
SETL Newsletter 107 

Linear Function Test Replacement 

May 20, 1973 

Ken Kennedy 

This newsletter is a sequel to SE'l'L Newsletter #102 

( 
11 Reduction in Strength Using Hashed Temporaries 11

) • 

The reader is referred to that newsletter for a description 

of the intermediate code and macros assumed in this discourse. 

The idea of test replacement is to allow the elimination 

of computations whose usefulness ends with strength reduction. 

For example, consider the loop: 

i = 1 

start: X = i*c 

i = i + 2 

if i < 100 go to start 

After strength reduction, this becomes: 

i = 1 

t.* = i*c 
1 C 

t2*c = 2*c 

start: 

i = i+2 

ti*c = ti*c + t2*c 

if i < 100 go to start 

Now if i is dead on exit from the loop, as is the case with 

many induction variables, we can eliminate the instruction 

which increments i if we can eliminate the test of i. We 

do this by testing t.* instead, yielding the following loop. 
1 C 

i = 1 

t.* = i*c 
1 C 

t2*c = 2*c 

start: 
tlOO*c = l00*c 

X = t. * • 1 C . 
t.; = t.* + t2* 1 C 1 C C 

if ti*c 2 tlOO*c go to start 



SETL 107-2 

We have thus eliminated one instruction within the loop. This 

then is the purpose of test replacement. 

The method we present here replaces all tests of induction 

variables ~ with tests of temporaries t.* if such a temporary 
~ C 

exists. The useless increments will then be removed by a systematic 

dead computation elimination algorithm to be described in a later 

newsletter. 

Suppose the test is of the form: 

if i > cl go to label 

We must do three things: 

(1) we must insert t l* in the table of hashed temporaries; 
C C 

(2) we must initialize t l* in the prolog of the strongly­c C 

connected region, and 

(3) we must replace the instruction by 

if t.* > t l* go to label 
l C - C C 

Note that steps (1) and (2) need only be undertaken if there is 

no temporary tcl*c· 

The following SETL function performs steps (1) and (2) and 

returns the ordered pair of arguments for the modified branch 

instruction. 

definef treplace (i,c,cl,prolog,plast,t); 

/* i is the induction variable, 

c is the constant multiplier for which temporary t(i,c) exists, 

cl is the comparison constant in the test, 

prolog is the set of instructions which are executed prior 

to entry to the current scr, 

plast is the last instruction in the prolog, 

t is the table of temporaries*/ 

/* first see if t(cl,c) is in the temporary table*/ 

if t(cl,c) ~~then/* create new entry*/ 

t(cl,c) = newtemp; t(c,cl) = t(cl,c); 



SETL 107-3 

/* insert initialization in prolog */ 

insert(plast,t(cl,c), mul, <cl,c>, prolog); 

/* the insert routine is defined in newsletter #102 */ 

end if; 

/* now return new arguments for conditional branch*/ 

return <t(i,c), t(cl,c)>; 

end treplace; 

Now the test replacement merely consists of searching the code 

in the strongly-connected region scr for conditional branch 

instructions (brc) which compare an induction variable to a 

region constant. If the induction variable i has an associated 

temporary t.* in the region we can perform the reduction. 
1,, C 

In order to determine if there is such a temporary we need 

a list of induction variables and associated constants for which 

temporaries have been created. Recall that the set aands from 

SETL Newsletter #102 is the set of instructions which will be 

eliminated by reduction in strength. After the candidates are 

found we can form a list of induction variables and constants 

by inserting the instruction 

ctemps = args[cands] 

The set ctemps will then contain all pairs <i,c> for which 

a temporary t.* 
1,, C 

is created by reduction in strength. With 

the availability of this set the test replacement algorithm 

looks like this. 

define testreplace(scr,iv,rc,ctemps,prolog,plast,t); 

/* scr is the region being considered, 

iv is the set of induction variables, 

re is the set of region constants, 

ctemps 

proZog 

plast 

t 

is 

is 

is 

is 

the 

the 

the 

the 

list of constant multipliers of induction variables, 

prolog of the current scr, 

last instruction of prolog, 

table of temporaries */ 



SETL 107-4 

/* search for replaceable tests*/ 

(Ya E scr op(a) ~ brc) 

if((argl(a) is i) E iv) and 

((arg2(a) is cl)E re) and 

(3c E ctemps{i}) 

then 

<argl(a) ,arg2(a)> = treplace(i,c,cl,prolog,plast,t); 

else if((argl(a) ~ cl) Ere) and 

((arg2(a) is: i) E iv) and 

(3c E ctemps{i}) 

then 

<arg2(a) ,argl(a)> =treplace(i,c,cl,prolog,plast,t); 

end if; 

end testreplace; 

This routine can be incorporated into the strength reduction 

algorithm presented in SETL Newsletter #102 to produce the 

following SETL routine: 

define streduce(prolog,plast,scr,rc); 

/* prolog is the initialization block whose last instruction is plast, 

scr is the region and re are the region constants which 

we assume are found in an earlier code-motion pass*/ 

/* find induction variables*/ 

<iv,ivnodes> = findivars(scr,rc); 

/* find candidates for reduction*/ 

cands = findcands(scr,rc,iv); 

/* create constant multipliers list for test replacement*/ 

ctemps = args[cands]; 

/* find the affect relation*/ 

affect= findaffect(ivnodes,iv,rc); 

/* now pass through the candidates creating temporaries and 

inserting initializations and modifications*/ 



SETL 107-5 

(Vat E cands) x = argl{at); c = arg2(at); 

/* create the new temporaries as required*/ 

(Vy E affect{x} I t(y ,c) = m 
t(y,c) = newtemp; /* compiler generated name*/ 

/* initialization in prolog */ 

insert(plast,t(y,c) ,mul,<y,c>, prolog); 

plast = next(plast); 

/* double entries for const * const */ 

if y Ere then t(c,y) = t(y,c) ;; 

/* insert modifications to the new temporaries after 

instructions which set induction variables*/ 

(Vn E ivnodes I targ(n) ~ y) 

newargs = if pair args(n) 

then <t(argl(n) ,c) ,t(arg2(n) ,c)> 

else <t (argl (n) , c) >; 

/* the inserted instruction has the target t(y,c), the same 

operations as n, and newargs as its argumetns */ 

insert (n, t (y, c) , op (n) , newargs, scr) ; 

end "In; 

end Vy; 

/* now replace the candidate by a store operation*/ 

<op(at) ,args(at)> = <sto, t(x,c)>>; 

end Vat; 

/* call test replacement program*/ 

testreplace(scr,iv,rc,cternps,prolog,plast,t); 

end streduce; 

The test replacement routine does not eliminate actual increments 

of induction variables. It will, however, make many of these 

increments "useless" and they can be eliminated by a dead 

computation elimination algorithm. Such an algorithm will be 

described in a later newsletter. 

Acknowledgement: The author is grateful to John Cocke 

for suggesting the methods described in this newsletter 

and SETL Newsletter No. 102. 


