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1. Introduction 

In the present newsletter, a preliminary attempt at systematic 

semantic definition of SETL will be made. This will be done by 

describing, in a deliberately abstract way, a hypothetical 'back end' 

for the SETL compiler. The 'back end' will consist of a set of 

routines concerned with name scoping, compilation of abstr~ct 

recursively structured syntactic trees into interpret-

able serial structures, digestion of labels, and finally with the 

interpretation of an ultimate code form. The total package will 

include almost all the routines necessary to go from a simplified 

'host language' form of SETL to interpretable text. 

We use the phrase_'host language' to distinguish 

between 'host' and 'user' languages. A ho-0t language is a language 

providing a full set of semantic facilities, but with a syntax 

deliberately kept simple. Such languages are riot intended 

for direct use, but rather as a basis and target for language 

extension. By keeping the syntax simple and modular, one confines 

the mass of irregularities which an attempted extension must digest. 

In designing a u-0e~ language, on the other hand, one incorporates a 

fairly elaborate collection of syntactic facilities, hoping that 

these will be directly useful in a wide range of applications. 

SETL as currently specified is a user language. In the present 

newsletter, an attempt will be made to describe both an underlying 

host language and the manner in which this host language can 

support SETL (as one of several possible syntactic front ends). 

Note in this connection that we may eventually decide to make the 

host language an explicitly reachable part of our SETL implementation. 

The present newsletter has significant points of contact with 

Hank warren's Newsletter 53. However, the semantic notions there 

represented by code sequences in LITTLE and linkage conventions 

spelled out in LITTLE are put more abstractly in the present 

newsletter. 

One item in the presently specified SETL, to wit the name 

scoping rule, is generalized in the present newsletter. We arrive 

at_a name-scoping system which rests on the same semantic base 
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as before, but which is considerably more general. 

To make clear the overall structure of the translation process 

which the present newsletter describes we give a diagram summariz­

ing its main stages. 

'host language' 
variables represented as 

character strings 
scope declarations in place 
semantic declarations unprocessed 

tables constructed 

', 

assignment of an internal 
representation to each 
variable name 

linearized text 
scope declarations eliminated 
tables for operator resolu­

tion constructed 

linearized text 
ready for assembly 

parser 

names coping 
algorithms 

linearizer 

macro expansion 

operator resolution 

assembly/label digestion 
interpretable textld...----------L ______________ _ 

execution or interpretation 

In the present newsletter, algorithms will be given for the 

linearization, name resolution, operator resolution, and assembly 

processes appearing above. No specific parse will be described, 

as we wish to concentrate on semantic matters. We regard parsing 

as a separable user-variable part of the overall compilation process. 
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2. Namescoping Conventions 
a. Syntax and Semantics. 

We shall now begin to outline a family of namescoping mechanisms, 

which it is hoped are sufficiently general and powerful to be 

convenient in the development of very large systems of programs. 

Of course, only experience not presently available can testify to 

the success (or failure) of the scheme proposed. It is hoped also 

that the scheme proposed will support user languages with a useful 

variety of user-level nam~scoping conventions. 

We regard a namescoping system as a set of conventions which 

assign a unique 'resolved name' x to each 'source name' y appearing 

in a mass of text. The particular x to be assigned to each occurrence 

of y depends on the location of x within a nested, tree~like family 

of scopes. 

The purpose of a namescoping system is to balance 

the pressures toward global use and local use of names. 

Unrestricted. global use of names is unacceptable, since it creates 

a situation of 'name crowding' in which names once used become, in 

effect, reserved words for other program sections. Hard-to-diagnose 

'name overlap' bugs tend to abound in such situations. 'Globalisation' 

of any subcategory of names can recreate this problem; for example, 

in large families of subroutines it may become difficult to avoid 

conflicts between subroutine names. In sufficiently large program 

packages, it will be desirable to give even major scope names a degree 

of protection. 

On the other hand, a system in which names tend very strongly 

to be local unless explicitly declared global can tend to force one 

to incorporate large amounts of repetitive declaratory boilerplate 

into almost every protected bottom level namescope or subroutine. 

In a language like SETL, which aims at the compressed and natural 

statement of algorithms, this burden is particularly irritating. 

What we therefore require is a system capable of dividing a 

potentially very large collection of programs into a rationally 

organised system of 'sublibraries', between which coherent cross­

referencing is possible in a manner not requiring clumsy or elaborate 

locutions. 
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Certain important characteristic.s of the name resolution 

algorithm to be proposed are noted in the following remarks. 

a. We deliberately break the conventionally very close 

connection between subroutine boundaries and name scopes. 

Name scopes enclosing several subroutines are allowed; 

at the same time, a single subroutine may contain several 

· independent name scopes. A subroutine is also a namescope. 

b. We regard scope boundaries as logical 'brackets' possessing 

a ce~tain power to protect'names within them from identification 

with names of the same spelling located outside. For flexibility, 

distinct numbered levels of bracketing are provided. We stipulate 

that within a scope, two variables with different names are 

different unless an explicit declaration is made. 

c. We provide mechanisns for identifying variables which appear 

in the same scope and have different names, or appear in different 

scopes. The mechanisms for identification act recursively. Two 

methods are provided for the identification of variables appearing 

in different scopes. An explicit alias statement is provided 

to identify variables which appear in the same scope. 

d. Variables can be identified by explicit remote references 

via the include statement or by being made global within a scopes, 

in which case they are transmitted to scopes included within s. 
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We shall prepare for a formal account of the semantic effects 

of our name-scoping scheme by describing a few points relating 

to its syntax. We begin by generalizing the notion of token. 

A sim~le token is an item recognized as integral by the lexical 

scanner for SETL; this may be either a special symbol, constant, 

simple name, underlined name, etc. A compound token or 

qualified token is a sequence of simple tokens connected by 

occurrences of the 'unde+bar' symbol. Thus 

xl 

is a simple token, while 

xl_scopel_chapter3 

is a qualified token. Similarly, 

+ and maxop 

are simple tokens; 

+_scopel_chapter3 

and 

· maxop scopel_chapter3 

are compound tokens. The successive simple tokens making up a 

compound token are its parts. The lexical type of a compound 

token is the lexical type of its first part. With the possible 

exception of its first part, every part of a qualified token must 

be a simple name. 

We desire to represent a compound token by as few parts as 

uniquely determine it. For example x1 and xZ_scopel denote 

the same variable because x1 is an initial part of the longer 

token. Similarly x1 scope1 and x1_scope1_item_chapter3 also 

designate the same variable as x1. In such a context the token 

xl_scope2 is not allowed to appear for then xl would be synonymous 

with x1_scope2 and xl_scopel.But the tokens xl_scopel and 

xl_scope2 are different by virtue of having different 

names. We will provide an explicit declaration to stipulate 

that two (compound) tokens denote the same variable. 

We demand that if t 1 ,t2 ,t3 appear in the same namescope 
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then t 1 may be ~he initial part of two compound tokens t 2 
and t 3 only if t 2 is an initial part of t 3 or t 3 is an initial 

part of t 2 . 

The text with which we deal consists of a linear sequence 

of tokens, grouped into a nested family of namescopes (which 

for brevity we may refer to simply as scopes). A scope is 

opened by a header line having the form 

(1) scope <(optional) level indicator> <scopename>; 

for example 

scope 3 main_part_of_optimizer; 

Here, <scopename> designates a simple or compound name, which 

names the scope. The optional <level indicator>, if it occurs, 

has simply the form 

<integer> or - <integer> • 

The nonoccurrence of a level indicator is logically equivalent 

to the occurrence of a level indicator with a value of zero. 

A scope opened by the header line (1) is closed by the occurrence 

of a matching trailer line 

(2) end <scopename>; 

for example 

end main_part_of_optirnizer; 

all the text included between (1) and. the next following matching 

line (2) constitutes the body of the scope headed by (1). A line 

(2) matching each line (1) is required; the absence of a matching 
trailer constitutes a scoping error. 

A subroutine definition 

definef subrname; 

is also a scope opener. This scope is named subrname and is closed 

by the end statement for the subroutine. To allow a level indicator 

to be associated with the subroutine an (optional) integer may 

separate definef and subrname : 

definef 3 subrname; 
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Several other forms of scoping error will be described in the 

following paragraphs. A text is acceptable to_ the names cope proces­

sor if it contains no scoping errors. 

The text comprising a scope ns falls naturally into several 

portions: 

(a} irnbedded subscopes; 

(b) scope-associated declaratory text (to be described in more 
detail shortly); · 

(c) other text, which we call the proper text of the namescope ns, 
which includes the executable statements, if any. 

The beginning of a scope ms imbedded within ns is marked by 

the occurrence of a header line of the form (1); if such a header 

line occurs in ns, we require that a matching trailer line (2) 

be present in the body of ns (condition of well formed nesting). 

In such a case, we call ms a subscope of ns. We say that ms is 

directly irnbedded within ns if ms is a subscope of ns, but is 

not a subscope of any proper subscope of ns. We 

call ns the parent scope of ms, and call ms an immediate descendant 

of ns. If two scopes have the same parent scope, they are said 

to be siblings of each other. 

We require that a scope has a name different from the name of 

its parent and the names of its siblings. This 

allows us to refer to each scope in a unique manner by using 

a sufficiently long name string formed by concatenating the 

scope's immediate name with the name of its parent, its parent~s 

parent, and so forth. Thus, for example, in a sufficiently 

large program library the following configuration of scopes might 

occur: 

scope linear_prograrnrning; 

scope optimizer; 

X = 
end optimizer; 

end linear_programming; 

scope fortran_compiler; 
scope optimizer; 

end optimizer; 

end £ortran_compiler; 

(3) 
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In the di£cussion which follows we shall, in order to refer 

unambiguously to one of the two different scopes called optimizer 

use hyperqualified name~ of the form 'optimizer.fortran_compiler' 

and 'optimizer. linear_programming'. 

Similarly, two distinct variables named x, both occurring 

within these scopes, will be distinguished by using the hyper­

qualified names 'x.optimizer. fortran_compiler' and 

'x.optimizer. linear~programming' • Note also that we will only 

insist on as deep a level of qualification as is required to 

guarantee uniqueness of reference; for example, we allow the 

same two variables x to be referenced as 'x.optimizer.fortran' 

and 'x.optimizer.linear' respectively. We insist on using' ' to 

separate scope names. · 

Note that hyperqualified names (punctuated by dots) belong 

exclusively to the 'metatheory' of namescoping. The user of our 

narnescoping system will use qualified tokens (with underbars} 

exclusively. The following pages will define the manner in which 

'names' (with underbars) correspond to 'items' {with dots). 

Within the total mass of proper text (cf. (c} above) associated 

with a namescope ns, various tokens will occur. These are said 
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to be direat Zoaal tokens. For the purposes of the following 

discussion, it will be convenient to designate each such occur­

ren~e of a token t by a symbol showing explicitly the nest of 

scopes in which t appears. For definiteness, we will write this 

symbol as 
t. nsl. ns2. ns3 •...• nsk 

where ns 1, ... ,nsk is the nest of scopes containing t, ns 1 being 

the smallest such scope; ns 2 , the parent of ns 1 ; ns 3 , the parent 

of ns 2 ; etc. ns k is an .'outermost' scope, i.e. a scope possessing 

no parent. 

Token occurrences designated by the same hyperqualified symbol we 

regard a priori as referencing the same object. 'Ihe central problem 

addressed by any namescoping scheme is to decide when two token 

occurrences not designated by the same symbol reference the same 

object. In the present namescoping scheme the following approach 

is taken. Symbols 

t. nsl. ns2 ....• nsk [*] 

will be called items. In a string of .source text, each token, 

compound or simple, uniquely determines an item. We give rules 

to determine when two items represent the same variable. Within 

a namescope, nsl, the token t is sufficient to identify the item 

t. nsl. ns2 .... nsk 

We say that the local alias of the item t.ns1.ns2 . ... . nsk is t. 

Two items, t1.ns1.ns2 . ... . nsk and t2.ns1.ns2. .nsk which 

appear in the same namescopes with aliases t1 and t2 are 

identical if tl is an initial part of the compound token t2, 

or if t2 is an initial part of tl. Items appearing in the same 

namescopes with alias first_part and first_part_of_x are identical 

because first_part is an initial part of first_part_of_x. 

An item with alias first_part_of_Jj would also be equal to 

first_part. We demand that the occurrence of these 

three tokens in a name-scope be an error. 

This condition is determined by noting that first-part is 

no longer an unambiguous first part of a larger compound token. 
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The declaratory text associated with scopes allows items 

whose aliases appear in different scopes to be identified. 

Two principal declaratory forms, an include declaration and 

a global declaration, are provided. 

In preparation for a discussion of the semantics of include 

statements, we discuss their syntax. An include statement has 

the form 

include <list>, <list>, ... <list>; 

or, if only one <list> occurs, the simpler form 

include <list>; 

T.he syntax of <list> is as follows: 

<list>= <aliased name> I <aliased name> (-<token>, ••. ,<token>) 

I <aliased name> (<list>, •.• ,<list>) <aliased name>* 

<aliased name>= <token> I <token> [<token>] 

The following example will illustrate the inductive referral 

capability of the include statement. 

include optimizer (routs3 (output (xl))); 

We assume that the declaration appears in a namescope ns in which 

a scope item i 1 *ith alias optimizer is known. Within i 1 , a scope 

item i 2 under the name routs3 is known. Similarly, within i 2 
an item i 3 with alias output is available and is a scope item. 

Finally within i
3 

an item i
4 

is known with alias xl. The item i
4 

is identified with the item whose alias inns is xl_output_routs3_ 

optimizer. 
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We now consider an example which uses more of the power 

of the include declaration. 

include optimizer (routsl*, routs2 (-flowtrace), 

routs3(input*,output)); 

include output(xl,x2); 

Suppose that these include statements occur within a scope ns. 

Suppos~ also that 

the name optimizer is the alias of a scope item known inns. 

An item known in optimizer as routsl is identified with the item 

known inns under the a~ias routsl_optimizer. We use the alias 

of an item without specifying the narnescope 

when no ambiguity can arise. In addition all items known 

in routsl are identified with items inns. If x is the alias of an 

item in routsl, its alias inns, is x~routsl_optimizer. All of the 

items known -. in routs2 less the item known therein as flowtrace 

-are identified with items in ns. Input denotes a scope item 

available in routs3. All of the items known in input including 

the scope item itself are propagated into ns. If y is the alias of an 

item in input its alias inns is ,y_input_routs3_optimizer. 

