SETL WNewsletter § 130 J. fchwe
: May 2%,
Deducing relationships of

inclusion and membersﬁip in SETL programs.

1, Introduction. 4-Pri{ori plausibility of inclusion/membership

" relationships.

This newsletter takes up the ‘high level optimisation'’
theme of NL.71, NL.118, NL.121, and of Aaron Tenenbaum's
thesis ( hereinafter referenceq as TT). The generally good
performance of Tenenbaum's 'type~finder' program suggests
that it may be feasible to deduce deeper properties of the
objects appearing in SETL programs. In the preqent newsletter,
we will outline technigues which,building on the approach
and result of the typefinder,allow useful relationships,
among them relationships of inclusion and membexrship, to
be established.

Before entering intc technical detail, we make a few
generalising remarks. Global optimisers are programs that
prove, and then expleit, facts concerning other programs
Thus optimisers may be considevred as country cousins of

.)”

those still largely hoped for, mere sophisticated routines
which prove the correctness, in some appropriate formal

sense, of these other programs. In contrast to full correcines

prover systems, which aim to prove a few major, hard,
programmer-specified facts about a pregrem, an optimiser
aims to prove numercus small, easry facts aboui the programs
which it analyses; moreover, optimisers themselves normally

generate the surmises that they attempt te pruve. We may

put this comparison somewhat differently, by considering

the nature cf the theorem-proving algorithms whiich aye

typically emploved by program znalyser/optimizers on the

one hand, and prigram-correctness werifiers on the other,
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For such an optimiser to be possible, it is probably
necessary that rich semantic relationships should appear

fairly explicitly in the source text with which an optimiser
is required to work. This is to say that we expect deeper
optimisations to be possible in a high~level language whose
primitives are semantically rich, " than in a language
of lower level, whose primitives are of a more impoverished,
hardware-like, character. The technical discussion which
follows illustrates this general remark, and shows that a
suitable optimiser will be able to guess and prove relation-
ships of inclusion and membership between the objects of
SETL programs. In a language of only slightly lower level,
as for example a LISP-like language, it could be hard to
formulate these relationships, much less to prove them
efficiently.

2. An algebra of membership and inclusion relationships.

We suppose the SETL programs with which we work to be
schematised in the mannexr described in T¥, i.e., as a set
of operator-argument tuples with designated taxget variables,
arranged in a collection of basic blocks among which flow
relationships are defined by a éucessor mapping. We shall
when necessary write operator-cperand-target tuples either as

(1a) targ = Op(argl, &xgz,.;..iargn)
as
(1b) targ = argl‘gg_argé,

or in whatever cther notaticnal f£prm is conveaient.

(VX
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We suppose that John Cocke's ‘use-definition chaining’ nrocess

has been carried out; the algorithm to be Gescribed will

use the output data of this procedure, which makes explicit

the data flow relationships within a procgram F to be analysed.
We shall call the target variables of Operator—operand

tuples like (la), (lb) owariables. The analysis described in

NL.71 and TT associates a type symbol with each ovariakle.

This type symbol classifies an ovariable, or rather its

value as understood at compile time,as being one of the

following: elementary {(i.e. integer, real, string, etc.),

set, known-length-tuple, or unknown-legth-tuple. Values

of these last three kinds are described by type symbols of

the structure {t}, <tys...,t >, and [t] respectively, where

t, tys...,t are themselves type symbols and give information

concerning the type of a set's members and a tuple's components.

We now introduce a number of formal inclusion and
rnembership relationships between ovariables appearing in a
schematised SETL program P; the analysis which fellows will
base itself on these relations. Let o1 and 0y be ovariables
of P. Then

i. 0, € o, Means that (immediately after the definition
of ol) the value of 0y is (necessarily; a member of the
(current) value of o,. ‘ ‘

ii. 07 € o0, Means that the value of 03 is a subset of
the value of oy (immediately after the definitiocn of 04}
necessarily; where 0, refers to itg current valuz).

iii. ¢y €. o, mzans thzt o, is a tuple of inown lengih
1 "'n ¥2 L & =

this length being at least n, and that the n~th component
of o, is a member cf o

9
iv. = g% D, MEeans either that o, ig a set of tuples of

known lencgth, this length being st least n, and thrat the

a=th comrcnent of each member oFf o, ia o mexbayr oF Ty LI

if n = 2 another meaning is poﬁjih{%; szimaldy ol EJ a

uple evary one cf

("\
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V. 0y € 0, means that o, iz a tuple of unknown

o
length, and that every component of 04 is 2 member of Ogye

vi: ol'§_¢ o, means that ¢, is a set of tuples cf
unknown length, and that every ;omponent of every membexr of
©q is a subset of oé. | :

The type symbols assocliated with the ovariables of P
tell us which of these relationships are plausiblae, i.e.
possible a pricri. Let tl and t2 be the type symbols of oy
and o, respectively. Then the relationship 0, € 0O, is only
plausible if t, = {t} and t .< t, in the lattice of type
symbols (cf. TT): o0, C o.é, only plausible if £, ="{t'}, t, =

and t' < t in the type symbol lattice. Moreover,

0, €, ©, is only plausible if t; = <El,...,Ek> with k > n,

!

N

o, = {t}, and £ < t in the type symbol lattice; o; & o, is

only plausible if either t, ='{<€l,.¢u,€k>} and these same

conditions heldior n = 2, t; = [t'] and t, = {t} with t' < t

in the lattice; or n = 2, t, = <€1,u..,5k>, t, = {t}, and
J
0y &, Cy is only plausible either if s is of tvpe [t],
o, = {t'}, and © < £' in the type lattice, or if o, is of
type tyeeeat > with tj £ t' in the type lattice for ail j.

