
SETL Newsletter #41 

Additional planning details for the 

current and next phase of SErL implementation 

June 2, 1971 

J. T. Schwartz 

This newsletter brings Newsletter 15 of Feb. 19, 1971 

up to date. 

Status Report; A first version of the BALMSETL parsing 

system is now close to working, though very inefficiently 

(approximately 30,000 times slower than FORTRAN). 

1. Improved efficiency: The new BALM implementation 

should be approximately twice as fast as the old, and, 

with compilation of the presently interpreted BALM-machine 

code, approximately 20 times as fast. Improved BALMSETL 

data structures should provide at least a 5-fold efficiency 

increase. Thus improvements currently in prospect should 

give an efficiency increase approximately 100-fold, enabling 

the anticipated level of experimental work to continue. 

2. Further efficiency improvements. Data structures 

directly and efficiently representing sets, and supporting 

the fundamental SETL operations, including x € a, a eq b, 

a with x, a less x, 3a, #a, and Vx € a will be designed, 

and incorporated into the BALM machine and the BALM-machine 

6600 compiler as BALM-machine level operations. These data 

structures and operation implementations must make membership 

and equality testing efficient in the most commonly occurring 

cases. Efficient iterators should also be possible. Access­

paths to tuples which are set members must yield an efficient 

implementation of the SETL indexed retrieval and indexed 

assignment operations. Whatever hopefully very slight 

modifications to the BALM compiler are necessary to give access 

to these operations will be made. This will allow the 

construction of a considerably improved BALMSETL interpretation 

package, which may be designated as BALMSETL2. The existing 

parsing programs will be revised to be compatible with BALMSETL2 

and to use its features efficiently. 



41-2 

Either BALMSETL2, its pre-compiled version (internal BALM 

syntax trees), or its BALM-machine version (for the extended 

BALM machine) will be the target language for the preliminary 

SETL (BOOTSETL) compiler. 

Sets will probably be represented by collections of BALM 

vectors (either fixed or growing) with access being via hash. 

In BOOTSETL (and here lies its main difference from t!cue 

SETL) reference count keeping and automatic copying of sets, 

as logically implied by SETL, will not be supported. Thus 

in BOOTSETL there will exist an explicit copy set operation, 

which the programmer may on occasion have to use (though as 

a matter of fact most algorithms never require its use). 

3. Language specifications for BOOTSETL. In addition to 

and modification of the language as specified in the basic 

SETL document, the following features will be provided. 

a. Square brackets within expressions (Newsletter 33, p. 1) 

b. New character and bit-string syntax (Newsletter 34, p. 1,2) 

c. Expanded object type function ( " 2) 

d. Real quantities II 

e. Exponentiation ( " 

f. Tuples. As described in newsletter 34, p. 3,4, items a 

through i but not j, except that <just a,b> will not be the 

same as <a,b>, nor may tupl(m,n) be used on the left-hand side 

of an assignment statement. 

3) 

3) 

g. Revised conventions for is (Newsletter 34, p. 5) 

h. 

except 

i. 

j . 

k. 

1. 

m. 

n. 

o. 

p. 

q. 

Built-in union, etc. operators ( II 

that u will also remain valid for union. 

Nonmembership II 

Compound operators for while-iterations(" 

While-when iterations ( 11 

Then-if forms 

At-blocks 

'Local' subroutines 

( II 

( II 

( II 

'Inverted' form for subroutines and functions ( 11 

Modified macro-conventions ( II 

Sinister calls as described in Newsletter 30, except 

II ) 

6) 

" ) 
II ) 

II ) 

7) 
II ) 

8) 

9-10) 



4;1..-3 

that (cf. Newsletter 30, page.17, e;) the code corres-

ponding to a basic SETL operation which is not a retrieval 

will be a no-op rather than an error call. 

r. Iff statement (see Newsletter 35) 

Programmer-definable object types will not be provided, 

nor will any of the proposed efficiency-enhancing 'elaborations' 

of SETL be provided. 

A SETL grammar will be written for the parser package 

first as a syntax checker, but later supplied with the 

generative actions needed to produce target code. 

4. Optimization: Work on global optimization will go 

forward and optimization algorithms will be collected and 

documented. It will probably not be possible to include any 

global optimizations in the BOOTSETL compiler, but various 

local optimizations may be incorporated in this compiler's 

code generation routines. 

5. Macroprocessor: The presently specified macro forms 

(cf. especially newsletter 34, p. 10} will be implemented 

by a macro-processor which acts prior to the preparse 

routine, but after lexical analysis. A design for a more 

powerful syntax macro processor having the flavor of the 

BALM 'means' processor, but providing for conditional and 

iterative expansions, will be worked up, and added to the 

macro-processor routine, either concurrently with the main 

implementation work, or somewhat later. 

6. Read ro,utine: A formatted read routine based upon 

the parsing programs will be produced. 

7. Parallel subsidiary projects. A PL/1 version of the 

parser package will be produced, and from this a LITTLE version 

of the parser page. In addition, a Honey\vell 516 version of 

the same package will be produced. Postparse grammars for 

FORTRAN, COBOL, LITTLE, and BASIC will be produced. 

I 



41-4 

8. Planning for the full SETL implementation. 

In the meanwhile, fuller data structures, capable of 

providing support for the automatic copying employed in true 

SETL,will have to be designed. The subsequent implementation 

of true SETL will then aim to include 

a. automatic copying in accordance with the true SETL 

specifications 

b. debugging features 

c. global optimization, and improved local optimization 

d. programmer-defined object types 

e. an elaboration language for enhancing efficiency 

f. possibly, an improved language-extension method, 

perhaps based on nodal span parsing. 

g. 'mechanism linkages' between subroutines 

h. linkage to a lower level language 

plus whatever miscellaneous improvements develop in the 

meanwhile. 

Subsequent work may aim at an interactive console system. 