Then, an item with alias output_routs3_optimizer is included. 

This last item will be identified with that whose alias appears 

in the second include statement as output. The identity of 

xl and x2, •i1 and i 2 respectively, can now be determined. 

i 1 is aliased in ns as xl_output and i 2 , as x2_output as a 

result of this declaration. 

The reader can see that the effect of these two statement~ 

is the same as the more complicated single statement: 

include optimizer(routsl, routs2(-flowtrace), 

routs3(input*,output(xl,x2))); 
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The identity of the item aliased as xl in output when calculated 

from the single expression is 

xl_output_routsJ_optimizer 

whereas the alias produced from the two expressions is xl_output. 

Our conventions for identifying compound tokens imply that these are 

the same items. 

An include statement may cause the identification of i 1 known in 

ns1 with an item known in ns 2 under the alias aZias 2 . It is possible 

that a-Zias 2 , a token of which it is the initial part, or a token 

which is the initial part of aZias 2 does not appear as a direct local 

token of ns
2

• We allow this to facilitate the recursive application 

of our identification conventions. An item known in ns
2 

as aZias
2 

is 

added to the set of variables known in ns
2

• (See the discussion below 

of the algorithms which pe_rform this name resolution process.) 

It is possible to make an item i 1 available within ns 

under the alias a_b and another item i 2 under a_b_c and still 

another item i 3 under a_b_d. The rules imply that i 1 is identical 

to i 2 and that i1 is identical to i 3 . By transitivity of equality 

this should make i 2 equal to i 3 . The aliases under which i 2 and i
2 

are known do not imply their uniqueness. This is an error. 

just as if a_b_c, a_b, and a b d were aliases 

of direct local tokens. 

The reader is cautioned that it is possible for an item i 1 
which is a direct local token of nsl and an item i 2 , which is 

a direct local token of ns 2 to be identified by including 

each in ns 3 with the same alias. 

The above example does not illustrate the name-aliasing 

feature available in the syntax (and semantics) of the include 

statement. The use of this feature is shown in the following 

example: 

include graphops (transitivity_routines(connectedness[cr] (flagl), 

strong_connectedness[ ] (flagl [scflag], flag2)); 
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Suppose that this statement occurs within a namescope ns, and that 

the scope name graphops (more precisely, the scope item designated 

inns with this alias) is available within ns. Then the include 

statement shown above makes available within ns items, the identities 

of which are determined as if the brackets (' []')were not present. 

The contents of the brackets determine the alias under which each 

item is known inns. The first item whose alias is fZag1 in the 

innermost scope is aliased inns as 

flagl_cr_transitivity_routines_graphops. 

'er' appears in the brackets following 'connectedness' and-is 

substituted for 'connectedness' in the algorithm to calculate the 

alias which was explained above. The items aliased as fZag1 and fZag2 

in the scope strong_connectedness .are aliased in ns as 

scflag_transitivity_routines_graphops 
and 

flag2_transitivity_routines_graphops. 

The null string in the brackets is substituted for 

'strong_connectedness'. Two underbars coalesce to one. As 

above, these compound tokens can be abbreviated inns as scfZag 

and fZag2 so long as no ambiguity results. 

Names can be transmitted between scopes not only by include decla­

rations but alsoby global declarations. The syntax of a global 
declaration is 

<global declaration>= global <token>, •.. ,<token>; 

<signed integer> 

Examples are: 

I global <token>; 

I global <signed integer><token>, ... ,<token>; 

global <signed integer> <token>; 

= <integer> I - <integer> 

global addroutine, xl, x2, addroutine_y; 

global 3 optflag; 

___ global -L case_flag; 

A name nm available in a given scope n..6 and declared global in 

th~t scope possesses a globality level, defined as follows: 

if the global declaration in which n.m appears begins with a 
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<signed integer> k, the value of k determines the globality level 

of nm, if such a signed integer is absent from the global 

declaration in which nm appears, then the globality level of 

nm is (by default) equal to the level of the scope n-0. 
Suppose, for example, that the three global declarations 

shown above appear in the context 

scope 2 libraryli 

global addroutine,xl,x2,addroutine_y; 

global 3 optflag; 

global -2 case_flag; 

Then add~ou.:tine,x1,x2, apd· add~outine_y have globality level 2; 

opt6lag has globality level 3, and cMe_6lag has globality 

level -2. 

An item nm designatedby a name available within a scope n-0 
and having a given~globality level n becomes available 

within every scope m-0 directly imbedded within n-0, provided 

that n is greater than or equal to the specified level of the 

scope ms. Moreover, if nm 'penetrates' into ms (i.e., becomes 

available via globality within ms), it has default globality level 

n ·within ms, and will therefore become known within all imbedded 

subscopes of ms, provided that n is greater than or equal to the 

level of these subscopes. This global propagation of name 

availability will continue through a nest of imbedded scopes until 

either a scope of level exceeding nor a scope containing no 

subscopes is encountered. The item nm known within a namescope 

ns by the alias x1 is known under the alias x1 within all scopes 

ms to which it is propagated through global declarations. 
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The propagation rules just described are basic to our 

name-scoping scheme. As a convenience, however, we include 

an additional mechanism which allows 
a whole group of names to be given a common designation and 

thus to be tr~nsmitted collectively. Suppose, for example, 

that within a program library a set of routines having some 

common overall purpose is available. Then, by giving a group 

name to the routines of this set, and by making the group item -avail.able in some other scope, we make all the member items 

of the group available in that scope. 

A group statement has the form 

group <token>: <list>, •.. <list>; 

or the simpler: form 

. . group <token>: <list>; 

where <list> has the syntax explained above. 

Suppose that the following group statement appears 

in a namescope n.s, within which we take a scope name gll.a.phop.6 

to be known: 

group graph_flags: graphops(transitivity_routines 

(connectedness [er] (flagl) ,strong_connectedness [ . ] 
.. 

(flagl[scflag], flag2)); 

This statement has, in the first place, the same force as the 
. include statement · ·· · · 

include graphops(transitivity_routines(connectedness[cr] (flagl), 

strong_connectedness[ ] , ( flagl [scflag] , flag2) ) ; 
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Moreover, the items known within ns under the aliases 

fZag1_ar_transitivity_routines_graphops, 

safZag_ ar_transitivity_routines_graphops, 

fZag2_ ar_transitivity_routines_graphops, 

become; members of the group graph_fZags. 

In that group, they have the same aliases; indeed, 

an item always has the same alias within a group as within 

the scope in which the group is constituted. 

If the group graph_fZags is subsequently made available 

within some other scope ms, perhaps under an alias at~ and if the 

method of propagation does r.ot specify explicitly that 

only a portion of the group is to become available, then these 

same objects will become available within ms. Their aliases within 

ms will be (in the absence of explicit re-aliasing) 

fZagl_conneatedness_transitivity_routines_graphops , 

safZag_ar_transitivity_routines_graphops 

fZag2~scr _transitivity _routines _graphops 

The following 1:xamples demonstrate additional details of 

the inclusion rules. 

Suppose that ms contains the statement 

include graph_flags; 

then the items designated above as flagl_ ... , scflag_ ... , 

and flag2_ ..• all become available within ms. Next suppose 

that ms contains the statement 

include graph_flags(-scflag); 

then only the items designated by fZagl and fZag2 become 

available in ms. Note that 'scflag' is the first part of 

the alias in graph_fZags of only one item in the group. 

Hence, there is no ambiguity. 
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Third, suppose that ms contains the statement 

include graph_flags(scflag[scf] ,flag2); 

Then only the items designated briefly by scflag and flag2 are identi­

fied with items in ms. The former of these has scf_graph_flags 

as its local alias within ms. Finally, suppose that ms contains 

no include statement involving the name graph_flags, but that 

nevertheless the item designated by the name graph_flags b~comes 

available within ms, perhaps in view of the appearance of 

graph_flags in a global statement within some scope .in which ms 

is embedded. Then the objects designed by 

flagl_connectedness_transitivity_routines_graphops 

scflag_cr_transitivity_routines_graphops 

flag2_scr_transitivity_routines_graphops 

become available within ms. They are identified with items 

already known in ms in the usual way. 

The above remarks concerning the include, global, and group 

features provided in our name-scoping scheme should make the 

general use and action of these features reasonably plain. 

Additional details will be given below; the conventions which 

apply in logically marginal cases can be deduced from an 

examination of the name-scope routines themselves, for which 

SETL code is given later in the present newsletter . 
• 

To identify items available within the same scope we provide 

the alias statement with syntax 

alias varl, var2, var3; var4, var5; 

The tokens varl, var2, and var3 are the aliaoos of items i 1 , i 2 
and i 3 which are identified by virtue of this declaration. 

Moreover var4 and var5 designate items which are identified. 
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we regard every compound token occurring within a total mass 

of namescoped text as a synonym for the item which is its 

true designation. Note in particular that such a token will 

have precisely those special lexical or syntactic properties 

(such as the property of being a macro-name or a syntactically 

significant keyword) which its true designation has. We remark 

in this connection that ff a token is a macro name at one point 

in a namescope nJ, it is a macro name at every point in nJ. 

This convention allows macro definitions to be placed anywhere 

within the namescope (or namescopes) in which they are to 

be applied. In addition from declarations and kind declarations 

-(see below) may be included in macros and propagated by our name­
scoping conventions. Include, global, group and alias statements 
may not"be included in macros. 

The namescoping conventions described 

above are quite general in nature.. They 

to SETL but · al_so to other languages. 

can be applied not only 

The point we shall 

now make refers more specifically to SETL. A SETL text 

consistsof a collection of subroutine and function bodies. 

All function and subroutine calls in SETL are recursive. 

If a routine is called before returns from all previous 

invocations have been executed, then all variables ZocaZ to 

that routine must be stacked prior to entry. Side effects are 

propagated through variables which are not stacked. Items known 
in more than one subroutine (each of which is a namescope) will 
always be global and will be stacked 
upon entering a routine only if they are declared to be local 

to that routine. The syntax of the local declaration is provided 

local routname1 (varname1 ,varname
2

, ... ), 

routname2 (varnamek+l'varnamek+2 , ... ), ... , 

Here, routname 1 , routname 2 , are tokens, 

possibly compound, whose true designations i must be subroutines 

o_r functions. 
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Moreover, varname 1 ,varname 2 ,etc. are tokens, possibly compound, 

which must designate variables. No declaration is provided to 

prevent an item from being stacked because including an item 

trivially in a subroutine, even in one with no executable state­

ments, prevents stacking. 

We will give below algorithms for performing the identifica­

tions implied by group, include, and global statements. 

Subsequent to their execution, classes of equivalent items will 

have been formed. To prevent unintentional identifications, 

we impose the constraint that two or more items which represent 

direct local tokens of the same namescope m~y not be identified 

by group, include, or global statements. These identifications 

must be made by alias statements. Subsequent to the determina-

tion of the classes of equivalent items, each item is assigned 

an internal representation of the form <m,n> where m is the 

number of the subroutine (function) to which it is local and n is 

the number of the variable in that routine. A dummy routine outrout 

is created to which all variables designating subroutines and 

functions are assigned as are all variables known in more than 

one subroutine but which are not declared to be local to any 

routine. Each of the remaining variables is then local to 

exactly one routine. The k arguments of the routine, if any, 

are assigned the indices 1,2, ... ,k in the order of their 

appearance in the calling sequence. The remaining local variables 

are assigned indices from k+l. 
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b. Algorithms 

We outline the strategy for making the identifications 

of items implied by global and include declarations. 

·consider the following lines of namescoped source text. 

scope nsl; 

include ns2 [a] (ns3 [b] (c, d*, e [newname])); 

global globalva~; 

C = ni; 

end nsl; 

An initial pass of the source text will _recognize the items 

gZobaZvar, a_b_a, d_b_a, newname b a 

as the direct local tokens of ns 1. The last three variables 

are recognized by a scan of the include statement. The 

variable denoted by a b a is the same variable as that 

denoted by a which appears in the one line of 

executable text in nsl (see above for a discussion of the 

rules for the identification of items designated by compound 

tokens). We assume further that the scopE: nsl appears in a 

nest of scopes ns2, nsJ, ... , and nsk where nsk has no parent 

scope. We represent the scope ns 1 internally for the purposes 

of the algorithms which follow as the tuple 

<nsl, ns2, . ... , nsk> • 

This tuple uniquely identifies this namescope. The four 

variables designated above are items which are initially 

known in ns 1. The token gZobaZvar is said to be the 

ZoaaZ name or alias of the item <gZobaZvar, nsl, ns2, ... ,nsk> 

in the scope <ns1,ns2, ... ,nsk>. Similarly, each of 

a_b_a, d b a and newname b a is the ZoaaZ name (alias) 

of an item in the scope <nsl,ns2, •.. ,nsk>. These four items 

i 
'· 
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are said to be initially known in the scope <ns1,ns2, ... ,nsk>. 

In addition to these four items, the parent scope, the 

scope itself, the sibling. scopes, and all immediate descendant 

scopes of the scope nsl are known in <ns1,ns2, ... ,nsk>. 

For example, the parent scope <ns2,nsJ, ... ,nsk> is known in 

<ns1,ns2, ... ,nsk>, under the local, name ns2. 

All direct local tokens and scopes adjacent to a scope are 

given names on a formal basis during an initial pass of the source 

text. We do not give the code for this process in this 

newsletter. The local, name of an item in the scope in which 

it appears is the first·component of the tuple which is its 

name as an item. Moreover, for an item which is not a scope, the 

~.(S_fTL) tail .of the tuple is the name of the scope 

in which the alias is a direct local token. 

In the include statement of the current example, the 

string a* implies that all items known in the scope d 

are to be included in ns. Suppose that ghj is the local 

name of an item which appears in the scope d. That item 

is, by virtue of this include statement, to be identified 

with an item known in nsl with local, name ghj_d_b_a. 