The relationship 04 =

" 92

. s only plausible eithex if <y
is of type [{ti]. o, = {£'} and ¢ < t' in the type lattice,
if o, is of cype <{tl},...;{tn}> with t, < t' in the type

lattice for all 3.

tji

t; <t in the type lattice for all 1 < j < k. The relaticnship

X
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The set of all relationships plausible in this sense
for a program P will be called the mazx imum plausible set

of relationships for P.

3.0utline of an analysxs algori‘chm°

Given a SETL program P, we.wish to determine the set
of all formal inclusion relationships whiéh hold between
its ovariakbles. To this end, we propose an algorithm which
works 'downwards' (in the set of relationships described in
the preceeding section), starting with the maximum plausible
set of relationships for P, and systematically eliminating
relationships which might be false until only relationships
which are certainly true remain. The rules which apply
are as follows.

a) Call the 'source' or 'input' variables of operator-
operand tuples like (la), (1ib) Zvariables. Each ivariable i
will be chained to a set ud(i) of ovariables. We allow
ivariables i to participate in inclusion/membsrship
relationships ico, i C o, i g, ¢, etc. 2 reiationship iRo
can only holid if o,Ro holds for all o, € ud{i}.

D} The family of. true relationships ORO, and o, ko in
which an ovariable o participates depends on _he nature of
the operation defining o and on the relationships which hold
for the input variables of thig operation. T defins thi
aspect of the analytic situation completely. a rale is reguired
for every ZETL primitive and svery possible iaclugion ze-
lationship. The SETL primitives are enunerated on page
4 ¢f NL.71. ¥= do not give 2 complete list ¢f the rules
showing the zffect of SETL primitives on inclusion relations

hara, but orly i few *yoical cases.

Case 7: Falaticnshiy ¢ ¢ Cig o This ie slwavs false
if the operatior defining © ig asvthing other swhan 2 1.nd ;5
i( Lol i} Sege flk}n The ruies for these sepsrats sunonnos
fee as folin
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Subcase(la) o = 2i. fThen relationship o ¢ 0,, is falsa
unless i & o,.
(1b) o = hd i. Then o & o, is false unless i g o,

or 1 g, 9.

(lc) o = il(iz)' Ther either i2 must be a known
constant n and i; €/ 61; or i, must be of type <t1;...,ﬁn>
and i, €, 0, must hold for each k < n; or i, ¢, 0y must hold;
or i, must be of type {<t,, t,>} and i, £, o, must hold.

(1d) o = i;(1,,...,i)). Then i, must be of type
{<tl,...,tk+1>} and i, €, ; o) must hold.

- Case 2: Relationship o & 0. This is always false

if the operation defining o is anything other than +, -, ¥,

" with, less, i, {iz},il'{iz,....ik}, or'{il}. The rules for

these seperate subcases are as follows:

-

1 + i,. Both ll So

hold. In the subcase 0 = i, with iy, 14 g;ol and ig € oy must

Subcase{2a) o = 1

-
)
e
o7
fate

N
N
[¢]

-l
2
0]
ﬁ

~hold.
(2b) o = il - izf & = il less iz; then i1 coy must hold.
(2¢) o = i1 * %2ﬁ then i. & o, or i, c 0., must hold,
(2d) o = iy {12}. Then i, must be of type’{<tl,t2?},
and i, 92 o, must hold. We leave it to the reader to
write the similer rule which applies toiil'{iz,o..,ik}.
{2e) o = {il}, Then i, ¢ o, must hold. wots that
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Case 3: o & o,. This is always false if the operation

defihing o is anything othexr than +, -, *, with, less,

14,1, ii{izfo.f,ik}r<il, inssessig>, or {i;}. Rules for
these seperate subcases may readily be stated; most of

these rules rather closely resemble the rules for the
corresponding subcases of Case 2. For example, if o = iy + i,
then i; &€ o, and i,E€ o must hold. If o = i, {i,}, then

i, must be of type'{<tl,.,.,tk>}, and i, ¢ ., 0, must hold;

the rule for o = il'{iz,...,in} is a straightforward

‘generatisation of this, When n = 2 a few additional

subcases arise. If o =i, + i,, then o 92 o, can hold
if the types of il and i} represent tuples (of known or (j\

unknown length) and i1<;2 ©yr ipC 93- f 0 = <ijeljreceiiy >,

cC
then o =5 ol

Case 4: o €, O1- This is always false if the operaticn

can hold if 145, o, for all 1zjzk.

defining o is anything other than +, <i,,...,i;>, i;{i,),
or il(iz,...,ik). Rules for the verxiocus subcases are
as follows:

" Subcase(4z) o = il + i2u Then the type ¢f both il anﬂ.iz

must be tuple. If i.

1

is of kmown length 2, and 2 < n, then
iy €y o O must hold; if 2 > n or if i, is of unknown length,
then i £ et

then i, € ol must hold.

(4b} o = <i,.....i,>. Then k » n must hold, end

n

£ o, must alsc hold.
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(4c} o = i;{i,). Then i; must be of type {<ty,... e}

with 2 > n + 1, and i, € . ©; muat hold: the rule for
o = il(iz""'ik) is a straightforward generalisation of this.
It must be pro&aﬁle in both these cases that o is not Q.

