SETL Newsletter Number 50 September 10, 1971
Three-Phase Parsing Scheme for SETL Kurt Maly

We will give a more detailed specification of the parser of
SETL outlined in Newsletter 47. 1Instead of having two phases as
therein mentioned, the parsing process is broken up into three
phases. In the current implementation a few restrictions have
been placed on the language. The "then blockl if condl else...:"
construct and its variants will not be available, neither will
be the "while iteration" in a compound operator nor the "composite

node" and "multiple choice'" features in an iff statement,

Phase 1.

The main routine is called lex which in turn calls nt. Nt
simply returns the next lexical token from the input string.
lex has to condense the input, consisting of a string of charac-
ters, into a string of tokens, modify some and insert additional

tokens where required. The main data structures are:

i - lexl ... contains the final token string,

ii - tstack.. supplementary stack used for storing body of
inverted subroutine-, function- and macro-
definitions.

111 - iterbeg. stack for holding the starting tokens of
statements.

lex functions are:

1. Collect all macro-definitions and store the body of
each macro together with its arguments as a function of its name
in the set 'mac".

Since macro-definition may appear anywhere in a SETL program
(i.e., before or after invocation) we have to collect first all
deflnitions before they can be expanded. Therefore, no macro-
definition may appear within a macro-definition.

2. Reverse inverted subroutine-, function- and macro-
definitions, v

Z. UWhenever within an inverted function definition a
subsequent call is indicated, the reversed function-definition
is to be saved and only one call placed into lexl. Onlv when the
next ':' is encountered is the saved definition to be placed
thereafter into lexl.

L. Place block markers (either {1par,lpar) or (rpar,rpar)
after ‘'then', hefore and after 'elsge', after 'doing', before closing

parentheses of 'while head' vhen doing option was used, after

i - '"for all' iteration header
ii -~ 'while! iteration header
ii1 - '(at label)! iteration header

iv - 'initially' iteration header
v - '{load)!
vi - '(store name)',
hetween two consecutive semicolons (parentheses not counted) vhere
an additional 1 and S are placed if no 'end' token is there.
The constructes mentioned under i, ii, iii, v, and i chnould be
preceded b {op, forl/, {op,vh1),{op, atl),<{op,lod) {op,str)
respectivelyv,
5. Replace left parenthesis immediately follovinT a tipgr!
with

with <1par,1par>and right parenthesis vrecedins a 'rpar!

{rpar, rpar).
“. 0 Tollec! the mumber of armments of arer-delined opera‘nre,
fanetions and snbroutines as function of their names in the sets

monop, diop, fns, nils respectively.

7. Theck for correct ending of compound statements (e.z.,
'end if x', ‘end while x¢ ').
8. TReplace semicolon ending iff header ith (header,: >

[N

and commas after an action node with {head, ,).

N

Phase 2.

In phase 2 the routine control continuously invokes preparserl
and postparserl until an end of file is encountered and places the
resulting treetops in lex?. As already mentioned, only the prece-

dence table for preparserl and the grammarl have to he provided for

those two routines, Preparserl calls the routine nextokenl -hich

uses lexl from phase 1 and a supplementary cstack 'uastack' for

macro expansion. The functions of nextokenl are as follows:

1. FExpand macros using unstack,

2. When the token is €fend,;,if, then,else,vhile,vhen,doing,
iff, 2,<{head,,), fal,whl,all,initially, lod, stré oré{ipar,rpar%
(in which case it is replaced by (or)), two actions
are possible, If we are at the beginning of a string to be
condensed, place the token in lex2 and go to the start of nextokenl.
In the other case (i.e., at the end of a condensable string) leave
one space free in lex? for the tree and place the token in the
next space of lex2, set the 'begin of condensable string svitch!
to true and return (er,er).

%2, T®lse return the next token from lexl.

Phase 3.
The routine control now invokes preparser? and

postparser?2, and returns the treetops produced by the post-

parser calls. TFor postparser? fust the grammar® ig

needed whereas preparserZ needs some additional specifications.
Nextoken? on which it calls is in this case very simple: namely,

it returns the next token from lex2. Preparser? has to be provided
with, in addition to the precedence tables, a usercode block to
handle the header of an iff statement. Specifically, when an 'iff'
is encountered, set iffbeg to current stackpointer. The tokens '?!
and<ihead,,> will not be condensed until(iheader,:> is encountered:

then a special algorithm condenses the items on the stack, starting

at iffbeg, into a binary tree.