There is no item which is known initially in 

<ns1,ns2, ... ,nsk> with this local name. The algorithm 

we give will create an item known in nsl with the local name 

ghj_d_b_a upon determination of such an impasse. This 

latter item will then be identified with the item with 

local, name ghj in the scope d. 

i-
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This inclusion, vacuously, of items into nsl facilitates 

recursive application of the include and global declaration& 

We assume that the initial pass of the source text 

creates the set knownby which contains pairs of the form 

<saopeitem, varitem> where varitem is an item known in scopeitem. 

The creation of the i~em with alias ghj_d_b_a results -in 

the pair <<ns1,ns2, ... ,nsk>,<ghj_d_b_a, nsl, .•. ,nsk>> 

being introduced into knownby. 

We now describe the mechanisms for retaining the informa­

tion that items known initially in different scopes 

have been identified. As 'identity' is an equivalence 

relation, i.e. a= band b = c implies a= c, it suffices 

to provide a vehicle for determining a canonical representa­

tive of the class to which an item belongs. The set ident 

evaluated at i 0 is the canonical representative of i 0 . 

Also equivset{rep} is the set of items equivalent to the 

canonical representative rep. Equivset is the relation inverse 

to ident. We retain each set for economy of execution. We 

manipulate these sets through two routines ultdesig · and 

getequivitem. In this way we avoid initializing 

set to {<x,x>, x an item known in source text}. 

Group items are distinguished by being members of 

each 

the set isgroup. If gpitem is a group item and i is an item 

which is a member of gpitem, then <gpitem,i> is an element 

of knownby. 
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An include statement as it appears in a line of source 

text implies the identification of one or more pairs of items. 

The method of determination of the identity of the elements 

of each item in each pair should be clear from the discussion 

above of the semantics of the include statement. We now give 

an example of a complication with which algorithms for 

processing include statements must cope. 

Consider the nested scopes: 

scope nsl; 

scope x; 

w = 

end x; 

end nsl; 

. 
• • • I 

scope ns2; 

scope z; 

include ns2(y(w)); 

w = 
end z; 

• • • I 

include nsl(x[y]); 

end ns2; 

(4) 

(5) 

By virtue of (4), the item <w_y_ns2,z,ns2> is to be 

identified with another item, known as win a scope with alias 

yin the scope ns2. The item <y,ns2, •.. > is not known to be 

a scope item until the include statement (5) which identifies 

it with the scope <x,nsl> is processed. This shows that 

include statements must be considered in an order which need 

not be the order in which they appear in the source text. 
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In addition to the sets which we have discussed above, 

we will require a coded representation of the include 

statements. We assume that the first pass of the source 

text associates a set of tuples, called incZude{ns}, with 

every namescope ns. Each tuple in incZude{ns} is of 

the form 'all' 

<ans 1 ,ans 2 ,ansk 1 aliastring,'allbut' ,{ .•. }> 

'only' 

ans. is the alias in ans. 1 of a scope item. One of 
J J-

the phrases 'aZZ', 'aZZbut', and 'only' appears. This 

phrase is named keywd_. _ The set which is the last entry 

of the tuple is not present if keywd is 'all'. The 

scope item ns is the namescope in which the include 

statement from which inctupZe was derived originally 

appeared. This component which we generically call 

inctupZe causes the identification of one or more pairs 

of items. One member of each pair is known inns which 

we call targetscope. The other is known in the scope source. 

The scope source is identified in the following manner. 
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Starting with source= targetscope, the item i 1 whose 

local name is ans
1 

is identified. The canonical representa-

~ 
tive, i

1
, of the equivalence class to which i 1 belongs is 

determined. If i 1 is a scope item, then source is set equal 

to i
1 

and the second component of inctupZe is considered 

in the same way. This process is repeated until all the items 

designated by the components pr..eceding aZiastring are identified or 

until the itemik is not a scope item. In the former case, 

identifications between items in the scope targetscope 

and items in the scope source are made. We will make further 

remarks on this process below. In the latter case, inctupZe 

corresponds either to a namescoping error or the processing 

of additional inctupZes must uncover a new scope item in 

source with alias ansk. When this occurs, further decoding of 

inctupZe is attempted. A partially condensed form of inctupZe 

which reflects the successful part of the decoding is saved 

and tagged with source to facilitate the continuation of the 

decoding process. If keywd of inctuple is 'all' or 'allbut', 

then subsequent introduction of items into source which are 

not known at the time of decoding of inctuple may require 

reprocessing inctuple so as to propagate the newly discovered 

items into targetscope. A condensed form of inctupZe is 

retained in the set decoded for this purpose. 
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The members of the set which is the last component of inctuple 

determine the pairs of items to be identified. If keywd is 

'all' then each item known in source is identified with an 

item in targetscope. If i is an item with alias a known 

in source, then the item known in targetscope with alias 

a_aZiastring is identified with i. Note that aliastring 

may be a compound token. 

We have now explained the function of e·ach component 

of inctupZe. We give an example to indicate how include 

statements are reduced to inctupZes. 

two include statements 

Suppose that the 

include optimizer(routsl,routs2(-flowtrace), 

routs3(input*, output(xl,x2))); 

include graphops(transitivity_routines(connectedness[cr] (flagl), 

strong_connectedness[scr] (flagl[scflag], flag2)); 

occur within a scope x. Then includes(x) will contain 

(at least) the following set. 

{<'optimizer', 'optimizer',' only',{<' routsl' >, < 'routs2' >, < 'routs3 • > }> , 

<'optimizer', 'routs2', 'routs2_optimizer', 'allbut', {~lowtrace'}> 

<'optimizer' ,routs3' ,'routs3_optimizer', 'all' > 

<'optimizer',~routs3' ,'output', 

'output_routs3_optimizer','only' ,{<'xl'>,<'x2'>}> 

<'graphops' ,'transitivity_routine' ,'connectedness', 

'cr_transi ti vi ty _routine_graphops, 'only' , { 'flagl'} >, 

<'graphops' ,'transitivity_routines' ,'strong_connectedness', 

'scr_transitivity_routines_graphops' ,'only', 
-

{<'flagl' ,'scflag'>,<'flag2'>}>} 
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Suppose that ite-ml and item2 are canonical representatives 

and are to be identified. As scope items, g:roup items, and macros 

are definite semantic constructs, only one of iteml and 

item2 may be either a scope, a group item, or a macro .. The contrary 

case is a namescoping error. We suppose,without loss, that iteml 

is~a scope item, a group item, or a macro, then, we set iteml to be 

the representative of the equivalence class of item2. 

There is further action if iteml is a scope item or 

a group item. If iteml is a scope item, then every item 

equivalent to item2 is a newly uncovered scope item. 

We then attempt to decode partially decoded inctupZes whose 

decoding terminated in the scope in which each of these items 

is known. In the case that iteml is a group item, all elements 

of the equivalence class of item2 become group items. The 

members of the group iteml must then be identified with items 

known in the scopes in which the members of the equivalence 

class of item2 are known. Ident(item2) is then set to iteml. 

Equivset(iteml) is augmented to include equivset(item2) and 

then pairs corresponding to the latter set are deleted from 

equivset. 
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The algor~thm for processing global declarations is 

a straightforward implementation 

of the semantics of global statements. The reader should be 

able to comprehend the code for this part of the process. 

We now summarize the functions of the various sets and routines 

required in the process. 

iscope 

isgroup -
ismacro -
knownby -

set of •all scope items 

set of all group items 
set of all macro items 
<x,y> is in knownby, if and only if x is a scope 

item, y is an item known in the scope y 

(note x is known in itself) or, x is a group 

item and y is a member of x 

dscopes{scope} set of all immediate descendant 

scopes of scope 

:/,evel (scope) globality level of scope (if none 

was specified O is returned) 

globlev(var,scope)- the globality level of var in scope. 

includes 

decode 

If no explicit declaration was made, this 

number is set to level(scope) 

- elements are tuples which result 

from include declarations, see above for details 

subroutine which determines 

source scope referred to by a member 

of includes 
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decoded - set contains condensed information 

about successfully decoded elements of incZudes 

whose keywd is 'all' or 'allbut' 

propincZude - subroutine which performs the identi-

fication's implied by decoded members of incZudes 

ident(item) canonical represe1.tat-'1ve if not rt 

of the class of equivalent items to which 

item belongs, otherwise representative of 

item is item. 
uZtdesign(item) coded routines which calculates the 

equivset 

canonical representative of item 

<rep,x> is in equivset if and only if rep 

is the canonical representative of the class of 

items to which x and rep belong. Pairs of the 

form <rep,rep> are omitted. 

getequivitem(rep) coded function which calculates 

the set of items equivalent to rep. 



SETL 76-30 

equate(item1,item2) subroutine which makes 

change in ident and equiv so that 

iteml and item2 are identified 

'locmame designatesiE_ scope - coded function which 

determines the i tern known in scope the first 

part of.whose (compound) local name is 

'locname - if none exists an item is created, 

and all decoded inctuples with keywd 'all' 

or 'allbut' and with source equal to scope 

are reprocessed. 

With these remarks, the reader should find comprehensible 

the following code: 
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/* first process all global statements*/ 

work= copy(globlev); 

(while work ne nt) 

globitem from work; <scope,item,lvlitem> = globitem; 

/* propagate item to all immediate descendants of scope 

to which item penetrates*/ 
. 

(Vdesc E dscope{scope}) 

if lvlitem ~ level(desc) 

then/* item penetrates desc_ */ 

equate(item, (hd item)designatesin desc is newitem); 

newlevel = if globlev(newitem,desc) is lvlr!ewitem ne n 

then lvlitem max lvlnewitem else lvlitem; 

<desc, newitem, newlevel> in work; 

end if; 

end Vdesc; 

end while; 

/* all global statements processed proceed to include statements*/ 

undecoded = nt; decoded= nt; 

(\fstmt E includes) 

newhome =source= hd stmt; 

decode(<source, newhome, stmt(2:}>}; 

end \fstmt; 
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/* if fall out-of loop with undecoded statements, 

then issue diagnostics*/ 

if undecoded ne ni 

then print 'following include statements not interpretable', 

{x(z}, x c undecoded}; 

end if; 

/* check if have identified two different items known 

originally in the same scope*/ 

(V scope c iscope) 

if #(knownby{scope} is varscope) ne #ultdesig[varscope] then 

print 'have identified via global and include declarations 

two or more items initially known in', scope, 'list of 

all variables initially known in this scope together 

with the canonical representative of the equivalence 

class follows', {<x, ultdesig(x)>, x c varscope}; 

end if; 

end V scope; 

/* finished global and include declarations - code to 

process alias declarations belongs here - it is omitted*/ 

We now give code for the auxiliary routines. 

define decode(inctuple); 

<source, newhome, stmt>=inctuple·; 

keyloc = if stmt(#stmt} ~ 'all' 

then #stmt else #stmt-1; 

keywd = stmt(keyloc); 

/* begin decoding of stmt */ 
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(1 ~ Vj < keyloc-1) 

itemdesignated = ultdesig(hd stmt(j) designatesin source); 

if itemdesignated n E iscope 

then/* decoding failed*/ 

<source,newhome,stmt(j:)> in undecoded; 

return;, 

• end if; 

end Vj; 
/* decoding successful*/ 
source= itemdesignated; 

finalpart = stmt(keyloc-1:); 

/* decoding successful.-· condensed form of inctupZe in decoded 

if keywd ne 'only' */ 

newstmt = <source,newhome> + finalpart; 

if keywd ne 'only' then newstmt in decoded;; 

propinclude(newstmt, knownby{source}); 

end decode; 

define propinclude(stmt,knownbysource); 

<tgtscope, source, aliastring, keywd, -> = stmt; 

set= keywd .§SL 'all' then ni else stmt (5) ; 

separator= if aliastring ne nulc then 
, __ , 

else 

if keywd ~ 'only' 

then (Vx E set) 

atgtiterrF x(#x) +separator+ aliastring; 

nulc; 
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equate(x(l) designatesin source, atgtitem designatesin tgtscope); 

end "Ix; 

else /* keywd is 'all' or 'allbut' */ 

excluded= [set] designatesin source; 

(Vitem E (knownbysource - excluded)) 

atgitem = hd item+ separator+ aliastring; 

equate(atgtitem designatesin tgtscope, item); 

end \/item; 

end if keywd; 

end propinclude; 
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define equate(iteml,item2) 

/* makes additions to equivset 

iteml and item2 are identified 

ultiteml = 

ultitem2 = 

ultdesig(iteml); 

ultdesig(item2 ); 

so that 

*I 

if-ultiteml ~ ultitem2' then return;;/* else*/ 

if ultiteml c (isgroup + iscope + ismacro) and 

(ultitem2 c (isgroup + iscope + ismacro)) is twospecial 

then print 'attempt to identify', iteml, 'and', item2, 

'each is either a.scope or group item'; return;; 

/*else*/ 

if twospecial then <ultiteml, ultitem2> = <ultitem2,ultiteml>;; 

itemsequiv = gete~uivitems{ultitem2}; 
if ultiteml E iscope 

then /* have uncovered new scope items - all items 

equivalent to ultitem2 are scope items*/ 

(V item E itemsequiv) 

homescope = tl item; 

/* decode all inctuples which failed in homescope */ 

(V minctuple E undecoded {homescope}) 

decode(<homescope> + minctuple); 

end Vminctuple; 

end \fitem; 

end if ultiteml; /*else*/ 
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if ultiternl E isgroup 

then/* all items equivalent to ultiternl are group items*/ 

('r/ item E itemsequiv) 

homescope = ti item; 

propinclude(<ultiteml, homescope, nulc, 'all'>); 

end 'r/itern; 

end if ultiteml;, 

/* identify ultiteml and ultitem2 */ 

equivset = equivset + {<ultiteml,x>, xE itemsequiv}; 
equivset = equivset lesf ultitem2; 
('r/x E itemsequiv) 

ident(x) = ultiteml 

end Vx; 

return; 

end equate; 

definef ultdesig(item); 

initially ident = nt;; 

return if ident(item) is ult ~ n then item else ult; 

end ultdesig; 

definef getequivitems(item); 

initially equivitems = nt;; 

return equivset{item} + {item}; 

end getequivitems; 
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define£ locname designatesin scope; 

/* compound token is of the form strl_str2_str3 */ 

candidates = {x, x e: knownby{scope} lmatch(·x,locname) }; 

if #candidates 9:11 

then print 'more than one item known in', scope, 

'with local name', locname, return n; 
end if; 
/*else*/ 

if candidates .£S._ n£ 

then/* create an item with local name equal Zocname */ 

(<locname> + scope) is newitem in candidates; 

<scope, newitem> in knownby; 

/* reprocess decoded inctuple with keywd 'all' or 'allbut' 

and equal to scope so as to propagate newitem */ 

(Vinctuple e: decoded {scope}) 

propinclude(<scope> + inctuple, {newitem}); 

end 'r/inctuple; 

end if candidates; 

return 3 candidates; 

end designatesin; 

definef match(namel,name2); 

itl = copy(namel); it2 = copy(name2); 

if(#itl ~ #it2) 

then <it2,itl> = <itl,it2>;; 

return (it2(1:#item2) ~ itl) and (it2(#iteml +l) eq '-' 

~ #iteml eq #item2); 

end match; 
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c. Internal repre~entations of variables 

We now turn to assigning an internal representation to 

each variable. The processing of include and global declara-

tions creates the sets equivset and ident. Items known in 

two different scopes have been identified and will be assigned 

to a dummy subroutine outrout in the absence of an owns 

declaration. All subroutines will be considered to be 

owned by this routine. The identifications implied by alias 

statements are then made and the remaining variables are 

assigned a representation in the form <m,n>, i.e. the n th 

variable of the mth subroutine. The identification of two 

or more arguments of a subroutine is a namescoping error 

as is identifying an argument to a variable known in 

another scope. Arguments to subroutines are dummy variables 

which should not also be global variables. If there are 

narg . t ' h th b . h . bl argumen sin ten su routine, t ese varia es 

are assigned internal representations 

<n , 1 > , <n , 2 > , ... , <n ,nrarg > 

The remaining variables local to (owned by) this subroutine 

are assigned representations 

<n ,nrarg +l>, <n, nrarg. +2>, .•. 

