
SETL Newsletter #32

Hyper-SETL procedural languages

May 15, 1971

J. T. Schwartz

Though the SETL statement of an algorithm is now often

shorter than a natural language description of the same

algorithm, the natural language descriptions are nevertheless

generally clearer in a somewhat elusive but still real sense.

This suggests that natural language embodies useful descriptive

mechanisms which SETL still has not captured, and which ought

therefore to be sought after. The present short note contains

a few preliminary observations in this direction.

1. A very important feature of natural language discourse

arises from the fact that such discourse is highly error­

tolerant. That is, numerous small deviations from standard

grammar, of the kind that lead to such irritating situations

in programming, are automatically corrected in normal discourse.

In programming situations, one is normally reluctant to allow

an automatic scheme for the correction of syntactic errors to

be followed by execution. The essential reason for this seems

to me to lie in the fact that once execution begins all feeling

for the reasonableness of computation is lost, the computer in

no real way monitoring the overall progress of its actions.

In particular, even if an error might have been corrected in

one of several ways, one will be chosen, and it will then not

be possible to detect the fact that the computation which

results is unreasonable, and that an alternate correction,

leading to a different calculation, ought to be tried. These

considerations emphasize the importance of various potential

features of programming languages:

a. If the programmer's assumptions concerning his program

could be made more readily available, then not only would

additional static error checks be possible, but one might

become considerably more willing to go ahead with program

execution after error correction. Besides the 'assume' type

of statement discussed in an earlier (mimoegraphed) set

Setl Newsletter 32 -2-

of notes on debugging, statements indicating the expected

length of loops, the expected pattern of control transitions

in a program, etc. might all be useful.

b. Error-correction mechanisms ought to interact much

more intelligently with static global program analysis

procedures (of the kind involved in optimization) than is

now the case. For example, spelling-error-correction procedures

could focus on variables live on program entry (improperly

initialized variables), which are particularly likely to be

misspelled versions of other variables; especially if these

other variables have explicit definitions whose results are

never used. Likewise, undefined functions are suspect as

misspelled data objects.

These remarks also serve to emphasize the great importance

of diagnostic aids. Mechanical aids, such as selective text

retrievals and partial program analyses, which aim at increasing

a programmer's maximum toleration for local complexity, are

also desirable. It would for example be quite useful to be

able to request display of all uses of a given assignment.

c. Beyond the relatively straightforward issues raised

above we encounter the whole area· of logical consistency

checks in a higher sense. It is probably not possible to

penetrate far into these matters now, though of course they

deserve determined investigation.

2. Another important fact concerning natural language

discourse, and one that it may be possible to exploit in a

formal-language setting, is the fact that natural language

makes clever use of syntactic ambiguities which are

resolved by fragments of semantic informa.tion available from

preceding declarations: For example, in natural language

one may say

a: 'Proceed in increasing order thru the elements a of a

sequences. If a exceeds the element b which succeeds it,

then interchange a and b.'

SETL Newsletter 32 -3-

The most desirable translation of this into a formal

language would be something like

f3: 'sequence s ; (V a € s) if a gt nextafter (a) (call this b) ,

then <a,b> = <b,a>;

where the first statement is a declaration. But instead

we are compelled· to write

y: '(1 < Vn < #s) if s(n) gt s(n+l) then

<s (n) ,s (n+l) > = <s (n+l) ,s (n) >; ... '

in which a distracting position counter, which natural

language manages to suppress, has become explicit, and in which

the next element after a is referenced using the explicit

definition of sequence succession, rather than, as in

natural language, in terms of the logical relationship it

bears to a.

The difference we have observed comes from the fact that

various bits of semantic information concerning the notion

'sequence', as for example the fact that elements of a sequence

may be thought of as having both a value a(n) and a position

n, are not available for exploitation when the code y is

written. This has the consequence that a considerable measure

of local complexity absent in the hypothetical code f3 appears

in y.

Consider what is necessary to make a 'hyper-SETL' program­

ming style like ·f3 possible. We must first of all have some

way of handling the basic declaration 'sequences;', which,

somewhat after the manner of a macro, must give us the

information needed to make all those deductions and transfor­

mations which are then necessary. These are roughly as follows:

i. Since a appears in the context a€ s, this name is

being used for a 'sequence element' (this involves an 'implicit

declaration').

SETL Newsletter 32 -4-

ii. Iteration over a sequence is known to involve its

elements in order, and really the indices of these elements.

Thus (Vx € a) is seen to be a shorthand for (1 < Vn ~ #s},

where 'n' is a position pointer, attached implicitly to 'a';

certain subsequent uses of 'a' will really be references ton.

iii. nextafter(a) is probably an elliptical reference to

the sequence element a(n+l) (or to its position); this inference

could only fail if there were something else about a (as

perhaps its value, if this value were an integer) which could

be incremented. Note then that in natural language a name is

used ambiguously for a group of associated object-attributes,

and the application of an operation to the name resolved by

considering which particular attribute can logically be an

argument of the operation. Among other advantages, the use

of names in this style has the advantage of making explicit

certain helpful logical associations between items which

programming languages tend to treat syntactical~y as unrelated.

This use of names also serves to hide various operations in

which a known value of one attribute is used to select the

corresponding value of another attribute. For example, in S,
there is nothing corresponding to the explicit indexing opera­

tion s(n). This small effect can of course become quite large

when more complex data structures than sequences are being

addressed.

iv. Since there would be no point to applying the 'comparison'

operator gt if the positions n and n+l were the objects of

reference, the first uses of a and bin S must refer to values

and not locations, i.e., to seq(n) and seq(n+l) respectively.

Similarly, since an assignment operation must be 'indexed', the

form

<s(n) ,s(n+l) > =<s(n+l) ,s(n)>

implied by the

<a,b> = <b,a>

of Scan be deduced.

SETL Newsletter 32 -5-

We may in summary list certain of the principal notions

that would have to enter into the design of a compiler

capable of accepting inputs like S. Rather than treating tokens

as undifferentiated names' after the fashion of current

compilers, a reasoning compiler would have to associate

specific attributes with tokens used to represent variables.

Some of these attributes could be explicitly declared; others

would have to be deduced from the contexts in which the tokens

were used. The manner in which a text-fragmentwas to be expanded

would depend not only on the keywords present in a text but

also on the attributes of the tokens which it contained.

(Note that the kind of 'attribute-dependent' macro-expansion

style which this suggests is also not standard). In this way,

by using a single name to represent various mutually associated

attributes, we recreate within a programming language the

vital natural-language notion of 'object'. This enables us to

hide from view all the detailed code which, given one or more

attributes of an object, accesses its other attributes.

We see from the above that ambiguity is exploited in

various ways in natural language. Among other things, it allows

a type of decision postponement. This suggests that the use

of a parsing style well adapted to handle syntactic ambiguities

might be appropriate to programming language also, and

that the development of parsers having this characteristic

might be a useful first step ~oward 'reasoning' parsers of

the kind we have projected.

