TYPEJSTRUCTURES
$ does not enter a cycle. Since the number of recursive type names are

$ finite, and we are constantly removing already processed types from the

$ set of candidates, the loop will eventually terminate

types_seen :== {};

(while exists typ in TYPE_STRUCTURE(rectyp)
|

is_rec_type({typ}) ? false)

types_seen with:= typ;

if {typ} /= rectyp then
TYPEJSTRUCTURE(rectyp) .DIS:= TYPE_STRUCTURE({typ});

end if;

TYPE_STRUCTURE(rectyp) -:= types_seen;

end while exists typ;

end for rectyp;

(for rectyp in domain TYPE_STRUCTURE)
if REPRESENTATIVEJTYPE(TYPE_STRUCTURE(rectyp)) = om then
REPRESENTATnT_TYPE(TYPE_STRUCTURE(rectyp)) := rectyp;

else

TYPE_STRUCTURE(rectyp) :=

REPRESENTATIVE_TYPE(TYPE_STRUCTURE( rectyp));

end if;

end for rectyp;

(for typ in domain TYPE_STRUCTURE
|

not (is_rec_type(TYPE_STRUCTURE(typ)) ? false))

TYPE_STRUCTURE(typ) :=
substitute_recursive_types(TYPE_STRUCTURE(typ));

end for typ;

(for typ in domain TYPE_OF)
TYPE_OF(typ) := substitute_recursive_types(TYPE_OF(typ));

end for typ;

end proc merge_recursive_types;
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proc merge_instances;

$ After type processing, the types of all instances of the same variable are

$ disjuncted into a single type symbol for the variable

(for i in [1 .. #INSTRUCTIONS])
VAR_TYPES(name_of(ovar(i))) := VAR_TYPES(name_of(ovar(i))) ?

TYPE_ERROR .DIS TYPE_OF(ovar(i));

(for a in ivars(i))

VAR_TYPES(name_of(a)) := VAR_TYPES(name_of(a)) ? TYPE_ERROR .DIS

TYPE_OF(a);
end for a;

end for i;

return;

end proc merge_instances;

proc substitute_recursive_types(typ);

$ replace occurrences of recursive type symbols in the resulting type

$ equations by their representative type symbols

result := {};

(for etyp in typ)

if is_rec_type({etyp}) ? false then

if is_rec_type(TYPE_STRUCTURE({etyp})) ? false then

result +:— TYPE_STRUCTURE({etyp});
else

result with:= etyp;

end if;

elseif is_scalar_type(etyp) then

result with:= etyp;

else

if grossjtype(etyp) in {T_SET, TJTUPLE} then

etyp := component_type(etyp);

result with:= [gross_type(etyp),

substitute_recursive_types(ctyp)];

else

ASSERT gross_type(etyp) = T_SEQ;

etyp := component_type(etyp);

result with:= [T_SEQ, [substitute_recursive_types(ctyp(i)) :

iin [1 .. #ctyp]]];

end if;

end if;

end for etyp;

return result;

end proc substitute_recursive_types;
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op .DIS(typel, type2);

$ Disjunction operator

if typel = type2 then $ types are equal

result := typel;

elseif typel = TYPE_ERROR then $ disferror, t) = dis(t, error) = *

result := type2;

elseif type2 = TYPE_ERROR then
result := typel;

elseif typel = TYPE_GENERAL or $ disfgeneral, t) = disft, general)

type2 = TYPE_GENERAL then $ general

result := TYPE_GENERAL;

$ Attempt to merge recursive and nonreeursive types

$ If a nonreeursive type is a subset of the TYPE_STRUCTURE of the

% second type, the result is the second type, unless the two are equal,

$ in which case a normal disjunction is performed. This last condition

$ is to prevent the following:

$ Say we have REC_#1 : INTEGER disjuncted with INTEGER.
$ If the merge takes place, the result type is REC_#1. If this result is

$ to be placed back into the type structure of REC_#1, the leaf type will

$ never be produced.

elseif (is_rec_type(typel) ? false and
not (is_rec_type(type2) ? false)) and
(type2 subset TYPE_STRUCTURE(typel) and

type2 /= TYPE_STRUCTURE(typel)) then
result := typel;

elseif (is_rec_type(type2) ? false and
not (is_rec_type( typel) ? false)) and
(tvpel subset TYPE_STRUCTURE(type2) and

typel /= TYPE_STRUCTURE(type2)) then
result := type2;

else

$ Otherwise compress the types

$ Scalars are simply unioned together

result := {tl in typel
|
is_scalar_type(tl)} +

{t2 in type2
|
is_scalar_type(t2)};