We have adopted the convention that subroutine headers are de-facto 

scope openers. The associated end statement also terminates 

the range of the scope. Executable code must appear in a 

scope which is also a subroutine or is contained in a 

subroutine. Macros and namescoping declarations are the 

only statements allowed in namescopes which properly include 

subroutine.s. 
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The identification as a result of incZude and gZobaZ 

declaration of two scopes is not allowed. A fortiori, two 

different subroutines may not be identified. 

The sets we require are created during an initial pass 

of the source code. We ignore the problem of their 

creation and list the structures required together with 

a brief explanation of their structure. 

uZtdesig(item) 

equivset(item) 

subroutines 

if item is equivalent to an item in 

another scope then is equal 

canonical representative of item, 

otherwise n. 
the set of atoms, other than item, 

equivalent to item 

subset of iscope consisting of all 

subroutines. 

arguments(subr) - tuple which contains the arguments 

aZiastmt(ns) 

outrout 

of subroutine subr. 

set containing members of form 

{var1 ,var2 , •.. ,vark}. 

Var1 ,var2 , ... ,vark are aliases 

inns of the same variable 

name of dummy subroutine to which all 

global variables (not declared to be owned 

by a routine) and all subroutines 

are local. 
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ownstmt 

internrep 

set containing pairs <item,subroutine> 

which result from item being declared to 

be owned by subroutine. 

elements are of the form <item,pairint> 

where pairint is a pair <m,n>, the 

internal representation of alias inns. 

The auxiliary routines include a coded function 

Zocalvar(subr) - set containing all items known in 

subr or a descendant scope which 

are neither scope items, group items, 

global variables owned by outrout or another 

routine or arguments of subr. 

We require from the earlier processes dscopes. 

dscopes{ns} -

homescope(item) 

homesubr -

set of scopes which are immediate 

descendants of ns. 

scope in which item is initially known. 

is a coded function which calculates 

the subroutine in which an item appeared. 

We now give the algorithms for the assignment of 

internal representatives to each item. 

/* first the subroutines*/ 

nrvar = l; internrep = n£; outrout = 0; 

(Vsubr E subroutines doing nrvar = nrvar+l;) 

internrep(<subr>) = <outrout,nrvar>; 

-
end Vsubr; 
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/* calculate all global variables not declared 
to be owned by a subroutine*/ 
- . 

(VitemE{x, xEhd[tt[ultdesig]] is globalitemlnotown(x)} is globalitem) 

nrvar= nrvar + l; 
setid(item,<outrout,nrvar>); 

end Vitem; 

/* process all alias declarations - make further 

identifications*/ 

(Vns E iscope, Vastmt E aliastmt{ns}) 

x from astmt; ownstrnt(x) = ns; 

(Vvar E astmt) 

equate(var,x); 

end Vvar; 

end Vastmt; end Vns; 

/* assign internal representatives to all 

remaining variables*/ 

(Vsubr E subroutines doing varnr = 1;) 

subrno = internrep(<subr>) (2); 

(1 <Vi~ #argurnents(subr) doing varnr = varnr+l;) 

eqitems = getequivitems(arguments(i)); 

if(homesubr[eqitems] ne {subr} or internrep[eqitems] ne nt) 

then print dee i-th argument of , subr, 'has been 

identified with an item known in another subroutine 

or to another argument of this subroutine'; 

continue Vi; 

end if; 

setid(arguments(i) ,<subrno,varnr>); 

.end Vi; 
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/* assign representation to remaining local variables*/ 

(Vitem E localvar(subr) doing nrvar = nrvar+l;) 

setid(item,<subrno,varnr>); 

end 'I/item; 

end \/subr; 

We now code the auxiliary routines. 

definef notown(item); 

/* determine if item or a member of its equivalence class 

has been declared to be own.ea by a subroutine 

(not outrout) */ 

return ownstmt[getequivitems(item)] ~ ni; 

end return; 

define setid(item,id); 

(Yx E getequivitems(ultdesig(item)) is eqitem) 

internrep(<homescope(x) ,x>) = id; 

end Vx; 

getequivitems(ultdesig(item)) = n; 

ultdesig[eqitem] = nl; 

end setid; 

definef localvar(subr); 

/* return set of canonical representatives of variables known 

in subr- i.e. items not scopes, groups, macros 

or arguments - not owned by other subroutines*/ 

variables= ni; scopes= {subr}; 
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(while scopes ne ni doing scopes= descopes[scopes];} 

newvar = knownby[scopes] 

newvar = newvar = (iscope + isgroup + ismacro}; 

newvar less {x, xEnewvar I internrep<homescope(x} ,x> ne n}; 

/* delete variag!es global to another routine*/ 

newvar less {x, xEnewvar 

return newvar; 

end localvar; 

!not (ownstmt[getequivitems(x}] 
} 

ie{subr}}}; 

We have made no assignment of internal names for macros. 

A macro will be recognized during linearization of tree 

like source text (see below} when no internal representation 

is defined for what appears to be a subroutine. Macro 

expansion will occur at that point. 
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3. Programmer definable object types 

We now discuss a system of programmer definable object types which 

allows operators to be applied to objects in a type dependent 

manner. This enhances the expressive power and extensibility of 

the language in a very useful way. The main features of the scheme 

are that it is static and declaratory. Types are assigned to 

variables by declaration. Type information is used not at run 

time which might necessitate a great deal of dynamic type check-

ing, but to control the compilation process. 

To make plain the overall nature and intended use of the 

proposed scheme we shall first set it forth.in a particular 

syntactic realization. 

The notion ~basic to our scheme is that of an object type 
'! 

or kind. Such a kind is merely a token (simple or compound), 

which, because of the manner in which it appears in one of the 

declarations to be described below, can be recognized as denoting, 

or being the name of, an object kind. This convention allows 

the programmer to introduce any number of differently named kinds 

of objects. As various object kinds are introduced, the variable 

names appearing in a SETL program will be declared to be of 

these kinds. The declared kin& of the variables appearing in an 

expression will then be used to control the manner in which 

the expression is compiled. The kind declaration has the syntactic 

form 

kind kindname1 (varname1 ,varname 2 , ... ), kindname 2 (varnamen, ... ) , ... ; 

Here, kindname 1 , kindname
2

, etc. are tokens which, by virtue 

of their appearance in the declaration shown above, are 

the names of variable kinds (briefly: kind names) ; 
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while varname 13 :· .. 3varnamek3 ... are variable-designating tokens. 

At most one kind can be declared for a variable name. 

If no kind is declared, the variable is taken to be of 

default kind. This is the kind which is named in a declaration 

default kindname; 

At most one such declaration can appear in a given name scope n-0. 
If no such declaration appears n-0 will be assigned the same 

default kind as its parent scope. If ns has no parent, setZstdtype 
is the defaultd. 

Tfie declare kinds of variables are used to control the 

manner in which expressions, subroutine calls 

and iterators of the 'V' type are compiled. The manner 

in which this is done is clear from the 

form of declaration which specifies the manner in which binary 

infix operators are compiled. This has the form 

from <kindnarne1 > <operator-symbol> <kindname2 > get 

<kindname 3> using <routinename>; 

Examples are 

from aplobj + aplobj get aplobj using aplplus; 

from matrix* vector get vector using matvectprod; 

The significance of the from declaration is as 

follows: whenever two objects x1 and x2 , always of known kind, 

are to be combined by an infix operator~' reference is made to 

the full collection of from declarations available in the givenncmescope. 

If one declaration is applicable, i.e., if the operator-

symbol occurring in the declaration matches~' and the object 

kinds occurring in the declaration match the known kinds of 

x1 and x2 respectively, then the result of the operation is 

taken to have the kind specified by the third kindname appearing 

in the from declaration. Moreover, the operation is compiled 

as a call.to the (two-argument) function appearing in the from 

declaration. 
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Consider, for example, the code (at the 'basic interpreter' level 

see below) which would be compiled from the statement 

x = (a max b) * c + d; 

call(sysmax,a,b,t1 ); 

call(sysprod,t1 ,c,t2 ); 

call (syssum,t2 ,d,x); 

where we assume sysmax, sysprod, and syssum to denote the standard 

'library' procedures which correspond to the ordinary SETL operations 

max, *,and+ respectively. If the declarations 

default matrix; 

kind vector(c,d); 

from matrix max matrix get matrix using matmax; 

from matrix* vector get vector using matvectprod; 

from vector+ vector get vector using vectsum; 

are active within the context in which the statement appears, the 

expression seen on the right-hand side of the assignment statement 

displayed above would be compiled as follows. 

call(matmax, a, b, t 1 ) 

call(matvectprod, t 1 , c, t 2 ); 

call(vectsum, t 2 , d, x); 

We allow the more general form 

from kindnamel kindop kindname get •.. 

where kindop is a kind name which designates a class of operators. 

The above remarks should make plain the general force of the 

kind, from and default declarations. We now go on to describe 

useful variants of these statements, and also certain other 

related declarations needed to give a system of 'object types' 

adequate flexibility. Note first that we will in some cases 

wish to use the standard SETL operations to combine objects of 

particular kinds, but will nevertheless wish to know the kind of 

object which results. For thi·s. purpose, we provide a variant 

of the from statement, having the abbreviated form 
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from <kindname1><operator-symbol><kindname2> 

get <kindname3>; 

An example of this construction might be 

from stringset + stringset get stringset; 

this would be useful in a situation in which we wish to 

distinguish sets of kind ~tlL-lng-0et from other sets, even though 

the ordinary SETL union operation is used to form the sum of 

two variables of kind st~ingset. 

If a token t naming a variable appears in one of our declara­

tions where a kind name is expected, it is understood that the 

token name is also a kind name, and that the variable is of the 

kind having this name. Thus, for example, if mainset occurs 

as a variable name in some program together with the declaration 

from vector€ mainset get bool using specialtest; 

it is understood that mun-0et is also a kind name, and that 

the variable ma.,Cn-0et is of kind main-0et. 
We must of course deal not only with infix binary functions 

of two variables, but with functions of several variables, and 

even in a few cases with functions of an indefinite number of 

variables. Here, our declaratory conventions are as follows. 

We write 

from <kindname 0>(<kindname1>, ... ,<kindnamek>) get 

<kindname> using <routinename>; 

and 

from <kindname0>{<kindname1>, ... ,<kindnamek>} get 

<kindname> using <routinename>; 

and 

from <kindname 0>[<kindname1>, ... ,<kindnamek>] get 

<kindname> using <routinename>; 

These forms allow us to create kind-dependent usages of any of 

the three basic application forms provided in the SETL syntax. 
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These forms, as just described, presume a fixed number of 

arguments. Similar declaration forms, whose details will be 

apparent to the reader, must also be available for use in 

connection with prefixed monadic operators. 'Short' declaration 

forms, in which the 'using <routinename>' part of the declaration 

is dropped, are also allowed, and have the significance already 

explained. 

Our base level interpreter conventions (see below} 

allow polyargument primitives (though not nonprimitive calls 

involving an indefinite number of variables}. Moreover, SETL 

provides the 'tuple-forming' polyargument primitive 

<xl , x2 , ... , xk > 

which can be used to reduce most other polyargument situations 

to situations in which only a fixed number of arguments will occur. 

we make it possible to use the present declaratory scheme in poly­

argument situations by providing the from declaration in the 

generalized form 

(1) from <kindname 0>(<kindname1 >, ..• ,<kindnamek> -) get 

<kindname> using <routinename>; 

The semantics of this declaration are as follows. If an item 

having the syntactic form 

(2) 

appears in an expression, and if i. is of the kind designated 
J 

by kindname. for j = l, ... ,k, then the declaration shown above 
J 

is relevant. In this case, the items ik+1 , ... ,in appearing 

in (2) are classified as 'extra arguments', and a call of the form 



SETL 76-49 

is generated at the basic interpreter level, t being a 

'compiler temporary' storing the result of the function call (2), 

and <ik+l'"""'in> being the n-k tuple formed from the values 

of the extra arguments. 

A declaration like (1) is also provided in the forms 

from·<kindname 0>{<kindname1>, .•• ,<kindnamek>-} get 

<kindname> using <routinename>; 

from <kindname0>[<kindname1 >, ... ,<kindnamek>-] get 

<kindname> using <routinename>; 

and also 

from <<kindname1 >, •.. ,<kindnamek>-> get 

<kindname> using <routinename>; 

from {<kindname1>, ... ,<kindnamek>-} get 

<kindname> using <routinename>; 

from [<kindname1 >, ..• ,<kindnamek>-] get 

<kindname> using <routinename>; 

These last three declaration forms allow the various kinds 

of 'brackets' provided in SETL to be used in a manner depending 

on the kinds of objects which appear within them. 

