§ ‘ 1228 d, Schwartz
SETL Newsletter ale e thag

’r

This short newsletter extends NL 122 and 122A.

(a) Existential guantifier extended over set expressions. (peephole)

An existential quantifier appearing in the context
3y € setexpn|C(y) should be modified to avoid the formation
of an explicit set, perhaps in general, but certainly if C(y)
is an expression simple enough for its evaluation to be

obviously fast. his applies to such cases as

3y e {e(u,v),ues, vet(u)|.. Yc(y),
which sheculd be compiled as _
[result = £; (Yues, vet(u) [...)
if C{e(u,v)) then result = £; quit;;
end Y; return result;]
The same remark applies to the construction 3y e f{x}, but in
this case our remark is a special“instance of remark xv of NL 122,

Note also that setexpn ne nf should be compiled as
iYe setexpn; then the optimisation which we have just described

tan be applied.

(b) 'Overallocation' for tuple and set-valued variables. (Global)

An ovariable ¢ in a SETL program is said to be potentially
growing if the evaiuaztion of o creates a tuple, string, or
set v, and if therc exists some ivariable ie du{o} at which

the value v will be used destructively in a manner which increases

che size of v (its length if v i3 & tuple or string; the

v .

numper of its elements if v is a szet). If o is potentially
growing, an exceptionally large initial block «<an be
aliocated when o is evaluated; this can bhe trirmmed when

one moves to a prbgram pcint at which v will no longerx

be increased. (To 'trimta set we reduce the gize of its
izash table, which is a fast operation.) This suggesticn is
exemplified by the code ‘ ‘ '

¥ = nult;

{(while ...) ... X = x + @zpn;...;;
onof(n) "—‘X;...

2 large heap block (perhaps a hundred ox so words) should be
allocated when x = nult is executed; then the while loop

will probably execute without any reallonation of x becoming
necessary. On exit from the loor the blicck allocated fox x
ought to beftrimmed', and its unused périions ysturned te the
garbage collector.

Tuples and sets treated in this way can be allocated

0

blocks ¢f a2 hundred or so words; for character nd bit strings,

Plocks of several hundred characters oy several thousand bits

[

can be allocated. Note that 'ex

f'f
~
s}
Foud
3}
e
e
o

space alleocations

will only be madle for ohjects which are direct values of

fprogrammer and compiler-generated) sat, tuple, or string-valued
vaviables; and only for some ©F these variables. Hence the
emcunt of space requived for these allocations need nct ba

eXcasasive.,

¥ the value of a potentially growing ovaziable o isg
suppliced by an extraction operzator, as in the cxample
wom £}
il) g ST TR N

Than L will not be convenient to atuach any eilodation OperX-i. . .

e the cvalusation of o. In zuxh casas, w2 Cah Yeserve a
large binch if reallocation becomes noecessary at a subsequent
destructive use of the value of éq In the example shown
abeve, this would mean reserving a large block for x if

its destructive use in x = X + exprn forcsd xeallocation.

-

{c} " Finding ‘short' integers. (Global, Uses Typafinder)

Most of the integers used for routine bcokeeping operations
in SETL will be 'short' in any likely implementation of the
ilanguage. On the CDC 6600, where integers as large as .leﬂlg
can be stored, and where sets or tuples are most unlikely to

6

contaln as many as 10 elements, it is even reasonable o

distinguish between very sheort, short, and long integers.
A very short integer is £106; a short integex is < ¢5x1018.
These cen be considered as types and found by “enenbaum's
typefinder, if the following rules are applied: be in always
very short, as are consté%ts ilOS. If n is shoery and n' wvery
short, then n + n' is short. Upper and lower iteration limits
are short, Nete that at least .5X106 seconds, i.86. at least
I20 houxrs of continuous executicn, must pass beifore ‘overfl

cf an integer classified as 'sheit’ can occur.

'Rackward' typefinding of wery short integers becomes
soEsible 1f we adopt the reasonzabl: rule that an integer which
s not wery short can never bo used to index & hurle or a

sharccter string. (Compare slso NL, 122, =ii; and L322 A (LY,

CrTAET Y
Oultiomiddi

(i Certaln operations invoianq tuplea. (pecpholy)

e e Lo Ut AR

The test
<a,b> gg <c;d>
can be done as g
aegc and b eq d.
Mcore generally, |
x ey <o ,d>
can ke done as
if type x ne tupl then £ else if (#x) ne 2 then f else
| x(1) eg € and x(2) eg d;
of course, typefinding may allow some of the clauses of
such a test to be eliminated.

fe) Precalculated destination of concatenated tuples. (globzl)

Code sequences such as

N

o= <y,.r 4 =3

i

u X + wW;

zhould be detected, and a test made to sce if the ‘intermmediste!

variable w is dead after the "final' resuvls veotor u has Deewn
formed. If this is the case, w can be w'Jr”mc:a directly within

the (generously large) space allccated for u.

(£} Tuples formed for transmissicn and uwapacking. f{globel)

Tuplaes of known length will sometimes be formed a2t one
»oint of a nregram P oonly to he transmitted te some ocher

peint of P oand anpzcked. Por exzmple, thls technigue may

veeowsaed o Lransme b oone rather fhon feveral arcarancs oo
S R T P SN T s e s PO I Y S <
waprrocedurs, oy Ty allow uwss of a4 fonolional USRI RN
I R e 0 e gy el s T T et
voeore are cotuslly oacuvaral BEeNorate valveas T Lo oei L nno

v
et
3
i~
i
fet
N
48]
o)
(¥4

Cases of this kind can be found, and the components <©f the
tuples. involived stored in some appropriate coliection of
compiler generated variables, no actual tuple being formed
in the heap. When applied to subprocedures, this technique
will in effect increase the number of subprocedure arguments,

(3} ~ Optimisations depending on the absence of side effects

from function calls (glocbal}.

After performing a global interprocedural analysis of
a program P we will be able to certify that certain expressions
E occuring in P can be evaluated without side effect. In-
formation of this kind is useful in various ways. For example,
it is needed to optimise existential quantifiers
3 x ¢ {e(y);, ves |E(y)} in the manner explained above (cf. (b)).
If we know that E and El can both be evalusted without side
effects, we may be in & position to interchange the order of
exacution of x = E; X, = E1 if advantage can be secured hy

doing so. If E] is expersive to evaludte, then the boonleans

E oxr E,, E and E,
can be converted to . ‘
if B then t else El’ if_E then El élse £
respectively. ' '

31

{h} ~Applied operater tracing as applied to tuples.

The standardised conventions of the SETL run-time librasy

»x: seen at their weakest in the secticns which deal with

gels of tuples. Much cf this weakness can be curad by de-

‘termining the operators which will be appiied to tuples

(and to sets of tuples) and using code sequences which zeflect

intanded usage.

i. Sets s = {t,...}of tuples used only for membership
tasting should be stored as they would be if {t,...} were
instead {<t>,.,,}; but the hash furiction applied to tuplszs
t belonging to sucn sets should be precaliculated from all
the elements of t’ ‘and kept with t, rather than being defined
simply as the hash of t(1l). This same remark applies to
tuples generated in order to be made membars of éuch sets.

ii. Set & = {t,...} of n-tuples used as functions of k
variables should be stored as if they were instead ’

s' = {<£(l:k), {u(k+l:), ueslu(l:k)gg t(l?k)}>)

Tuples belonging to such sets, and also tuples generated in order

to be made members of such sets; should have hashes pre-
calculated from their first k compenents stored with them.
Note that the test t € s can be made as E£(k+1l:} € s'{t{l:k)).

—

