
SETL Newsletter No. 76

Semantic-Definition Matters

Table of Contents

1. Introduction

2. Name scoping conventions

a. Syntax and Semantics

b. Algorithms

c. Internal representation of variables

3. Programmer definable object types

4. Base level interpreter

5. Tree to linear text compiler

6. Assembler

May 1973

J. Schwartz

and G. Jennings

7. Resolution of programmer specified semantics

SETL 76-1

1. Introduction

In the present newsletter, a preliminary attempt at systematic

semantic definition of SETL will be made. This will be done by

describing, in a deliberately abstract way, a hypothetical 'back end'

for the SETL compiler. The 'back end' will consist of a set of

routines concerned with name scoping, compilation of abstr~ct

recursively structured syntactic trees into interpret-

able serial structures, digestion of labels, and finally with the

interpretation of an ultimate code form. The total package will

include almost all the routines necessary to go from a simplified

'host language' form of SETL to interpretable text.

We use the phrase_'host language' to distinguish

between 'host' and 'user' languages. A ho-0t language is a language

providing a full set of semantic facilities, but with a syntax

deliberately kept simple. Such languages are riot intended

for direct use, but rather as a basis and target for language

extension. By keeping the syntax simple and modular, one confines

the mass of irregularities which an attempted extension must digest.

In designing a u-0e~ language, on the other hand, one incorporates a

fairly elaborate collection of syntactic facilities, hoping that

these will be directly useful in a wide range of applications.

SETL as currently specified is a user language. In the present

newsletter, an attempt will be made to describe both an underlying

host language and the manner in which this host language can

support SETL (as one of several possible syntactic front ends).

Note in this connection that we may eventually decide to make the

host language an explicitly reachable part of our SETL implementation.

The present newsletter has significant points of contact with

Hank warren's Newsletter 53. However, the semantic notions there

represented by code sequences in LITTLE and linkage conventions

spelled out in LITTLE are put more abstractly in the present

newsletter.

One item in the presently specified SETL, to wit the name

scoping rule, is generalized in the present newsletter. We arrive

at_a name-scoping system which rests on the same semantic base

SETL 76-2

as before, but which is considerably more general.

To make clear the overall structure of the translation process

which the present newsletter describes we give a diagram summariz­

ing its main stages.

'host language'
variables represented as

character strings
scope declarations in place
semantic declarations unprocessed

tables constructed

',

assignment of an internal
representation to each
variable name

linearized text
scope declarations eliminated
tables for operator resolu­

tion constructed

linearized text
ready for assembly

parser

names coping
algorithms

linearizer

macro expansion

operator resolution

assembly/label digestion
interpretable textld...----------L ______________ _

execution or interpretation

In the present newsletter, algorithms will be given for the

linearization, name resolution, operator resolution, and assembly

processes appearing above. No specific parse will be described,

as we wish to concentrate on semantic matters. We regard parsing

as a separable user-variable part of the overall compilation process.

SETL 76-3

2. Namescoping Conventions
a. Syntax and Semantics.

We shall now begin to outline a family of namescoping mechanisms,

which it is hoped are sufficiently general and powerful to be

convenient in the development of very large systems of programs.

Of course, only experience not presently available can testify to

the success (or failure) of the scheme proposed. It is hoped also

that the scheme proposed will support user languages with a useful

variety of user-level nam~scoping conventions.

We regard a namescoping system as a set of conventions which

assign a unique 'resolved name' x to each 'source name' y appearing

in a mass of text. The particular x to be assigned to each occurrence

of y depends on the location of x within a nested, tree~like family

of scopes.

The purpose of a namescoping system is to balance

the pressures toward global use and local use of names.

Unrestricted. global use of names is unacceptable, since it creates

a situation of 'name crowding' in which names once used become, in

effect, reserved words for other program sections. Hard-to-diagnose

'name overlap' bugs tend to abound in such situations. 'Globalisation'

of any subcategory of names can recreate this problem; for example,

in large families of subroutines it may become difficult to avoid

conflicts between subroutine names. In sufficiently large program

packages, it will be desirable to give even major scope names a degree

of protection.

On the other hand, a system in which names tend very strongly

to be local unless explicitly declared global can tend to force one

to incorporate large amounts of repetitive declaratory boilerplate

into almost every protected bottom level namescope or subroutine.

In a language like SETL, which aims at the compressed and natural

statement of algorithms, this burden is particularly irritating.

What we therefore require is a system capable of dividing a

potentially very large collection of programs into a rationally

organised system of 'sublibraries', between which coherent cross­

referencing is possible in a manner not requiring clumsy or elaborate

locutions.

SETL 76- 4

Certain important characteristic.s of the name resolution

algorithm to be proposed are noted in the following remarks.

a. We deliberately break the conventionally very close

connection between subroutine boundaries and name scopes.

Name scopes enclosing several subroutines are allowed;

at the same time, a single subroutine may contain several

· independent name scopes. A subroutine is also a namescope.

b. We regard scope boundaries as logical 'brackets' possessing

a ce~tain power to protect'names within them from identification

with names of the same spelling located outside. For flexibility,

distinct numbered levels of bracketing are provided. We stipulate

that within a scope, two variables with different names are

different unless an explicit declaration is made.

c. We provide mechanisns for identifying variables which appear

in the same scope and have different names, or appear in different

scopes. The mechanisms for identification act recursively. Two

methods are provided for the identification of variables appearing

in different scopes. An explicit alias statement is provided

to identify variables which appear in the same scope.

d. Variables can be identified by explicit remote references

via the include statement or by being made global within a scopes,

in which case they are transmitted to scopes included within s.

SETL 76-5

We shall prepare for a formal account of the semantic effects

of our name-scoping scheme by describing a few points relating

to its syntax. We begin by generalizing the notion of token.

A sim~le token is an item recognized as integral by the lexical

scanner for SETL; this may be either a special symbol, constant,

simple name, underlined name, etc. A compound token or

qualified token is a sequence of simple tokens connected by

occurrences of the 'unde+bar' symbol. Thus

xl

is a simple token, while

xl_scopel_chapter3

is a qualified token. Similarly,

+ and maxop

are simple tokens;

+_scopel_chapter3

and

· maxop scopel_chapter3

are compound tokens. The successive simple tokens making up a

compound token are its parts. The lexical type of a compound

token is the lexical type of its first part. With the possible

exception of its first part, every part of a qualified token must

be a simple name.

We desire to represent a compound token by as few parts as

uniquely determine it. For example x1 and xZ_scopel denote

the same variable because x1 is an initial part of the longer

token. Similarly x1 scope1 and x1_scope1_item_chapter3 also

designate the same variable as x1. In such a context the token

xl_scope2 is not allowed to appear for then xl would be synonymous

with x1_scope2 and xl_scopel.But the tokens xl_scopel and

xl_scope2 are different by virtue of having different

names. We will provide an explicit declaration to stipulate

that two (compound) tokens denote the same variable.

We demand that if t 1 ,t2 ,t3 appear in the same namescope

SETL 76-6

then t 1 may be ~he initial part of two compound tokens t 2
and t 3 only if t 2 is an initial part of t 3 or t 3 is an initial

part of t 2 .

The text with which we deal consists of a linear sequence

of tokens, grouped into a nested family of namescopes (which

for brevity we may refer to simply as scopes). A scope is

opened by a header line having the form

(1) scope <(optional) level indicator> <scopename>;

for example

scope 3 main_part_of_optimizer;

Here, <scopename> designates a simple or compound name, which

names the scope. The optional <level indicator>, if it occurs,

has simply the form

<integer> or - <integer> •

The nonoccurrence of a level indicator is logically equivalent

to the occurrence of a level indicator with a value of zero.

A scope opened by the header line (1) is closed by the occurrence

of a matching trailer line

(2) end <scopename>;

for example

end main_part_of_optirnizer;

all the text included between (1) and. the next following matching

line (2) constitutes the body of the scope headed by (1). A line

(2) matching each line (1) is required; the absence of a matching
trailer constitutes a scoping error.

A subroutine definition

definef subrname;

is also a scope opener. This scope is named subrname and is closed

by the end statement for the subroutine. To allow a level indicator

to be associated with the subroutine an (optional) integer may

separate definef and subrname :

definef 3 subrname;

SETL 76-7

Several other forms of scoping error will be described in the

following paragraphs. A text is acceptable to_ the names cope proces­

sor if it contains no scoping errors.

The text comprising a scope ns falls naturally into several

portions:

(a} irnbedded subscopes;

(b) scope-associated declaratory text (to be described in more
detail shortly); ·

(c) other text, which we call the proper text of the namescope ns,
which includes the executable statements, if any.

The beginning of a scope ms imbedded within ns is marked by

the occurrence of a header line of the form (1); if such a header

line occurs in ns, we require that a matching trailer line (2)

be present in the body of ns (condition of well formed nesting).

In such a case, we call ms a subscope of ns. We say that ms is

directly irnbedded within ns if ms is a subscope of ns, but is

not a subscope of any proper subscope of ns. We

call ns the parent scope of ms, and call ms an immediate descendant

of ns. If two scopes have the same parent scope, they are said

to be siblings of each other.

We require that a scope has a name different from the name of

its parent and the names of its siblings. This

allows us to refer to each scope in a unique manner by using

a sufficiently long name string formed by concatenating the

scope's immediate name with the name of its parent, its parent~s

parent, and so forth. Thus, for example, in a sufficiently

large program library the following configuration of scopes might

occur:

scope linear_prograrnrning;

scope optimizer;

X =
end optimizer;

end linear_programming;

scope fortran_compiler;
scope optimizer;

end optimizer;

end £ortran_compiler;

(3)

SETL 76-8

In the di£cussion which follows we shall, in order to refer

unambiguously to one of the two different scopes called optimizer

use hyperqualified name~ of the form 'optimizer.fortran_compiler'

and 'optimizer. linear_programming'.

Similarly, two distinct variables named x, both occurring

within these scopes, will be distinguished by using the hyper­

qualified names 'x.optimizer. fortran_compiler' and

'x.optimizer. linear~programming' • Note also that we will only

insist on as deep a level of qualification as is required to

guarantee uniqueness of reference; for example, we allow the

same two variables x to be referenced as 'x.optimizer.fortran'

and 'x.optimizer.linear' respectively. We insist on using' ' to

separate scope names. ·

Note that hyperqualified names (punctuated by dots) belong

exclusively to the 'metatheory' of namescoping. The user of our

narnescoping system will use qualified tokens (with underbars}

exclusively. The following pages will define the manner in which

'names' (with underbars) correspond to 'items' {with dots).

Within the total mass of proper text (cf. (c} above) associated

with a namescope ns, various tokens will occur. These are said

SETL 76-9

to be direat Zoaal tokens. For the purposes of the following

discussion, it will be convenient to designate each such occur­

ren~e of a token t by a symbol showing explicitly the nest of

scopes in which t appears. For definiteness, we will write this

symbol as
t. nsl. ns2. ns3 •...• nsk

where ns 1, ... ,nsk is the nest of scopes containing t, ns 1 being

the smallest such scope; ns 2 , the parent of ns 1 ; ns 3 , the parent

of ns 2 ; etc. ns k is an .'outermost' scope, i.e. a scope possessing

no parent.

Token occurrences designated by the same hyperqualified symbol we

regard a priori as referencing the same object. 'Ihe central problem

addressed by any namescoping scheme is to decide when two token

occurrences not designated by the same symbol reference the same

object. In the present namescoping scheme the following approach

is taken. Symbols

t. nsl. ns2• nsk [*]

will be called items. In a string of .source text, each token,

compound or simple, uniquely determines an item. We give rules

to determine when two items represent the same variable. Within

a namescope, nsl, the token t is sufficient to identify the item

t. nsl. ns2 nsk

We say that the local alias of the item t.ns1.ns2 nsk is t.

Two items, t1.ns1.ns2 nsk and t2.ns1.ns2. .nsk which

appear in the same namescopes with aliases t1 and t2 are

identical if tl is an initial part of the compound token t2,

or if t2 is an initial part of tl. Items appearing in the same

namescopes with alias first_part and first_part_of_x are identical

because first_part is an initial part of first_part_of_x.

An item with alias first_part_of_Jj would also be equal to

first_part. We demand that the occurrence of these

three tokens in a name-scope be an error.

This condition is determined by noting that first-part is

no longer an unambiguous first part of a larger compound token.

SETL- 76-10

The declaratory text associated with scopes allows items

whose aliases appear in different scopes to be identified.

Two principal declaratory forms, an include declaration and

a global declaration, are provided.

In preparation for a discussion of the semantics of include

statements, we discuss their syntax. An include statement has

the form

include <list>, <list>, ... <list>;

or, if only one <list> occurs, the simpler form

include <list>;

T.he syntax of <list> is as follows:

<list>= <aliased name> I <aliased name> (-<token>, ••. ,<token>)

I <aliased name> (<list>, •.• ,<list>) <aliased name>*

<aliased name>= <token> I <token> [<token>]

The following example will illustrate the inductive referral

capability of the include statement.

include optimizer (routs3 (output (xl)));

We assume that the declaration appears in a namescope ns in which

a scope item i 1 *ith alias optimizer is known. Within i 1 , a scope

item i 2 under the name routs3 is known. Similarly, within i 2
an item i 3 with alias output is available and is a scope item.

Finally within i
3

an item i
4

is known with alias xl. The item i
4

is identified with the item whose alias inns is xl_output_routs3_

optimizer.

SETL 76-11

We now consider an example which uses more of the power

of the include declaration.

include optimizer (routsl*, routs2 (-flowtrace),

routs3(input*,output));

include output(xl,x2);

Suppose that these include statements occur within a scope ns.

