
SETL Newsletter 92

Some Experiments with SETLB Programs

January 2,1973
Kent Curtis

This newsletter summarizes some experiments performed with
a simple SETLB program and a comparison which was made between
this program and an equivalent FORTRAN program.

I. Nature of Program

The program studied calculated the sequence of numbers
generated by the following rules:

Given a starting integer N;
1. If N even then ;- = N/2
2. If N odd then Nl = (3 N + 1) /2

3. Iterate on the generated integers until the

sequence goes to 1.
The program generated the sequences of odd integers derived

from initial odd integers in the range FIRST~ N ~ LAST with the
provision that redundant calculations would not be performed
but linkages to previously computed sequences would be indicated.
In these experiments., the 17 bit integer arithmetic of SETLB

constrained the range to 1 < N ~ 701.

To eliminate redundant calculations,a set was used to
accumulate the computed integers and each sequence was followed
until it generated a member of that set. In FORTRAN., the set
was represented by a linear array.

A variety of modifications of this program provided the
comparisons reported herewith.

II. SETLB-FORTRAN Comparison.

No particular attempt was made to design efficient
data representations in either the SETLB or FORTRAN versions
(integers and integer arithmatic were used throughout) but some

c.

care was ex:ercised (especially in the FORTRAN versions) to eliminate
superfluous tests and comparisons from the logic. As a result,
this comparison is believed to be fair for rather casually created
experimental programs.

It should be noted that this problem is really on FORTRAN's
home ground of numerical calculations where one might expect
SETLB to compare especially unfavorably to FORTRAN.* Since, based
on comparison of elementary operations, execut~on time ratios in
excess of 30:l have been predicted between the present SEI'LB
system and FORTRAN, the results are a bit surprising. They must
be taken as indicative of the potential of the SETL dictions to
be competitive in program execution as well as in providing
advantage for program construction on problems which can use
those dictions to advantage.

The results are shown in the following tables:

Sfil'LB-FORTRAN Comparison
(Program Version 1, requiring 2 set membership tests in the

inner loop)

Item SETLB FORTRAN Ratio(SETLB
PORTRAN)

No. Program Statements 25 60 o.4
Compile Field Length 66 K (octal) 40 K(octal) 1.6
Execution Field Length 160 K(octal) 17 K(octal) 9.4
Compile Time (CPU) 3.8 sec. 0.3 sec. 12.6
Execution Time (CPU) 24.6 sec. 3.1 sec. 8.0
Total PPU Time 28.6 sec. 5.5 sec. 5.2

* The SETLB program reflected this problem characteristic since
it looked much like a FORTRAN program, consisting primarily of
many short statements.

3

SETLB-FORTRAN ComEarison
(Changes from above table)

(Program Version 2, requiring 1 set membership test in inner loop)

Item SETLB FORTRAN Ratio

No. Program Statements 26 62 o.4
Execution Time (CPU) 24.2 sec. 2.0 sec. 12.1

Total PPU Time * 21.3 sec. a.5 sec 2.5

It is interesting to note that the execution times of the
SETLB programs were nearly independent of the number of set
membership tests performed in the inner loop whereas the
FORTRAN program was highly sensitive to this, as expected.
This reflects the high efficiency of the set membership test in
SETLB (a source of substantial power in SETL since it is a basic
constituent of many SETL expressions and operators and contributes
to both programming and execution time efficiency) but its true
significance is obscured by other side effects of the program
changes involved (e.g. in the definition and handling of tuples).
Some further study of these effects follows.

Comparison of SETLB Programs

(In all of the following comparisons, the compile field
length was taken to be 66K (octal). This may or may not be a
minimum for the present SETLB system.)

* The total PPU time recorded by the CDC SCOPE system seems
to have large uncertianties which depend upon the momentary
multi-programming job environment, not on the individual user job.

As a starting point, the next table shows data on compiling
and executing the SETLB program consisting of a single NOOP as
the only executable statement.

SETLB NOOP Program

Item

No. Program Statements

Execution Field Length

Compile Time (CPU)

Execution Time (CPU)

Total PPU Time

Data

4

150 K (octal)

1.7 sec.

1.6 sec.

25.2 sec.

1156

0

Comments

4

No. Symbol Table Entries

No. Garbage Collections
Max. Height of Heap 103773 (octal) a Function of the

Execution Field Length
Actual Height of Heap 77377 (octal)

This table reflects the minimum time and space overhead of
the SETLB system as of this date (Dec.21, 1972). As noted above,
the PPU time is not very significant but is reported for its
indication of order of magnitude. Memory space data in this table
reflects the requirements of the SETLB run time library that
provides the SETLB operations.

The first comparison simply replaced a statement in the
previously described program of the form

Tuple = Tuple + (a, b) (Program A)
with two statements of the form

Tuple

Tuple

(! Tuple + 1) =

(i Tuple + 1)
(Program B)

The data is as follows:

Item Program A Program B

26 27

5

No. Program Statements

Execution Field Length
Compile Time (CPU)
Execution Time

16ok(octal) 160k (octal)

Total PPU time
No. Symbol Table entries
No. Garbage Collections
Max. Height of Heap
Final Height of Heap

3.8 sec.
24.2 sec.
21.3 sec.