Note that declarations of the type we are now describing 

can appear within macros, which can be carried from one 

namescope to another using the mechanisms of token transmission. 

This allows a whole group of declarations to be 

invoked by including a single token at an appropriate point 

in ·a text, thereby allowing one in effect to 'name' standard 

systems of conventions which are to apply during the compilation 

of particular code passages. Namescopes can be used as boundaries 

at which the system of conventions change. 
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The family of declarations introduced above is valuable not 

only for the extension of language syntax but also in debugging. 

If, in compiling an expression, one comes upon an operation 

applied to variables of kinds for which no from statement has been 

supplied, a diagnostic message can be issued. Thus our declara­

tions serve to attach a network of compile-time consistency checks 

to a SETL text. To ensure that this network is free of 

loopholes, we shall insist not only that the kinds of objects 

appearing in function calls be validated (by providing appropriate 

from statements) but also that the kinds of objects appearing 

in subroutine calls be validated. To allow this, we provide 

an additional declaration of the form 

allow <kindname 0>(<kindname1 >, ... ,<kindnamekj); 

which validates a subroutine call with the obvious pattern of 

kinds of arguments. 

We take it that the conditional expression appearing in an 

l6 or while statement must always have a value of the standard 

SETL type bool; given this, and given the conventions concerning 

variable kinds in sinister calls which are explained below, we 

cancheck any program systematically for consistency of the kinds 

of objects which appear in it. Note however that by making 

a statement 

default settstdtype; 

active in a context in which no explicit declarations concerning 

variable kinds appear, we disable this consistency check 

mechanism· reducing its action simply to a verification 

of syntactic wellformedness. 

'Iteration over all subparts' is a concept potentially applicable 

to, and useful in connection with, compound objects of all sorts. 

To allow this notion to be applied to objects in a kind-dependent 

way, we introduce a declaration which specifies three basic 

routines, one to set up the first subpart 'address' of a compound 

object, the second to advance this ·•address' from one subpart 

to the next (returning~ if advance is impossible), the third to 
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calculate the ac~ual subpart corresponding to a given subpart 

address. More specifically, call these three routines oi~Jt, 
next, and actelt respectively. Then we take the iteration 

(Vx c a)<body> end V; 

to expand as 

xaddr = first(a); 

(while xaddr ne n doing xaddr = next(xaddr,a);) 

x = actelt(xaddr)·; <body> end while; 

A declaration appropriate forthis purpose must specify the 

three routines oiMt, next, and actelt, and must also describe 

the kind of subpart which a compound object has. For this 

purpose, we propose the following syntax: 

forit <kindname 0> E <kindname1 > use 

<first routine name>, <next routine name>, 

<actelt routine name>; 

·rn this declaration, <kindname 0> is the name of a compound object 

type, and <kindname1 > names the kind of parts which an object of 

this type has. The 'first routine name', 'next routine name', 

and 'actelt routine' have the significance already explained. 

Occasionally, though probably not often, one will wish to use 

subroutines or functions which can return a value of one of 

several kinds; more generally, variables whose values are of a 

kind not precisely known may appear in a program. We propose 

to handle this situation as follows. A kind name designating 

whatever ambiguity of kind exists for a given variable will 

be invented, and a variable whose kind is syntactically ambiguous 

will be declared to be of this kind. For example, one might find 

oneself writing 

kind tree_or_graph (x); 

Ultimately, and probably quite swiftly, a variable ambiguous in 

kind will be tested, and its kind determined as a necessary 

preliminary to further processing. Normally this will imply 

. , 
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conditional transfer to one of several points; transfer to a 

particular point will mean that an initially existing ambiguity 

. of kind has been resolved in a particular way; at each such 

point, code appropriate to the processing of the formerly 

ambiguous variable, now of known kind, will be found. To 

handle all this within our system of declarations, we propose 

the following scheme. Several separate names, all designating 

the same variable, will be invented. Each name will be declared 

to be a particular kind.· More precisely, one such variable 

name will be declared to have the 'ambig~ous' kind alluded to 

above, while the other variables named will be declared to 

have the various separate kinds whose confounding creates this 

ambiguity. Then all the variable names which have been used 

will be declared to be aliases for each other, i.e., to refer 

to the same object. In this way, our changing state of knowledge 

concerning an object is reflected syntactically by the varying names 

we give it. The form proposed above for the necessary declaration 

is 

Often (and especially in situations like the one which 

has just been described) most of the operations performed 

on objects of two different kinds will be identical (i.e., 
will be performed by the same basic-interpreter-level subroutine 

or function) even though a few particular operations should be 

performed by different kind-dependent routines. The notion we 

propose as basic to the treatment of the situation which then 

arises is that of the reversion of kinds. A particular variable 

kind k 1 is said to revert to another kind k 2 if, in a significant 
family of cases, operations may be performed for an object of 

kind k 1 by using the routines already supplied to handle these 

same operations for objects of kind kz• We declare the kinds 
to which an object of given kind may in this sense 'revert' 

by writing 
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revert <kindr..ame1 >(<kindname2>, .•. ,<kindnamej>), 

<kindnamej+l>(<kindnamej+2>, .•. ,<kindnamej+m>), . . . . , 

Let k
1

,k
2

, ..• be the kinds named by <kindname 0>,<kindname1 >, ..• 

respectively. The preceding declaration states that an object 

of kind k 1 may revert to any one of the kinds k 2 , •.. ,kj; that 

an object of kind kj+l may revert to any one of the kinds 

kj+2 , ..• ,kj+m' etc. This declared information is used 

in the following ways. Suppose that an object ~ whose values 

have been declared to have kind k 1 appears in an operation. 

For the sake of illustration, we assu~ this operation 

to be monadic, and to have the form 

2.E. i' 

2.E. being some particular operation symbol. 

Suppose now that no from statement describing the mode of 

application of the operator 2.E. to an object of kind k 0 has 

been provided. Then, in compiling, an attempt will be made 

to find a from statement defining the way in which £E_ applies 

to an object of one of the kinds k 2 ,k3 , .•• kj. If one and only 

one such statement is found, this will be taken to define the 

manner in which £E_ is to be applied to an object of kind k 1 . 

Replacement of the kind k 1 by one of the kinds k 2 ,k3 , ... kj we call 

reversion. If more than one from statement defining the manner 

of application of on to an object of kind k., i > 2, is found, 
:;.;;.:_ 1 -

an ambiguous situation exists, and an appropriate diagnostic 

will be issued. 

If no such statement exists, then an attempt will be made 

(recursively) to apply the process of reversion to each of 

the kinds 

revert 

k 2 ,k 3 , ... kj. That is, one uses any declarations 

... , k. (k .
1

,k. 
2

, ... ,k. ) , ... ; 
1 l. 1 im. 

1 

which have been made, and searches for a from statement defining 

the manner in which 2.E. is to be applied to an object of kind k .. 
im 

If this process is continued as far as possible, one of three 

situations will result. It may be that no chain of reversions 
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leads from k1 to-a kind k for which there exists a declared 

manner of application of the· operator 2E.· In this case, we take 

it that the application of 2E. to an object of kind k 1 is 

undefined, and issue an appropriate diagnostic. Suppose, 

on the other hand, that some chain of reversions leads 

from k 1 to a kind k for which the manner of application of~ 

has been declared. In this case, we ~ollect all triples 

consisting of such k, of the length n of the chain of reversions . 
leading from k 1 to k, and of the routine to be used in applying 

2E. to an object of type k. If there exists precisely one among 

these triples for which the length n takes on its minimum value, 

we use this to define the application of~ to an object of 

type k. If, on the other hand, there exists more than one among 

these triples for which n takes on its minimum value, an 

ambiguous situation exists, and we issue an appropriate 

diagnostic. 

The reversion procedure just described for the case of 

operators with a single parameter will be used in suitably 

generalized form for operations of any number of parameters. 

Suppose that some certain operation, which we shall designate 

by the symbol 9, is to be applied to a collection of parameters 
. (1) (m) 

of kinds k , •.. ,k . If there exists a from statement 

declaring the manner in which this application is to be made, 

we proceed in the specified manner. Suppose on the other hand 

that no such declaration has been made. In this case, 

we consider all tuples of the form 

<rk (1), k (2), ... ,k (m) >, (1) (2) m (1) (2) · m <k , rk , ... , k > ••• <k , k , ... rk > 

where rk(i) is a kind to which k(i) may revert. 

Each of these tuples is a reversion of length one. 

If there exists exactly one tuple of length one for which 

there is a from declaration for~' then this from declaration 

specifies the semantics of the appliation of the operator op 

to a collection of parameters of kind k(l) ,k< 2 ) , ... ,k(m) -

respectively. If there is more than one specification, then 

this is an ambiguity error and an appropriate diagnostic is issued. 
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If there is none, each of the tuples of length one is again 

reverted using the same prescription.and a search is made for 

an applicable from declaration. This process continues until 

an applicable from declaration is found or until no further 

reversions are possible. If a from declaration is not found, 

we consider this application of op to be ambiguous and issue 

an appropriate diagnostic.· 

We now come to describe a last declaration in the present 

'object-kind' related group. This declaration allows sinister 

calls to be used in a kind-dependent way.. It has the form 

fort <kindname0 >(<kindname1 >, ..• ,<kindnamem>)=<kindnamem+-l> 

use <routinename>; 

Let k 0 , ••• ,km+l be the kinds designated by the tokens appearing 

as kindnames in the above declaration. The declaration applies 

in cases in which a sinister call of the form 

is encountered, and in which t 0 , ..• ,tm+l are respectively 

of kinds k 0 , ••• ,km+l· It applies also to a wider range of 

situations under the reversion rules just explained, which 

the reader will readily adapt to the present slightly different 

situation. In situations in which the declaration applies, 

a (sinister) call to the procedure named by the <routinename> 

occurring in the declaration is generated; the normal rules 

apply to compound arguments appearing in this sinister call. 

Closely related declarations, having the somewhat different 

syntactic forms 

fort <kindname0 >{<kindname1 >, .•. ,<kindnamem>} = <kindnamem+l> 

use <routinename>; 

fort <kindname 0 >[<kindname 1 >, ... ,<kindnamem>] = <kindnamem+l> 

use <routinename>; 
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fort <kindname1 > ~ <kindname
2

> = <kindname 3> use <routinename>; 

etc. are also provided. The reader will readily deduce the 

import of these declarations. For use with sinister forms 

admitting an indefinite number of arguments, we provide the 

related declaratory forms 

fort <kindname 0> (<kindname1 >, .•. ,<kindnamem>-) 

= <kindnamem+l> use <routinename>; 

fort <kindname 0>{<kindname1 >, •.. ,<kindnamem>-} 

= <kindnamem+l> use <routinename>; 

etc. The above-described conventions concerning 'extra parameters' 

apply here. We illustrate the resulting semantics with an 

example. Suppose that the declaration 

fort branchlist(tree-) = tree use treelist; 

is active in a context in which the sinister call 

(1) branchlist(tl,t2, ... ,tn) = newtree; 

also occurs, and that .t7 and ne.w.ttLe.e. have been declared to be 

of kind .tJte.e.. Then the code represented most directly by the 

sinister call 

treelist(tl,<t2, ..• ,tn>) = newtree; 

will be compiled in place of (1). Note that this same code 

may also be written as 

x=<t2, ••. ,tn>; 

treelist(t,x) = newtree; 

<t2, . .. , tn> = X i 

where x is a compiler-generated temporary variable. 

In some cases one will wish to associate some particular 

action with a simple assignment operation appearing in a source 

text as 

(2) a = b; 
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provided of course that a and bare of specified kinds k1 and k2 • 

This can of course be done using the following particular case 

of the general fori declaration: 

fort <kindname1 > = <kindname2> use <routinename>; 

If no such declaration is provided, while a and bare of the 

same kind, then the standard SETL assignment procedure will 

automatically be used. 

In some cases, we will wish to treat a value which would 

ordinarily be of one kind as if it were of another kind. This _, 

will be the case especially for constants occurring in SETL 

programs, for complex structures built up out of constants 

during one or another 'initialization' process, and for structures 

read in from external media. To allow for this, we introduce the 

binary 'syntactic operator'~- The expression 

x ask 

is identical, as a SETL object, with x, but is treated 

(during compilation) as an object of kind k. 

We give code in SETL to resolve the semantics of operators 

in section 6 after we discuss the compilation process and the 

form of interpretable text. 
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4. Base-level interpreter. 

We now sketch a base-level interpreter which is capable of 

sustaining SETL (essentially this defines the SETL calling 

conventions). The data structure required by the interpreter is 

text - tuple of subroutines - A subroutine may be either 

compound or primitive. If it is compound, the entry in text is 

a vector of interpretable instructions. If the subroutine is 

primitive, i.e., an operation conforming to the implementation 

level requirements of the SETL system, but written in some 

acceptable lower-level language, the corresponding entry in 

text contains linkage information. Linkage to routines 

whether compound or primitive is 'by value with deferred 

argument return' as described in NL 53. The values of all 

subroutine arguments become part of the environment of the called 

routine, and are_manipulated there just as any other values. 

After return, all arguments in the calling routine are set to 

the values which they had in the called routine immediately 

before return. Except in the case of a primitive which is 

flagged as 'polyargument', interpretation of a call operation 

verifies correspondence between the number of arguments appearing 

in the call and the number of arguments appearing in the called 

routine. This corresponds to a compiled style in which 

routines of a variable number of arguments are not really possible. 

Of course, SETL will allow any number of values to be transmitted 

to a subroutine; it is only necessary to pre-group these values 

into a vector. 



SETL 76-59 

The "instructions" in a compound routine belong to one of the 

classes subroutine call, sinister call, subroutine return, condi­

tional transfer, unconditional transfer, or stop. 

The arguments designate variables. 

Each variable is "local" to exactly one subroutine and is 

represented as a pair <subrno,varno>. If the variable is 

local to the subroutine being interpreted a single integer varno 

represents it. Constants.are represented as <const,val> whose 

fixed· value is val. The arguments of a subroutine, arg 1 ,arg2 , 

••• ,_ ar~n are the 1st, 2nd, •.. ,nth variables local to that routine. 