Suppos~ also that

the name optimizer is the alias of a scope item known inns.

An item known in optimizer as routsl is identified with the item

known inns under the a~ias routsl_optimizer. We use the alias

of an item without specifying the narnescope

when no ambiguity can arise. In addition all items known

in routsl are identified with items inns. If x is the alias of an

item in routsl, its alias inns, is x~routsl_optimizer. All of the

items known -. in routs2 less the item known therein as flowtrace

-are identified with items in ns. Input denotes a scope item

available in routs3. All of the items known in input including

the scope item itself are propagated into ns. If y is the alias of an

item in input its alias inns is ,y_input_routs3_optimizer.

Then, an item with alias output_routs3_optimizer is included.

This last item will be identified with that whose alias appears

in the second include statement as output. The identity of

xl and x2, •i1 and i 2 respectively, can now be determined.

i 1 is aliased in ns as xl_output and i 2 , as x2_output as a

result of this declaration.

The reader can see that the effect of these two statement~

is the same as the more complicated single statement:

include optimizer(routsl, routs2(-flowtrace),

routs3(input*,output(xl,x2)));

SETL 76-12

The identity of the item aliased as xl in output when calculated

from the single expression is

xl_output_routsJ_optimizer

whereas the alias produced from the two expressions is xl_output.

Our conventions for identifying compound tokens imply that these are

the same items.

An include statement may cause the identification of i 1 known in

ns1 with an item known in ns 2 under the alias aZias 2 . It is possible

that a-Zias 2 , a token of which it is the initial part, or a token

which is the initial part of aZias 2 does not appear as a direct local

token of ns
2

• We allow this to facilitate the recursive application

of our identification conventions. An item known in ns
2

as aZias
2

is

added to the set of variables known in ns
2

• (See the discussion below

of the algorithms which pe_rform this name resolution process.)

It is possible to make an item i 1 available within ns

under the alias a_b and another item i 2 under a_b_c and still

another item i 3 under a_b_d. The rules imply that i 1 is identical

to i 2 and that i1 is identical to i 3 . By transitivity of equality

this should make i 2 equal to i 3 . The aliases under which i 2 and i
2

are known do not imply their uniqueness. This is an error.

just as if a_b_c, a_b, and a b d were aliases

of direct local tokens.

The reader is cautioned that it is possible for an item i 1
which is a direct local token of nsl and an item i 2 , which is

a direct local token of ns 2 to be identified by including

each in ns 3 with the same alias.

The above example does not illustrate the name-aliasing

feature available in the syntax (and semantics) of the include

statement. The use of this feature is shown in the following

example:

include graphops (transitivity_routines(connectedness[cr] (flagl),

strong_connectedness[] (flagl [scflag], flag2));

SETL 76-13

Suppose that this statement occurs within a namescope ns, and that

the scope name graphops (more precisely, the scope item designated

inns with this alias) is available within ns. Then the include

statement shown above makes available within ns items, the identities

of which are determined as if the brackets (' []')were not present.

The contents of the brackets determine the alias under which each

item is known inns. The first item whose alias is fZag1 in the

innermost scope is aliased inns as

flagl_cr_transitivity_routines_graphops.

'er' appears in the brackets following 'connectedness' and-is

substituted for 'connectedness' in the algorithm to calculate the

alias which was explained above. The items aliased as fZag1 and fZag2

in the scope strong_connectedness .are aliased in ns as

scflag_transitivity_routines_graphops
and

flag2_transitivity_routines_graphops.

The null string in the brackets is substituted for

'strong_connectedness'. Two underbars coalesce to one. As

above, these compound tokens can be abbreviated inns as scfZag

and fZag2 so long as no ambiguity results.

Names can be transmitted between scopes not only by include decla­

rations but alsoby global declarations. The syntax of a global
declaration is

<global declaration>= global <token>, •.. ,<token>;

<signed integer>

Examples are:

I global <token>;

I global <signed integer><token>, ... ,<token>;

global <signed integer> <token>;

= <integer> I - <integer>

global addroutine, xl, x2, addroutine_y;

global 3 optflag;

___ global -L case_flag;

A name nm available in a given scope n..6 and declared global in

th~t scope possesses a globality level, defined as follows:

if the global declaration in which n.m appears begins with a

SETL 76-14

<signed integer> k, the value of k determines the globality level

of nm, if such a signed integer is absent from the global

declaration in which nm appears, then the globality level of

nm is (by default) equal to the level of the scope n-0.
Suppose, for example, that the three global declarations

shown above appear in the context

scope 2 libraryli

global addroutine,xl,x2,addroutine_y;

global 3 optflag;

global -2 case_flag;

Then add~ou.:tine,x1,x2, apd· add~outine_y have globality level 2;

opt6lag has globality level 3, and cMe_6lag has globality

level -2.

An item nm designatedby a name available within a scope n-0
and having a given~globality level n becomes available

within every scope m-0 directly imbedded within n-0, provided

that n is greater than or equal to the specified level of the

scope ms. Moreover, if nm 'penetrates' into ms (i.e., becomes

available via globality within ms), it has default globality level

n ·within ms, and will therefore become known within all imbedded

subscopes of ms, provided that n is greater than or equal to the

level of these subscopes. This global propagation of name

availability will continue through a nest of imbedded scopes until

either a scope of level exceeding nor a scope containing no

subscopes is encountered. The item nm known within a namescope

ns by the alias x1 is known under the alias x1 within all scopes

ms to which it is propagated through global declarations.

SETL 76-15

The propagation rules just described are basic to our

name-scoping scheme. As a convenience, however, we include

an additional mechanism which allows
a whole group of names to be given a common designation and

thus to be tr~nsmitted collectively. Suppose, for example,

that within a program library a set of routines having some

common overall purpose is available. Then, by giving a group

name to the routines of this set, and by making the group item -avail.able in some other scope, we make all the member items

of the group available in that scope.

A group statement has the form

group <token>: <list>, •.. <list>;

or the simpler: form

. . group <token>: <list>;

where <list> has the syntax explained above.

Suppose that the following group statement appears

in a namescope n.s, within which we take a scope name gll.a.phop.6

to be known:

group graph_flags: graphops(transitivity_routines

(connectedness [er] (flagl) ,strong_connectedness [.]
..

(flagl[scflag], flag2));

This statement has, in the first place, the same force as the
. include statement · ·· · ·

include graphops(transitivity_routines(connectedness[cr] (flagl),

strong_connectedness[] , (flagl [scflag] , flag2)) ;

SETL 76-16

Moreover, the items known within ns under the aliases

fZag1_ar_transitivity_routines_graphops,

safZag_ ar_transitivity_routines_graphops,

fZag2_ ar_transitivity_routines_graphops,

become; members of the group graph_fZags.

In that group, they have the same aliases; indeed,

an item always has the same alias within a group as within

the scope in which the group is constituted.

If the group graph_fZags is subsequently made available

within some other scope ms, perhaps under an alias at~ and if the

method of propagation does r.ot specify explicitly that

only a portion of the group is to become available, then these

same objects will become available within ms. Their aliases within

ms will be (in the absence of explicit re-aliasing)

fZagl_conneatedness_transitivity_routines_graphops ,

safZag_ar_transitivity_routines_graphops

fZag2~scr _transitivity _routines _graphops

The following 1:xamples demonstrate additional details of

the inclusion rules.

Suppose that ms contains the statement

include graph_flags;

then the items designated above as flagl_ ... , scflag_ ... ,

and flag2_ ..• all become available within ms. Next suppose

that ms contains the statement

include graph_flags(-scflag);

then only the items designated by fZagl and fZag2 become

available in ms. Note that 'scflag' is the first part of

the alias in graph_fZags of only one item in the group.

Hence, there is no ambiguity.

SETL 76-17

Third, suppose that ms contains the statement

include graph_flags(scflag[scf] ,flag2);

Then only the items designated briefly by scflag and flag2 are identi­

fied with items in ms. The former of these has scf_graph_flags

as its local alias within ms. Finally, suppose that ms contains

no include statement involving the name graph_flags, but that

nevertheless the item designated by the name graph_flags b~comes

available within ms, perhaps in view of the appearance of

graph_flags in a global statement within some scope .in which ms

is embedded. Then the objects designed by

flagl_connectedness_transitivity_routines_graphops

scflag_cr_transitivity_routines_graphops

flag2_scr_transitivity_routines_graphops

become available within ms. They are identified with items

already known in ms in the usual way.

The above remarks concerning the include, global, and group

features provided in our name-scoping scheme should make the

general use and action of these features reasonably plain.

Additional details will be given below; the conventions which

apply in logically marginal cases can be deduced from an

examination of the name-scope routines themselves, for which

SETL code is given later in the present newsletter .
•

To identify items available within the same scope we provide

the alias statement with syntax

alias varl, var2, var3; var4, var5;

The tokens varl, var2, and var3 are the aliaoos of items i 1 , i 2
and i 3 which are identified by virtue of this declaration.

Moreover var4 and var5 designate items which are identified.

SETL 76-18

we regard every compound token occurring within a total mass

of namescoped text as a synonym for the item which is its

true designation. Note in particular that such a token will

have precisely those special lexical or syntactic properties

(such as the property of being a macro-name or a syntactically

significant keyword) which its true designation has. We remark

in this connection that ff a token is a macro name at one point

in a namescope nJ, it is a macro name at every point in nJ.

This convention allows macro definitions to be placed anywhere

within the namescope (or namescopes) in which they are to

be applied. In addition from declarations and kind declarations

-(see below) may be included in macros and propagated by our name­
scoping conventions. Include, global, group and alias statements
may not"be included in macros.

The namescoping conventions described

above are quite general in nature.. They

to SETL but · al_so to other languages.

can be applied not only

The point we shall

now make refers more specifically to SETL. A SETL text

consistsof a collection of subroutine and function bodies.

All function and subroutine calls in SETL are recursive.

If a routine is called before returns from all previous

invocations have been executed, then all variables ZocaZ to

that routine must be stacked prior to entry. Side effects are

propagated through variables which are not stacked. Items known
in more than one subroutine (each of which is a namescope) will
always be global and will be stacked
upon entering a routine only if they are declared to be local

to that routine. The syntax of the local declaration is provided

local routname1 (varname1 ,varname
2

, ...),

routname2 (varnamek+l'varnamek+2 , ...), ... ,

Here, routname 1 , routname 2 , are tokens,

possibly compound, whose true designations i must be subroutines

o_r functions.

SETL 76-19

Moreover, varname 1 ,varname 2 ,etc. are tokens, possibly compound,

which must designate variables. No declaration is provided to

prevent an item from being stacked because including an item

trivially in a subroutine, even in one with no executable state­

ments, prevents stacking.

We will give below algorithms for performing the identifica­

tions implied by group, include, and global statements.

Subsequent to their execution, classes of equivalent items will

have been formed. To prevent unintentional identifications,

we impose the constraint that two or more items which represent

direct local tokens of the same namescope m~y not be identified

by group, include, or global statements. These identifications

must be made by alias statements. Subsequent to the determina-

tion of the classes of equivalent items, each item is assigned

an internal representation of the form <m,n> where m is the

number of the subroutine (function) to which it is local and n is

the number of the variable in that routine. A dummy routine outrout

is created to which all variables designating subroutines and

functions are assigned as are all variables known in more than

one subroutine but which are not declared to be local to any

routine. Each of the remaining variables is then local to

exactly one routine. The k arguments of the routine, if any,

are assigned the indices 1,2, ... ,k in the order of their

appearance in the calling sequence. The remaining local variables

are assigned indices from k+l.

SETL 76-20

b. Algorithms

We outline the strategy for making the identifications

of items implied by global and include declarations.

·consider the following lines of namescoped source text.

scope nsl;

include ns2 [a] (ns3 [b] (c, d*, e [newname]));

global globalva~;

C = ni;

end nsl;

An initial pass of the source text will _recognize the items

gZobaZvar, a_b_a, d_b_a, newname b a

as the direct local tokens of ns 1. The last three variables

are recognized by a scan of the include statement. The

variable denoted by a b a is the same variable as that

denoted by a which appears in the one line of

executable text in nsl (see above for a discussion of the

rules for the identification of items designated by compound

tokens). We assume further that the scopE: nsl appears in a

nest of scopes ns2, nsJ, ... , and nsk where nsk has no parent

scope. We represent the scope ns 1 internally for the purposes

of the algorithms which follow as the tuple

<nsl, ns2, , nsk> •

This tuple uniquely identifies this namescope. The four

variables designated above are items which are initially

known in ns 1. The token gZobaZvar is said to be the

ZoaaZ name or alias of the item <gZobaZvar, nsl, ns2, ... ,nsk>

in the scope <ns1,ns2, ... ,nsk>. Similarly, each of

a_b_a, d b a and newname b a is the ZoaaZ name (alias)

of an item in the scope <nsl,ns2, •.. ,nsk>. These four items

i
'·

I
-- I

SETL 76-21

are said to be initially known in the scope <ns1,ns2, ... ,nsk>.

In addition to these four items, the parent scope, the

scope itself, the sibling. scopes, and all immediate descendant

scopes of the scope nsl are known in <ns1,ns2, ... ,nsk>.

For example, the parent scope <ns2,nsJ, ... ,nsk> is known in

<ns1,ns2, ... ,nsk>, under the local, name ns2.

All direct local tokens and scopes adjacent to a scope are

given names on a formal basis during an initial pass of the source

text. We do not give the code for this process in this

newsletter. The local, name of an item in the scope in which

it appears is the first·component of the tuple which is its

name as an item. Moreover, for an item which is not a scope, the

~.(S_fTL) tail .of the tuple is the name of the scope

in which the alias is a direct local token.

