
SETL Newsletter# 113

Little Code Generation From The BALM Compiler

August 8, 1973

Stephanie Brown

This newsletter is intended as a general design specification

for a new set of code generator for the BALM Compiler to

produce LITTLE.

General Environment

The only part of the BALM compiler we propose to modify is

the codegenerator and the tables associated with cod~ generation.

We plan to retain the same framework used in the current BALM code

generator.

Here follows a brief description 0£ the current BALM code
• I

generator.

The control program (CODEGEN) is called whenever a procedure

is found in the parsed tree (PROC). Since the appropriate format

for defining a procedure in BALM is

X = PROC (ARGS), EXPR,END;

CODEGEN has two arguments

1) The name appearing on the left hand side of the equal sign.

2) The parsed and macro expanded tree whose head is PROC. In

the case where the BALM expression to be compiled is not a procedure

definition, it is made into a procedure and gived the arbitrary

name CURCOM. Procedure CODEGEN initializes registers, lists and

generates the necessary code to reference the arguments. Next

the main code generator routine (COMP) is c~lled with the tree

representing the body of the procedure as ~n argument. Note that

the body of a BALM procedure can contain only one expression which

may be BEGIN (), ... , ... END. COMP checks for the following cases.

1) its argument is an identifier (name) in which case it generates

the appropriate LOAD instruction.

2) its argument is a constant (i.e. not a pair); the appropriate

load instruction is generated.

3) its argument is a tree whose head appears on the CODEGENLIST.

each entry on this list is a special case and a procedure is
associated with it. COMP calls the procedure with the tree

as an argument.

4) COMP is called recursively to load the arguments associated

with the head of the tree which is COMP's argument. Then

a) if the name at the head of the list is an MBALM op code
(appears on OPLIST) the op code is generated.
For example: A+ B results 1n

LOAD A

LOAD B

+

2

b) The name is assumed to be a BALM prc6edure and a call is generated.

For example: FACT (5); results in

LOAD 5

LOAD FACT

CALL (i ~rgument)

While the same logic will be employed to generate LITTLE,

COMP will have a second argument giving the desired destination.

This allows us to produce

A= GENINT(l); rather than

RESULT= GENINT(l);
A = RESULT;

for A=l. We can also load arguments to SRTL procedures into the

correct registers. OPLIST must now contain the following data
1) the name of the SRTL procedure associated with the operation

2) information about where the arguments ~should be loaded (i.e.

ARGl, STACK, etc.)
3) Where the result is returned

4) Whether this is a function or a subroutin~.

Some additional bookkeeping facilities must be added. We need

an allocator for certain special quantities such as ARGl, ARGZ,

RESULT,we need to keep track of the contents of the stack and of

the various quantities, and we need to keep track of the stack

height. Initially all the BALM operations requiring HEAP allocations

will be handled by SRTL procedures. This relieves the code

generator from the bookkeeping necessary for garbage collection.

It does not have to tack HEAP pointers and initialize HEAP

locations of partially constructed data structures.

Stack Management

MBALM instructions push and pop a stack. In the r simulator

this is exactly what is done. The MBALM to COMPASS TRANSLATOR is

considerable more efficient in its use of the stack. The height of

the stack is computed for each procedur.f; On entry to the procedure

if the necessary number of stack locatio'n's are not available a

garbage collection takes place. Each instruction which uses the

stack has a reference of the following type

STACK(PB+K)

where PB is the height of the stack on entry to the procedure and

K is a constant. Whenever the garbage collector is called the

current height of the stack is stored.

In the LITTLE code generators we propose to produce code which

will handle the stack in a similar fashion. At the beginning of each

procedure there will be a

RVSTK(n);

RVSTK or whatever procedure we use to reserve n stack locations will

initialize the stack to zero. Then the pointer to the stack top

will be increased by n. At the end of the~procedure the pointer

to the top of the stack will be decremented by n. This method has

the advantage that the height of the stack at a given moment need

not be kept. This makes the LITTLE code produced somewhat simpler.

3

The disadvantage is that heap pointers stored in the stack during

a procedure may no longer be needed when a garbage collection

occurs but the space cannot be recovered until the procedure exits.

Library Usage

A number of BALM operations will be implemented by calls to

SRTL procedures or upon utility procedures which must be added to

the library. The following is a list of these operations:

CALL

RETURN

APPLY

CFROMV

STKTRACE

+

*

I

LIST }
VECTOR -

STRING

must call the LITTLE compiler

handled as special cases

- (cons operation)·

VFROMS

SFROMV
INDEX V [i]
SETINDEX V[i] = X

IDFROMS

SIZE NELT

STOP

GARBCOLL

WRLINE
RDLINE
REWIND

BACKSPACE
TIME

END FILE

4

In-Line LITTLE code
The following is a list of BALM expressions which will be

handled as special cases and the LITTLE code produced.

