
0

SETL Newsletter t 122B

Sti'll More Miscellaneous Opt'i~is•ations

This short newsletter extends NL 122 and 122A.

·.J ~ Schwi:lr: i:.z
July 24, 1;,74

(a} Existelltial guantifi•er extended over set expres·s•ions. (peephole)

An existential quantifier ·appearing in the context

3 y £ sete~pnlc(y) should be modified to avoid the formation

of an explicit set, perhaps in general, but certainly if C(y)

is an expression simple enough for its evaluation to be

obviously fast. This applies to such cases as

3 y £ { e (u , v} , u Es , ve: t (u) I . . } I C (y) ,

which should be compiled as

[result "' f; (Vuts, vet (u) I ...)
if C(e(u,v)} then result= t; quit;;

end V; return result;]

T.ne same remark applies to the construction 3 y E f{x}, but in

this case our remark is a specia~_instance of remark xv of NL 12?.

Note also that se texpn ~~ n~ shouJ.d be compiled as

3 YE Be texpn; then the optimisation which we have just. describE:''d
can be applied.

(b) 'Overallocation' for tuple and set-valued variables. (Global) ·------·- --- .

An ovariable o in a SETL prcg.ram is said to be potentia?.Zy

erowing if the eva}.uation of o creates a. tup}e, string, or

set v, and if there exists some ivariable is du(o) al which

CJ the value v will be used destructively in a manner wh.~ch inc-:i:€,asr,s

St,TL-122B

t:lle size of \" {its length if v iG a tuple or string; the

number of its elements if v is c1. set:) • If o is potenti2lly

growing, an exceptionally large initial block can be

a1'.i.ocated when o is evalu.ati::-d; this can be trimmed when

one moves to a progra:n point at which v i,dll no longer
l- • ..
.J€; 1.ncreasea.. (To 'trim'a set we xeduce the size of its

hash table.• which is a fast opera.tic:m.} 'l'his '..'.uggestion is

exemplified by the code

x ,;:;· nult;

{while •••) • • • x = x + e:r:pn; • •• ; ;

••• f(n}=x; •••

J~. large heap block (perhaps a hundred 1-:,r so words} should be

al.located when x = ~lt is executed; then the tJhiZe loop

w·iJ.l probably execute without any re<1llor:ation of x becoming

necessary. On exit from the loop the .block allocated fer x

00.ght t.o be i trimn.1ed' ~ and i.t~3 t111used l)Crt . .ions x·,;;t11rried to the

garbage collector.

Tuples ana sets treated in this way caa be allocated

blocks of a hundred or so word::; . f'o1: ch,;tr '.icter <T:d bit: st:r.in•:JS,

bJ ocks of several hundred char3.ctc'!t'':', or se··:eraJ. thousand r:i ts

can be allocated. Note t~at textra large' spac~ allocations

\".·::...l}. only be made for objecb:; ·,,,hich arE? d-i.rect values of

{r,rogrammer and cornpi le~-gen2ra ted) :t2t, t·,:,pJ.e, or r~trin~y-vaJ_ ,,-. cd

\ii:.:t iables; and only for scme of thc.'EC var.iable;:;, Hence the

2:;;cunt of space :requi reel :fer tl12 se al locat.ions r,e.e:d net b~:,

If -!:he value cf a pots-nt.:i.v.l ly (3-rc..n.?;9 ova:,:-j Rble c, :is

'.'i\,p~•l:.cd by a.n ext:r.acU.on opc.ra::or r as ir. thE"~ c:•):amp.lf.':

()

l

l

10 th~ cval~atjon of o.

dt,strucLi vr:, use of the value of o. Jn the e.xa~n?le r,hown

abcve, this \'lOUld mean reserving a large block for x if

:n~a1 location.