In the include statement of the current example, the

string a* implies that all items known in the scope d

are to be included in ns. Suppose that ghj is the local

name of an item which appears in the scope d. That item

is, by virtue of this include statement, to be identified

with an item known in nsl with local, name ghj_d_b_a.

There is no item which is known initially in

<ns1,ns2, ... ,nsk> with this local name. The algorithm

we give will create an item known in nsl with the local name

ghj_d_b_a upon determination of such an impasse. This

latter item will then be identified with the item with

local, name ghj in the scope d.

i-

SETL 76-22

This inclusion, vacuously, of items into nsl facilitates

recursive application of the include and global declaration&

We assume that the initial pass of the source text

creates the set knownby which contains pairs of the form

<saopeitem, varitem> where varitem is an item known in scopeitem.

The creation of the i~em with alias ghj_d_b_a results -in

the pair <<ns1,ns2, ... ,nsk>,<ghj_d_b_a, nsl, .•. ,nsk>>

being introduced into knownby.

We now describe the mechanisms for retaining the informa­

tion that items known initially in different scopes

have been identified. As 'identity' is an equivalence

relation, i.e. a= band b = c implies a= c, it suffices

to provide a vehicle for determining a canonical representa­

tive of the class to which an item belongs. The set ident

evaluated at i 0 is the canonical representative of i 0 .

Also equivset{rep} is the set of items equivalent to the

canonical representative rep. Equivset is the relation inverse

to ident. We retain each set for economy of execution. We

manipulate these sets through two routines ultdesig · and

getequivitem. In this way we avoid initializing

set to {<x,x>, x an item known in source text}.

Group items are distinguished by being members of

each

the set isgroup. If gpitem is a group item and i is an item

which is a member of gpitem, then <gpitem,i> is an element

of knownby.

SETL 76-23

An include statement as it appears in a line of source

text implies the identification of one or more pairs of items.

The method of determination of the identity of the elements

of each item in each pair should be clear from the discussion

above of the semantics of the include statement. We now give

an example of a complication with which algorithms for

processing include statements must cope.

Consider the nested scopes:

scope nsl;

scope x;

w =

end x;

end nsl;

.
• • • I

scope ns2;

scope z;

include ns2(y(w));

w =
end z;

• • • I

include nsl(x[y]);

end ns2;

(4)

(5)

By virtue of (4), the item <w_y_ns2,z,ns2> is to be

identified with another item, known as win a scope with alias

yin the scope ns2. The item <y,ns2, •.. > is not known to be

a scope item until the include statement (5) which identifies

it with the scope <x,nsl> is processed. This shows that

include statements must be considered in an order which need

not be the order in which they appear in the source text.

SETL 76-24

In addition to the sets which we have discussed above,

we will require a coded representation of the include

statements. We assume that the first pass of the source

text associates a set of tuples, called incZude{ns}, with

every namescope ns. Each tuple in incZude{ns} is of

the form 'all'

<ans 1 ,ans 2 ,ansk 1 aliastring,'allbut' ,{ .•. }>

'only'

ans. is the alias in ans. 1 of a scope item. One of
J J-

the phrases 'aZZ', 'aZZbut', and 'only' appears. This

phrase is named keywd_. _ The set which is the last entry

of the tuple is not present if keywd is 'all'. The

scope item ns is the namescope in which the include

statement from which inctupZe was derived originally

appeared. This component which we generically call

inctupZe causes the identification of one or more pairs

of items. One member of each pair is known inns which

we call targetscope. The other is known in the scope source.

The scope source is identified in the following manner.

SETL 76-25

Starting with source= targetscope, the item i 1 whose

local name is ans
1

is identified. The canonical representa-

~
tive, i

1
, of the equivalence class to which i 1 belongs is

determined. If i 1 is a scope item, then source is set equal

to i
1

and the second component of inctupZe is considered

in the same way. This process is repeated until all the items

designated by the components pr..eceding aZiastring are identified or

until the itemik is not a scope item. In the former case,

identifications between items in the scope targetscope

and items in the scope source are made. We will make further

remarks on this process below. In the latter case, inctupZe

corresponds either to a namescoping error or the processing

of additional inctupZes must uncover a new scope item in

source with alias ansk. When this occurs, further decoding of

inctupZe is attempted. A partially condensed form of inctupZe

which reflects the successful part of the decoding is saved

and tagged with source to facilitate the continuation of the

decoding process. If keywd of inctuple is 'all' or 'allbut',

then subsequent introduction of items into source which are

not known at the time of decoding of inctuple may require

reprocessing inctuple so as to propagate the newly discovered

items into targetscope. A condensed form of inctupZe is

retained in the set decoded for this purpose.

SETL 76-26

The members of the set which is the last component of inctuple

determine the pairs of items to be identified. If keywd is

'all' then each item known in source is identified with an

item in targetscope. If i is an item with alias a known

in source, then the item known in targetscope with alias

a_aZiastring is identified with i. Note that aliastring

may be a compound token.

We have now explained the function of e·ach component

of inctupZe. We give an example to indicate how include

statements are reduced to inctupZes.

two include statements

Suppose that the

include optimizer(routsl,routs2(-flowtrace),

routs3(input*, output(xl,x2)));

include graphops(transitivity_routines(connectedness[cr] (flagl),

strong_connectedness[scr] (flagl[scflag], flag2));

occur within a scope x. Then includes(x) will contain

(at least) the following set.

{<'optimizer', 'optimizer',' only',{<' routsl' >, < 'routs2' >, < 'routs3 • > }> ,

<'optimizer', 'routs2', 'routs2_optimizer', 'allbut', {~lowtrace'}>

<'optimizer' ,routs3' ,'routs3_optimizer', 'all' >

<'optimizer',~routs3' ,'output',

'output_routs3_optimizer','only' ,{<'xl'>,<'x2'>}>

<'graphops' ,'transitivity_routine' ,'connectedness',

'cr_transi ti vi ty _routine_graphops, 'only' , { 'flagl'} >,

<'graphops' ,'transitivity_routines' ,'strong_connectedness',

'scr_transitivity_routines_graphops' ,'only',
-

{<'flagl' ,'scflag'>,<'flag2'>}>}

SETL 76-27

Suppose that ite-ml and item2 are canonical representatives

and are to be identified. As scope items, g:roup items, and macros

are definite semantic constructs, only one of iteml and

item2 may be either a scope, a group item, or a macro .. The contrary

case is a namescoping error. We suppose,without loss, that iteml

is~a scope item, a group item, or a macro, then, we set iteml to be

the representative of the equivalence class of item2.

There is further action if iteml is a scope item or

a group item. If iteml is a scope item, then every item

equivalent to item2 is a newly uncovered scope item.

We then attempt to decode partially decoded inctupZes whose

decoding terminated in the scope in which each of these items

is known. In the case that iteml is a group item, all elements

of the equivalence class of item2 become group items. The

members of the group iteml must then be identified with items

known in the scopes in which the members of the equivalence

class of item2 are known. Ident(item2) is then set to iteml.

Equivset(iteml) is augmented to include equivset(item2) and

then pairs corresponding to the latter set are deleted from

equivset.

SETL 76-28

The algor~thm for processing global declarations is

a straightforward implementation

of the semantics of global statements. The reader should be

able to comprehend the code for this part of the process.

We now summarize the functions of the various sets and routines

required in the process.

iscope

isgroup -
ismacro -
knownby -

set of •all scope items

set of all group items
set of all macro items
<x,y> is in knownby, if and only if x is a scope

item, y is an item known in the scope y

(note x is known in itself) or, x is a group

item and y is a member of x

dscopes{scope} set of all immediate descendant

scopes of scope

:/,evel (scope) globality level of scope (if none

was specified O is returned)

globlev(var,scope)- the globality level of var in scope.

includes

decode

If no explicit declaration was made, this

number is set to level(scope)

- elements are tuples which result

from include declarations, see above for details

subroutine which determines

source scope referred to by a member

of includes

SETL 76-29

decoded - set contains condensed information

about successfully decoded elements of incZudes

whose keywd is 'all' or 'allbut'

propincZude - subroutine which performs the identi-

fication's implied by decoded members of incZudes

ident(item) canonical represe1.tat-'1ve if not rt

of the class of equivalent items to which

item belongs, otherwise representative of

item is item.
uZtdesign(item) coded routines which calculates the

equivset

canonical representative of item

<rep,x> is in equivset if and only if rep

is the canonical representative of the class of

items to which x and rep belong. Pairs of the

form <rep,rep> are omitted.

getequivitem(rep) coded function which calculates

the set of items equivalent to rep.

SETL 76-30

equate(item1,item2) subroutine which makes

change in ident and equiv so that

iteml and item2 are identified

'locmame designatesiE_ scope - coded function which

determines the i tern known in scope the first

part of.whose (compound) local name is

'locname - if none exists an item is created,

and all decoded inctuples with keywd 'all'

or 'allbut' and with source equal to scope

are reprocessed.

With these remarks, the reader should find comprehensible

the following code:

SETL 76-31

/* first process all global statements*/

work= copy(globlev);

(while work ne nt)

globitem from work; <scope,item,lvlitem> = globitem;

/* propagate item to all immediate descendants of scope

to which item penetrates*/
.

(Vdesc E dscope{scope})

if lvlitem ~ level(desc)

then/* item penetrates desc_ */

equate(item, (hd item)designatesin desc is newitem);

newlevel = if globlev(newitem,desc) is lvlr!ewitem ne n

then lvlitem max lvlnewitem else lvlitem;

<desc, newitem, newlevel> in work;

end if;

end Vdesc;

end while;

/* all global statements processed proceed to include statements*/

undecoded = nt; decoded= nt;

(\fstmt E includes)

newhome =source= hd stmt;

decode(<source, newhome, stmt(2:}>};

end \fstmt;

SETL 76-32

/* if fall out-of loop with undecoded statements,

then issue diagnostics*/

if undecoded ne ni

then print 'following include statements not interpretable',

{x(z}, x c undecoded};

end if;

/* check if have identified two different items known

originally in the same scope*/

(V scope c iscope)

if #(knownby{scope} is varscope) ne #ultdesig[varscope] then

print 'have identified via global and include declarations

two or more items initially known in', scope, 'list of

all variables initially known in this scope together

with the canonical representative of the equivalence

class follows', {<x, ultdesig(x)>, x c varscope};

end if;

end V scope;

/* finished global and include declarations - code to

process alias declarations belongs here - it is omitted*/

We now give code for the auxiliary routines.

define decode(inctuple);

<source, newhome, stmt>=inctuple·;

keyloc = if stmt(#stmt} ~ 'all'

then #stmt else #stmt-1;

keywd = stmt(keyloc);

/* begin decoding of stmt */

SETL 76-33

(1 ~ Vj < keyloc-1)

itemdesignated = ultdesig(hd stmt(j) designatesin source);

if itemdesignated n E iscope

then/* decoding failed*/

<source,newhome,stmt(j:)> in undecoded;

return;,

• end if;

end Vj;
/* decoding successful*/
source= itemdesignated;

finalpart = stmt(keyloc-1:);

/* decoding successful.-· condensed form of inctupZe in decoded

if keywd ne 'only' */

newstmt = <source,newhome> + finalpart;

if keywd ne 'only' then newstmt in decoded;;

propinclude(newstmt, knownby{source});

end decode;

define propinclude(stmt,knownbysource);

<tgtscope, source, aliastring, keywd, -> = stmt;

set= keywd .§SL 'all' then ni else stmt (5) ;

separator= if aliastring ne nulc then
, __ ,

else

if keywd ~ 'only'

then (Vx E set)

atgtiterrF x(#x) +separator+ aliastring;

nulc;

SETL 76-34

equate(x(l) designatesin source, atgtitem designatesin tgtscope);

end "Ix;

else /* keywd is 'all' or 'allbut' */

excluded= [set] designatesin source;

(Vitem E (knownbysource - excluded))

atgitem = hd item+ separator+ aliastring;

equate(atgtitem designatesin tgtscope, item);

end \/item;

end if keywd;

end propinclude;

SETL 76-35

define equate(iteml,item2)

/* makes additions to equivset

iteml and item2 are identified

ultiteml =

ultitem2 =

ultdesig(iteml);

ultdesig(item2);

so that

*I

if-ultiteml ~ ultitem2' then return;;/* else*/

if ultiteml c (isgroup + iscope + ismacro) and

(ultitem2 c (isgroup + iscope + ismacro)) is twospecial

then print 'attempt to identify', iteml, 'and', item2,

'each is either a.scope or group item'; return;;

/*else*/

if twospecial then <ultiteml, ultitem2> = <ultitem2,ultiteml>;;

itemsequiv = gete~uivitems{ultitem2};
if ultiteml E iscope

then /* have uncovered new scope items - all items

equivalent to ultitem2 are scope items*/

(V item E itemsequiv)

homescope = tl item;

/* decode all inctuples which failed in homescope */

(V minctuple E undecoded {homescope})

decode(<homescope> + minctuple);

end Vminctuple;

end \fitem;

end if ultiteml; /*else*/

SETL 76-36

if ultiternl E isgroup

then/* all items equivalent to ultiternl are group items*/

('r/ item E itemsequiv)

homescope = ti item;

propinclude(<ultiteml, homescope, nulc, 'all'>);

end 'r/itern;

end if ultiteml;,

/* identify ultiteml and ultitem2 */

equivset = equivset + {<ultiteml,x>, xE itemsequiv};
equivset = equivset lesf ultitem2;
('r/x E itemsequiv)

ident(x) = ultiteml

end Vx;

return;

end equate;

definef ultdesig(item);

initially ident = nt;;

return if ident(item) is ult ~ n then item else ult;

end ultdesig;

definef getequivitems(item);

initially equivitems = nt;;

return equivset{item} + {item};

end getequivitems;