$ Sets have their component type disjuncted

if exists etyp in typel
|

gross_type(etyp) = T_SET then
tl := component_type(etyp);

else

tl := TYPE_ERROR; $ No set type in typel

end if,

if exists etyp in type2
|

gross_type(etyp) = T_SET then
t2 := component_type(etyp);
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else

t2 := TYPE_ERROR; $ No set type in type2

end if;

$ Only disjunct if at least one of the types had a set type

if tl /= TYPE_ERROR or

t2 /= TYPE_ERROR then
result with:= [T_SET, tl .DIS t2];

end if;

$ // either type has a tuple type, merge all tuple and sequence types into a

$ single tuple type whose component type is the disjunction of all

$ component types.

if exists etypl in typel
|

gross_type(etypl) = T_TUPLE then
tl := cornponent_type(etypl);

(for etyp2 in type2
|

gross_type(etyp2) in {T_TUPLE, T_SEQ})
if gross_type(etyp2) = T_TUPLE then

tl := tl .DIS component_type(etyp2);

else

tl := tl .DIS, component_type(etyp2);

end if;

end for;

result with:= [TJTUPLE, tl];

elseif exists etyp2 in type2
|

gross_type(etyp2) = TJTUPLE then

t2 := component_type(etyp2);

(for etypl in typel
|

gross_type(etypl) in {T_TUPLE, T_SEQ})
if gross_type(etypl) = T_TUPLE then

t2 := t2 .DIS component_type(etypl);

else

t2 := t2 .DIS/ component_type(etypl);

end if;

end for;

result with— [TJTUPLE, t2];

$ Dump in all known length sequences

else

result +:= {etypl in typel
|

gross_type(etypl) = TJSEQ} +
{etyp2 in type2

|

gross_type(etyp2) = tJSEQ};

end if;

end if;

return result;

end op .DIS;

op .INTER(typ, valid_gross_types);

$ .INTER returns the set of elementary types in typ whose gross types

$ match any contained in valid types
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result := {t in typ
|
gross_type(t) in valid_gross_types};

if typ = TYPEjGENERAL then
result := TYPE_GENERAL;

end if;

return result;

end op .INTER;

proc pretty_print (typ);

pprint (typ, 3);

end proc pretty_print;

proc pprint (typ, indent);

prefix := ' ';

(for etyp in typ)

if is_scalar_type(etyp) then
print (' '*indent, prefix, etyp);

else

print (' '*indent, prefix, gross_type(etyp));

if gross_type(etyp) = T_SEQ then
comptyp := component_type(etyp);

(for etyp = comptyp(i))

pprint (etyp, indent+5);

end for etyp;

else

pprint (component_type(etyp), indent+5);

end if;

end if;

prefix := '

|

';

end for etyp;

end proc pprint;

end program type_finder;



CHAPTER 5

Examples

5. Examples

5.1. Example 1: Building a linked list using tupleformers

The following example constructs a LISP-like list of the form:

[5, [5 ]]]

Note the alternand T_OM in the recursive type structure. This is due to the typefinder not

employing the type information present in the test 'if 1 = om'.

This example as well as all the others are the output of the implementation presented in

the preceding chapter. The SETL code was hand-transcribed into quadruples intermediate

code, suitable for optimization purposes. This together with the original SETL source (treated

as a comment) and UD-chain information are used as input. The Ql source code is deleted

from the output to make it clearer. Dummy conditions (i.e. while 6 = 6) are inserted for the

while loop for simplicity of the transcription for this and most of the following examples.

The format of the output is as follows. The source code is listed together with the set of

recursive types discovered by the typefinder and the types of the variables in the program. As

an example, the type:

T_OM
|
TJNTEGER

J

T_SEQ
TJNTEGER
REC_#1

denotes either om, or an integer, or a fixed-length tuple whose first component is an integer

and whose second component is of type REC_#1 (a recursive type symbol).