PROC(IDl, IDZ, ..• IDn), X END
CALL RVSTK (n);
T=T+n;
ARGl = STACK(AB-1);

STACK(AB-l)=VALTB(idl); / idl is an integer constant/

VALTB (idl) =ARGl;

ARGl=STACK(AB-n);

STACK(AB-n)=VALTB(idn);

VALTB(idn)=ARGl;
i ,

compile code to compute x, the value being in RESULT

VALTB(idl)=STACK(AB-1);

VALTB(idn)= STACK(AB-n);
T=T-n ;

CALL RETURN;

BEGIN(ID1,ID2, ,IDN), X ... ,L, ... END
STACK(PB+K)=VB;
STACK(PB+Kl)=NV;
VB=PB+Kl;
NV=n;
STACK(VB-l)=VALTB(IDl);
STACK(VB-2)=ITEMNIL;

5

STACK(VB-n)=VALTB(IDN);
compile code to stack X

/L/ ?

/RET/VALTB(IDl)=STACK(VB-1);

VALTB (IDN)=STACK(VB-n);
VB=STACK(PB+K);

NV=STACK(PB+Kl);
the value of the block 1s in RESULT

FOR I=(J,K,L) REPEAT X;
if Lis a constant 1 and J and K are constants

I=ROOTSINT;
DOM(STACK(PB+K) ,J,K);
EVAL I= STACK(PB+K);
compile code to compute X

EDOM;
if J and K are variables

I=ROOTSINT;
STACK (PB+ Kl) =EVALSINT (J) ;
STACK(PB+K2)=EVALSINT(K);
DOM (STACK(PB+K3),STACK(PB+Kl) ,STACK(PB+K2));
EVAL I= STACK(PB+K3);
compile code to compute X

EDOM;
if Lis not a contant 1

I=ROOTSINT;
STACK(PB+Kl)=EVALSINT(J);
STACK(PB+K2)=EVALSINT(K);
STACK(PB+K3)=1;
IF ESIGNSINT(L) THEN (STACK(PB+K3)= 2); /negative increment/

STACK(PB+K4)=EVALSINT(L);
GOBY STACK(PB+K3) (PTEST,NTEST);

6

/START/ EVAL I= STACK(PB+Kl);

compile code to compute X

GOBY STACK(PB+K3) (PINC ,NINC);
/PINC/ STACK(PB+Kl)=STACK(PB+Kl)+STACK(PB+K4);

GO TO PTEST;
/NINC/ STACK(PB+Kl)=STACK(PB+Kl)·STACK(PB+K4);

GO TO NTEST;
/PTEST/ IF(STACK(PB+Kl) .LE. STACK(PB+KZ)) GO TO START;

GO TO DONE;
/NTEST/ IF(STACK(PB+Kl) .GE. STACK(PB+KZ)) GO TO START;
/DONE/ .
WHILE Xl REPEAT X2

RESULT= ITEMNIL;

/MORE/ compile code for Xl into ARGl

IF(ARGl .EQ. FALSE) GO TO NTRUE;

compile code for X2 into RESULT
GO TO MORE;

/NTRUE/

RETURN X

compile code for X

GO TO RET;
GOTO X
if X lS a label

GO TO X;
if X is not a label

RESULT= X
GO TO GGOBY;

into RESULT

/GGOBY/ IF (ETYPE RESULT) .EQ. LBL) GOTO GGGOBY;
CALL ERROR;

/GGGOBY/ GOBY (EVAL RESULT (Ll, 12, L'n);

IF Xl THEN X2 ELSE X3
IF (Xl .EQ. TRUE) THEN X2;
ELSE X3;
ENDIF;

7

Xl=X2

compile code for X2

Xl=RESULT;

HD Xl = X2

compile code for X2 into RESULT

compile code for Xl into ARGl
HEAP(EPTR ARGl) = RESULT;

PAIRQ(X)

RESULT=ROOTIBOOL;

EVSBS =(EYPE X) .EQ. SPECPAIR;

Xl EQ X2

compiler will check X2 for constaI¾t, integer, NL. NULT. ,etc.

equality test will be inline for ~hose cases

otherwise,

ARGl=Xl;

ARG2=X2;

CALL EQUAL;

In the above code samples it is assumed that whenever LITTLE

macros are used that they will exist to the proper depth of nesting.

Currently DOM and IF THEN ELSE exist only for 3 levels.

8

Tasks

There are two sets of tasks necessary for implementing the

LITTLE code generators. They can proceed somewhat independently
of one another.

1. This task involves programming in LITTLE:

a) Write the necessary utility routines and routines to
interface between the SRTL and the generated LITTLE code.

i.e. a RVSTK which initializes the stack, a GENSET which
gets arguments from the stack.

b) Work out the details of the interface so that a LITTLE ..
program may call the LITTLE compiler. LITTLE code is input

and output should be a block of machine code. This is

necessary to implement CFROMV.

i '
2. This task involves making modifications to BALM:

a) decide on table layout and encoding for OPLIST, etc.

Work out the details of formatting LITTLE code. The code

will probably be generated as a list of strings, ID's,

numbers and will have_to be converted to appropriate LITTLE.

b) Write the actual BALM code generators, the allocator

for registers, ARGl, ARG2, RESULT.

9