SETL 76-37

define£ locname designatesin scope;

/* compound token is of the form strl_str2_str3 */

candidates = {x, x e: knownby{scope} lmatch(·x,locname) };

if #candidates 9:11

then print 'more than one item known in', scope,

'with local name', locname, return n;
end if;
/*else*/

if candidates .£S._ n£

then/* create an item with local name equal Zocname */

(<locname> + scope) is newitem in candidates;

<scope, newitem> in knownby;

/* reprocess decoded inctuple with keywd 'all' or 'allbut'

and equal to scope so as to propagate newitem */

(Vinctuple e: decoded {scope})

propinclude(<scope> + inctuple, {newitem});

end 'r/inctuple;

end if candidates;

return 3 candidates;

end designatesin;

definef match(namel,name2);

itl = copy(namel); it2 = copy(name2);

if(#itl ~ #it2)

then <it2,itl> = <itl,it2>;;

return (it2(1:#item2) ~ itl) and (it2(#iteml +l) eq '-'

~ #iteml eq #item2);

end match;

SETL 76-38

c. Internal repre~entations of variables

We now turn to assigning an internal representation to

each variable. The processing of include and global declara-

tions creates the sets equivset and ident. Items known in

two different scopes have been identified and will be assigned

to a dummy subroutine outrout in the absence of an owns

declaration. All subroutines will be considered to be

owned by this routine. The identifications implied by alias

statements are then made and the remaining variables are

assigned a representation in the form <m,n>, i.e. the n th

variable of the mth subroutine. The identification of two

or more arguments of a subroutine is a namescoping error

as is identifying an argument to a variable known in

another scope. Arguments to subroutines are dummy variables

which should not also be global variables. If there are

narg . t ' h th b . h . bl argumen sin ten su routine, t ese varia es

are assigned internal representations

<n , 1 > , <n , 2 > , ... , <n ,nrarg >

The remaining variables local to (owned by) this subroutine

are assigned representations

<n ,nrarg +l>, <n, nrarg. +2>, .•.

We have adopted the convention that subroutine headers are de-facto

scope openers. The associated end statement also terminates

the range of the scope. Executable code must appear in a

scope which is also a subroutine or is contained in a

subroutine. Macros and namescoping declarations are the

only statements allowed in namescopes which properly include

subroutine.s.

SETL 76-39

The identification as a result of incZude and gZobaZ

declaration of two scopes is not allowed. A fortiori, two

different subroutines may not be identified.

The sets we require are created during an initial pass

of the source code. We ignore the problem of their

creation and list the structures required together with

a brief explanation of their structure.

uZtdesig(item)

equivset(item)

subroutines

if item is equivalent to an item in

another scope then is equal

canonical representative of item,

otherwise n.
the set of atoms, other than item,

equivalent to item

subset of iscope consisting of all

subroutines.

arguments(subr) - tuple which contains the arguments

aZiastmt(ns)

outrout

of subroutine subr.

set containing members of form

{var1 ,var2 , •.. ,vark}.

Var1 ,var2 , ... ,vark are aliases

inns of the same variable

name of dummy subroutine to which all

global variables (not declared to be owned

by a routine) and all subroutines

are local.

SETL 76-40

ownstmt

internrep

set containing pairs <item,subroutine>

which result from item being declared to

be owned by subroutine.

elements are of the form <item,pairint>

where pairint is a pair <m,n>, the

internal representation of alias inns.

The auxiliary routines include a coded function

Zocalvar(subr) - set containing all items known in

subr or a descendant scope which

are neither scope items, group items,

global variables owned by outrout or another

routine or arguments of subr.

We require from the earlier processes dscopes.

dscopes{ns} -

homescope(item)

homesubr -

set of scopes which are immediate

descendants of ns.

scope in which item is initially known.

is a coded function which calculates

the subroutine in which an item appeared.

We now give the algorithms for the assignment of

internal representatives to each item.

/* first the subroutines*/

nrvar = l; internrep = n£; outrout = 0;

(Vsubr E subroutines doing nrvar = nrvar+l;)

internrep(<subr>) = <outrout,nrvar>;

-
end Vsubr;

SETL 76-41

/* calculate all global variables not declared
to be owned by a subroutine*/
- .

(VitemE{x, xEhd[tt[ultdesig]] is globalitemlnotown(x)} is globalitem)

nrvar= nrvar + l;
setid(item,<outrout,nrvar>);

end Vitem;

/* process all alias declarations - make further

identifications*/

(Vns E iscope, Vastmt E aliastmt{ns})

x from astmt; ownstrnt(x) = ns;

(Vvar E astmt)

equate(var,x);

end Vvar;

end Vastmt; end Vns;

/* assign internal representatives to all

remaining variables*/

(Vsubr E subroutines doing varnr = 1;)

subrno = internrep(<subr>) (2);

(1 <Vi~ #argurnents(subr) doing varnr = varnr+l;)

eqitems = getequivitems(arguments(i));

if(homesubr[eqitems] ne {subr} or internrep[eqitems] ne nt)

then print dee i-th argument of , subr, 'has been

identified with an item known in another subroutine

or to another argument of this subroutine';

continue Vi;

end if;

setid(arguments(i) ,<subrno,varnr>);

.end Vi;

SETL 76-42

/* assign representation to remaining local variables*/

(Vitem E localvar(subr) doing nrvar = nrvar+l;)

setid(item,<subrno,varnr>);

end 'I/item;

end \/subr;

We now code the auxiliary routines.

definef notown(item);

/* determine if item or a member of its equivalence class

has been declared to be own.ea by a subroutine

(not outrout) */

return ownstmt[getequivitems(item)] ~ ni;

end return;

define setid(item,id);

(Yx E getequivitems(ultdesig(item)) is eqitem)

internrep(<homescope(x) ,x>) = id;

end Vx;

getequivitems(ultdesig(item)) = n;

ultdesig[eqitem] = nl;

end setid;

definef localvar(subr);

/* return set of canonical representatives of variables known

in subr- i.e. items not scopes, groups, macros

or arguments - not owned by other subroutines*/

variables= ni; scopes= {subr};

SETL 76-43

(while scopes ne ni doing scopes= descopes[scopes];}

newvar = knownby[scopes]

newvar = newvar = (iscope + isgroup + ismacro};

newvar less {x, xEnewvar I internrep<homescope(x} ,x> ne n};

/* delete variag!es global to another routine*/

newvar less {x, xEnewvar

return newvar;

end localvar;

!not (ownstmt[getequivitems(x}]
}

ie{subr}}};

We have made no assignment of internal names for macros.

A macro will be recognized during linearization of tree

like source text (see below} when no internal representation

is defined for what appears to be a subroutine. Macro

expansion will occur at that point.

SETL 76- 44

3. Programmer definable object types

We now discuss a system of programmer definable object types which

allows operators to be applied to objects in a type dependent

manner. This enhances the expressive power and extensibility of

the language in a very useful way. The main features of the scheme

are that it is static and declaratory. Types are assigned to

variables by declaration. Type information is used not at run

time which might necessitate a great deal of dynamic type check-

ing, but to control the compilation process.

To make plain the overall nature and intended use of the

proposed scheme we shall first set it forth.in a particular

syntactic realization.

The notion ~basic to our scheme is that of an object type
'!

or kind. Such a kind is merely a token (simple or compound),

which, because of the manner in which it appears in one of the

declarations to be described below, can be recognized as denoting,

or being the name of, an object kind. This convention allows

the programmer to introduce any number of differently named kinds

of objects. As various object kinds are introduced, the variable

names appearing in a SETL program will be declared to be of

these kinds. The declared kin& of the variables appearing in an

expression will then be used to control the manner in which

the expression is compiled. The kind declaration has the syntactic

form

kind kindname1 (varname1 ,varname 2 , ...), kindname 2 (varnamen, ...) , ... ;

Here, kindname 1 , kindname
2

, etc. are tokens which, by virtue

of their appearance in the declaration shown above, are

the names of variable kinds (briefly: kind names) ;

SETL 76-45

while varname 13 :· .. 3varnamek3 ... are variable-designating tokens.

At most one kind can be declared for a variable name.

If no kind is declared, the variable is taken to be of

default kind. This is the kind which is named in a declaration

default kindname;

At most one such declaration can appear in a given name scope n-0.
If no such declaration appears n-0 will be assigned the same

default kind as its parent scope. If ns has no parent, setZstdtype
is the defaultd.

Tfie declare kinds of variables are used to control the

manner in which expressions, subroutine calls

and iterators of the 'V' type are compiled. The manner

in which this is done is clear from the

form of declaration which specifies the manner in which binary

infix operators are compiled. This has the form

from <kindnarne1 > <operator-symbol> <kindname2 > get

<kindname 3> using <routinename>;

Examples are

from aplobj + aplobj get aplobj using aplplus;

from matrix* vector get vector using matvectprod;

The significance of the from declaration is as

follows: whenever two objects x1 and x2 , always of known kind,

are to be combined by an infix operator~' reference is made to

the full collection of from declarations available in the givenncmescope.

If one declaration is applicable, i.e., if the operator-

symbol occurring in the declaration matches~' and the object

kinds occurring in the declaration match the known kinds of

x1 and x2 respectively, then the result of the operation is

taken to have the kind specified by the third kindname appearing

in the from declaration. Moreover, the operation is compiled

as a call.to the (two-argument) function appearing in the from

declaration.

SETL 76-46

Consider, for example, the code (at the 'basic interpreter' level

see below) which would be compiled from the statement

x = (a max b) * c + d;

call(sysmax,a,b,t1);

call(sysprod,t1 ,c,t2);

call (syssum,t2 ,d,x);

where we assume sysmax, sysprod, and syssum to denote the standard

'library' procedures which correspond to the ordinary SETL operations

max, *,and+ respectively. If the declarations

default matrix;

kind vector(c,d);

from matrix max matrix get matrix using matmax;

from matrix* vector get vector using matvectprod;

from vector+ vector get vector using vectsum;

are active within the context in which the statement appears, the

expression seen on the right-hand side of the assignment statement

displayed above would be compiled as follows.

call(matmax, a, b, t 1)

call(matvectprod, t 1 , c, t 2);

call(vectsum, t 2 , d, x);

We allow the more general form

from kindnamel kindop kindname get •..

where kindop is a kind name which designates a class of operators.

The above remarks should make plain the general force of the

kind, from and default declarations. We now go on to describe

useful variants of these statements, and also certain other

related declarations needed to give a system of 'object types'

adequate flexibility. Note first that we will in some cases

wish to use the standard SETL operations to combine objects of

particular kinds, but will nevertheless wish to know the kind of

object which results. For thi·s. purpose, we provide a variant

of the from statement, having the abbreviated form

SETL 76-47

from <kindname1><operator-symbol><kindname2>

get <kindname3>;

An example of this construction might be

from stringset + stringset get stringset;

this would be useful in a situation in which we wish to

distinguish sets of kind ~tlL-lng-0et from other sets, even though

the ordinary SETL union operation is used to form the sum of

two variables of kind st~ingset.

If a token t naming a variable appears in one of our declara­

tions where a kind name is expected, it is understood that the

token name is also a kind name, and that the variable is of the

kind having this name. Thus, for example, if mainset occurs

as a variable name in some program together with the declaration

from vector€ mainset get bool using specialtest;

it is understood that mun-0et is also a kind name, and that

the variable ma.,Cn-0et is of kind main-0et.
We must of course deal not only with infix binary functions

of two variables, but with functions of several variables, and

even in a few cases with functions of an indefinite number of

variables. Here, our declaratory conventions are as follows.

We write

from <kindname 0>(<kindname1>, ... ,<kindnamek>) get

<kindname> using <routinename>;

and

from <kindname0>{<kindname1>, ... ,<kindnamek>} get

<kindname> using <routinename>;

and

from <kindname 0>[<kindname1>, ... ,<kindnamek>] get

<kindname> using <routinename>;

These forms allow us to create kind-dependent usages of any of

the three basic application forms provided in the SETL syntax.

SETL 76-48

These forms, as just described, presume a fixed number of

arguments. Similar declaration forms, whose details will be

apparent to the reader, must also be available for use in

connection with prefixed monadic operators. 'Short' declaration

forms, in which the 'using <routinename>' part of the declaration

is dropped, are also allowed, and have the significance already

explained.

Our base level interpreter conventions (see below}

allow polyargument primitives (though not nonprimitive calls

involving an indefinite number of variables}. Moreover, SETL

provides the 'tuple-forming' polyargument primitive

<xl , x2 , ... , xk >

which can be used to reduce most other polyargument situations

to situations in which only a fixed number of arguments will occur.

we make it possible to use the present declaratory scheme in poly­

argument situations by providing the from declaration in the

generalized form

(1) from <kindname 0>(<kindname1 >, ..• ,<kindnamek> -) get

<kindname> using <routinename>;

The semantics of this declaration are as follows. If an item

having the syntactic form

(2)

appears in an expression, and if i. is of the kind designated
J

by kindname. for j = l, ... ,k, then the declaration shown above
J

is relevant. In this case, the items ik+1 , ... ,in appearing

in (2) are classified as 'extra arguments', and a call of the form

SETL 76-49

is generated at the basic interpreter level, t being a

'compiler temporary' storing the result of the function call (2),

and <ik+l'"""'in> being the n-k tuple formed from the values

of the extra arguments.