105
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Original source code: Recursive Type Structures

program examplel;

1 := om;
(while 6 = 6)

if 1 = om then
1:=5;

else

1 := [5, 1];

end if;

end while;

end program examplel;

{ REC_#1 } =
T_OM

|
T_SEQ

TJNTEGER
REC_#1

|
TJNTEGER

Types

6 :
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5.2. Example 2: A pair of mutually recursive structures

This example shows how the typefinder deals with mutually recursive structures. Note how

only one of the recursive types (REC_#1) has an escape clause; REC_#2 is defined solely in

terms of REC_#1.

Original source code:

program example2;

t := 3;

(while 3 = 3)

s := ['A', t];

t := [3, s];

end while;

end program example2;

Recursive Type Structures

{ REC_#1 } =
TJNTEGER

|
T_SEQ

TJNTEGER
REC_#2

{REC_#2} =
T_SEQ

T_STRING
REC_#1

Types

TJNTEGER

TJ5EQ
TJ5TRING
REC_#1

REC_#2

t :

tl

REC_#1

T BOOLEAN

T STRING
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5.3. Example 3: The with operator: recursion on the first operand

This and the next two examples deal with the -with operator. In #3, the recursion is on the

first operand of the with operation, in #4 the recursion is on the second, while in #5, the

recursion is on both. The first operand, when recursive, generates a dynamic tuple, while the

second operand generates a recursive structure. The typefinder distinguishes between these

two instances, producing the appropriate types in each case.

Original source code:

program example3;

(while G = 6)

r := r with 3;

end;

end program cxample3;

Recursive Type Structures

{ REC_#1 } =
T_NULLTUP

|
TJTUPLE

T INTEGER

Types

6 :

3 :

TJNTEGER

TJNTEGER

REC_#1
TJTUPLE

TJNTEGER
T NULLTUP

NULLTUP :

T_NULLTUP
tl :

T BOOLEAN
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5.4. Example 4: The with operator: recursion on the second operand

Original source code:

program example4;

r:=0;
(while 6 = 6)

r := [3] with r;

end;

end program example-1;

Recursive Type Structures

{ REC_#1 } =
T_NULLTUP

|
T_SEQ

TJNTEGER
REC_#1

Types

6 :

3 :

r :

TJNTEGER

TJNTEGER

REC_#1
T_SEQ

TJNTEGER
REC_#1

T NULLTUP

NULLTUP :

TJNTULLTUP
tl :

T_BOOLEAN
t2 :

T_SEQ
T INTEGER
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5.5. Example 5: The with operator: recursion on both operands

Original source code:

program example5;

r:=Dl
(while 6=6)

r := r with r;

end;

end program example5;

Recursive Type Structures

{ REC_#1 } =
T_NULLTUP

|
TJTUPLE

REC_#1
{REC_#2} =

REC_#1

Types

TJNTEGER

REC_#1
TJTUPLE

REC_#1
T NULLTUP

NTJLLTUP :

TJNULLTUP
tl :

T BOOLEAN
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5.6. Example 6: A structure constructed via component assignment

In this example, a recursive structure is built by modifying only the first component in a

tuple.

Original source code: Recursive Type Structures

program example6;

1 := [5, 5];

(while 5 = 6)

1(1) := 1;

end;

end program examplel;

{ REC_#1 } =
T_SEQ

TJNTEGER
I

REC_#1
TJNTEGER

|
T_SEQ

TJNTEGER
TJNTEGER

{ REC_#2 } =
REC_#1

Types

1 :

6 :

5 :

tl :

TJNTEGER

TJNTEGER

TJNTEGER

T BOOLEAN

REC_#1
T_SEQ

TJNTEGER
TJNTEGER

T_SEQ
TJNTEGER

I

REC_#1
T INTEGER
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5.7. Example 7: A binary tree - uniform node structure

The next two examples construct binary trees. In #6, all nodes are of uniform format, and

thus leaf nodes are themselves tuples. A typical tree of such format is:

[l [2 [3]] [4]] In #7, the leaves are kept as simple integers at the same tuple level as their

parents. I.e.:

[l [2 3] 4]. The typefinder again distinguishes between these two formats.

In #6, the data element of each node (i.e. the first component) is found by the initialization

pass to be self-dependent and as such it is assigned a recursive type symbol. This symbol can

be easily removed by a postprocessing pass in which recursive symbols whose structures con-

tain no recursive symbols can be directly replaced by their structures.

