
SETL Newsletter No. 3 November 17, 1970 

rt ls suggested that the following modifications and 

extensions for SETL be made definite. 

1) THE PERIOD TO BE USED ONLY AS A SUFFIX DELIMITER. 

The former use of the period as delimiter both fore and aft 

is no longer legal. Thus, ".and." is now "and.", ".or." is 

now "or.", etc. 

2) THE EMPTY SET TO BE WRITTEN AS NL •• The former use 

of the symbol "i" for the empty set is no longer legal. For 

example, "x=i;" is now "x=nl.;". 

3) ATOMS OF TYPE FUNCTION AND SUBROUTINE will be allowed, 

so that subroutines and functions may be members of sets. Details 

will follow. 

4) NEW RULES FOR OPERATOR PRECEDENCE. The rules for 

operator precedence are to be derived from the following principles: 

a) All binary operators except operators producing 

boolean from non-boolean values are to have the same 

precedence. 

b) Expressions containing operators of equal precedence 

are evaluated left to right. 

c) The monadic operators have minimal scope. 

d) Prefixing an operator by the symbol 11
~

11 lowers the 

precedence of the operator one level; suffixing 

the operator with "$" raises t:ne precedence one 

level. Thus 

A + B tt C + D is interpreted as (A+B)f(C+D) 



- 2 -

e) The precedence is changed c levels if the positive 

integer constant c appears between II f' and the 

operator; e.g., 11$3+11 lowers the precedence of 11+11 

three levels. 

f) We consider 11+11 to be a monadic operator in expressions 

Vx(A I x gt. o. 

5) USE OF\/ IN BLOCK HEADER. In block headers of the form 

(\lx 1 (e 1 ,\lx 2 E:e 2 (x 1 ), .•• )(block) 

only the first occurence of" 11 is necessary or permitted, so that 

the header above will be written 

(Vx 1 €e 1,x 2 [e 2 (x
1

) ••• ). 

6) ALTERNATE FORM FOR SUBSET DEFINITION. The form 

[xl € el, ••• } 

will be interpreted as 

[x 1,x 1 f e1 , ... } . 

7) NEW FORM FOR BOOLEAN EXPRESSION. The quantified boolean 

expression which was of the form 

(Jx 1 E:.e1 , Vx 2 €e 2 (x 1 ), \/x;,( e
3

(x
1

,x 2 ), 

xn E:en (xl ... xn-1) ( C(xl, .•• , xn) ) . 

is now of the form 

.J x J. E e 2-, V x2 € e2 ( x 1_), x3 t e3 ( x 1 , x2 ), 

xn ( en ( x l' . . . , x n-1) / C ( x l' • . • , x n) • 

Note that the new features are 

. . . , 

(a) No use of parentheses: the old c.onstruct 

(range) (condition) 

is now written 

range/ condition. 



- 3 -

where (according to 4)) / is taken as a monadic 

operator. 

b) Only the leftmost range restriction need contain a 

quantifier (\/or]); if a range restriction contains 

no quantifier, then the quantifier assumed is that 

occurring in the nenrest nrecedin~ (i.e., to the 

left) range restriction which does contain a quanti­

fier. 

8) NEW FORM FOR ITERATIONS. As currently defined, iteration 

statements are of the form 

(iter header) (block) 

in which the "scope" of the iteration, block is indicated by 

enclosing block in parentheses. The scope is now to be indicated as 

follows: 

a) block; 

that is, put a semicolon after the last statement 

in the block. 

or 

b) til.label; block label: statement, 

that is, label the first statement after the end of 

the block. 

or 

c) block end \/ x; 

that is, after the last statement.in the block put 

end \/ x when x is the leftmost name in an iteration 

header of the form 

( V x [. e, x2 E e 2 ( x) , • • • ) . 