A declaration like (1) is also provided in the forms

from·<kindname 0>{<kindname1>, .•• ,<kindnamek>-} get

<kindname> using <routinename>;

from <kindname0>[<kindname1 >, ... ,<kindnamek>-] get

<kindname> using <routinename>;

and also

from <<kindname1 >, •.. ,<kindnamek>-> get

<kindname> using <routinename>;

from {<kindname1>, ... ,<kindnamek>-} get

<kindname> using <routinename>;

from [<kindname1 >, ..• ,<kindnamek>-] get

<kindname> using <routinename>;

These last three declaration forms allow the various kinds

of 'brackets' provided in SETL to be used in a manner depending

on the kinds of objects which appear within them.

Note that declarations of the type we are now describing

can appear within macros, which can be carried from one

namescope to another using the mechanisms of token transmission.

This allows a whole group of declarations to be

invoked by including a single token at an appropriate point

in ·a text, thereby allowing one in effect to 'name' standard

systems of conventions which are to apply during the compilation

of particular code passages. Namescopes can be used as boundaries

at which the system of conventions change.

SETL 76- 50

The family of declarations introduced above is valuable not

only for the extension of language syntax but also in debugging.

If, in compiling an expression, one comes upon an operation

applied to variables of kinds for which no from statement has been

supplied, a diagnostic message can be issued. Thus our declara­

tions serve to attach a network of compile-time consistency checks

to a SETL text. To ensure that this network is free of

loopholes, we shall insist not only that the kinds of objects

appearing in function calls be validated (by providing appropriate

from statements) but also that the kinds of objects appearing

in subroutine calls be validated. To allow this, we provide

an additional declaration of the form

allow <kindname 0>(<kindname1 >, ... ,<kindnamekj);

which validates a subroutine call with the obvious pattern of

kinds of arguments.

We take it that the conditional expression appearing in an

l6 or while statement must always have a value of the standard

SETL type bool; given this, and given the conventions concerning

variable kinds in sinister calls which are explained below, we

cancheck any program systematically for consistency of the kinds

of objects which appear in it. Note however that by making

a statement

default settstdtype;

active in a context in which no explicit declarations concerning

variable kinds appear, we disable this consistency check

mechanism· reducing its action simply to a verification

of syntactic wellformedness.

'Iteration over all subparts' is a concept potentially applicable

to, and useful in connection with, compound objects of all sorts.

To allow this notion to be applied to objects in a kind-dependent

way, we introduce a declaration which specifies three basic

routines, one to set up the first subpart 'address' of a compound

object, the second to advance this ·•address' from one subpart

to the next (returning~ if advance is impossible), the third to

SETL 76- 51

calculate the ac~ual subpart corresponding to a given subpart

address. More specifically, call these three routines oi~Jt,
next, and actelt respectively. Then we take the iteration

(Vx c a)<body> end V;

to expand as

xaddr = first(a);

(while xaddr ne n doing xaddr = next(xaddr,a);)

x = actelt(xaddr)·; <body> end while;

A declaration appropriate forthis purpose must specify the

three routines oiMt, next, and actelt, and must also describe

the kind of subpart which a compound object has. For this

purpose, we propose the following syntax:

forit <kindname 0> E <kindname1 > use

<first routine name>, <next routine name>,

<actelt routine name>;

·rn this declaration, <kindname 0> is the name of a compound object

type, and <kindname1 > names the kind of parts which an object of

this type has. The 'first routine name', 'next routine name',

and 'actelt routine' have the significance already explained.

Occasionally, though probably not often, one will wish to use

subroutines or functions which can return a value of one of

several kinds; more generally, variables whose values are of a

kind not precisely known may appear in a program. We propose

to handle this situation as follows. A kind name designating

whatever ambiguity of kind exists for a given variable will

be invented, and a variable whose kind is syntactically ambiguous

will be declared to be of this kind. For example, one might find

oneself writing

kind tree_or_graph (x);

Ultimately, and probably quite swiftly, a variable ambiguous in

kind will be tested, and its kind determined as a necessary

preliminary to further processing. Normally this will imply

. ,

SETL 76- 52

conditional transfer to one of several points; transfer to a

particular point will mean that an initially existing ambiguity

. of kind has been resolved in a particular way; at each such

point, code appropriate to the processing of the formerly

ambiguous variable, now of known kind, will be found. To

handle all this within our system of declarations, we propose

the following scheme. Several separate names, all designating

the same variable, will be invented. Each name will be declared

to be a particular kind.· More precisely, one such variable

name will be declared to have the 'ambig~ous' kind alluded to

above, while the other variables named will be declared to

have the various separate kinds whose confounding creates this

ambiguity. Then all the variable names which have been used

will be declared to be aliases for each other, i.e., to refer

to the same object. In this way, our changing state of knowledge

concerning an object is reflected syntactically by the varying names

we give it. The form proposed above for the necessary declaration

is

Often (and especially in situations like the one which

has just been described) most of the operations performed

on objects of two different kinds will be identical (i.e.,
will be performed by the same basic-interpreter-level subroutine

or function) even though a few particular operations should be

performed by different kind-dependent routines. The notion we

propose as basic to the treatment of the situation which then

arises is that of the reversion of kinds. A particular variable

kind k 1 is said to revert to another kind k 2 if, in a significant
family of cases, operations may be performed for an object of

kind k 1 by using the routines already supplied to handle these

same operations for objects of kind kz• We declare the kinds
to which an object of given kind may in this sense 'revert'

by writing

SETL 76- 53

revert <kindr..ame1 >(<kindname2>, .•. ,<kindnamej>),

<kindnamej+l>(<kindnamej+2>, .•. ,<kindnamej+m>), ,

Let k
1

,k
2

, ..• be the kinds named by <kindname 0>,<kindname1 >, ..•

respectively. The preceding declaration states that an object

of kind k 1 may revert to any one of the kinds k 2 , •.. ,kj; that

an object of kind kj+l may revert to any one of the kinds

kj+2 , ..• ,kj+m' etc. This declared information is used

in the following ways. Suppose that an object ~ whose values

have been declared to have kind k 1 appears in an operation.

For the sake of illustration, we assu~ this operation

to be monadic, and to have the form

2.E. i'

2.E. being some particular operation symbol.

Suppose now that no from statement describing the mode of

application of the operator 2.E. to an object of kind k 0 has

been provided. Then, in compiling, an attempt will be made

to find a from statement defining the way in which £E_ applies

to an object of one of the kinds k 2 ,k3 , .•• kj. If one and only

one such statement is found, this will be taken to define the

manner in which £E_ is to be applied to an object of kind k 1 .

Replacement of the kind k 1 by one of the kinds k 2 ,k3 , ... kj we call

reversion. If more than one from statement defining the manner

of application of on to an object of kind k., i > 2, is found,
:;.;;.:_ 1 -

an ambiguous situation exists, and an appropriate diagnostic

will be issued.

If no such statement exists, then an attempt will be made

(recursively) to apply the process of reversion to each of

the kinds

revert

k 2 ,k 3 , ... kj. That is, one uses any declarations

... , k. (k .
1

,k.
2

, ... ,k.) , ... ;
1 l. 1 im.

1

which have been made, and searches for a from statement defining

the manner in which 2.E. is to be applied to an object of kind k ..
im

If this process is continued as far as possible, one of three

situations will result. It may be that no chain of reversions

SETL 76- 54

leads from k1 to-a kind k for which there exists a declared

manner of application of the· operator 2E.· In this case, we take

it that the application of 2E. to an object of kind k 1 is

undefined, and issue an appropriate diagnostic. Suppose,

on the other hand, that some chain of reversions leads

from k 1 to a kind k for which the manner of application of~

has been declared. In this case, we ~ollect all triples

consisting of such k, of the length n of the chain of reversions .
leading from k 1 to k, and of the routine to be used in applying

2E. to an object of type k. If there exists precisely one among

these triples for which the length n takes on its minimum value,

we use this to define the application of~ to an object of

type k. If, on the other hand, there exists more than one among

these triples for which n takes on its minimum value, an

ambiguous situation exists, and we issue an appropriate

diagnostic.

The reversion procedure just described for the case of

operators with a single parameter will be used in suitably

generalized form for operations of any number of parameters.

Suppose that some certain operation, which we shall designate

by the symbol 9, is to be applied to a collection of parameters
. (1) (m)

of kinds k , •.. ,k . If there exists a from statement

declaring the manner in which this application is to be made,

we proceed in the specified manner. Suppose on the other hand

that no such declaration has been made. In this case,

we consider all tuples of the form

<rk (1), k (2), ... ,k (m) >, (1) (2) m (1) (2) · m <k , rk , ... , k > ••• <k , k , ... rk >

where rk(i) is a kind to which k(i) may revert.

Each of these tuples is a reversion of length one.

If there exists exactly one tuple of length one for which

there is a from declaration for~' then this from declaration

specifies the semantics of the appliation of the operator op

to a collection of parameters of kind k(l) ,k< 2) , ... ,k(m) -

respectively. If there is more than one specification, then

this is an ambiguity error and an appropriate diagnostic is issued.

SETL 76-5 5

If there is none, each of the tuples of length one is again

reverted using the same prescription.and a search is made for

an applicable from declaration. This process continues until

an applicable from declaration is found or until no further

reversions are possible. If a from declaration is not found,

we consider this application of op to be ambiguous and issue

an appropriate diagnostic.·

We now come to describe a last declaration in the present

'object-kind' related group. This declaration allows sinister

calls to be used in a kind-dependent way.. It has the form

fort <kindname0 >(<kindname1 >, ..• ,<kindnamem>)=<kindnamem+-l>

use <routinename>;

Let k 0 , ••• ,km+l be the kinds designated by the tokens appearing

as kindnames in the above declaration. The declaration applies

in cases in which a sinister call of the form

is encountered, and in which t 0 , ..• ,tm+l are respectively

of kinds k 0 , ••• ,km+l· It applies also to a wider range of

situations under the reversion rules just explained, which

the reader will readily adapt to the present slightly different

situation. In situations in which the declaration applies,

a (sinister) call to the procedure named by the <routinename>

occurring in the declaration is generated; the normal rules

apply to compound arguments appearing in this sinister call.

Closely related declarations, having the somewhat different

syntactic forms

fort <kindname0 >{<kindname1 >, .•. ,<kindnamem>} = <kindnamem+l>

use <routinename>;

fort <kindname 0 >[<kindname 1 >, ... ,<kindnamem>] = <kindnamem+l>

use <routinename>;

SETL 76-56

fort <kindname1 > ~ <kindname
2

> = <kindname 3> use <routinename>;

etc. are also provided. The reader will readily deduce the

import of these declarations. For use with sinister forms

admitting an indefinite number of arguments, we provide the

related declaratory forms

fort <kindname 0> (<kindname1 >, .•. ,<kindnamem>-)

= <kindnamem+l> use <routinename>;

fort <kindname 0>{<kindname1 >, •.. ,<kindnamem>-}

= <kindnamem+l> use <routinename>;

etc. The above-described conventions concerning 'extra parameters'

apply here. We illustrate the resulting semantics with an

example. Suppose that the declaration

fort branchlist(tree-) = tree use treelist;

is active in a context in which the sinister call

(1) branchlist(tl,t2, ... ,tn) = newtree;

also occurs, and that .t7 and ne.w.ttLe.e. have been declared to be

of kind .tJte.e.. Then the code represented most directly by the

sinister call

treelist(tl,<t2, ..• ,tn>) = newtree;

will be compiled in place of (1). Note that this same code

may also be written as

x=<t2, ••. ,tn>;

treelist(t,x) = newtree;

<t2, . .. , tn> = X i

where x is a compiler-generated temporary variable.

In some cases one will wish to associate some particular

action with a simple assignment operation appearing in a source

text as

(2) a = b;

SETL 76-57

provided of course that a and bare of specified kinds k1 and k2 •

This can of course be done using the following particular case

of the general fori declaration:

fort <kindname1 > = <kindname2> use <routinename>;

If no such declaration is provided, while a and bare of the

same kind, then the standard SETL assignment procedure will

automatically be used.

In some cases, we will wish to treat a value which would

ordinarily be of one kind as if it were of another kind. This _,

will be the case especially for constants occurring in SETL

programs, for complex structures built up out of constants

during one or another 'initialization' process, and for structures

read in from external media. To allow for this, we introduce the

binary 'syntactic operator'~- The expression

x ask

is identical, as a SETL object, with x, but is treated

(during compilation) as an object of kind k.

We give code in SETL to resolve the semantics of operators

in section 6 after we discuss the compilation process and the

form of interpretable text.

SETL 76-58

4. Base-level interpreter.

We now sketch a base-level interpreter which is capable of

sustaining SETL (essentially this defines the SETL calling

conventions). The data structure required by the interpreter is

text - tuple of subroutines - A subroutine may be either

compound or primitive. If it is compound, the entry in text is

a vector of interpretable instructions. If the subroutine is

primitive, i.e., an operation conforming to the implementation

level requirements of the SETL system, but written in some

acceptable lower-level language, the corresponding entry in

text contains linkage information. Linkage to routines

whether compound or primitive is 'by value with deferred

argument return' as described in NL 53. The values of all

subroutine arguments become part of the environment of the called

routine, and are_manipulated there just as any other values.

After return, all arguments in the calling routine are set to

the values which they had in the called routine immediately

before return. Except in the case of a primitive which is

flagged as 'polyargument', interpretation of a call operation

verifies correspondence between the number of arguments appearing

in the call and the number of arguments appearing in the called

routine. This corresponds to a compiled style in which

routines of a variable number of arguments are not really possible.

Of course, SETL will allow any number of values to be transmitted

to a subroutine; it is only necessary to pre-group these values

into a vector.