We now turn to the "instructions" that the interpreter processes. 

The principal vehicle is subroutine call 

where arg0 is either a constant whose value is a subroutine or 

is a variable whose value is a subroutine~ For example, 

<call,<const,assign>,left,right> 

where Zeft and right are integers denoting variables local to 

the currently executing subroutine. To expedite determination 

of the called subroutine, we will assemble this code to 

<callc,assign,left,right> 

The opcode calla implies that the second component is a constant 

designating a· subroutine. Sinister calls are formed as 

or 

<lcallc,subrno,arg1 , ... ,argn> 

Subroutine names will be variables local to a trivial 

global routine outrout~ See the narnescoping_algorithrns above. 

Additional interpreter "instructions" include 
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and 

<go, label> 

<ifgo,var,label> 

<ifnotgo,var,label> 

The last form is provided to reduce the number of labels 

generated in the "compilation" of if-, then-else expressions in the hcst 

language .. {see belOW'). Labe 7, is either a variable whose value is 

a label or is a constant,·in which case the forms 

<goc,stmtnr> 

<ifgoc,var,stmtnr> 

<ifnotgoc,var,stmtnr> 

where stmtnr is an integer. are produced by the assembler. 

A transfer may not pass from one subroutine to another. 

The last interpreter "instructions" stop and subroutine return 

have no arguments. 

To permit access to variables local to another routine, the 

most recent environment block of a subroutine rout is retained 

as a tuple aurenv(rout). If rout is the currently executing 

subroutine, its environment block is nowenv. Another call 

statement causes curenv(rout) to be stacked. Curenv(rout) 

is set to 

routine. 

nowenv before control passes to the called 

We now identify the variables used in the interpreter routine. 

nowrout 

nowenv 

argno (rout) 

prim(rout) 

is the currently executing routine 

environment block of nowrout 

the number of arguments of a routine 

If argno(rout) is n, rout is a polyargument 

primitive. 

a flag distinguishing between programmed routines 

and primitives. 

primcall(rout) subroutine which effects the operation associated 

with a routine rout 

invoc (rout) an array counting the number of prior invocations 

of rout 
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curenv(rout) the environment block of rout at the time 

of its last invocation 

envs tack tuple used as stack during the recursive calling process 

dexit is an assumed routine which supplies useful diagnostic 

information in case of normal or error exit. 

We give two source langu~ge macros and then the code for the 

base-level interpreter. 

macro vararg(x) = if atom x then nowenv(x) 

else if x(l} eq const then x(2) 

else curenv(x(l)} (x(2}) endm; 

macro refarg (x} = if a tom x then nowenv (x} 

else curenv(x(l}} (x(2}} endm; 

/* base level interpreter 

invoc(rout) curenv(·), Zc, nowenv must be initialized*/ 

nextop: le= lc+l; 

getop: opitem = nowrout(lc); 

go to <call,callc,lcall,lcallc,retn,go,goc,ifgo,ifgoc, 

ifnotgo,ifnotgoc,stop>(opitem(l)); 

/* entries for subroutine invocation follow - subname is an integer 

lcall: subname = refarg(opitem(2)); designating a routine*/ 

sflag = t; /* marks sinister call*/ 

go to link; 

lcallc: subname = opitem(2}; 

sflag = t; go to link; 

callc: subname = opitem(2}; sflag = f; go to link; 

call: 

link: 

subname = refarg(opitem(2)) ;sflag = f; 

/* check argument number*/ 

if not sf.Jag and argno(subname} is argnr ne (#opitem)-2) 

then dexit(2); 

endif; 

/* stack curenv(nowrout) */ 
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if invoc(nowrout) SL!:, 1 then 

envstack(#envstack+l) = curenv(nowrout); 

end. if; 

curenv(nowrout) = nowenv; 

newenv = curenv(subname); 

/* pass arguments of subroutine call to newenv */ 

( 3 ~ \fj 2 #opitem) 

newenv(j) = valarg(opitem(j)); 

end 'l/j; 

/* put return information into newenv required to return*/ 

newenv(l) = nowrout; 

newenv(2) = le; 

nowenv = newinv; 

nowrout = text(curenv(outrout,subnarne)); 

if prim(nowrout) then primcall(nowrout); go to retn;; 

/* else compound subroutine*/ 

le= l; 

go to getop; 

/* end call operation*/ 

return: invoc(nowrout) = invoc(nowrout)-1; 

argnr=argno(nowrout); /* number of arguments*/ 

nowrout = nowenv(l); 

le= nowenv(2); 

/* restore arguments */ 
retenv = nowenv; 

nowenv = curenv(nowrout); 

if invoc(nowrout) ne 0 

then curenv(nowrout) = envstack(#envstack); 

envstack(#envstack) = n; 
end if; 

(3 .::_ \fj2argnr+2) lhd opitem(j) ne const) 
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valarg(j) = retenv(j); 

end 'dj; 

go to nextop; 

go: dest = valarg(opitem(2)); 

gothere: if (1 le dest and dest le #nowrout) 

then go to getop; 

goc: 

ifgo: 

goif: 

ifgoc: 

else print 'illegal transfer operation; dexit(3); 

end. if; 

dest = opitem(2); go to gothere; 

dest = valarg(opitem(3)); 

if valarg(opitem(2)) 

then go to gothere; else go to nextop; 

end if; 

dest = opitem(2); go to goif; 

ifnotgo: dest = valarg(opitem(3)); 

goifnot: if valarg(opitem(2)) then go to nextop;; 

go to gothere; 

ifnotgoc:dest = opitem(3); go to goifnot; 

stop: dexit(4); 

/* end interpreter*/ 
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5. Tree to Linear Text Compiler 

Next we 'skip back' one step toward the host language level, 

and present a tree-to-linear-text 'compiler' close to that which 

might be used in the SETL system. This routine accepts as input 

'abstract syntactic text', i.e., prediagnosed and name-resolved 

tree structures. It uses what are basically a tree-walk, temporary 

variable generation and label generation processes to produce 

linearized text almost identical with that required by the.base-level 

interpreter. The labels are generated in a form somewhat different 

from that required by the base level interpreter. To process this 

text into directly interpretable form, an intermediate step of 

abstract 'assembly' is required, the code for which will be given 

below. This 'assembly' process may generate 'repeated label' and 

'missing label' diagnostics·. 

In the tree-structured text, variables will be represented as 

<var,characterstring>. The name scoping algorithms are exercised 

prior to compilation and result in the assignment to each token of 

a pair of integers <subnro, varno>. During compilation each character­

string is replaced by an internal representation for the variable it 

represents. If the subroutine being compiled owns the variable, 

then a single integer is included in the developing text, otherwise 

the pair is included. As scope openers and terminators are in place, 

the compilation process is aware of the namescope in which the source 

text which generated the tree-structured text appears. In SETL, 

the indications for macro expansion are syntactically indistinguish­

able from those for subroutine calls and will be compiled into a 

subroutine invocation. The "compiler" attempts to find the number 

of the subroutine associated with a subroutine invocation. If no 

assignment has been made, a macro expanding routine is invoked. We do 

not give the details of the macro expansion process. The reader should 
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note that a macro may contain code or declarations (see above) 

associated with the determination of the semantics of the SETL 

operations but may not contain statements which affect name 

resolution, i.e. include, global, group, alias, own, .... 

We now give an example of the compilation process. 

'source': a= f{a+b); 
/* we assume that a is owned by the routine in which this statement 

occurs; bis owned by another routine, and f is global*/ 

the input to the 'abstract compiler' described below: 

<assign,<var,a>,<fcall,<var,f>,<fcall,<const,+>,<var,a>,<var,b>>> 

/* n is the integer corresponding to the 'locally owned' resolved 
a 

name a; 

~ the number of the subroutine owning b. nf and nb are the inte-

gers corresponding to the resolved names f and b respectively*/ 

as input to the base level interpreger 

<callc,+,na,<~,nb>'nt>' 

<call,<O,nf>'nt, na> 

/* nt is an integer corresponding to a "generated temporary" 

variable */ 
<callc, assign, na,nt> 

Note that since we treat labels as being global to the 

full body of a subroutine, and since we allow transfers between 

any two points in such a semantic scope, compilation rather 

than direct interpretation of abstract syntax trees is indicated. 

Indeed, direct interpretation of syntax trees would make 

recursive stacking-unstacking actions necessary at many points 

within a subroutine, and this would require the association 

with every jump of expensive stack-checking and 

-correction actions. We adopt a more highly compiled approach 

and associate stacking actions with subroutine call and return 

exclusively, and restrict the maximal scope of transfers 

to lie within a -single subroutine. 
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The 'abstract_syntactic' text accepted by the 'compiler' 

described in the present section 

compound linguistic constructs very 

in. an abstract representation the 

supports certain important 

directly. It provides 

following forms: 

i. 

ii. 

iii. 

iv. 

expressions with subexpressions 

code blocks 
code blocks within expressions 

iterative if - then - else - if and if - then - else - if -else 

forms 

v. A 'while' statement 

vi. go to, call, return, and return (expression) statements. 

vii. A 'subroutine' header statement, which designates an 

attached code section as a subroutine body, and which 

gives both the serial number of a particular 

subroutine and the number of arguments which it possesses. 

Note that subroutines are assigned serial numbers by the 

name-scoping procedures. These same 

procedures standardize the representation of 'globally' 

or 'externally' referenced variables. 

viii. 'Primitive subroutine' statements, in dexter and sinister 

form, which designate an attached constant as the 

(primitive, hence unanalyzed} calling information for 

a primitive. Each sinister primitive p is associated 

with a dexter primitive (with one fewer argument) of 

which p is the 'associated sinister form'. 

We now discuss the syntax and semantics of the host language 

forms. 

constant 

variable 

<const,value> where value is a suitable encoding 

of the constant 

<var,index> where index is a single intege~ i/ 

which refers to the ith variable of the current 

subroutine or is a pair <m,n> designating the nth 

variable of the mth subroutine 
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function invocation <fcall,fname,expl,exp2, ••• ,expn> 

where fname,expl,exp2, ••• ,expn are expressions 

if expression · _ <ife,cond1 ,exp1 ,cond2 ,exp2 , ••• ,condn'expn'expn+l> 

if 

corresponds to the SETL code 

cond1 
then exp1 
else if cond2 

exp2 then 

else if cond3 

else if 

then 

else 

cond n 
exp n 
expn+l ... ; 

The value returned is an expression. 

block <block,stmt1 ,stmt2 , ••• ,stmtn> 

where stmt1 ,stmt2 , ••• ,stmtn are statements to be compiled 

separately an~ executed c~nsecutively. 

while 

go to: 

. . 

<while, cond, dostat, block, contlab, outlab>; 

The compiled code is a sequence equivalent to the 

SETL code. 

start: if cond 

then block; contlab; dostat; go to start; 

outlab; 

cond is an expression whose compile time value is tor f 

block is a tuple of the form above and 

contlab, and outlab are pregenerated labels. 

<goto,exp> 

exp is an expression whose compile time value is a labelL 

shortif: <ifs,cond, block> 
aond is an expression, whose compile time value is tor f. 

~f the value is t the code in block is executed. 
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Now we explain the long if statement. 

longif: <ifi, cond1 , block1 , con~2 , block2 , ... , condn' blockn>. 

Each of cond1 , cond
2

, ... , condn is an expression. 

The code generated is equivalent to the SETL sequence 

if cond1 
then block1 ; 

if cond2 
then block2 ; 

if cond3 
then 

end if; 

end if; 

end if; 

The kth block is 

... ,cond
1

. is t. 

the range of the 

executed if and only if each of condk,condk-l' 

If condk is false, transfer is made beyond 

first if. 

There is a scope declaration <scope,characterstring>. 

No code is generated by this "statement". However, 

characterstring is made available to the coded function internalrep which 

replaces external representations 'Tike <~,charstring> with an 

internal representation nor <m,n>. Also a declaration <endscope> 

is provided. Occurrence of this declaration closes the current 

scope. (See below.) 

We now give the format for subroutine headers. 

subroutine header: <subrout, subrnumber, # of arguments> 

primitive subroutine 
header: <primsub. subrnumber, #of arguments,calling info> 

sinister primitive subroutine header: 
calling number of 

<lprimsub ,subr number, # arguments, info , dexter form >. , 
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Suhr number ..,.ls the number of the subroutine. In the primitive 

formats, oaZZing info is an integer which represents the linkage 

information which is decoded by callinf. We omit code for 

this routine. The appearance of a subroutine header marks the 

termination of the compilation of the preceding subroutine and causes 

aurrtext, which contains the compiled code, to be entered in 

the comprehensive vector text. Currtext is initialized to blanksubr 

which is a skeletal form into which the identifying number, number 

of arguments, the primitive flag, and the sinister form of a 

dexter routine are inserted. The routine add attaches 

additional statements to the vector ourrtext during compilation. 

We also provide a return statement which has no arguments. 

return: <retn> 

In addition, there is an express~on return instruction which 

has one form within a routine which corresponds to statements 

return f(x + g(y)) 

and another form within an expression codeblockJ which supports 

the SETL construct 

y = if bool then z else w; 

In the former case, the expression is evaluated and the result 

is assigned to <var,nr> where nr is one plus the number of 

arguments in the currently executing subroutine. 

The compilation of expression-representing code blocks 

involves a few details which may not be entirely familiar. 

Before compilation of the statements of such a block begins, 

an 'exit label' ebou~ is generated, and a global compiler 

variable eb~emp is set equal to the required result variable 

of the block. "Expression return" statements of the form 

<return, expression> , 

which normally would be compiled as 
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<callc, assign, output argument number,<expression>>, 

<return> 
are compiled as 

<callc, assign, ebtemp,<expression>>, 

_<9ot_o, ebout> 

Note that our conventions allow code blocks used as 

expressions to contain arbitrary statements, including quite 

general 'go to' statements, and also to contain embedded 

code blocks, leading to expressions which are very general. 

