SETL Newsletter Number 9 December 1, 1970
Malcolm Harrison

Implementation and Language Design

1. The "long forms" of

A with X

A less X
can be made practically as efficient as the "short forms". This
can be done by implementing a set as an ordered tree structure,
and permitting a subtree to be common to many sets. Modification
of a set 1is then done by building a new path from the root without
changing the original. The resulting ftree will have at least
#’A - log#’A nodes in common with the original, and at most log#!\
different internal nodes, assuming balanced trees,.

The time to determine if X is a member of A is proportional
to #A, and the time to rebuild the appropriate tree path is als»
proportional to#A. The distinction between the two "forms" is

therefore of marginal value.

2., The important property of the above implementation is theot
the operations do not change existing data—ofructures but insead
build new data-structures with parts of old ones. This presents
a different approach to the manipulation of complex data-structures,
and h2s the following properties: |
a,) data-structures may overlap, so less memory is required.
b.) assignment can be done without copylng.

c.) construction operators need not necessarily copy their

component sub-structures,

In general, a structure may be a substructure of more than one
other structure, so we have the following additional properties
d.) data-structures should not be modified unless their
usage as sub-structures is known,
e.) pgarbage collection must be used to determine reusable

memory.

5. In a tree representation of a set, each set-element relation-
snip is represented by one node. If two sets are not permitted

to share memory, the besl we can do for memory utilization is an
amount of memory which is proportional to the number of such set-
element relationships. The more copying is done by the primitive

operations the worse this becomes.

If, on the other hand, we permit common subtrees, memory
requirements can be reduced considerably. The following strategies
can bhe used to make use of tnls nossivility, in addition to imple-
menting primitive oper~tions as suggested above:

a.) when building 2 new node, determine ir it already exists
in memory, and i1 it does use the old one rather than
create a new one,

b.) periodically reorganize structures to use minimum
memory - pernaps at garbage collection time,

Note that a.) includes the strategy suggested in Schwartz' ori-

ginal description., I do not know ol an optimum algorithm for b,).

/ The above considerations also affect the language design. In

particular, the user shouid be discouraged from writing procedures

which modify data-structures. This can be done conveniently
by insisting that arguments are passed by value, not by reference.
From the linguistic point of view this implies that functions
should be used instead of subroutines, For example, we would
write x = r(x,y) instead ol call f(x,y). Note that ir a variable
is a data-type, as suggested below, many of the operationg imple-
mented as subroutines and making essential use of call-by-reference
can be implemented by passing the variable as an argument, and
permitting the function to change the value assigned to this
variable, Accordingly, the following changes to the language
are suggested:

a.) subroutines be eliminated.

b.) function arguments be passed by value.

c.) the side erfects of operations be restricted to assigning

new values to variables,

Copies and References

As pointed out by Pat Goldberg in Newsletter Number 2, the
ability to handle data structures with common sub-structures is
often useful, and can save both execution time and memory. The
advantages of this facility would seem to be somewhat less in a
high—lével language such as SETL, and in some cases we might
expect an optimizing compiler to be able to make use of such
representations internally without the programmer's knowledge.
However, some algorithms are simpler il common sub-structures

are permitted., Ixamples are algebraic manipulation, when it is

convenient to do substitution for a variable by modifying a
single sub-structure which is referenced many times in the
structure; and in program interpretation, in which assignment is
conveniently done by a single modification of the structure,

The usual mechanism for providing this facility uses a
reference data-type. A reference would be an atom so that when
a structure containing a reference is copied the structure it
references 1s not conled., Two additional operations are normally

e 1s an expression,

would nave 25 ite value a reference to thie value of e, If r

would have 2s 1ts value the structure refecrenced.

A zenceralization of this scheme is used in BAIM, and will

e avo e autonntie~lly in DAIM-OWTT, T suggest Lie Lncorpor-
~llon tnbo SETT., THS eszential shimracterisiice ave

Movariaeble 1z o2 legltinate deta-type., Tt Lz regorded 2o an
aton, ”an thgre arc thiree oparniions nssociatod wiilh 1t. T0
LE 712X MIOURTINTRT: To VAR RV RN arinbie

l’/

i
gives e currenc value of vhie varialtile, and

v o= x
cpanges the value ol Lhe variable to x. Tf s ig an expr2ssion

wilose vnlue is a cuaraclter-stving,

variable s

Jives ¢uae variable whose name is s, This wvarlable 1o ifdenticnod

with the variable used in the program with the same name, 50

the commands:

f vari~ble 'ARC' = X
tical In their effTect.

Witn these Facilities we can implemecnt 2 roference as a
variable whose name can be either computed by the »rogrem, or
delivered by a builli-in routine such as the GHENSY" Tuncbion of

L%

LISP ~ngd BALM, The expression ini(r) could be written as $r

~ne the res Tunction defined as:

bhegln

re’ = proc{e’, gin(v),

refvarnumb = refvarnumb + 1,

v = variable('sg' cat dec refvarnumb),

end end;

) I SN "o~ - .
unavyiy rol, vel, 500);
in DATM-O0TT, or using GENSYM as

, $v = e, return v eni end;

R

ref = proc(e), bvegin(v), v = gensym(

[aRnl

in current S°0TL Torm is:

The equival
ceriner red o3
external relvarnumb;

refvarnunb = relvarnumb + 13

v = variable ('x' cat dec refvarnumb);

return vj

end rel;