SETL 76-59

The "instructions" in a compound routine belong to one of the

classes subroutine call, sinister call, subroutine return, condi­

tional transfer, unconditional transfer, or stop.

The arguments designate variables.

Each variable is "local" to exactly one subroutine and is

represented as a pair <subrno,varno>. If the variable is

local to the subroutine being interpreted a single integer varno

represents it. Constants.are represented as <const,val> whose

fixed· value is val. The arguments of a subroutine, arg 1 ,arg2 ,

••• ,_ ar~n are the 1st, 2nd, •.. ,nth variables local to that routine.

We now turn to the "instructions" that the interpreter processes.

The principal vehicle is subroutine call

where arg0 is either a constant whose value is a subroutine or

is a variable whose value is a subroutine~ For example,

<call,<const,assign>,left,right>

where Zeft and right are integers denoting variables local to

the currently executing subroutine. To expedite determination

of the called subroutine, we will assemble this code to

<callc,assign,left,right>

The opcode calla implies that the second component is a constant

designating a· subroutine. Sinister calls are formed as

or

<lcallc,subrno,arg1 , ... ,argn>

Subroutine names will be variables local to a trivial

global routine outrout~ See the narnescoping_algorithrns above.

Additional interpreter "instructions" include

SETL 76- 60

and

<go, label>

<ifgo,var,label>

<ifnotgo,var,label>

The last form is provided to reduce the number of labels

generated in the "compilation" of if-, then-else expressions in the hcst

language .. {see belOW'). Labe 7, is either a variable whose value is

a label or is a constant,·in which case the forms

<goc,stmtnr>

<ifgoc,var,stmtnr>

<ifnotgoc,var,stmtnr>

where stmtnr is an integer. are produced by the assembler.

A transfer may not pass from one subroutine to another.

The last interpreter "instructions" stop and subroutine return

have no arguments.

To permit access to variables local to another routine, the

most recent environment block of a subroutine rout is retained

as a tuple aurenv(rout). If rout is the currently executing

subroutine, its environment block is nowenv. Another call

statement causes curenv(rout) to be stacked. Curenv(rout)

is set to

routine.

nowenv before control passes to the called

We now identify the variables used in the interpreter routine.

nowrout

nowenv

argno (rout)

prim(rout)

is the currently executing routine

environment block of nowrout

the number of arguments of a routine

If argno(rout) is n, rout is a polyargument

primitive.

a flag distinguishing between programmed routines

and primitives.

primcall(rout) subroutine which effects the operation associated

with a routine rout

invoc (rout) an array counting the number of prior invocations

of rout

SETL 76-61

curenv(rout) the environment block of rout at the time

of its last invocation

envs tack tuple used as stack during the recursive calling process

dexit is an assumed routine which supplies useful diagnostic

information in case of normal or error exit.

We give two source langu~ge macros and then the code for the

base-level interpreter.

macro vararg(x) = if atom x then nowenv(x)

else if x(l} eq const then x(2)

else curenv(x(l)} (x(2}) endm;

macro refarg (x} = if a tom x then nowenv (x}

else curenv(x(l}} (x(2}} endm;

/* base level interpreter

invoc(rout) curenv(·), Zc, nowenv must be initialized*/

nextop: le= lc+l;

getop: opitem = nowrout(lc);

go to <call,callc,lcall,lcallc,retn,go,goc,ifgo,ifgoc,

ifnotgo,ifnotgoc,stop>(opitem(l));

/* entries for subroutine invocation follow - subname is an integer

lcall: subname = refarg(opitem(2)); designating a routine*/

sflag = t; /* marks sinister call*/

go to link;

lcallc: subname = opitem(2};

sflag = t; go to link;

callc: subname = opitem(2}; sflag = f; go to link;

call:

link:

subname = refarg(opitem(2)) ;sflag = f;

/* check argument number*/

if not sf.Jag and argno(subname} is argnr ne (#opitem)-2)

then dexit(2);

endif;

/* stack curenv(nowrout) */

SETL 76-62

if invoc(nowrout) SL!:, 1 then

envstack(#envstack+l) = curenv(nowrout);

end. if;

curenv(nowrout) = nowenv;

newenv = curenv(subname);

/* pass arguments of subroutine call to newenv */

(3 ~ \fj 2 #opitem)

newenv(j) = valarg(opitem(j));

end 'l/j;

/* put return information into newenv required to return*/

newenv(l) = nowrout;

newenv(2) = le;

nowenv = newinv;

nowrout = text(curenv(outrout,subnarne));

if prim(nowrout) then primcall(nowrout); go to retn;;

/* else compound subroutine*/

le= l;

go to getop;

/* end call operation*/

return: invoc(nowrout) = invoc(nowrout)-1;

argnr=argno(nowrout); /* number of arguments*/

nowrout = nowenv(l);

le= nowenv(2);

/* restore arguments */
retenv = nowenv;

nowenv = curenv(nowrout);

if invoc(nowrout) ne 0

then curenv(nowrout) = envstack(#envstack);

envstack(#envstack) = n;
end if;

(3 .::_ \fj2argnr+2) lhd opitem(j) ne const)

SETL 76- 63

valarg(j) = retenv(j);

end 'dj;

go to nextop;

go: dest = valarg(opitem(2));

gothere: if (1 le dest and dest le #nowrout)

then go to getop;

goc:

ifgo:

goif:

ifgoc:

else print 'illegal transfer operation; dexit(3);

end. if;

dest = opitem(2); go to gothere;

dest = valarg(opitem(3));

if valarg(opitem(2))

then go to gothere; else go to nextop;

end if;

dest = opitem(2); go to goif;

ifnotgo: dest = valarg(opitem(3));

goifnot: if valarg(opitem(2)) then go to nextop;;

go to gothere;

ifnotgoc:dest = opitem(3); go to goifnot;

stop: dexit(4);

/* end interpreter*/

SETL 76-64

5. Tree to Linear Text Compiler

Next we 'skip back' one step toward the host language level,

and present a tree-to-linear-text 'compiler' close to that which

might be used in the SETL system. This routine accepts as input

'abstract syntactic text', i.e., prediagnosed and name-resolved

tree structures. It uses what are basically a tree-walk, temporary

variable generation and label generation processes to produce

linearized text almost identical with that required by the.base-level

interpreter. The labels are generated in a form somewhat different

from that required by the base level interpreter. To process this

text into directly interpretable form, an intermediate step of

abstract 'assembly' is required, the code for which will be given

below. This 'assembly' process may generate 'repeated label' and

'missing label' diagnostics·.

In the tree-structured text, variables will be represented as

<var,characterstring>. The name scoping algorithms are exercised

prior to compilation and result in the assignment to each token of

a pair of integers <subnro, varno>. During compilation each character­

string is replaced by an internal representation for the variable it

represents. If the subroutine being compiled owns the variable,

then a single integer is included in the developing text, otherwise

the pair is included. As scope openers and terminators are in place,

the compilation process is aware of the namescope in which the source

text which generated the tree-structured text appears. In SETL,

the indications for macro expansion are syntactically indistinguish­

able from those for subroutine calls and will be compiled into a

subroutine invocation. The "compiler" attempts to find the number

of the subroutine associated with a subroutine invocation. If no

assignment has been made, a macro expanding routine is invoked. We do

not give the details of the macro expansion process. The reader should

SETL 76-65

note that a macro may contain code or declarations (see above)

associated with the determination of the semantics of the SETL

operations but may not contain statements which affect name

resolution, i.e. include, global, group, alias, own,

We now give an example of the compilation process.

'source': a= f{a+b);
/* we assume that a is owned by the routine in which this statement

occurs; bis owned by another routine, and f is global*/

the input to the 'abstract compiler' described below:

<assign,<var,a>,<fcall,<var,f>,<fcall,<const,+>,<var,a>,<var,b>>>

/* n is the integer corresponding to the 'locally owned' resolved
a

name a;

~ the number of the subroutine owning b. nf and nb are the inte-

gers corresponding to the resolved names f and b respectively*/

as input to the base level interpreger

<callc,+,na,<~,nb>'nt>'

<call,<O,nf>'nt, na>

/* nt is an integer corresponding to a "generated temporary"

variable */
<callc, assign, na,nt>

Note that since we treat labels as being global to the

full body of a subroutine, and since we allow transfers between

any two points in such a semantic scope, compilation rather

than direct interpretation of abstract syntax trees is indicated.

Indeed, direct interpretation of syntax trees would make

recursive stacking-unstacking actions necessary at many points

within a subroutine, and this would require the association

with every jump of expensive stack-checking and

-correction actions. We adopt a more highly compiled approach

and associate stacking actions with subroutine call and return

exclusively, and restrict the maximal scope of transfers

to lie within a -single subroutine.

SETL 76-66

The 'abstract_syntactic' text accepted by the 'compiler'

described in the present section

compound linguistic constructs very

in. an abstract representation the

supports certain important

directly. It provides

following forms:

i.

ii.

iii.

iv.

expressions with subexpressions

code blocks
code blocks within expressions

iterative if - then - else - if and if - then - else - if -else

forms

v. A 'while' statement

vi. go to, call, return, and return (expression) statements.

vii. A 'subroutine' header statement, which designates an

attached code section as a subroutine body, and which

gives both the serial number of a particular

subroutine and the number of arguments which it possesses.

Note that subroutines are assigned serial numbers by the

name-scoping procedures. These same

procedures standardize the representation of 'globally'

or 'externally' referenced variables.

viii. 'Primitive subroutine' statements, in dexter and sinister

form, which designate an attached constant as the

(primitive, hence unanalyzed} calling information for

a primitive. Each sinister primitive p is associated

with a dexter primitive (with one fewer argument) of

which p is the 'associated sinister form'.

We now discuss the syntax and semantics of the host language

forms.

constant

variable

<const,value> where value is a suitable encoding

of the constant

<var,index> where index is a single intege~ i/

which refers to the ith variable of the current

subroutine or is a pair <m,n> designating the nth

variable of the mth subroutine

SETL 76-67

function invocation <fcall,fname,expl,exp2, ••• ,expn>

where fname,expl,exp2, ••• ,expn are expressions

if expression · _ <ife,cond1 ,exp1 ,cond2 ,exp2 , ••• ,condn'expn'expn+l>

if

corresponds to the SETL code

cond1
then exp1
else if cond2

exp2 then

else if cond3

else if

then

else

cond n
exp n
expn+l ... ;

The value returned is an expression.

block <block,stmt1 ,stmt2 , ••• ,stmtn>

where stmt1 ,stmt2 , ••• ,stmtn are statements to be compiled

separately an~ executed c~nsecutively.

while

go to:

. .

<while, cond, dostat, block, contlab, outlab>;

The compiled code is a sequence equivalent to the

SETL code.

start: if cond

then block; contlab; dostat; go to start;

outlab;

cond is an expression whose compile time value is tor f

block is a tuple of the form above and

contlab, and outlab are pregenerated labels.

<goto,exp>

exp is an expression whose compile time value is a labelL

shortif: <ifs,cond, block>
aond is an expression, whose compile time value is tor f.

~f the value is t the code in block is executed.

SETL 76-68

Now we explain the long if statement.

longif: <ifi, cond1 , block1 , con~2 , block2 , ... , condn' blockn>.

Each of cond1 , cond
2

, ... , condn is an expression.

The code generated is equivalent to the SETL sequence

if cond1
then block1 ;

if cond2
then block2 ;

if cond3
then

end if;

end if;

end if;

The kth block is

... ,cond
1

. is t.

the range of the

executed if and only if each of condk,condk-l'

If condk is false, transfer is made beyond

first if.

There is a scope declaration <scope,characterstring>.

No code is generated by this "statement". However,

characterstring is made available to the coded function internalrep which

replaces external representations 'Tike <~,charstring> with an

internal representation nor <m,n>. Also a declaration <endscope>

is provided. Occurrence of this declaration closes the current

scope. (See below.)

We now give the format for subroutine headers.

subroutine header: <subrout, subrnumber, # of arguments>

primitive subroutine
header: <primsub. subrnumber, #of arguments,calling info>

sinister primitive subroutine header:
calling number of

<lprimsub ,subr number, # arguments, info , dexter form >. ,

SE'!'L 76- 69

Suhr number ..,.ls the number of the subroutine. In the primitive

formats, oaZZing info is an integer which represents the linkage

information which is decoded by callinf. We omit code for

this routine. The appearance of a subroutine header marks the

termination of the compilation of the preceding subroutine and causes

aurrtext, which contains the compiled code, to be entered in

the comprehensive vector text. Currtext is initialized to blanksubr

which is a skeletal form into which the identifying number, number

of arguments, the primitive flag, and the sinister form of a

dexter routine are inserted. The routine add attaches

additional statements to the vector ourrtext during compilation.

We also provide a return statement which has no arguments.

return: <retn>

In addition, there is an express~on return instruction which

has one form within a routine which corresponds to statements

return f(x + g(y))

and another form within an expression codeblockJ which supports

the SETL construct

y = if bool then z else w;

In the former case, the expression is evaluated and the result

is assigned to <var,nr> where nr is one plus the number of

arguments in the currently executing subroutine.

The compilation of expression-representing code blocks

involves a few details which may not be entirely familiar.

Before compilation of the statements of such a block begins,

an 'exit label' ebou~ is generated, and a global compiler

variable eb~emp is set equal to the required result variable

of the block. "Expression return" statements of the form

<return, expression> ,

which normally would be compiled as

SETL 76-70

<callc, assign, output argument number,<expression>>,

<return>
are compiled as

<callc, assign, ebtemp,<expression>>,

_<9ot_o, ebout>

Note that our conventions allow code blocks used as

expressions to contain arbitrary statements, including quite

general 'go to' statements, and also to contain embedded

code blocks, leading to expressions which are very general.