Case 5: o g Oy« This is .always false if the operation
defining o is anything other than +, <il,...,ik>,11(iz),‘or
il(iz,...)ik)e The rulee applying to these various subcases
are rather like those stated for the corresponding subcases
of case 4; we leave it to the reader to supply alllnecessary
details. '

Case 6: o C ©O;. This is always false if the operation

defining o is anything other than +, -, *, with, less,

ili{iz}' L}i{iz,...,ik}, or {i;}. The rules applying to these
various subcases are rather like those stated for the various

of case 3.

A few basic SETL constants will regularxly enter inte operations
as ivariables, : Each of these constants has proPe;ties
vhich are to be exploited in applying the above rules cr
appropriate slight extensions of them. For example, the
null set nf satisfies nf ¢ ¢y, nt ¢, oy, and nl &, 04 for

every oy; the null-tuple nult has propsrties vihich ghould

he reflected in appropriate small extensions of the rules

- which have been stated,



The rules which have just been stated determine a .«
mapping musthold from the class of dll relaticuships DRGl
to the power set of the class of all relationghips iRol.
Given that o is the target variable of the operation op(il,,.fi

A
b#

i
the set mua#hdld(oﬁol) is defined as the set of all re-
lationships ile which must hold according to the foregoing
rules if oRoy is to hold. Using this map, we can describe
our inclusicn/membership finder as follows: |

i, Given a schematised SETL program P, perfoim a

type analyesig for it and then determine the maximum'plausible

set S of relationships for P in the sense of section 2.

Next reduce S by eliminating all reiatioﬁships ORoy which

are obviously impossible in view eithexr of the operation

defining ¢ or of the types of the ivarables cf this operation.
This should leave a manageanly small set of relazticnship
symbels to be treated.

ii. Aftexr the preparatory steps just described, builld
up a map 'Y which sends each ovariable ¢ into <the set {o'}
of all ovariables o' which are chained to an ivariable of
the operatica defining o, and then iteratively remove relatlon-
ships from 8, az follows:
2 workpile W is initialised to contain all cvariables o.
Fer each o in the workpile, and sach relationship oRol
irnvelving o and belonging to 8, ona checks tc sue if meethoidicis ]

is incloded in &. If not, ckeo, iz removed ¥Fram §, and < i
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Yhen this grovess has been applied tc a2ll o ¢ W, W 1is rsset

to g ~t

[Wl], and the process repeats. Let S be the set

of inclusion/membership relationships remaining in & when

W becomes nuli. ‘We call S the set of relationships confirmed
by our analysis procaduraf these relationships are necessarily

true.

4. Generalised membership/inclusion relationships.
r
The relationships of menbership and inclusion utilised

in section 3 can be generalised substantially. The fullerxr
" set of relationships which we shall wish to consider is most
adegquately represented by composite symbols which we shall

ca;l relation strings. Let Nyr Bgreeerhy be symbols representing
monadic mappings on composite SETL objects, and let n be &

symbol representing a binary truth-valued operator on SETL c¢bhjiecis

o and o,. Then .o i i
1 we write o Ty Tige nk n oy if the relation

indicate the intent of these definitions., Let the symbol D
signify a monadic 'random memberchip choice' operailon on

sets, let the syvmbol n indicate thea Speration ¢f choosing

the n~th component of a tuple, let the svmbol « signify the
operation of chorsing a random cowmponant of a tuple, and let the
symbol n signi¥y the operation of chocsing some random

component, but not one ¢f tha first n~1 components, of a tuvle.

o

Let € denote the oclean'membership’ relation, ard l=

>,>, <, < be compavison operators as usasl.
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Then the relationships 02D € Dy v onEol‘, owe‘-jalg oang&l B
o 3 "&eol, are respectively the relationsgships o ¢ Oyr O £, O
® £, 03, C € 03, and o &, 0, of section 3, The relaticn~

chips 02 3€ o anBEoI, and o3»3€o, are worth

ll
considerirg, as are 032 n 0y ané o3.n3 Gol. By working
with arithmetic relationships_like o > G, © > o, etc.
one can hope to 9rové semantic facts like 'o iz a set of

non-negative integers/ which when known will permit useful

optimisations.

For a relationship Ofly Ngy...mno to be plausible, the
type of o must be such as to allow MyreserNy to0 be applied
to o in sequence, and the type of the resulting quantity
o' = ("k“°“1 o) must bé such &s to pprmit o'no to be true.
Once the types of the objectsz appearing in a SETL program
have been found, this restrictiorn should serve to.
guarantee that the set of reiationshlps which remain plausilie
is manageably small. 2 'necessity rule' can then be given
for every relationship onlnz.,;nknel admitted into an
analytic system, following which the analysis algorithum
described in section 3 can bas used with miniw2l changes o,
prove the validity c¢f some suiset of the collection of
initially plausible relationships.

It is worth ncting that ny maiing use of the composita

relationshiipg which have jus: ween daefined we fox auvtuall)

astablish more facts concerning the simpler rilovionshis

)
7]

K

[t

5\
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For example, ¢ C o, can hold even 1f o0 is defined by an

1
operation of the form 3i, ifiyd, or 455 00,1 ), provided
that. the following conditions axe satisfied:

Subcase(a) © = 3i. %hen i3 3D €c must hold.

(k) o= il(iz). Then 11 must either be of type
tuple and ilmE)Eo must heold,or of type {<t,{t'}>}, and
i,929€0 - must hold.

{c}) o = il(iz,...;in). Then il must have type

<ty et _yo{t 3>} and i‘anBEo must hold.