To give an example, the statement 



- 4 -

is now written, using a), either 

(\/xla,ytb / x ne.y) c sub. ( x,y); ; (using a) 

or, (using b), 

( \Ix f,a,y(, b / x ne.y)til lab; c sub. ( x, y); 

lab:r:'l=c; 

or, using c), 

(\;fxea,yfb / X ne.y) c sub.(x,y); end\/x; 

d=c; 

Note that, by 5), the qualifier V in "Vy" is not 

written. Similar remarks apply to while and if scopes. 

9) NEW FORM FOR IF STATEMENT. The IF statement (see page 

37 of SETL notes) which was of the form 

if (booll) then (blockl) else if (bool2) then (block2) ••. 

else (blockn); 

or 

if (booll) then (blockl) else if (bool2) then (block2) •.. etc 

else if (booln) then (blockn); 

is to be simplified as follows 

a) The boolean expressions booli will not be enclosed in 

parentheses. 
~st'" 

b) The/\ block blockh.. will not be enclosed in parentheses, 

but will either 

1) be followed by a semicolon(;), or 

2) be delimited by a "ti,l. label", i.e., written 

in form til. label; block label: statement. 

TI1is is to be interpreted as 

block;stat1;ment. 



- 5 -

10) NEW FORM FOR RETURN IN FUNCTION. The value returned 

by a function should not be enclosed in parentheses, so that 

"return e", where e is a SETL expression. 

11) EXTENSION OF IMAGE SET CONSTRUCTION. It is suggested 

that the image-set constructions r[a}, f[a], and f(a) (defined 

...., ... J. ,,...,. ,., .. ,-. ; ·'. - ,. ,..., ,- ("'i ri -... '-' - ·, ' 
"' -,,"'. -~ _._ - ....... - .... -

..,_ • I L . ., - -

number of arguments. Thus constructs of the form r[a,b}, f 

r[x, [y]}, etc., will be possible. 

A proposed definition for f [. •. }' and f [ ••• ] is 

1) f [a} = [-y, y €. f / * y eq. a j 
2) 

3) 

4) 

f {a1, a 2 , . • • , an, a} = 

f[s] = {r[xJ, xE s} 
f[sl, s2, . . . , sn,s] = 

5) r{[s]} = f [s] 

g[s), where g = f[sl, s2, ••• , sn]. 

6) r{a1,a2, •.• , an, [s]~ = g[s], where g = f{al,a2, 

••• , an}, ef-c. . 
7) f(al,a2, ••• , an)= if #f{al,a2, .•• , an} eq. 1 then 

3-f[a1,a2, .•• anJ else_()_. 

This definition defines f[a1,a2, .•• , an] and f[sl?s2, •.• , sn] 

for all positive integers n, where ai is any set, atom or expression 

of the form [s] for a sets, and when si is any set. 

For example, let 

f ::-:{(a,(aa,ab,ac,>;), (b, (ba,bcl/, (c,ca>,<b, (aa,bb))j, 

where ea is not an ordered pair. 



THEN IS SINCE 

vl = r[a,aa,ab l [acJ fl=f{aJ =[(aa,ab,ac>J, 

f2=fl[aa} =[(ab,ac/}, 

vl=f2[ab} = [ac} 

v2 = f [[ { a)b } ], aa} {(c'lb, ae), bb_} f 1= f [ [ q h} J == [(~ p , ,., 1) , ,., c-) ~ (1,,., , 1,,. '> 

(aa,bb)} 

v2=fl{aa} =[(ab,ae),bb} 

v3 = f ([{ a_,b }Laa) Since :/tv2 = 2 

v4 = r(c,ea} nl. (empty f l=f [c }={ea} 

set) f2=fl[ea]=nl. 

v5 = f(c) ea f l= [c }={ea} 
v5= )-fl=ea Since:1/fl = 1. 

12) NEW FORM FOR CONDITIONAL EXPRESSIONS. The boolean and 

value expressions in a conditional expression will not be enclosed 

in parentheses. The conditional expression which was of the form 

if (booll) then (expl) else if (boo12) 

is to be written 

if booll then expl else if bool2 .•. 