The compilation of general assignment statements, which

includes the expression of sinister calls, turns out to

be surprisingly easy. First one compiles whatever code

corresponds to the expression appearing on the right-hand

side of the assignment statement. Once this is done,

we have only to compile the special assignment case

that would appear in source as

<sinister expression>= temp;

To do this, we first generate the expansion which corresponds

to the source

temp= <sinister expression>;

Then we take the code which results, invert its order,

transform every dexter call into a sinister call, and append

the result of these successive transformations to the already

generated code. Note, for example, that (writing in a

suggestive rather than precise notation) an assignment like

f (g(a, h(b)), h(c)) = a + b;

compiles first into

call (surn,a,b,t);

f(g(a, h(b)), h(c)) = t;

SETL 76- 7l

then into

and finally into

call(sum,a,b,t);

call(h,b,tl);

call(g,a,tl,t2};

call (h, c, t3) ;

call(f,t2,t3,t};

call sum(a,b,t};

call (h ,b, tl) ;

call (g, a, tl, t2) ;
call(h,c,t3);

tcall(f,t2,t3,t);

tcall (h,c,t3);

tcall (g ,a,tl,t2);

tcall(h,b,tl);

I*
I*
/*

I*
/*

I*
/*

I*

\

t = a+ b *I
tl = h(b) */
t2 = g{a,tl) */
t3 = h (c) *I
f (t2,t3) = t */
h (c} = t3 */
g(a,tl) = t2 */
h (b) = tl */

The following comments describe the principal routines
of the algorithm given below.

aompile(obj) - transforms the code block obj which is of tree

form into a linear interpretable code sequence.

excomp(exp) - is a function which transforms the expression exp

which is of tree form into a linear sequence. The value

of this function is a variable, perhaps a generated

temporary, to which the value of the expression is

assigned at run time.

gen temp (t) generates a temporary variable, t, or more

precisely, a unique integer representing a temporary

variable.

gen lab (Z) - generates a label, or more precisely, a unique

integer, representing a label, from which an actual

label item will be produced by the assembler described

in the following section.

SETL 76-72

currtext - is the tuple to which code fragments of the current

subroutine are added during the compilation process.

~ frag attaches frag to the partially compiled code

sequence currtext.

macexpand - expands a macro and adds the result

to currtext. The code is not given.

We first give the code for the function excomp(exp) which

returns a temporary variable to which the value of exp is

assigned upon the execution of the code generated.

We assume a function internatrep() which converts the external

representation of a variable into an internal representation.

Internatrep uses as hidden variables the namescope in which the

original source code appeared and the number of the subroutine

currently being compiled. Scope and endscope declarations

cause the current namescope to be changed.

definef excomp(exp);

· /* inblock = f if compiling function return*/

go to <ife,block,fcall,const,var>(exp(l));

const: return exp;

var: return internalrep(exp(2));
/* internal representation substituted for external form <var,charst:r>ing

f Call ·. (11 * / ~dQ <ea > + excomp[exp(2:)] + <gentemp(argtemp)>);

block:

ife:

return argtemp;

/* case of code block within an expression*/

inblock = t; genlab(ebout); gentemp(ebtemp);
compile[exp (2:)] ;

inblock = f;

add <herelabel,ebout>

return ebtemp;

/* compilation of conditional expression*/

genlab(outlab); j = 2; gentemp(outvar);

(while j lt #exp doing j = j+2;)

genlab(nxtcond);

SETL 76-73

add <ifnotgo, excomp{exp{j)) ,<const,<label, nxtcond>>>;

add <callc, assign, outvar, excomp{exp(j+l))>;

add <goc, <label,outlab>>;

end while;

add <callc, assign, outvar, excomp(exp(j-1))>;

add <herelabel, outlab>;

return outvar;

end excomp;

We now give code for the process of.compiling a code block

obj. We identify some of the important functions and

parameters used below.

subno - integer designating the subroutine being compiled

nargthis - number of (explicit) arguments of subroutine being compiled

currprim - is t, if subroutine being compiled is primitive

argno(.) - function which extracts the number of arguments of

~he current subroutine

prim(.) function which is t if argument is a primitive;

f otherwise.

callinf(.) - decodes the calling information in a primitive

subroutine header.

inbZock - flag which marks the compilation of return exp rather

than x = exp

assemb Ze (. J - processes labels into form consistent with

conventions of base-level interpreter.

SETL 76- 74

/* the 'abstract compiler algorithm' */

define compile(obj);

initially sublist = nult; subno = n;
currtext = nult; inblock = f;;

go to <if£, ifs, while, assign, goto, block, subrout,

lprimsub, primsub, labhere, call, retn, eretn,

scope, endscope> (obj(i));

subrout: lprimsub: primsub:

/* terminate the last subroutine*/

if (subno ne n and not currprim)

then/* save text of current subroutine*/

prim(subno) = f; text(subno) = assemble(currtext);

end if;

<-,subno,nargthis,-> = obj;

currtext = blanksubr;

argno(currtext) = nargthis;

if obj(l) ~ subrout

then prim(currtext) = f; currprim = f; return;

end if;
/* ~lse primitive header*/
prim(currtext) = t;
callinf(currtext) = pconvert(obj(4));

if obj(l) ~ lprimsub

then sinf(obj(S)) = subno;

end if;

sublist(subno) = currtext; currprim = t;

return;

scope: newscope(exp(2)); return;

/* this routine changes the namescope

endscope: scopend;
/* reverts current scope to its parent*/

*/

SETL 76- 75

call:

retn:

eretn:

if internrep(obj{2)) is subname ~ n
then add macexpand(obj(2:));

else add {<call>+ compile[obj(2:)]);

end if;

return;

add <retn>; return;

/* one form within routine, another within code block*/

if inblock then go to blockret;;

add <callc, assign,<var, nargthis+l>, excomp{obj(2))>;

return;

- blockret: /* ebout and ebtemp are global * /

add <callc, assign, ebtemp, excomp{obj{2))>;

add <goc,<label, ebout>>;

retur11,;

goto: add <go, excomp(obj(2))>; return;

assign: /* compilation of assignment statement which has

left and right side*/

end if;

.return;

rightside = excomp(obj(3));

ldexter = #currtext;

/* now compile lefthand side*/

leftside = excomp{obj(2));

/* change last expression to lcall if obj{2) not atom*/

if (#currtext ~ ldexter)

then add <callc, assign, left.side, right.side>;

else/* change last expression to lcall */

text(#text is npt) (1) = lcall;

/* sequence of ZcaZZs in reverse order*/

(npt > Vj > ldexter)

x = text(j); x(l) = lcall; add x;
end \fj;

SETL 76-76

ift: ifs:/* long and short if statement*/

genlab(outlab}, j = 2;

(while j lt #obj doing j = j+2;}

add <ifnotgo, excomp(obj(j}}, <const,<label,outlab>>>;

end while;

add <herelabel, outlab>;

return;

block: (2 ~ ~j ~ #obj} compile(obj(j}} ;; return;

while: <-,cond 1 block,dostat,contlab,outlab> = obj;

genlab(start}; add <herelabel, start>;·

add <ifnotgo, excomp(cond} ,<const,<label, outlab>>>;

compile(block};

add <herelal?el,contlab>;

compile(dostat};

add <goc, <label ,start>>;_

add <herelabel, outlab>;

·return;

For completeness we give

define add x;

/* currtext is global*/

currtext = currtext + <x>;

return; end;

Also the function

definef internalrep(extrep)

cstring = extrep(2);

internrep = internalias (ns,cstring);

/* ns is the current namescope internalias produced by

namescope algorithms see below*/

return if hd internrep eq subno

then internrep(2) else internrep;

end;

SETL 76-77

6 • Assembler

Labels are processed into the form accepted by the base-level

interpreter by the function assemble. The algorithm requires two

passes.

The first pass determines the location of all labels; the

second adjusts all arguments of the form <label,dest> into a

single integer. During the second pass entries of the form

<call,<const, subname>, ..• >
are adjusted to

<callc, subrno, >

where subrno is the index in text at which suhname is stored.

Similar transformations are made on entries of the form

<lcall,<const, ... >, •.• >.

Opcodes goto, ifgo, and ifnotgo are adjusted to gotoa,ifgoa,

and ifnotgoa if the labels are constants.

definef assernb1e(subr);

initially where= {<goto, go>,<ifgo, stmtifgo>,

<ifnotgo, stmtifnot>,<call, stmtcall>,

<lcall, stmtlcall>, <retn, nop>,<stop, nop>};;

macro findconst(loc,fn,newop,adjlabl)

if n atom item(loc) and hd item·~ const

then item{loc) = fn(item{loc));

item(l) = newop;

endif;

subr = subr + adjlabl{<item>);

endm;

labels= ni; newsubr = nult;
le= l;
/* determination location of all labels*/
(\fentry(j) E subr)

if entry{l) £g_ herelabel

then if labels(entry(2)) ne n
then print 'second specification of label',dec entry{2);

else <entry(2) ,le> in labels;

end if;

else le= lc+l; newsubr = newsubr + <entry>;

end if;

end \fentry;

SETL 76-78 I

/* have determined location of all labels - adjust destinations

of all <const,<label,lblnr>> on second pass */
/* second pass*/

subr = nult;

(Vitem(j} E newsubr}

go. to where (item(l}};

go: findconst(2,reallbl, goc,}; return;

stmtifgo: findconst(3,reallbl,ifgoc,); return;

stmtifnotgo: findconst(3,reallbl,ifnotgoc,); return;

stmtcall:

stmtlcall:

nop:

end assemble;

findconst(2,realrout,callc,adjlabl); return;

findconst(2,realrout,lcallc,adjlabl); return;

subr = subr + <item>; return;

We now give the functions which perform the transformations.

definef reallbl(arg);

/* labels is global*/

return if labels(arg(2}} is retarg ~ n
then print 'missing label', maklbl(arg};

retn lastlbl;

else retarg;

end reallbl;

definef realrout(rout);

return rout(2);

end realrout;

Finally, the function

definef adjlabl(item);

return (item(l:2) + [+:3~j~#item]<if hd item(j) eq label

then reallbl(item(2)) else item(j) ;>);

end adjlabl;

SETL 76-79

7. Resolution of programmer specified semantics

In what follows, we shall be processing the output of a tree

to a linear-text compiler similar to that defined by the last

given algorithm. Our remarks are peculiar to SETL, although the

substance of them can be modified to accommodate other languages.

We suppose that the abstract recursively structured syntactic

tree discussed above has been linearized but that ambiguities

in the names of the operators exist. The namescoping/name­

propagation process has been carried out, so that every subroutine

and every variable is put· in correspondence with a pair <m ,n>.

We suppose that similar symbol transformations have been applied

to the names appearing in our various declarations.

It is the objective of the following to resolve the significance

of function and operator references starting with the form in

which such references initially appear. We will outline the

processes which ascribe a definite interpretation to the meaning

of an operator or function in a line of code; for example, to

the plus sign in

.- • • A + B •••

This meaning depends on the kind types which have been specified

for A and Bin the namescopes in which this line appears and upon

the "from" declarations applicable to these kindnames which are

active within this namescope. We gather together the forms of

semantic definition available to the user, as they have been

specified above. First, the dexter forms, in which we include

the allow statement.

J

SETL 76-80

monadicfn ld from op <kindname > get <kn.> using <routname>

dyadicfn 2d from <kindnamel> op <kindnarne2> get <kn> using <routnarne>

J 'neval

releval

rangevaZ

setform

braakform

tuplform

subaaZ Z

3d from

4d from

Sd from

6d from

7d from

<knO>(<knl>,<kn2>, .•. ,<knj>,-)

<knO>{<knl>,<kn2>, •.. ,<knj>,-}

<knO> [<knl>,<kn2>, •.. ,<knj>,-]

{<knl>,<kn2>, .•• ,<knj>,-} get

[<knl>,<kn2>, ... ,<knj>,-] get

get

get

get

<kn>

<kn>

<kn> using <routname>

<kn> using <routnarne>

<kn> using <routname>

using <routname>

using <routname>

8d from <<knl>,<kn2>, ... ,<knj>,-> get <kn> using <routname>

9d allow <kn0>(<knl>,<~n2>, ••• ,<knj>,->)using <routname>

The 1
-

1 in the forms 3d to 9d is optional and indicates that a

variable number of additional arguments may be part of the argument

list of the construction.

The possible existence of user supplied redefinition of the

semantics of the normal SETL constructions restricts the amount

of digestion of the source program which can occur prior to the

analysis of these declarations. Let underscoring mark user defined

infix operators. The constructions a f b, and f(a,b} are inherently

different even though the symbols are the same. Different forms

of from declaration apply to these two different constructions.

Knowledge of the form of the construction must be preserved until

the user supplied semantics are considered. Thus we give these types

of construction generic names dyadicfn and fneval. The argumentsto

each of these generic functions is <f,a,b>. Note that the infix

symbol f appearing in a f b is the first token of the argument list.

Construction 6d corresponds in the usual semantics to the process

of set formation and similarly 8d corresponds to tuple formation.

We assume the tree to linear-text compiler will designate these

processes in a generic manner and compile the tokens which surround

the punctuation into an argument list. We stipulate the designators

setform, brackform, and tup Zform for each of 6d, 7d and 8d resp ec­

ti vely. SimilarlY, 3d mimics the syntax of functional evaluation.

Given that f is a set and not a routin~, the standard semantics

of :t {ti:·,b, c) is the invocation of a routine in the RTL which returns d

if there is only one tuple in f, considered as a set, with

SETL 76-81

initial components a,b,c whose fourth component is d. Briefly,

g{a}

and

h[a,b]

is the set

is the set

{hd x, X E g}

{elth(3), elthEh, t 1Ea, t 2Eblelth(l:2)

~ <tl,t2>}.