5. Information derivable from the presence of insertion

-

and union opergtions.

Consider the code seguence

1) cee 8 = {n}; t = 8y *+ Bi...

At a program point immediately subsequarit to this sequence
we can be sure that n is a member of 8y But if taken in
its simple form, the inclusion/membership analysis described
in section 3 wiil remain unaware of, and sc fail to exploit,
this fact. Indeed, it will miss eveﬁ the simpler fact that
nss is certain to hold irmediately after s = {n]} .has been
asacuted.
However, a straightforward improvement of oux approach
can remedy this deficiency. FEach appearence «f the schematised

version of an instruction



(Za) €= 5y + 8;
can in effect be replaced by an appearance 0f the sequence
(2b) -t o= gy + 8; 8 = st ;

e

each appearance of

(3a) : n in 8;

by an appearance of ‘
(3b) ® nins; n=3{mes | m eq n};
each appearance of

(3a) _ 8 = {n};

by appearance of

(3b) 8= {n}; n= 3s;

etc. Note that in the schematised program versions with
which we work, tﬁe gequence (3b) can most appropriateiy be
handled by treating it as if it read -

(4) ain s; (n =3 8;)

where by writing n = 38; we have indicated ihe presence of
2 ‘pseudoassignment’' forcing n to be a member of s, but
where by placing this operatioﬂ in parentheéas we indicate
that no other relationship invciving n is spciled by this
(or, indesé, any other) peseudcoassignment. Similayly the
schematised form of (2b) may be treated in the mancer which
is suggested by the sequence

{%) L = §; + 8; (8 = s*i:}
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It is occasionally possikle to glean useful information
from>the form of the conditional transfers determining the
succeséor'relatiomships among the basic blocks of a SETL
program P, Su§p§se, for example, that such a transfexr has
the form ‘

{6) if 8'23 §£ then go to Zabei;.
then the program point label is reached via (6), we may be
sure that s is nf.

To ensure that our analysis does not miss information of
this kind, we apply the following treatment to every conditicnal
transfer whose governing condition is simple encugh to be worth
bothering with. 2n auxiliary pseudo-block is generated from
the transfer; the tranafer is modified so as to jump to the
pseudb-block, which in turn jumps to the original transfex
destination. The pseudo-block.,contains a pseudoassignment
which forces the condition appearing in the transfer to be
true. For example, in treating {(6), we modify it to read as
(s%) if s eq n2 then go to label’;
where label' 1s a generated label prefixing the pseudo~block
(6} label?: {8 = n&;) go to label;

This pseudo-block insertion process gives P a somewhal
differant flow graph fr&m that which it would ctherwise havs,
. which in turn changes the xesult obtained when Jalfa-flow
analysis is applied to P. 1In the modified data-fiow, some
ivariables will be changed to ovariables appearing in

peeudoassignments within pseuvdo~blucks.
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This revised chéinﬁng makes explicit wore precise information
than would otherwiss be available, and this enlarges the s=i
of relationships which will be estabiished by our analysis
algorithm. o .

Note that it might be useful to allow SETL users to
write pseudoassignments explicitly. A user-supplied pseudo-
asaignmeﬁt would act as a kind of declaration, and coulé
supply an cptimising SETL ccméiler with information which it

was unable to deduce, but in 2 form which it was easily able

to use.

6. ~Information supplementary to inclusion/membership relation§§3Q§<

. Once relationships of inclusion and memb=arship between
the ogjects of a SETL program P have been established,
certain interesting optimisations come almost within reach.
Our intent is to find cages in which a set Sy included within
a set s can do without explicit representstion of its own; we
hope merely to issue a 'serial number' to each element of s,
and then to reprassent g by & bit-vector, the n-th bit of

the vector signifying whethex the nvﬁh elemeni. cf s does ox

doas not belong to 8 We may alse try to find cases in

10
wiich a map £ kncwn to have dowmzsin inciuded n s can be
represented eithar by a vector of nointers or by a collecticn

of pointexs attached to the elonents 2 of 3, whers each

peinter determines one value €£6x}.
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For representations of this kind to bé ﬁithin yeach, it is
clearly necessary that the analysis described in section 3
and 4 should confirm the relationships s8,&s and £ &, a.
We must also be sure thée 8y {regp. £) is not set up when the
set 8 has one particular value and then used after slements
have been removed from s.
| If 8y is itself made part of some composite object o,
either as a set member or as & tuple compcnent, additional
complications arise. For representation of s, a8 an s-based
bitvector to remain desirable in this case, it is necessary
that the following condition should be satisfied:
| (Cl) o is dead at each program point at which s ;s
diminished.
) Relatively few complications wili be caused by insertion
into o of bitvectors representing subsets of s if the following
condition is also zatisfied:

(¢2) All the elements of the composite obiect o are
subgets of s.

Condition (Cl) is not quite sufficient to ensure the
desirability of representing sy by an g-based bitvecter.
To state a sufficient condition, we must f£fixst maks sOme

appropriate definitions., CGiven an ovariable o or an ivariable
i of a SETL program P, we defins the following functions.