{c) Fir,d.in9 1 Short' inte9.ers. {Global, Uses 'f'yp.~finder)

Most of the integers used for routine bcokeeping operations

in SETL will be 'short' in any Likely implementation of the

la.nguage. On the CDC 6600, where lntegers as large as . 5xlo 18

ca.n be stored, and where sets or tuples are most unlikely to

contain as many as 10 6 elements, it is even J.:f::asonabl,~ to

distinguish between very short, short~ and long integers.

h . . 6 . . . 5 .. 018 A very sort integer 1s ~10; a short integer is~ .. x~ •

'J'hese can be considered as types ,,nd found by ~('enenbaum I s

typefinder,

very short,

if

as

n

the

are

+ n'

following
f'

constants

is short.

rules

<10 6 •

Upper.

are applied,

I.f n is t.hl.'.-rt an6 n I Very

and lowor i. tar at.ion limi f.:s

J 00 h.ours of continuous execution, must pass lJ{~:Ec)re I ov.2rflow'

cf an intEc,ge.r c] assified r.s '~hoit 1 can occur.

'B.:-ickward I type finding cf very sho:r.t i.nti:~,{f\T'S becomes

character string.

The test

<a,b> -~ <c,d>

1=an be done as

a ~g C 2nd b ~ do

More generally,

x ~ <c.,d>

can be don1::! as

if _!lf!:. x ne tupl then f else if (f:it) ne 2 theri f eJ Sl~

x n>· ~ c IDld x c:n !:..Sr. a:
,::;f course, typefinding may allow some

such a test to be eliminated.

of the clauses 0£

(ea) Precalculated destination of concatenated ·tuelE:E. (global}

Code sequences such as

"' = <y> -{- z;

U ·- X + W;

t:hould be detected, and a test made to sE,e if the ':!.Ete:-:p::e.:::U.;d.c· t

·-:ariable w is dea6 after th~ 'fina . .1 1 :r.esr,.l t vectcr -:."t has :::.ieen

f.onned. If this is the case, w c.an be f·-::-,rrned f'irectly ulU1.in

the {generously large) space all~cated foL u.

L

SBTL-122B 5

Cases of tbi.s kind can be found, and the componentE o:f the

tuples.involved st.ored in somE appropriate colJ.ection of

compiler generated variables·, no actual tup~e b•:.d.!1q formed

in t.h.e heap, When applied to subprocedures, this technique

will in effect increase the .number of subp:r.ocedu:re a.rgumentG.

(g} . Q,etimi:satio•n·!l ·del[endin•s· ·on ·th'ef 'ab'serice· ·o·f •side· effe·cts

·from function calls (global) •

After performi.ng a global interprocedural analysis of

a pr~gram P we will be able to certify that certain expressions

E occuring in P can be evaluated without side effect. In­

formation of this kind is usefu1 in various ways. For example,

it is.needed to optimise existential quantifiers
3 x £ {e(y) f yEs !E(y)} in the manner explained above (cf. (b)).

If we know that E and E1 can both be evalusted without side

e..ffects f we may be in a position t<) in"t:erchange the order of

exf:cution of x =i E; x1 = E
1

if advantage can be secured by

doing so. If E1 is expersi ve to e~.;aluate r then the boolean~

oan be converted to

if Ethen t else E1 , if Ethen E1 else f
I:::!specti vely.

The standard.ised conventions of the S:ETL run-tir:ie libr.c1.cy

-":·:C,:! seen at their weakest in the secticns which deal with

£,et.s of tuples. Much of thi.s wea.kness can be Gm:ed by de-·

·t~rDining the operators which will be applied to tuples

l (and to sets of tuples) and using code sequences which r.eflect

int-2r.d.cd usa9e.

i. Sets s = { t, ... }cf tuples used only for menili~rsl:d.p

tBsting should be stored as they would be if {t, ••• } were

instead {<t>, ••• }; but the hash function applied to tuples

t belonging to such sets should be precalculated from .all

the elements of t''and kept with t, rather than being defined

simply as the hash of t(l). This same remark applies to

tuples generated in order to be made members of such sets.

ii. Set s = · { t, .• ·.} of n-tuples used as functions of k

variables should be stored as ~-f they we:r-e instead

s' -=· {<t(l:k), · {u(k+l:), ucslu(l:k}~ t(l:k)}>}

_Tuples belonging to such sets, and also tuples ge_nerated in orde.:.:

to be made members of such sets, should have hashes pre­

calculated from their first k components stored with them.

Note that the test t c scan be made as t(k+l:) e: s 1 (t(l:k)).

...

0