The compilation of general assignment statements, which 

includes the expression of sinister calls, turns out to 

be surprisingly easy. First one compiles whatever code 

corresponds to the expression appearing on the right-hand 

side of the assignment statement. Once this is done, 

we have only to compile the special assignment case 

that would appear in source as 

<sinister expression>= temp; 

To do this, we first generate the expansion which corresponds 

to the source 

temp= <sinister expression>; 

Then we take the code which results, invert its order, 

transform every dexter call into a sinister call, and append 

the result of these successive transformations to the already 

generated code. Note, for example, that (writing in a 

suggestive rather than precise notation) an assignment like 

f (g(a, h(b)), h(c)) = a + b; 

compiles first into 

call (surn,a,b,t); 

f(g(a, h(b)), h(c)) = t; 
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then into 

and finally into 

call(sum,a,b,t); 

call(h,b,tl); 

call(g,a,tl,t2}; 

call (h, c, t3) ; 

call(f,t2,t3,t}; 

call sum(a,b,t}; 

call (h ,b, tl) ; 

call ( g, a, tl, t2) ; 
call(h,c,t3); 

tcall(f,t2,t3,t); 

tcall (h,c,t3); 

tcall (g ,a,tl,t2); 

tcall(h,b,tl); 

I* 
I* 
/* 

I* 
/* 

I* 
/* 

I* 

\ 

t = a+ b *I 
tl = h(b) */ 
t2 = g{a,tl) */ 
t3 = h (c) *I 
f (t2,t3) = t */ 
h (c} = t3 */ 
g(a,tl) = t2 */ 
h (b) = tl */ 

The following comments describe the principal routines 
of the algorithm given below. 

aompile(obj) - transforms the code block obj which is of tree 

form into a linear interpretable code sequence. 

excomp(exp) - is a function which transforms the expression exp 

which is of tree form into a linear sequence. The value 

of this function is a variable, perhaps a generated 

temporary, to which the value of the expression is 

assigned at run time. 

gen temp (t) generates a temporary variable, t, or more 

precisely, a unique integer representing a temporary 

variable. 

gen lab (Z) - generates a label, or more precisely, a unique 

integer, representing a label, from which an actual 

label item will be produced by the assembler described 

in the following section. 
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currtext - is the tuple to which code fragments of the current 

subroutine are added during the compilation process. 

~ frag attaches frag to the partially compiled code 

sequence currtext. 

macexpand - expands a macro and adds the result 

to currtext. The code is not given. 

We first give the code for the function excomp(exp) which 

returns a temporary variable to which the value of exp is 

assigned upon the execution of the code generated. 

We assume a function internatrep() which converts the external 

representation of a variable into an internal representation. 

Internatrep uses as hidden variables the namescope in which the 

original source code appeared and the number of the subroutine 

currently being compiled. Scope and endscope declarations 

cause the current namescope to be changed. 

definef excomp(exp); 

· /* inblock = f if compiling function return*/ 

go to <ife,block,fcall,const,var>(exp(l)); 

const: return exp; 

var: return internalrep(exp(2)); 
/* internal representation substituted for external form <var,charst:r>ing 

f Call ·. ( 11 * / ~dQ <ea > + excomp[exp(2:)] + <gentemp(argtemp)>); 

block: 

ife: 

return argtemp; 

/* case of code block within an expression*/ 

inblock = t; genlab(ebout); gentemp(ebtemp); 
compile[ exp (2:)] ; 

inblock = f; 

add <herelabel,ebout> 

return ebtemp; 

/* compilation of conditional expression*/ 

genlab(outlab); j = 2; gentemp(outvar); 

(while j lt #exp doing j = j+2;) 

genlab(nxtcond); 
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add <ifnotgo, excomp{exp{j)) ,<const,<label, nxtcond>>>; 

add <callc, assign, outvar, excomp{exp(j+l))>; 

add <goc, <label,outlab>>; 

end while; 

add <callc, assign, outvar, excomp(exp(j-1))>; 

add <herelabel, outlab>; 

return outvar; 

end excomp; 

We now give code for the process of.compiling a code block 

obj. We identify some of the important functions and 

parameters used below. 

subno - integer designating the subroutine being compiled 

nargthis - number of (explicit) arguments of subroutine being compiled 

currprim - is t, if subroutine being compiled is primitive 

argno(.) - function which extracts the number of arguments of 

~he current subroutine 

prim(.) function which is t if argument is a primitive; 

f otherwise. 

callinf(.) - decodes the calling information in a primitive 

subroutine header. 

inbZock - flag which marks the compilation of return exp rather 

than x = exp 

assemb Ze (. J - processes labels into form consistent with 

conventions of base-level interpreter. 
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/* the 'abstract compiler algorithm' */ 

define compile(obj); 

initially sublist = nult; subno = n; 
currtext = nult; inblock = f;; 

go to <if£, ifs, while, assign, goto, block, subrout, 

lprimsub, primsub, labhere, call, retn, eretn, 

scope, endscope> (obj(i)); 

subrout: lprimsub: primsub: 

/* terminate the last subroutine*/ 

if (subno ne n and not currprim) 

then/* save text of current subroutine*/ 

prim(subno) = f; text(subno) = assemble(currtext); 

end if; 

<-,subno,nargthis,-> = obj; 

currtext = blanksubr; 

argno(currtext) = nargthis; 

if obj(l) ~ subrout 

then prim(currtext) = f; currprim = f; return; 

end if; 
/* ~lse primitive header*/ 
prim(currtext) = t; 
callinf(currtext) = pconvert(obj(4)); 

if obj(l) ~ lprimsub 

then sinf(obj(S)) = subno; 

end if; 

sublist(subno) = currtext; currprim = t; 

return; 

scope: newscope(exp(2)); return; 

/* this routine changes the namescope 

endscope: scopend; 
/* reverts current scope to its parent*/ 

*/ 
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call: 

retn: 

eretn: 

if internrep(obj{2)) is subname ~ n 
then add macexpand(obj(2:)); 

else add {<call>+ compile[obj(2:)]); 

end if; 

return; 

add <retn>; return; 

/* one form within routine, another within code block*/ 

if inblock then go to blockret;; 

add <callc, assign,<var, nargthis+l>, excomp{obj(2))>; 

return; 

- blockret: /* ebout and ebtemp are global * / 

add <callc, assign, ebtemp, excomp{obj{2))>; 

add <goc,<label, ebout>>; 

retur11,; 

goto: add <go, excomp(obj(2))>; return; 

assign: /* compilation of assignment statement which has 

left and right side*/ 

end if; 

.return; 

rightside = excomp(obj(3)); 

ldexter = #currtext; 

/* now compile lefthand side*/ 

leftside = excomp{obj(2)); 

/* change last expression to lcall if obj{2) not atom*/ 

if (#currtext ~ ldexter) 

then add <callc, assign, left.side, right.side>; 

else/* change last expression to lcall */ 

text(#text is npt) (1) = lcall; 

/* sequence of ZcaZZs in reverse order*/ 

(npt > Vj > ldexter) 

x = text(j); x(l) = lcall; add x; 
end \fj; 
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ift: ifs:/* long and short if statement*/ 

genlab(outlab}, j = 2; 

(while j lt #obj doing j = j+2;} 

add <ifnotgo, excomp(obj(j}}, <const,<label,outlab>>>; 

end while; 

add <herelabel, outlab>; 

return; 

block: (2 ~ ~j ~ #obj} compile(obj(j}} ;; return; 

while: <-,cond 1 block,dostat,contlab,outlab> = obj; 

genlab(start}; add <herelabel, start>;· 

add <ifnotgo, excomp(cond} ,<const,<label, outlab>>>; 

compile(block}; 

add <herelal?el,contlab>; 

compile(dostat}; 

add <goc, <label ,start>>;_ 

add <herelabel, outlab>; 

·return; 

For completeness we give 

define add x; 

/* currtext is global*/ 

currtext = currtext + <x>; 

return; end; 

Also the function 

definef internalrep(extrep) 

cstring = extrep(2); 

internrep = internalias (ns,cstring); 

/* ns is the current namescope internalias produced by 

namescope algorithms see below*/ 

return if hd internrep eq subno 

then internrep(2) else internrep; 

end; 
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6 • Assembler 

Labels are processed into the form accepted by the base-level 

interpreter by the function assemble. The algorithm requires two 

passes. 

The first pass determines the location of all labels; the 

second adjusts all arguments of the form <label,dest> into a 

single integer. During the second pass entries of the form 

<call,<const, subname>, ..• > 
are adjusted to 

<callc, subrno, > 

where subrno is the index in text at which suhname is stored. 

Similar transformations are made on entries of the form 

<lcall,<const, ... >, •.• >. 

Opcodes goto, ifgo, and ifnotgo are adjusted to gotoa,ifgoa, 

and ifnotgoa if the labels are constants. 

definef assernb1e(subr); 

initially where= {<goto, go>,<ifgo, stmtifgo>, 

<ifnotgo, stmtifnot>,<call, stmtcall>, 

<lcall, stmtlcall>, <retn, nop>,<stop, nop>};; 

macro findconst(loc,fn,newop,adjlabl) 

if n atom item(loc) and hd item·~ const 

then item{loc) = fn(item{loc)); 

item(l) = newop; 

endif; 

subr = subr + adjlabl{<item>); 

endm; 

labels= ni; newsubr = nult; 
le= l; 
/* determination location of all labels*/ 
(\fentry(j) E subr) 

if entry{l) £g_ herelabel 

then if labels(entry(2)) ne n 
then print 'second specification of label',dec entry{2); 

else <entry(2) ,le> in labels; 

end if; 

else le= lc+l; newsubr = newsubr + <entry>; 

end if; 

end \fentry; 



SETL 76-78 I 

/* have determined location of all labels - adjust destinations 

of all <const,<label,lblnr>> on second pass */ 
/* second pass*/ 

subr = nult; 

(Vitem(j} E newsubr} 

go. to where (item(l}}; 

go: findconst(2,reallbl, goc,}; return; 

stmtifgo: findconst(3,reallbl,ifgoc,); return; 

stmtifnotgo: findconst(3,reallbl,ifnotgoc,); return; 

stmtcall: 

stmtlcall: 

nop: 

end assemble; 

findconst(2,realrout,callc,adjlabl); return; 

findconst(2,realrout,lcallc,adjlabl); return; 

subr = subr + <item>; return; 

We now give the functions which perform the transformations. 

definef reallbl(arg); 

/* labels is global*/ 

return if labels(arg(2}} is retarg ~ n 
then print 'missing label', maklbl(arg}; 

retn lastlbl; 

else retarg; 

end reallbl; 

definef realrout(rout); 

return rout(2); 

end realrout; 

Finally, the function 

definef adjlabl(item); 

return (item(l:2) + [+:3~j~#item]<if hd item(j) eq label 

then reallbl(item(2)) else item(j) ;>); 

end adjlabl; 
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7. Resolution of programmer specified semantics 

In what follows, we shall be processing the output of a tree 

to a linear-text compiler similar to that defined by the last 

given algorithm. Our remarks are peculiar to SETL, although the 

substance of them can be modified to accommodate other languages. 

We suppose that the abstract recursively structured syntactic 

tree discussed above has been linearized but that ambiguities 

in the names of the operators exist. The namescoping/name­

propagation process has been carried out, so that every subroutine 

and every variable is put· in correspondence with a pair <m ,n>. 

We suppose that similar symbol transformations have been applied 

to the names appearing in our various declarations. 

It is the objective of the following to resolve the significance 

of function and operator references starting with the form in 

which such references initially appear. We will outline the 

processes which ascribe a definite interpretation to the meaning 

of an operator or function in a line of code; for example, to 

the plus sign in 

.- • • A + B ••• 

This meaning depends on the kind types which have been specified 

for A and Bin the namescopes in which this line appears and upon 

the "from" declarations applicable to these kindnames which are 

active within this namescope. We gather together the forms of 

semantic definition available to the user, as they have been 

specified above. First, the dexter forms, in which we include 

the allow statement. 
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monadicfn ld from op <kindname > get <kn.> using <routname> 

dyadicfn 2d from <kindnamel> op <kindnarne2> get <kn> using <routnarne> 

J 'neval 

releval 

rangevaZ 

setform 

braakform 

tuplform 

subaaZ Z 

3d from 

4d from 

Sd from 

6d from 

7d from 

<knO>(<knl>,<kn2>, .•. ,<knj>,-) 

<knO>{<knl>,<kn2>, •.. ,<knj>,-} 

<knO> [<knl>,<kn2>, •.. ,<knj>,-] 

{<knl>,<kn2>, .•• ,<knj>,-} get 

[<knl>,<kn2>, ... ,<knj>,-] get 

get 

get 

get 

<kn> 

<kn> 

<kn> using <routname> 

<kn> using <routnarne> 

<kn> using <routname> 

using <routname> 

using <routname> 

8d from <<knl>,<kn2>, ... ,<knj>,-> get <kn> using <routname> 

9d allow <kn0>(<knl>,<~n2>, ••• ,<knj>,->)using <routname> 

The 1
-

1 in the forms 3d to 9d is optional and indicates that a 

variable number of additional arguments may be part of the argument 

list of the construction. 

The possible existence of user supplied redefinition of the 

semantics of the normal SETL constructions restricts the amount 

of digestion of the source program which can occur prior to the 

analysis of these declarations. Let underscoring mark user defined 

infix operators. The constructions a f b, and f(a,b} are inherently 

different even though the symbols are the same. Different forms 

of from declaration apply to these two different constructions. 

Knowledge of the form of the construction must be preserved until 

the user supplied semantics are considered. Thus we give these types 

of construction generic names dyadicfn and fneval. The argumentsto 

each of these generic functions is <f,a,b>. Note that the infix 

symbol f appearing in a f b is the first token of the argument list. 

Construction 6d corresponds in the usual semantics to the process 

of set formation and similarly 8d corresponds to tuple formation. 

We assume the tree to linear-text compiler will designate these 

processes in a generic manner and compile the tokens which surround 

the punctuation into an argument list. We stipulate the designators 

setform, brackform, and tup Zform for each of 6d, 7d and 8d resp ec­

ti vely. SimilarlY, 3d mimics the syntax of functional evaluation. 

Given that f is a set and not a routin~, the standard semantics 

of :t {ti:·,b, c) is the invocation of a routine in the RTL which returns d 

if there is only one tuple in f, considered as a set, with 
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initial components a,b,c whose fourth component is d. Briefly, 

g{a} 

and 

h[a,b] 

is the set 

is the set 

{hd x, X E g} 

{elth(3), elthEh, t 1Ea, t 2Eblelth(l:2) 

~ <tl,t2>}. 