Original source code:

program example?;

t := om;
(while 5 = 6)

t := insertft, 3);

end while;

proc insert(tree, info);

if tree = om then
return [info];

else

[value, left, right] := tree;

if value < info then
left := insert(left, info);

else

right := insert(right, info);

end if;

return [value, left, right];

end if;

end proc insert;

end program example7;

Recursive Type Structures

{REC_#3} =
T_SEQ

REC_#1
REC_#3
REC_#3

|
T_OM

I

T_SEQ
TJNTEGER

{REC_#2} =
RECL#3

{ REC_#1 } =
TJNTEGER

Types

3 :

T INTEGER
ifo :

T INTEGER

tree

T_SEQ
REC_#1
REC_#3
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OM

5 :

REC_#3
|
T_OM

I

REC_#3
I
T_SEQ

TJNTEGER

T_OM

T_rNTEGER

T_INTEGER

TJNTEGER

value

TJNTEGER

REC_#l
TJNTEGER

tl :

t2

left

t :

TJ300LEAN

T_BOOLEAN

REC_#3

T_OM
I
T_SEQ

REC_#l
REC_#3
REC_#3

I
T_SEQ

TJNTEGER
right :

REC_#3
t3 :

TJ300LEAN
funcval :

T_SEQ
TJNTEGER

I

T_SEQ
REC_#1
REC_#3
REC_#3
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5.8. Example 8: A binary tree: nonuniform node structure

See example #6 for explanatory remarks. Note that the data elements are classified as a

recursive structure whose format is identical to that of the other two node elements. This is

due to not exploiting the typetesting information present in the program. This problem is dis-

cussed in Section 2.10.

Original source code:

program example8;

t := om;
s:= {1 ,2,5,7}

(while s/= {})

x := arb s;

s := s less x;

t := insert(t.x);

end while;

proc insert(tree, info);

if tree := om then

return info;

elseif is_integer tree then

if info < tree then

return [tree, info];

else

return [tree, om, info];

end if;

else

[value, left, right] := tree;

if info < value then

left := insert(left, info);

else

right := insert( right, info);

end if;

return [value, left, right];

end if;

end procedure insert;

end program example8;

Recursive Type Structures

{ REC_#5 } =
T_OM

|
T_SEQ

REC_#5
REC_#5
REC_#5

|
T_SEQ

REC_#5
TJNTEGER

|
TJNTEGER

I

T_SEQ
REC_#5
T_OM
TJNTEGER

{REC_#4} =
REC_j#5

{ REC_#1 } =
REC_#5

{REC_#2} =
REC_#5

{REC_#3} =
REC_#5

Types

info

T INTEGER
tree

T_OM
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1 :

OM

2 :

value

left

s :

t :

REC_#5
T_SEQ

REC_#5
REC_#5
REC_#5

TJNTEGER
T_SEQ

REC_#5
TJNTEGER

T_SEQ
REC_#5
T_OM
TJNTEGER

TJNTEGER

T_OM

TJNTEGER

TJNTEGER

REC_#5

TJNTEGER

TJNTEGER

REC_#5

T_SET
TJNTEGER

T_NULLSET

T_OM
T_SEQ

REC_#5
REC_#5
REC_#5

TJNTEGER
T_SEQ

REC_#5
TJNTEGER

T_SEQ
REC_#5
T OM
T INTEGER

tOOOl :

TJ300LEAN
NULLSET :

TJMULLSET
t0003 :

T_BOOLEAN
t0002 :

T_BOOLEAN
right :

RECJfS
t0004 :

TJ300LEAN
t0005 :

TJ300LEAN
x :

TJNTEGER
funval :

T_SEQ
REC_#5
REC_#5
REC_#5

|
T_SEQ

REC_#5
TJNTEGER

|
TJNTEGER

|
T_SEQ

REC_#5
T_OM
T INTEGER
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5.9. Example 9: a simple recursive descent parser

Example 8 is a typefind of a more substantial program. The language is a trivial one, expres-

sions and left hand sides of assignments restricted to single tokens. In order to bypass the

complexity of incorporating into the typefinder information regarding built-in functions, the

break function used in the token generation routine was simulated with the assignment of a

string constant to the return value. A working optimizer would of course have a table of

built-in functions together with their predefined return values. As with all the other examples,

since the intermediate code was hand-transcribed, unique names were assigned to the various

local variables to replace name-resolution, which is normally performed by a front-end.

Original source code:

program simple_parser;

$ General tree construction program.

$

$ Program performs a recursive descent parse of a simple language,

$ building the parse tree as it goes.