The semantics of these constructions are modified by declarations

of the form 4d and Sd respectively. We give each of these

constructions a generic designator fnevaZ, reZevaZ, and rangevaZ

in analogy to their usual semantics in SET~.

In all of these constructions, the clause "using <routname>"

is optional. If omitted, the construction is interpreted as

designating the usual SETL operation. The argument list which

is compiled for each of these forms depends on the construction.

For later reference, we include an example of the argument lists

produced by the parser and preserved by the tree to linear-text

compiler for each of the constructions ld,2d, ... ,9d. The

symbol t denotes the result in each case. We stipulate

argO,argl, ••. ,argj have kindtypes knO,knl, ... ,knj respectively.
I

ld <op, argl, t>

2d <op, argl, arg2, t>

3d <argO, argl, • • • I argj, t>

4d <argO, argl, • • • . I argj, t>

Sd <argO, argl, ... ' argj, t>

6d <argl, arg2, • • • I argj, t>

' 7d <argl, arg2, ... , argj, t>

8d <argl, arg2, • • • I argj, t>

9d <argO, argl, • • • I argj, t>

\

SETL 76-82

In addition to the dexter forms, sinister forms are available.

We give each form a generic designator.

tmonadicfri

tdyadicfn

tfneval

9,releval

tpowfneval

9,setform

tbrackform

ttuplform

tassign

lt fort £12 <knl~ =<kn> use <routname>

22 fort <knl> op <kn2> =<kn.> use <routname>

3.Q.. fort < knO> (< knl> ,< kn2> , ..• ,< knj> ,->

= <kn> use <routname>

49, fort <knO>{<knb ,<kn2>, .•• ,<knj> ,-t··
= <kn> use <rout11ame>

5.Q.. fort < knO> [< knl> ,< kn2> , ••. ,< knj> ,-]

6.Q.. fori

7t fort

8t fort

9t fort

= <kn> use <routname>

{<knl> ,<kn2>, .•. ,<knj> ,-}

= <kn> use <routnartle>

[<knl> ,<kn2>, •.• ,<knj> ,-]

= <kn> use <routname>

<<knl>,<kn2>, ..• ,<knj>,->

= <kn> use <routnam~>

<knl> = <kn2> use <routname>

Types 6t, 7t, and 8t are novel. Their significance

should be clear to the reader. In all of the above, the

kindlists are terminated by an optional '-'. The presence

of this symbol indicates a variable number of additional

arguments.

These· dexter forms impose constraints on the parse

s-i,milar to those imposed by dexter forms. For reference,

we give the argument list produced by the parser for each

construction. Argi has kind kni.

SETL 76-83

li <op, argl, arg2>

2i <op, argl, arg2, arg3>

3R, <argO, argl, • • • I argn>

4R, <argO, argl, • • • I argn>

Si <argO, argl, ... , argn>

6i <argl, arg2, • • • I argn>

7R, <argl, arg2, • • • I argn>

Si <argl, arg2, • • • I argn>

9R, <argl,arg2 >

We also display the syntax of the 'forit' declaration

forit <kindname> €! <kindnamel> u·se

<firstroutname>,<nextroutname>,<actelroutname>;

Note that the source-language iteration

(Vx e:: a) <body> end V;

is assumed to be expanded into linear code equivalent to

xaddr = first(a);

(while xaddr ne Q doing xaddr = next(a,xaddr) ;)

x = actelt(xaddr); <body> end while;

For the identity of first, next, and actelt to be determined

u~ing user-supplied forit declarations, these functions

nwst be marked both in the abstract syntactic tree form of the

program and in the linear text derived from it.

We choose foritl, forit2, and forit3 as th~ respective designa­

tors of these functions-The argument list compiled by the tree to

linear-text compiler must include x and a because the loop header

(V xe:: a) determines the ultimate identity of the functions designate.

by foritl, forit2, and forit3. Avoiding redundancy where possible

we specify the complete argument. list for each of these

designations ,as:
foritl:
forit2:
forit3:

<x,a>
<x,a,xaddr>
<x,a,xaddr>

S~TL 76-84

We now consider the transformation process. A typical item

in the linear text in which operator and functional references

must be resolved is

<desig,ns,argZist,resuZt>

where,

desig designator of syntactic type of construction

ns namescope_in which original text appeared

argZist - tuple with local names of arguments

result local name of result of dexter construction,

absent in sinister forms.

According to the preceding remarks, desig takes on one of

the following values

monadiafn, dyadiafn, fnevaZ, reZevaZ, ... , subaaZZ,

Zmonadia, Zdyadicfn, ... , Zassign, foritl, forit2, and forit3.

We assume that the for, forZ, and forit declarations have been

processed by the tree to linear-text compiler into a set

using - {<desig,ns,kindlist,polyarg,resultkind,ultrout>}

where,

desig - item type designator, one of monadicfn, ...

ns - namescope in which kind declaration appeared

kindlist - tuple of kindnames of arguments

polyarg - t if variable number of additional arguments possible,

f otherwise

resultkind- kind of the result in a dexter construction,

n in sinister

ultrout - integer identifying ultimate routine, if specified,

n if not

The set using must of course include items describing the

standard SETL semantics. To provide for the case in which the

user does not specify a kind for a variable, we assume that

defauZt(ns) - function which returns the default

kindtype for namescope ns

is available and defined for every namescope. If a default specifica-

tion for a namescope is not explicitly made, the default option

SETL 76- 85

within that namescope is the specification made in the parent scope.

(Cf. the detailed account of namescoping conventions given below.)

We assume that default has been defined on each namescope by using

this recursive construction, and that it is single valued. In

the absence of a default declaration in an outermost namescope,

'setZstdtype' is used. The kind of variables for which no

kind declarations have been made is the default specification for

the namescope. We also require a set revertf built out of the

kind and reversion declarations of the form

revertf = {<ns, arg, revertarg>}

in which arg reverts to revertarg in ns.

Since we allow from declarations of the form

from p(scalar) get ...

where p is a variable name, kind declarations are in effect reversion

stipulations of the first order. Moreover, declarations of the form

x ask require an entry be made in revertf. Only from declarations

appearing in the same namescope as a line of source text influence

the semantics of a construction.

From text of the form just described, processes which we will

now outline will produce directly interpretable code of the form

where,

opcode - fcaZZ, caZZ, ZcaZZ, goto, ifgoto, or stop.

fn - < name designating a function or routine>

arg. - name of the i-th argument in the form <m,n> - m-th
l.

variable of the n-th routine. argk is the result

of a dexter construction.

We make no distinction in this sec.tion between call and callc

or any of the other pairs of related o~codes discussed above.

SETL 76- 86

We outline the conversion process for the line of code

g(c) =a+ f(a) (*)

which we assume appears in a namescope ns which contains

the following declarations; integer and real are kindnames.

from f(real) get real;

from real+ real get real using floatadd;

fort g(real) ~ real use evalg;

kind real(a); integer(c);

revert integer(real);

~ ~
A parser and a tree to linear-text compiler together convert'"~

the line of source code into the following linearized text

<fneval, ns, <f,ci>,tl> (1)

<dyadicfn, ns, <'+' ,a,tl>,t2>

<lfneval, ns, <g,c,t2,t3>>

.which corresponds to the expansion of (*) into

tl = f (a)

t2 =a+ tl

g(c) = t2

(2)

(3)

After the from-. declarations are processed using contains at least

the following entries~. The fourth entry f is the value

of polyarg.

<fneval, ns, <f, real>, f real> . _,

<dyadicfn, ns, <+, real, real>, !_, real, floatadd>

<lfneval, ns, <g, real, real>, f, re.al, evalg>

The variable a is identified as having kind real; c, as

having kind integer. There is one reversion declaration

a variable of kind integer is to be considered also as kind

real.

SETL 76-87

The line (1) is interpreted by considering the set

using{fnevaZ,ns}. The argument list <f,a> must be

matched to the kindlists of the elements in using{fnevaZ,ns}, The

result, tl, of a dexter function invocation does not influence the

determination._of an interpreta.,tion. There are no kindlists of the

f·orm <f,a>. We then ~onsider pairs of the form <rf,a> and

<f,ra> where rf is a kind to which f can be reverted and

ra is a kind to which a can be reverted. a can be reverted to reaZ.

There is a kindlist in using{fnevaZ,ns} which matches <f,rsaZ>.

The line (1) is then changed to

<callc,fneval,f>,a,tl>

The result tl must be assigned the kind reaZ, as the clause

"get reaZ" appears in the original declaratio~ which reads:

from f(reaZ) get reaZ

An entry into the sets which. govern the reversion of kinds, must be

made because tJ is a temporary generated by the parser and is

unknown at the source code level. The tuple

<dyadicfn, ns, <'+' ,a,tl>,t2 >

is interpreted after the argument list <'+',a,tl> is reverted

twice. There is no specification in using {dyadicfn,ns} in

the form<'+', a tl > or as either <'+' ,a,real> or

<'+' ,real,tl>. Howeve~ there is an entry in using{ dyadicfn,ns}

which corresponds to <'+' ,real,real>. The result t2 is given

the kind real. The code generated is

<callc, fneval, +, a,tl,t2>

Interpretation of the sinister form

<ZfnevaZ, ns,<g,c,t2>>

SETL 76- 88

requires consideration of the kind of the right-hand side

t2; unlike the dexter forms in which the kind of the left-ha.i."ld side

is of no concern. The argument list must be reverted

successively to <g,reaZ,reaZ> before the conversion to

interpretable text

<ZaaZZ, fnevaL~ g, c, t2>

is made.

In general, the principal part of the production of

interpretable text from linearized code is to determine

the identity of the operator fn to be invoked in the case

of function invocations or subroutine calls. The algorithm

depends upon finding a chain of reversions of the tokens

of argZist, such that the reverted tokens match the kind-

list of one of the tuples of using{Zocfn,ns}. This corresponds

to finding a from declaration in the relevant namescope.

For example, consider the reversion of the argument list

<a,b>. If no entry in using{Zocfn,ns}

corresponds to <a,b> then one considers

tuples of the form <a,rb> and <ra,b> where rb e revert{b} and

ra e revert{a}. These are reversions of level one. If a

unique match is found, the reversion process is complete.

A nonunique match is an ambiguity error. If no match is

found, each element in the set of level one reversions of

<a,b> is again reverted and the process is repeated. The

details of this process will be clear from the algorithm

given below.

Note that it is also assumed in what follows that the name­

scoping process creates a 'dummy' subroutine outrout, numbered

0, to which belong variables <0,1>, <0,2>, whose values

are respectively initialized to .the first, second, etc.

primitives, followed by thE: first, second, subroutines

compiled.

SETL. 76-89

These remarks should enable the reader to comprehend the code

which follows. First we define various sets which are needed in

the code.

dexter - { 'monadicfn' , 'dyadicfn' , 'fneval', 'releval',

'rangeval', 'setform',

sinister - {IQ, I + x, X E

loop - {'forit'+ dee

We now give the main routine.

definef prodcode(a);

dexter} +

n, 1 < "In

'brackform' ,

{'lassign'};

< 3};

/* main routine of semantic resolution process*/

<desig,ns,arglist,result> = a;

keys= using{desig,ns};

'tuplform' } ;

/* typical component of keys is <kindlist,polyarg,resultkind,

ultrout> */
willdo = nt;

argkind = {arglist};

(while argkind ne nt and #willdo ~ 0 doing argkind

= revert(ns,argkind) ;)

willdo = {t, t E keysl(3s E argkindlma·tch(s,t))};

end while;

if #willdo ~ 0 then

print 'unable to find semantic interpretation for', a;

return nult; end if;

if #w~lldo .9:.! 1 then print 'semantic ambiguity for', a,

i all the following constructs apply', willdo; return nul t;

end. i~;

/* else code item can be built*/

<kdlist,polyarg, resultkind,ultrout> = 3willdo;

/* maik kind of result in dexter construction,*/

if desig E dexter then revertf(ns,result) = resultkind;

\
\
I

SETL.76-90

if desig E {fneval, dyadicfn, monadicfn}

then return <callc,fneval> +

<if ultrout ~ Q then arglist(l) else ultrout>

+ arglist(2) + <result>;;

if desig E forit

then return <callc> +
<if ultrout ~ n then <const, desig> else ultrout>

+ absarglist(arglist,desig) + <result>;;

end if desig E dexter;

/* else desig E sinister*/

return if desig E {lfneval, lydadicfn, lmonadicfn} then

<lcallc,lfneval> + <if ultrout ~ n then arglist(l) else ultrout>

+ arglist(2:);

else <lcall, if ultrout ~ n then <const, desig> else ultrout>

+ arglist;

end prodcode;

definef match(arglist,eltkeys);

/* dexter, sinister, loop are global*/

<kindlist, polyarg> = eltkeys;

return kindlist ~ arglist(l: #kindlist)

and((ikindlist lt #arglist)imp polyarg);

/* imp is the boolean operator imples */

end match;

definef absarglist(arglist,desig);

return if desig E {'foritl' ,'forit2'} then arglist(2:)

else if desig ~ 'forit3' then arglist(3:)

else arglist;

end absarglist;

SETL 76-91

In the code that follows ns knows y is true if y is a

variable known inns.

definef revert(ns,setarg);
newkd = [union: x E setarg, 1 ~ Vj ~ #x] rev.ertf{ns,x(j)};

return if newkd ne nt then newkd

else if (ns knows 3 setarg) then default(ns)

else nt;

end revert;