The semantics of these constructions are modified by declarations 

of the form 4d and Sd respectively. We give each of these 

constructions a generic designator fnevaZ, reZevaZ, and rangevaZ 

in analogy to their usual semantics in SET~. 

In all of these constructions, the clause "using <routname>" 

is optional. If omitted, the construction is interpreted as 

designating the usual SETL operation. The argument list which 

is compiled for each of these forms depends on the construction. 

For later reference, we include an example of the argument lists 

produced by the parser and preserved by the tree to linear-text 

compiler for each of the constructions ld,2d, ... ,9d. The 

symbol t denotes the result in each case. We stipulate 

argO,argl, ••. ,argj have kindtypes knO,knl, ... ,knj respectively. 
I 

ld <op, argl, t> 

2d <op, argl, arg2, t> 

3d <argO, argl, • • • I argj, t> 

4d <argO, argl, • • • . I argj, t> 

Sd <argO, argl, ... ' argj, t> 

6d <argl, arg2, • • • I argj, t> 

' 7d <argl, arg2, ... , argj, t> 

8d <argl, arg2, • • • I argj, t> 

9d <argO, argl, • • • I argj, t> 
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In addition to the dexter forms, sinister forms are available. 

We give each form a generic designator. 

tmonadicfri 

tdyadicfn 

tfneval 

9,releval 

tpowfneval 

9,setform 

tbrackform 

ttuplform 

tassign 

lt fort £12 <knl~ =<kn> use <routname> 

22 fort <knl> op <kn2> =<kn.> use <routname> 

3.Q.. fort < knO> (< knl> ,< kn2> , ..• ,< knj> ,-> 

= <kn> use <routname> 

49, fort <knO>{<knb ,<kn2>, .•• ,<knj> ,-t·· 
= <kn> use <rout11ame> 

5.Q.. fort < knO> [ < knl> ,< kn2> , ••. ,< knj> ,- ] 

6.Q.. fori 

7t fort 

8t fort 

9t fort 

= <kn> use <routname> 

{<knl> ,<kn2>, .•. ,<knj> ,-} 

= <kn> use <routnartle> 

[<knl> ,<kn2>, •.• ,<knj> ,-] 

= <kn> use <routname> 

<<knl>,<kn2>, ..• ,<knj>,-> 

= <kn> use <routnam~> 

<knl> = <kn2> use <routname> 

Types 6t, 7t, and 8t are novel. Their significance 

should be clear to the reader. In all of the above, the 

kindlists are terminated by an optional '-'. The presence 

of this symbol indicates a variable number of additional 

arguments. 

These· dexter forms impose constraints on the parse 

s-i,milar to those imposed by dexter forms. For reference, 

we give the argument list produced by the parser for each 

construction. Argi has kind kni. 
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li <op, argl, arg2> 

2i <op, argl, arg2, arg3> 

3R, <argO, argl, • • • I argn> 

4R, <argO, argl, • • • I argn> 

Si <argO, argl, ... , argn> 

6i <argl, arg2, • • • I argn> 

7R, <argl, arg2, • • • I argn> 

Si <argl, arg2, • • • I argn> 

9R, <argl,arg2 > 

We also display the syntax of the 'forit' declaration 

forit <kindname> €! <kindnamel> u·se 

<firstroutname>,<nextroutname>,<actelroutname>; 

Note that the source-language iteration 

(Vx e:: a) <body> end V; 

is assumed to be expanded into linear code equivalent to 

xaddr = first(a); 

(while xaddr ne Q doing xaddr = next(a,xaddr) ;) 

x = actelt(xaddr); <body> end while; 

For the identity of first, next, and actelt to be determined 

u~ing user-supplied forit declarations, these functions 

nwst be marked both in the abstract syntactic tree form of the 

program and in the linear text derived from it. 

We choose foritl, forit2, and forit3 as th~ respective designa­

tors of these functions-The argument list compiled by the tree to 

linear-text compiler must include x and a because the loop header 

(V xe:: a) determines the ultimate identity of the functions designate. 

by foritl, forit2, and forit3. Avoiding redundancy where possible 

we specify the complete argument. list for each of these 

designations ,as: 
foritl: 
forit2: 
forit3: 

<x,a> 
<x,a,xaddr> 
<x,a,xaddr> 
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We now consider the transformation process. A typical item 

in the linear text in which operator and functional references 

must be resolved is 

<desig,ns,argZist,resuZt> 

where, 

desig designator of syntactic type of construction 

ns namescope_in which original text appeared 

argZist - tuple with local names of arguments 

result local name of result of dexter construction, 

absent in sinister forms. 

According to the preceding remarks, desig takes on one of 

the following values 

monadiafn, dyadiafn, fnevaZ, reZevaZ, ... , subaaZZ, 

Zmonadia, Zdyadicfn, ... , Zassign, foritl, forit2, and forit3. 

We assume that the for, forZ, and forit declarations have been 

processed by the tree to linear-text compiler into a set 

using - {<desig,ns,kindlist,polyarg,resultkind,ultrout>} 

where, 

desig - item type designator, one of monadicfn, ... 

ns - namescope in which kind declaration appeared 

kindlist - tuple of kindnames of arguments 

polyarg - t if variable number of additional arguments possible, 

f otherwise 

resultkind- kind of the result in a dexter construction, 

n in sinister 

ultrout - integer identifying ultimate routine, if specified, 

n if not 

The set using must of course include items describing the 

standard SETL semantics. To provide for the case in which the 

user does not specify a kind for a variable, we assume that 

defauZt(ns) - function which returns the default 

kindtype for namescope ns 

is available and defined for every namescope. If a default specifica-

tion for a namescope is not explicitly made, the default option 
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within that namescope is the specification made in the parent scope. 

(Cf. the detailed account of namescoping conventions given below.) 

We assume that default has been defined on each namescope by using 

this recursive construction, and that it is single valued. In 

the absence of a default declaration in an outermost namescope, 

'setZstdtype' is used. The kind of variables for which no 

kind declarations have been made is the default specification for 

the namescope. We also require a set revertf built out of the 

kind and reversion declarations of the form 

revertf = {<ns, arg, revertarg>} 

in which arg reverts to revertarg in ns. 

Since we allow from declarations of the form 

from p(scalar) get ... 

where p is a variable name, kind declarations are in effect reversion 

stipulations of the first order. Moreover, declarations of the form 

x ask require an entry be made in revertf. Only from declarations 

appearing in the same namescope as a line of source text influence 

the semantics of a construction. 

From text of the form just described, processes which we will 

now outline will produce directly interpretable code of the form 

where, 

opcode - fcaZZ, caZZ, ZcaZZ, goto, ifgoto, or stop. 

fn - < name designating a function or routine> 

arg. - name of the i-th argument in the form <m,n> - m-th 
l. 

variable of the n-th routine. argk is the result 

of a dexter construction. 

We make no distinction in this sec.tion between call and callc 

or any of the other pairs of related o~codes discussed above. 
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We outline the conversion process for the line of code 

g(c) =a+ f(a) (*) 

which we assume appears in a namescope ns which contains 

the following declarations; integer and real are kindnames. 

from f(real) get real; 

from real+ real get real using floatadd; 

fort g(real) ~ real use evalg; 

kind real(a); integer(c); 

revert integer(real); 

~ ~ ..... 
A parser and a tree to linear-text compiler together convert'"~ 

the line of source code into the following linearized text 

<fneval, ns, <f,ci>,tl> (1) 

<dyadicfn, ns, <'+' ,a,tl>,t2> 

<lfneval, ns, <g,c,t2,t3>> 

.which corresponds to the expansion of (*) into 

tl = f (a) 

t2 =a+ tl 

g(c) = t2 

(2) 

(3) 

After the from-. declarations are processed using contains at least 

the following entries~. The fourth entry f is the value 

of polyarg. 

<fneval, ns, <f, real>, f real> . _, 

<dyadicfn, ns, <+, real, real>, !_, real, floatadd> 

<lfneval, ns, <g, real, real>, f, re.al, evalg> 

The variable a is identified as having kind real; c, as 

having kind integer. There is one reversion declaration 

a variable of kind integer is to be considered also as kind 

real. 
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The line (1) is interpreted by considering the set 

using{fnevaZ,ns}. The argument list <f,a> must be 

matched to the kindlists of the elements in using{fnevaZ,ns}, The 

result, tl, of a dexter function invocation does not influence the 

determination._of an interpreta.,tion. There are no kindlists of the 

f·orm <f,a>. We then ~onsider pairs of the form <rf,a> and 

<f,ra> where rf is a kind to which f can be reverted and 

ra is a kind to which a can be reverted. a can be reverted to reaZ. 

There is a kindlist in using{fnevaZ,ns} which matches <f,rsaZ>. 

The line (1) is then changed to 

<callc,fneval,f>,a,tl> 

The result tl must be assigned the kind reaZ, as the clause 

"get reaZ" appears in the original declaratio~ which reads: 

from f(reaZ) get reaZ 

An entry into the sets which. govern the reversion of kinds, must be 

made because tJ is a temporary generated by the parser and is 

unknown at the source code level. The tuple 

<dyadicfn, ns, <'+' ,a,tl>,t2 > 

is interpreted after the argument list <'+',a,tl> is reverted 

twice. There is no specification in using {dyadicfn,ns} in 

the form<'+', a tl > or as either <'+' ,a,real> or 

<'+' ,real,tl>. Howeve~ there is an entry in using{ dyadicfn,ns} 

which corresponds to <'+' ,real,real>. The result t2 is given 

the kind real. The code generated is 

<callc, fneval, +, a,tl,t2> 

Interpretation of the sinister form 

<ZfnevaZ, ns,<g,c,t2>> 
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requires consideration of the kind of the right-hand side 

t2; unlike the dexter forms in which the kind of the left-ha.i."ld side 

is of no concern. The argument list must be reverted 

successively to <g,reaZ,reaZ> before the conversion to 

interpretable text 

<ZaaZZ, fnevaL~ g, c, t2> 

is made. 

In general, the principal part of the production of 

interpretable text from linearized code is to determine 

the identity of the operator fn to be invoked in the case 

of function invocations or subroutine calls. The algorithm 

depends upon finding a chain of reversions of the tokens 

of argZist, such that the reverted tokens match the kind-

list of one of the tuples of using{Zocfn,ns}. This corresponds 

to finding a from declaration in the relevant namescope. 

For example, consider the reversion of the argument list 

<a,b>. If no entry in using{Zocfn,ns} 

corresponds to <a,b> then one considers 

tuples of the form <a,rb> and <ra,b> where rb e revert{b} and 

ra e revert{a}. These are reversions of level one. If a 

unique match is found, the reversion process is complete. 

A nonunique match is an ambiguity error. If no match is 

found, each element in the set of level one reversions of 

<a,b> is again reverted and the process is repeated. The 

details of this process will be clear from the algorithm 

given below. 

Note that it is also assumed in what follows that the name­

scoping process creates a 'dummy' subroutine outrout, numbered 

0, to which belong variables <0,1>, <0,2>, whose values 

are respectively initialized to .the first, second, etc. 

primitives, followed by thE: first, second, subroutines 

compiled. 



SETL. 76-89 

These remarks should enable the reader to comprehend the code 

which follows. First we define various sets which are needed in 

the code. 

dexter - { 'monadicfn' , 'dyadicfn' , 'fneval', 'releval', 

'rangeval', 'setform', 

sinister - {IQ, I + x, X E 

loop - {'forit'+ dee 

We now give the main routine. 

definef prodcode(a); 

dexter} + 

n, 1 < "In 

'brackform' , 

{'lassign'}; 

< 3}; 

/* main routine of semantic resolution process*/ 

<desig,ns,arglist,result> = a; 

keys= using{desig,ns}; 

'tuplform' } ; 

/* typical component of keys is <kindlist,polyarg,resultkind, 

ultrout> */ 
willdo = nt; 

argkind = {arglist}; 

(while argkind ne nt and #willdo ~ 0 doing argkind 

= revert(ns,argkind) ;) 

willdo = {t, t E keysl(3s E argkindlma·tch(s,t))}; 

end while; 

if #willdo ~ 0 then 

print 'unable to find semantic interpretation for', a; 

return nult; end if; 

if #w~lldo .9:.! 1 then print 'semantic ambiguity for', a, 

i all the following constructs apply', willdo; return nul t; 

end. i~; 

/* else code item can be built*/ 

<kdlist,polyarg, resultkind,ultrout> = 3willdo; 

/* maik kind of result in dexter construction,*/ 

if desig E dexter then revertf(ns,result) = resultkind; 
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if desig E {fneval, dyadicfn, monadicfn} 

then return <callc,fneval> + 

<if ultrout ~ Q then arglist(l) else ultrout> 

+ arglist(2) + <result>;; 

if desig E forit 

then return <callc> + 
<if ultrout ~ n then <const, desig> else ultrout> 

+ absarglist(arglist,desig) + <result>;; 

end if desig E dexter; 

/* else desig E sinister*/ 

return if desig E {lfneval, lydadicfn, lmonadicfn} then 

<lcallc,lfneval> + <if ultrout ~ n then arglist(l) else ultrout> 

+ arglist(2:); 

else <lcall, if ultrout ~ n then <const, desig> else ultrout> 

+ arglist; 

end prodcode; 

definef match(arglist,eltkeys); 

/* dexter, sinister, loop are global*/ 

<kindlist, polyarg> = eltkeys; 

return kindlist ~ arglist(l: #kindlist) 

and((ikindlist lt #arglist)imp polyarg); 

/* imp is the boolean operator imples */ 

end match; 

definef absarglist(arglist,desig); 

return if desig E {'foritl' ,'forit2'} then arglist(2:) 

else if desig ~ 'forit3' then arglist(3:) 

else arglist; 

end absarglist; 
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In the code that follows ns knows y is true if y is a 

variable known inns. 

definef revert(ns,setarg); 
newkd = [union: x E setarg, 1 ~ Vj ~ #x] rev.ertf{ns,x(j)}; 

return if newkd ne nt then newkd 

else if (ns knows 3 setarg) then default(ns) 

else nt; 

end revert; 