17



By erthis(o; resp, crthis{i} we mean the set of all ovariables
vhich can create an object which at some moment in the
execution of P hecomes the current value of o (resp. i):

If the value of o or i can be & set, then by crmemb(c)(xesp.
crmemb (1)) we meédn the collection of all ivariables j whose
values becchie incorporated as membexs into a set which at

some moment in the execution of P becomes the current value

of o (resp. i) If the value of © or i can be a vector, .
- then by crsomcomp(o)} {resp. cresomecomp(i))we mean the collection
of all ivariables j whose values become incorporated as
components into a vector which at some moment in the execution
of P becomes the value of o {xesp. i). By erpartf(o) (resp.
orpart(i))we mean the collection of all ivariables whose

value might either be equal to or become incorporated, eithex
as members, members of members, components, members of
components, components of memberb, etc. into a composite
object which at some moment in the execution «f P becomes

the value of o (resp. i). Methods for calculating these
fuanctions are described in Newsletter 131.

Using these functions, we make the following

‘Pefinition: Lot s, g5 and t be covariables of a program F,

we say that t is superior to 8y ig 8y belongs to
[+: ie crpart{t)] crthis(i).

We say that sy is a dependent aubset of s if Eigzrs {in the
sznse of section 3) and if the walue of every cbiect supevior
Lo 5y is dead at each operation which might remove an element
from s. The map £ i8 domain dependeni on 8 {(ressn. range
Jzsendent on g} 4f f%ﬁ;.é {faap. ¥ & g} and iF ths valueg
averxy cbiect superior to f is Gead at éach opsration which

wight remove an element from o,

M
oz i



)

To indicate subsét dependen&y, domain dependency, and
range dependency we write s, C: s, £ c_:_':l 8, £ Ci, s
respectively. HNote that an analogous notion o Myeeely Ns O
may be defined for eachéof the relations O Myeueey N Oy
introduced in section 4 above. : |

If slé;z s, then 84 can,in the manner described at the
beginning of the preseht section, be represented by a vectox
of bits. This vector can be inserted, in lieu of Byr into
each composite object of which 84 is to become a part.
Similarly, if f Q;l 8, then f can be represented by a
vecteor or some other suitable collection of pointers, which
can be inserted, in liew of £, into each composite object
of which £ iz to become a part.

Note ihat once P has been analysed for inclugian/membexship
relationships, we can use something very close to a standard

live-dead analysis to tell which of the more precise

- relationships £ C: s, £ 5;:1 &, etc. hold.
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We have no:ed above that insertion into a composite
object o of bitvectors representing subsets of s will be
least problematical when the part of o intoc which this
insertion is made can only contain subsets of s. The
methods which have &lrea&y been described allow just such
properties of objects o to be establiahed; in the notation
introduced in section 4, the fact to be proved is 03 3€s
if o is a set, on3€s or o »3D€Es if o is a tuple. Additicnal
details concerning the manner in which we propose to treat
bitvectors representing subsets of 8 (and vectors of pointers
defining functions with domain contained in s) will be

found in the following section.

7. Optimisations which inclusion/menbership information

" makes possgibie.

Cnce the inclusion/memkership relationship and othex
foxms of information described in the preceeding sections
have been made available, one has developed a basis upon which
cptimisation is possible. Some ©f the optimisations which
come within reach are glchal in character, and relate to
the guesticon of data-structure choicé. Cthers are sinplie
but useful peephole optimizztions. One such local optimigation
is the following: if Siggﬁg ig known o hold, then the

aguality test =, ey s 8.}, vhich

2

is very simple and can be compilizd in~line.

24U

O
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The global optimisations which can be based on the
analeis‘presented in the preceeding pages are moxe numerousg,
interesting, and significant. Let s and 5, be variables
appeafing in a'SﬁTL program P, and suppcse that 8y C: s has
been established. Then;as noted in the preceeding section,
we can treat sla(at thé implementation levél)_as & bitvector,
each bit position corresponding to some element of s, anéd the
aséociated bit/value determining membership/nonmembership in
Sy. . This implies that the elements of 8 have been assigned
serial numbers; this can be done simply by issuing serial
numbers sequentially to elements as they are added to s.

The bitvector representing sy can be carried with two

auxiliary fields, one determining the number of bits in

the block which represents it, the other representing the
number of elements present in $q. Elements x for which we

can establish XESS can be represented as implewentation-
level pairs consisting of an intever (the serial number of

x as a member of s) and a supplementary root-word (giving

X in some more explicit way; perhaps in its standaxd SETL
reprxesentation, perhaps, if £for example x is known to stand

in the relationship x C: s to some other set 3, in a bit-vectox
representation determining the =lements of s wnhich belong to x) -
Hote that the second compeonent of this pair cans in some

cases be seen to be unnecessary. If an optimizing compiler
decides to use these representatinns, we shall write Sy Csiss

in the first rasc, xe::s in the second.
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Mappings £ <for which ¢ C:y & can bé estaplished can be
represented either by a vector v of pointers, v(n) being

thz value £{v) for the xes_with serial number n, or, 1if

f is never made part of a composite object, bv a family of
pointers stored directly in the s- representing hashtable.

I1f one of these representations is used, we shall write

f gi::s. If an optimising SETL compiler decides to use these
raepresentations (and the number of pcésibilities among which
it must decide will be nicely limited by the set of re-
lationships o Nyesefp NE Oy which it has been able'to vgrify)
then quite a number of code improvements will become possible.
Let us examine & few typical cases.