$

$ Language syntax:

$

$ -CprogramS ::=

$ <dcl statements

% <exec or label statements

$ END.
$

$ < del statements ::=

$ DECLARE < identifier list>

$

$ <ezee or label statement ::=

$ <goto statements

$ | <if statements

$
J

^assignment statements

$

$ < identifier lists ::=

$ identifier

$ |
identifier, <identifier lists

$

var
token;
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read (source);

parse_program;

proc parse_program;

$ Top-level recursive descent routine

token := get_token();

$ Initialize parse tree

tree :=
[];

$ Parse to eof

(while token /= om)
tree with:= parse_statement();

end:

$ Build top-level node

parse_tree := ['PROGRAM', tree];

end proc parse_program;

proc parse_statement;

$ Parse source statement

case token of

('DECLARE'):

token := get_token();

result := parse_declare();

('IF-):

token := get_token();

result := parse_if();

('GOTO'):

token := get_token();

result := parse_goto();

else

$ No keyword - assignment

result := parse_assignment();

end case token of;

return result;
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end proc parse_statement;

proc parse_declare;

token := get_token();

$ Build result node

result := ['DECLARE', parse_identifier_list()];

return result;

end proc parse_declare;

proc parse_identifier_list;

$ Inil result to 1st id in list

result := [token];

$ Add any remaining id's

(while (token := get_token()) = 7)
token := get_token();

result with:= token;

end while;

return result;

end proc parse_identifier_Jist;

proc parse_goto;

$ Next token is label

result := ['GOTO', (get_token()]];

$ Get back into token synch for statement parser

token := get_token();

return result;

end proc parse_goto;

proc parse_assignment;

lhs := token;
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$ Next token is :=

token := get_token();

rhs := get_token();

result := [':=', [lhs, rhs]];

return result;

end proc parse_assignment;

proc parse_if;

$ Left hand side of cond

expl := getjtokenQ;

$ Relational operator

rel := get_token();

$ Right hand side of cond

exp2 := get_token();

$ Build result node • Note recursive to statement parser

result := ['IF', [expl, rel, exp2, parse_statement()j];

return result;

end proc parse_if;

proc get_token;

token := break(source, ' ');

return token;

end proc get_token;

end program simple_parser;

Recursive Type Structures

{ REC_#3 } = T_STRING
T_SEQ T_SEQ

T_STRING T_STRING
T_SEQ T_STRING

T_STRING |
T_SEQ

|
T_SEQ T_STRING
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T_TUPLE
T_STRING

I

T_SEQ
T_STRING
REC_#4

{REC_#2} =
T_TUPLE

T_STRING

{ REC_#1 } =
T_NULLTUP

|
T_TUPLE

T_SEQ
T_STRING
T_SEQ

T_STRING
|
T_SEQ

T_STRING
T_SEQ

T_STRING
T_STRING

I

T_SEQ
T_STRING
REC_#4

I

T_SEQ
T_STRING
TJTUPLE

T_STRING
{REC_#4} =

T_SEQ
TJ5TRING
T_STRING
T_STRING
REC_#3

Types

MAIN_source :

T_GENERAL
OM :

TOM
PARSEJDENTIFER_LIST_result

T_TUPLE
T_STRING

|
REC_#2

MAIN_parse_tree :

T_SEQ
T_STRING
TJVULLTUP

|

T_TUPLE
T_SEQ

T_STRING
T_SEQ

T_STRING
|
T_SEQ

T_STRING
T_SEQ

T_STRING
T_STRING

|
T_SEQ

T STRING

REC_#4
I

T_SEQ
T_STRING
T_TUPLE

T_STRING
GET_TOKEN_funval :

T_STRING
MAIN_token :

T_STRING
NULLTUP :

T_NULLTUP
MAIN_t0001

:

T_BOOLEAN
PARSE_IF_rel :

T_STRING
PARSE_IF_funval

:

TJSEQ
T_STRING
REC_#4

PARSE_IF_expl :

T_STRING
PARSEJF_exp2

:

T_STRING
PARSE_GOTO_funval
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T_SEQ
T_STRING
T_SEQ

T_STRING
PARSEJF.tempOl :

T_SEQ
T_STRING
T_STRING
T STRING
REC_#3

|
REC_#4

T_STRING

T_STRING

T_STRING
"IF" :

T_STRING
PARSE_GOTO_temp01 .

