
\ 

StTL Newsletter 99 and BALM Bulletin 21 s. Brown 

PAGING, THE QUICK AND DIRTY WAY Jan. 31, 19 7 3 

A version of BALMSETL with paging is available. The implementa­

tion is loosely based upon the description in SETL Newsletter 86. 

It proved to be only slightly more difficult to implement than 

anticipated. The SETLB user should not expect the paging version 

to solve all of his space problems as this version represents, 

at best, an interim solution. The user will find himself once 

again confronted by the dilemma of trading core size against 

running time. 

There follows (1) a brief description of the implementation, 

(2) some results of test runs, (3) conclusion and suggest improve­

ments and, if the user is still with us, (4) the necessary job 

control to run the paging version. 

Implementation 

A series of new BALM primitives (described in BALM Bulletin 19 

were implemented. These extended the BALM capabilities to include 

opening random files, reading and writing records randomly, and 

implicitly passing arguments to a procedure. Next several BALM 

procedures were written which control paging in the following 

fashion. 

MAKEPAGE -

1. scans the symbol table and makes a list of procedures 

which may be paged to disk. 

MAKEPAGE may be called as often as desired. Each call makes 

procedures added since the last call available for paging. 

SELECT -

1. Groups the procedures on the list supplied by MAKEPAGE 

into pages. 

Instead of each procedure being a page several procedures 

make up one page and are paged together. 

SWAP -

1. Writes the pages to disk. 

2. Replaces the paged procedure with a small procedure which 

either executes the procedure itself or calls PAGINREC to 

retrieve it from disk and executes it. 



SETL99,BALM21 -2-

PAGINREC -

Is called whenever a procedure must be paged in from disk. 

1. Checks to see if 

SIZE(PAGE(I)) + CURRENT-CODE SIZE> MAXCODE 

If not the PAGE(I) is brought in. 

If yes the latest used pages in core are released and then 

PAGE(I) is brought in. 

2. Updates CURRENT-CODE-SIZE appropriately. 

SOME RESULTS OF TEST RUNS 

NO PAGING PAGING 

PROGRAM TIME Garbage Field TIME Garbage Field 
(sec) Collec. Lenqth Collections Length 

BALMSETL 119 24 170K 154 34 170K 

'MEDIAN 13.9 2 177K 18.9 4 177K 

MEDIAN 14.7 4 170K 17.9 2 170K 

MEDIAN insuff. 3 space 160K 19.3 4 160K 

MEDIAN - - - 19.9 5 150K 

MEDIAN - - - 24.1 9 140K 

MEDIAN insuff. 3 130K - - - space 

TREEPRINT 26.3 7 177K 50.1 16 177K 

TREEPRINT - - - 42.5 13 177K 

TREEPRINT - - - 56.4 27 160K 

PERM 15.7 3 177K 23.0 4 160K 

CONCLUSIONS AND SUGGESTIONS 

MAXCODE 
SIZE 

8,000 

8,000 

10,000 

10,000 

10,000 

10,000 

10,000 

12,000 

14,000 

14,000 

12,000 

Any paging scheme which acts independently of the garbage 

collector is bound to be far from optimum. First of all the amount 

of code to allow in core represents another parameter to adjust. 

If it is too small to accommodate the procedures necessary for 

running the program a great deal of paging takes place. This, 

in turn, increases the number of garbage collections as the garbage 



SETL99,BALM21 -3-

collector must be invoked to reclaim space used by code blocks 

which have been paged out. The importance of an appropriate 

setting of MAXCODE is illustrated by the difference between 

runs 1 and 2 of MEDIAN (with paging) in which the program ran 

faster with fewer garbage collections even though the field 

length was decreased. 

The setting of MAXCODE and field length are clearly somewhat 

dependent upon the program. However, the relationship between 

the two can be computed. 

In BALMSETL without paging about 30,000 words are devoted to 

code. Paging reduces this to 6000+MAXCOD. Therefore if MAXCODE 

is set to 12,000 (which is the default) then the total amount of 

space devoted to code is 18,000 words. The field length can then 

be reduced by 12,000 words or about 30K. This will, of course, 

increase the number of garbage collections and the total ~unning 

time. 

The current implementation could be improved by grouping 

procedures, which should occur in the same page, intelligently. 

This would cut down the amount of paging and is probably the 

easiest step to increase efficiency. Further improvement could 

be gotten by coding paging at a lower level. Rather than a BALM 

procedure to retrieve code from disk the CALL primitive could be 

modified to do the work. Clearly paging when the garbage collector 

runs out of space would be an improvement but that suggests that 

the paging scheme described in BALM Bulletin 17 should be 

implemented instead of continuing work on the present version. 

HOW TO USE THE PAGING VERSION 

JOB CARD 
RFL, 66000. 
ATTACH(SETLB,SETLB) 
SETLB. 
ATTACH(BALM4,PBALM4) 
ATTACH(BLM4SVD,SAVESETLP) 
RFL,NNNNN. 
BALM4(SETLOUT) 
E-0-R 

SETLB PROGRAM 
E-0-F 



SETL99,BALM21 -4-

A user may adjust the amount of core reserved for code by including 

including the following card in his SETLB program. 

DO; SETMAX(N); COMPUTE; 

where N is the desired size. A user may page his procedures 

by executing DO; MAKEPAGE; COMPUTE; 

All procedures compiled before the call to MAKEPAGE will be 

paged to disk and brought in as required. 