If s, (::s and 5, C::8, equality tests become bit-equality
teéts, unjions and intersections bescome booclean operations

on bit-vectors. If in addition xe::s, then the test XeSy
becomes a bit-condition test. Even if ye::s is false, indeead,
even if the membership relation ves remains uncertain,

the test YE€s, can be transformed into the code sequence

conveyed by
{1} if $eria1q(y) is sexy eq @ then £ wulsa sexy €84«

Fere, serial (v} is an implementation-level mapping which

transforms @ach v into its seriel number as i1 member of s,

P
[1s)
0
My
t
[
[OR
il
[

Lo}
bkt
Swa?

iT y if feund to bhe a member of s:; othexwise
ig 2. If s must support the manplng seriais, the integex
values reguired can be stored directly with :the hash-table

representing s, so that serial v available vherevar the

e

'\‘\«
N
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dynamic test yes is made. Note that the calculaetion implied
by (1) is no faster than the standard SETL test yesy;
however, = by keeping 8y in bitvector form we speed up

the tests xesi ‘when xc::8, and can also hope to save

space since s, is represented im a highly condensed way.

b

If §) C::s but 3, Ci:8 is false, then to form the union
s, + s, we will have to transform s, back ints a form
compatible with S5i perhaps the standard SETL form, perhape
some other. The code sequence which results can be that
Buggested by

2) z = copy (8,) ; (Y xes | serial (x) € sy} X in z;;

We emphasise that (2) may be no faster than ‘he standard
SETL union~forming operation. Indeed, it may be slower,
since it involves an iteration over s (rather than over s,,
which is smaller). MNeverthaless, keeping 8, 48 a bit-vector
may yield a worth-while,saving in space. And by modifying
our implementation technique, Qe can avoiﬂ‘the loss of speed
which the full iteration over s appearing in (2) seems to

impiy. An approach can be employed which is useful wherevex

a set s, C::s appears, explicitly ox implicitly, in an iterator.

Suppose that this iz the case. Then, if Sy is relatively
‘dense’ in s, i.a., LT (% 513/{é g} is expectodl to excaed

10% approximately, then an iterator (szslb can without grave
Inefficierncy generate the sefquence of a serial numbers n

for which the n-th position in the $l~rep?esantﬁng hit-veoto:

18 1, simply by jlocating pnonszsye wits by a Ffast maching- lave

P

)



provess. 3Juppose naext that (% 81)/(# é) is considerably

smaller than this. Then to represent s, we can use a list L

{of serial numbers) and a bitvector V in combination: the
bitvector as before, the list chaining together all those
integers which correspond to 1% bits in the hitvector.

Then iteration cver s, can be iteration over this list,

If deletions from 8y mgst sometimes be made, then L can be

a two-way list; alternatively, onevmay delete the element x
with serial number n simply by turning off the n~th bit-positiocs
in V, but leaving n in L until the next iteration over L, at
which time n can be removed. Note that to choovse the most
&dvantégeous way ¢f representing L one requires density
information of a type hardly likely to be deducible auvtomatically.
This information can be elicited interactivély or made

svailable through programmer-supplisd declarations.

If serial numbears n assigned to elements of s muzt ever
be converted hack into standard SETI vepresentations o the
objects x which they represent (¢.g., on assignmwent y = x of
an xe::s to a variable y not posessing this property) then
as noted above x may be represestad by a pair whiss fizat
ceaponent is a serial number and whese second coaponent
noints to the standard SETL representaticon of x. If ne such
conversion is necessarv, then thiz second componant can be

o thed.
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If the ast By satisfies 8y C38, then the elements of s,
can be represented simply by bitvectors, possibly supplemented
by lists. If 8y can asgsume values which are not subsets og 8,
then we may'have'to attach a compile-time 'type’ field to

each value of s This field will define the mannex in which

1¢
the value of 8y is to be interpreted: whether this be as a
bitvector defining a subset cf s, a SETL cbject in its standard
representation, or whatever. If»f is a mapping or a tuple
satisfying ¢ c:, 8 then f can be treated as a set of ordered
pzirs in Qﬁich éhe sééohd éléﬁént of e&ch pair is a

serial number. If this is done, we shéll write £ Cii, 8.

If 51 is a set of sets satisfying

slazaeis, then the elements of s can be represented by
bitvectors; if then 3, G 8y, We can issue a serial number

for each bitvector, and reprasent the set-of-sets 8, as 2

bitvector or as a bitvector supplemented by a list.



8. Proving inegualities among integer-wvalued variables.

ot ca e

Let o and oy be two ovariables of a SETL program P, and
suppose that both are known to be of type integer. Then

relationships o >0, o4 < 0, etc. may be provable. In

addition to relations of this aimplé, essentially unary, form.

we may also hope to prove binaxry relationships of the foim

o > o; etc. Proved assertions ensuring that particular
integers appearing in P are necessarily short can be of
considerable value, since they cén allow these integers to
be held in LITTLE rather than in SETL form, possibly yielding

great improvements in the speed of arithmetic and indexing.

e

2
then © > 0 will hold if il > 0 and iz 20

If o is the integer output of an cperaticn o = il +
hold. By using this rule in connection with the analysis
algorithm described inrsection 2, we will be sble to prove
‘monadic' inequality relationships o > 0, o, £ 0, etc.

The proof of binary relationships o < o4 will generally
depend on the improvements to the analysis algori;hm which
are outlined in section &, and, in particulaxy, reguire use of
infoirmation cbtained tha foyxm of the cvonditions appesaring

in conditional transfers such as

(1} if L <3 then go o Ilabel;
It is instructive to consider the esmrple

2}

e -
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v

P
o
2
[
ey
’I-
jocd
ue

o

i o= 3 + 1;

{more uses of i1, but no operations modify<

if i < j then go to label;

The technigue outlined in section 6 changes +his to what

) eszentially

(2") .o

i
i

e
n
~

label: (usee of i)
i=1i+41;
(mere uses of 1)
if i < i then go to label’;

* e

label': (i =3{k < j};) go to label;

In this modified program the first group of uses of i chaing to

the two assignments i = 0 and i = 3{k < j}, Thus w=

that 1 < 1 for these usa2s ¢of i. It follows that i
after i = i + 1 is executed, and hence that i < j

for all uses c¢f i in the seccnd ¢reoup.