T_SEQ
T_STRING

PARSE_DECLARE_funval :

T_SEQ
T_STRING
T_TUPLE

T_STRING
"GOTO" :

T.STRING
PARSE_STATEMENT_funval

T_SEQ
T_STRING
T_SEQ

T_STRING
T_STRING

|
T_SEQ

T_STRING
T_SEQ

T_STRING
|
REC_#3

J

T_SEQ
T.STRING
REC_#4

|
T_SEQ

T_STRING
T_TUPLE

T_STRING
PARSE_ASSIGNMENT_funval

T_SEQ
T_STRING
T_SEQ

T_STRING
T STRING

PARSE_IF_result :

T_SEQ
T_STRING
REC_#4

"PROGRAM" :

TJ3TRING
"DECLARE" :

T.STRING
PARSE_GOTO_result :

T_SEQ
T_STRING
T_SEQ

T_STRING
PARSE_ASSIGNMENT_temp01 :

T_SEQ
T_STRING
T.STRING

PARSE_ASSIGNMENT_rhs :

T.STRING
PARSE_ASSIGNMENT_lhs :

T_STRING
PARSE_IDENTIFIER_LIST_funval

T_TUPLE
T.STRING

PARSE_DECLARE_resuIt :

T_SEQ
T_STRING
T.TUPLE

T_STRING
MAINjtree :

T_TUPLE
T_SEQ

T.STRING
T_SEQ

T.STRING
|
T_SEQ

T.STRING
T_SEQ

T.STRING
T.STRING

|
T.SEQ

T.STRING
REC_#4

|
T.SEQ

T.STRING
T.TUPLE

T.STRING

I

REC_#1
|
T.NULLTUP

PARSE.STATEMENT.result :

T.SEQ
T.STRING
T.SEQ
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T_STRING
T_STRING

|
T_SEQ

T_STRING
T_TUPLE

T_STRING
I

T_SEQ
T_STRING
REC_#4

I

T_SEQ
T_STRING
T_SEQ

T_STRING
PARSE_ASSIGNMENT_result :

T_SEQ
T_STRING
T_SEQ

T_STRING
T_STRING

PARSE_IDENTIFIER_LIST_t0001
T BOOLEAN



CHAPTER 6

Conclusions and Further Research

6. Conclusions and Further Research

The proposals presented in this thesis are part of an attempt to increase the usefulness

of SETL. One of the primary problems in programming in SETL is the overhead imposed by

the flexibility afforded the programmer in terms of weak typing. We wish to allow the pro-

grammer this flexibility of programming in a very high-level language and have the language

processor implement the algorithm in as efficient a manner as possible. The ideal level of

efficiency would be that of a corresponding program written in C. Typefinding is an important

part of this high to low-level transformation as it allows us to bind variables to their types at

translation time rather than during execution.

When presented with a program containing no recursive data structures, Tenenbaum's

typefinding algorithm performs satisfactorily, correctly determining exact types (i.e. the same

types the programmer would himself supply) for the majority of variables. The usefulness of

the analysis is readily apparent: the removal of a large portion of run-time type checks from a

program. However, for programs containing one or more recursive structures, the algorithm is

unable to analyze the type structure of the program in any reasonable fashion. This is because

the recursive structure is typically a central object of the program from which many variables

receive their values, directly or indirectly. As the algorithm is unable to assign any sort of a

precise type to the structure, all such dependent variables also remain either untyped or are

given some type that is overly conservative (e.g. tuple(general) as opposed to

tuple(integer)).

The typefinder presented in this thesis is capable of uncovering and precisely typing

such recursive structures, assigning them the same recursive types that the programmer

123
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might. This capability greatly enlarges the class of SETL programs which can be reasonably

typed, as recursive programming using nested tuples is quite natural in SETL. In addition to

assigning the recursive structure a precise type, variables that extract values from the struc-

ture can be strictly typed (i.e. given a type with a single alternand) in many cases allowing

for more efficient code to be generated for operations on these variables.

Another consequence of the algorithm is the near disappearance of type general from

the resulting type equations. With the exception of input variables and parameter and result

types of external routines which are not explicitly typed by the programmer, general need

not be introduced into the equations. Of course there may be situations when a type is

sufficiently unorthodox (e.g. integer
|
tuple(real)

|
set(string)) that we may decide to

replace it by general, but this is our choice and is not a prerequisite to guarantee termination

of the analysis as in Tenenbaum's typefinder. In addition, statically complex structures are no

longer mistaken for nonconvergent but rather can be given their precise type.