1157
4

113412 (octal)

105047 (octal)

3.8 sec.
23.8 sec.
36.4 sec.
1157

3
113412{octal)

110271(octal)

These results suggest some sensitivity to the particular
choice of SETLB dictions used. Since Program A results in the
formation of Tuples which are not required in Program B, one
might expect it to be more demanding in time and space. This
shows up in the need for an additional garbage collection.
The PPU time figures do not correlate with any known differences
in the programs and seem spurious.

Further comparisons were made with an expanded program which
provided two additional features:

a) a binary representation of each generated integer

b) a set of ordered pairs which could be used to derive a
tree representation of the generated sequences.

This program used 40 statements and required 5.1 seconds
to compile. It generated 1161 symbol table entries and used
20 seconds+ 30 ·% of PPU time in several runs.

This program was run at several execution field lengths
to compare time and memory utilization. It is interesting to
note that this program executed at each of the field lengths
but terminated before completing the construction of its sets
in some cases. For the range 1< N ~ 701, the two principal

6

sets formed had approx. 550 members each. The percentage
completion reported below is the percentage of these set members
computed before the program terminated due to lack of memory space.

Field length Number garbage Maximum Heap Execution Comments
(octal) collections size Time

150000 5 103773 9.66sec. 3% complete
155000 18 110544 41.22 43% complete
160000 20 113412 52.89 58% complete
165000 24 120163 74.39 92% complete
170000 22 123031 79.61 100%
200000 12 132450 67.93 100%
240000 4 170544 59.14 100%
300000 3 226640 58.08 100%

It appears from this data that each garbage collection cost
approximately 1.1 seconds of execution time on this program with

a memory space-execution time trade-off of the expected form.
Most efficient operation would appear to be at a field length
approximately 10% above the minimum for completing the problem.

'(

As an additional comparison, I recoded the problem
(without changing the final results or output) to eliminate one
auxiliary tuple of the form (integer, string) used in the inner loop.

The statisties on three runs were:

Field length

155000

165000

170000

Number garbage
collections

16

23

20

Maximum
size

110544

120163

123031

Heap Execution Comments
time

37.74 46% complete

70o79 94% complete

73.75 100%

Comparing these results with the previous results shQws a
significant time saving (7%) by eliminating one auxiliary variable.
Some saving of memory space is also apparent since the programs
ran further than previously at 155K and 165K field lengths with
fewer garbage collections.

Finally, the 550 member set of ordered pairs was removed
from the program without otherwise altering results or output.
Statistics on that were:

Field length

150 000

160 000

170 000

Number garbage
collections

36

14

8

Maximum heap Execution Comments
size time

103773 68.77 97% complete

113412 54.32 100%

123031 49.56 100%

These results are suggestive because that set of ordered
pairs was not used in the inner loop of the program in any way.
It was constructed in the inner loop and used once each time

around the outer loop. If facilities were available in SETL
for the purpose, I might have elected to form and keep that set

8

in secondary storage, thereby freeing memory space, reducing the
number of garbage collections needed, and improving turn-around
time without serious degredation in program performance The
cited data suggests approximately a 10% reduction in field length
required to complete this problem and a 50% reduction in garbage
collections needed by removing one of the two large sets from
central memory.

Conclusions

These crude experiments permit one strong conclusion and
suggest two others.

1. SETL programs compete well in execution speed
problems which use the SETL dictions in essential ways.
experiments demonstrated that phenomenon for a maximally
program which involved only one statement that is unique

for
These
simple
to SETL.

More complete programs which lead to more complicated relationships
and dictions can be expected to show even more compelling advantage
for SETL if similar comparisons were to be programmed and carried
out. Writing such programs in a language other than SETL is
difficult, however, and such comparisons are unlikely to be
performed.

2. SETL programs tend to rise in memory space utilization
like leavened dough. The garbage collector kneads the program
down at some cost in time but it rises again, each time with a
gradually growing irreducible volume that is inaccessible to the
garbage collector.

9

Providing the programmer or the system with options for
allocating portions of the program generated data to secondary
storage and for performing SETL operations on data in secondary
storage is one possible mechanism for reducing the rate of growth
and thus increasing the range of useful application of SETL
using existing machines.

Two possible implementation strategies are:

a) Add to SRTL a routine to translate SE'TL objects from internal
CM representation to a linear representation appropriate to
secondary sequential access storage and add a set of routines
to apply SETL primitives to objects flowing through a buffer.
This approach would seem to favor the movement of entire SETL
objects and variables to secondary either at the programmer's
option or as determined by an optimizer.

b) Introduce a virtual memory concept into the SETL system.
This would seem to favor storage of fragments of SETL objects
in CM and fragments in secondary.

Some review of SETL algorithms developed to date may
suggest which is preferable.

3) SETL programming brings to the fore another type of program
optimization which is worthy of consideration both as an automatic
optimization facility and as a matter of programming style. The
yeasty growth of SETL programs during execution favors elimination
of auxiliary variables whereever possible and the reduction of
program span during which variables are live. Some thoughts on
this will be summarized in Newsletter 930