- Ay s . . e
In a program containing many integexrs, one way

wigh to investiqate all peesinhle binary z2larionsni

it would +then hs

{uzes of i, but nec operations mcdifying <)

include 1 < 5 in ihe

PR
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fi =3{k < j};) appears in the modified program source.

Mcre generalily, we cap choose to regard certain kinds cf
relationships R as 'marginally likely apriori' and investigate
the truth of sucﬁ relationships cnly when this is suggested

by some explicit feature of the -source code being analysed.

9. Proving 'Nonduplication' of Elements Added to a Set;

Single-Valuedness of Maps,

If one knows (by operator-operand tracing) that a SETL
program P adds elements to a set s, and removes unspecific
elements (essentialy by the from operator): if one knows
in addition that s is never used for a membership test xes; ]
and if one knows finally that none of the elements added to (
s are members of s at the moment at which addition is attemnted,
then we may say that s is being used as a 'simple woxkpile'.
In this case it is very reasonable to implement s either as
a pushaown stack oxr as a list of pointers usaed in pushdown
fashion. In the present section, we shall show how to
establish those assertions of the form x ne s which are needed
to justify such a representation. ye achieve
this by quite a straightforward adsptation of the methods

+

'escribed in sec

C

iocns 2 and 3. it is convenient to proceed
by introducing an sxplicit notation for sat complements into
the algebara 2f relationships given in gection 2. Suppose

that we dercte the complement of s by the symbol s. Then

proceeding much as in section 2 we can define relationships
€= = ) - by - . N .
o, %0 0, 0., 0, &= © On = D 0, &0 G 04 ¢ On.
T2 Y11= Tin T2 Y1 G 20 V1 Ve T2 YL e T2
Moreover, gencralised relationships o, Tyvs Th € o, like
-y - A A

theose introduced in section 4 can also L defined.
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The rules defining the effect on these rezlationships
of the various SETL primitives very much resembie those
described in sections 2 and 4. 2As an example, note that
the relationship o€£51 will fail if the operation defining
o is anything other than 3i, hd i, il(iz), il(iZ’““°’ik} oxr
newat. The rules for the first few of these cases are tha
same as those stated in subcaseS'laéid of secticn 2. If ¢
is defined by o = newat, then 05551 is certainly satisfied,
Note also that, if additional relationships are carried,
then 06551 may be found to hold in a few additional cases.
For example, if in the notation of section 4 we have 919.5 i
(resp. 0;3> i) and if o is defined by 0 = 1 + 1 (resp. o = i~ 1)
then o0, will hold.

The relationship 0o, can hold if o is defined by
+£’ hadr 2 *l. With’ 16‘85, il{iz}i il{izyonefik}l-{il}, il(iz) ox

iy(d,,...,i ). The rules controlling the validity of 05551

in the case of defining operation +, *, with, less, i,{i,},

ii{iz""'ik} {il}’ il(iz)' and il(iz”"’ik) are vexy much
like those stated in cases 2z and Zv-2e of section 2 (as well
as the remarks concerning © co, made in section 4) and

will not be restated. Concerninc the case in which o is
defined bv o = il - 12, we note that 02251 wiil remain

valid if either i1 C 0y or c,Ci.,.
— S 2

Observe that we will need to investigate relationships
like 06551 or c(;Sl only if o€, (resp. oToy} is plausible.
If oo, iz implausible, then of scurse o€3. is true.

At 1 £l 3 sducsng relationgtns T
. & ) N - - - B St B - r
Information useful in deduciny relationship: o]

1} e

=5

o
0 €0y, etc.  will sometimes be derivable from the form o

the conditional transfers which appear in P. & «onditional

3

transfer of the form
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can, in much the manner desceribed in sechion 5. be rewritten

&3

(2) .  if x € 8 then go to label’;
(x = 3 8;)

which makes the fact 8 € 3 available along the non-transfer

branch.

As an example of the foregoing, we may conisider the
following transitive closure routine

(3) definef tranc(f,s);
new = $; all = 55
(while new ne nl)

X from new;

Ll: newer = fix} ~ all;
Teds &1l = all + newer:
L3 new = new -+ newer;

end while;
return ail;
end tranc;

Applying the methods that have been outlined ahove ons wiil
j2duce that new C all, and hence that in line .1 newer C ail,
Trom this it Follows that newer ¥ héw in line 3. From this

zn cptimising compiler could o on to the decision Lo represent

ine set ngw as a simple list,
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In dealing with mapsa it is.generélly important to know
when they are single-valued. When true, this fact can
often be proved by a simple method, which as the rxeader
will see is a straightforwaxrd éériant of the technigues
used earliexr in the present newsletter. Specifically,
we introduce a family of monadic assertions concerning
a get f of ordered n~-tuples; thase assertiona are written
as dnf, wiere n > 1. The assertion dnf signifies that f
is 2 single~valued mapping o0f n parameters. This relation~
ship is only plausible if £ is a set of (n+l)-tuples or
if £ is the null set. The necessity rulass for mnf are as
follows: the assignment f = nf, or any assignment cof the
form