It still remains to be determined whether the approach used in the algorithm can be

applied to the backwards pass as well, allowing for the inference of recursive structures from

usage as well as definition. As many large systems written in SETL consist of successive

phases which communicate via intermediate structures written out to secondary storage, it is

desirable to be able to read in an already constructed recursive structure from and determine

its structure from how it is used.

A large number of imprecise types assigned to variables by the typefinder (both

Tenenbaum's as well as the one presented here) result from the typefinder not employing

information available in conditional statements that test the type of a variable. If such infor-

mation can be obtained, and assuming the backwards pass can be subjected to an analysis

similar to the one we have presented for the forward pass, and the types of input variables

and external routines are specified by the programmer, then imprecise typing should result

only from type assignments dependent upon the semantics of the program. For example in the
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following fragment:

if somecondition then
x := 0;

y := 4;

else

x := 1;

y := {4};

end if;

$ No redefinitions of x or y here

if x = then
z := y + 3;

else

z := y + {3};

end if;

though the subsequent uses of y are correct and require no run-time check, it requires a highly

sophisticated optimizer to detect this fact.

In addition to the ability to strictly type a larger number of variables, we present

several approaches towards exploiting the typing of recursive structures with respect to

efficient storage management. We plan to research further into this area as part of an overall

effort to develop a lower-level, more efficient language processor for the SETL language.

A analysis closely related to typefinding is that of range analysis. Indeed, strongly typed

languages (Ada for example) often consider the size and dimensions of composite objects to be

part of their type. If the notion of type in SETL can be extended to include the size of an

object, and we can analyze the size of composite objects such as sets, tuples and maps, we

can allocate the space necessary for such an object at one time (possibly upon initial program

entry) and remove the overhead of checking for available space at the point of assignment to

the object.

The second portion of this thesis proposes several extensions to the current data

representation sublanguage. Many of them arise from the fact that recursive structures can

now be typed. The primary goal in presenting these extensions is to allow the programmer a

more expressive environment within which he can precisely type the identifiers of his pro-

gram.
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Experience with representation declarations in SETL shows us that to obtain the max-

imum effect of the representation sublanguage, the programmer must design his program

keeping in mind the eventual goal of adding declarations. If not he will find himself redesign-

ing the eventual algorithm to allow for a satisfactory representation. It remains to be seen

whether a truly transparent data representation sublanguage is feasible, one which allows the

programmer to design an algorithm with no prior thought given to the declarations and

representations eventually to be added.

A final, and perhaps the most controversial question is the future direction SETL

should take with regard to its type model. We plan to reexamine the type model of SETL in

light of the recent concern with program reliability and strong typing. The primary appeal of

SETL as a programming language is its use of the set and mappings as primitive structures

and its lack of required declarations. These two features enable the programmer to concen-

trate upon the solution to the abstract algorithm and enables SETL to be used as a powerful

prototyping language. Though the weak typing of the language does occasionally prove useful

(e.g. recursive structures and arbitrary length heterogeneous arrays such as the multi-type

stack used in parsing algorithms), it is often employed in a sloppy ad-hoc fashion, resulting in

an eventual redesigning of the algorithm to gain efficiency or readability.

In addition, as is readily seen by the algorithm presented in this paper, though fairly

exact typefinding can be performed upon a weakly typed language, the overhead in doing so

is prohibitive. Compared with the type unification scheme used in both B and ML, our algo-

rithm is both expensive and unduly complex. It therefore seems to follow from our result that

to operate efficiently in an environment in which typechecking aids the programmer, the pro-

gramming language should be strongly typed. The type model of B, typing by initial assign-

ment, is an attractive alternative, freeing the programmer from the burden of declarations

while simultaneously preventing him from being careless with the type structure of his pro-

gram. However, recursive structures whose shapes vary dynamically are prohibited in B due
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to its one-type-per-variable restriction, as are all other type unions, some of which prove quite

useful (any form of variant structure for example). A more satisfactory type model, one which

allows both unions as well as recursive structures, while at the same time keeping the number

of necessary declarations to a minimum, is the type model of ML. We thus feel that any sub-

sequent redesign of the SETL type model should use the type model of ML as a foundation.
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