£ ='{<xl,.e.,xn, e(xl,...,xn)>,'xl € 8y, X, € sz(xzk,...ic(xl,.Q.xn}}

confirms anf, For mnf to hold after an assigrment
f(xl,...,xn) = e, it must hold before this assignment. For
cnf to hold after £ = £Twith <x1,...,xn,y>, one of the

assertions xégjf must be provable.
3



¢G.Examgles

In ordex to assess the improvements likely to be attained
by the optimisation algorithms described in the the proceeding
section, we shall consider a few examples. The following
small 'transitive closure' routine bears examination:

definef tranclose(f, startset) ; )
/* f is a mapping from a set s to ltself; startset a subset of & ¥/
tranc = startset; new = sgtartset;
{while new ne n?tj
new = flnew] ~ tranc; tranc = tranc + new;
end while;
return tranc;

end while;

We assume that an optimising compiler is able to racongnise
that the return statemant should be written as rsturrn copy(tranc!:
then the relationships trane Cis and new Cis <an be deduced;
and hence compilation can proceed on the hasis trane 'S’* £ ;
new C::g8. This will lead to the use of a pure bit-vector
representation for tranc, and a bit-vector-plus-list representsiicn
for new (since an iteration ¢ver new is implicit in the
operation f[new].) With these representations, the set differoncs
and union operations appearing inside the while~loop will be
serformed either as boolean opesraticns or as a seqguence of

Cetebit/dyrop-iit steps.

Next. we consider one of the "Huffman code’ routines
cegeribed in 0.8 .01, p.14%, “his xoutine., with a fev gwmall
changes, is as follows (changss shown in dtali-s):

definef huftables{chars, Frec s

Ly 4

pesrs = eopy(ehars); work = prela; wfnee = gopy!iveqs; P=nl. r=nt;

.......

Ty

while # work agu 1
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cl = getmin work; c2 = getmln work; newat is » in Begis |
Lin) = cl, r{(n) = c2;
wfreq(n) = wireq{cl) + wifred(c2}; n in work;
&nd while; ‘
zode = n&; seq'w”gglgf walk (3 work is top);
return <code, &, r., top»;
end huftables; | _ )
definef getmin set; /* wfreg¢ is global L
<keep, least>= <3 set is x, wireqix)>;
{¥xe set _
if wfreq(x) ft least then <kzep, least> = <x, fregfiu vz
end VYx;
keep ggg'sét; return keep;
end  detmin:

scuzgsion which follows that

m

}..‘-

We shall suppose in the 4
the types of all the quantities used in the above code have
heern determined. We also sssume that &n analysis like that
¢escribed in the procseding sections but applying gven across
subprocedures hag beean applied toe the code shown above.

Then by applying the technigues duscribed cariier in the

3.
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thie would vield code gubstenidally Datta:

itven the preceeding progrem by uncpiimised transistion,

Bt hawever that a programmerx implementing this sane
algorithm might choose to repressnt the tree funciions £

«né r by arrays. Df course, this c¢an only be done if compensating
whanges are introduced into whatever code calls the huftables
reviting: and such changes may be heyond the capabllity of

the automatic optimiser we envisage

As a final example, we cunsider a portion of the

‘nterval finder' routine descriped in ¢.¥.1Y%, pp. 285-270.

The code in questiongis as follows:

dafinef interval (nodes, Xx);

/% rpreds, foilowers, and cesor are assured to be global */
anreds = {<x,0> e nodes};
Y = e nodes, y & cescr(x}))
npreds{y) = npredsiy) + 1;;

ot = nults;follows = {u}; count = {<y,0~, yenodes};
zount (x) = npre&six);
hile {y e fellowers | mpredsi{y! oy count{y)} iz newin ne nkl
(V 2z £ newin)

int(® ipt + 1) » z;

¢ out Jollowers:

(¥ v € cesor{z)|y re )

z ar § Az [ -
. faad - wvd b
Lount iy o= ool el o

sonErn Ants

sl anterval;

(
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definef intervals(nodes, entry);
/*follovers,follow, intov are all assumed to be global */
ints = n&; seen = {entry}; follow = n%; intov = ni;
(vhile seen ne n?t)
node from seeny
interval (nodes, node) is i in ints;
follow{i) = followers;
(1 < ¥k <$ i) intov(i(k)) = i;;
seen = seen + feilcwers;v '
end while; ' '
return ints;

end intervals;

Once more we suppeose that the types of all gquantities
used in the above code have been determined, and that an
analysis like that described in the preceeding sections but
applying even across subprocedures has been applied to this
code. Then, applving the technigues used in the preceeding
section, one will establish the following relationships:
npreds Ciy nodss, int('::oo nodas, followers C: nodes, count E:i noges,
newin C: nodes, =g: nades, ye: nodes, ssen C: nodes,
i €: nodes, ints3 &

-1

nodes; follew C:, nodes, i & nodes,
follow 2 E:z nodes, intov 5.1 nodes, intov (_:-:__? ints. Moreover,

the only sets which must support iterations axe modes, follewewrs,
newin and seen. An optimising SETL compiler couléd trerefore
generate a trans:ation in which the elements ¢f nedes and

of inte carvied serial numbers..and in which z asnd y were
represented by serial numbers,t and int by a vecter of

gerial numbers, and foliowers, sewin, and seen by list/bitvecho:r
combinations. “he values o the maps npreds, count and

follow can be stored in a group of three fields zssociated

with each n € nodes: the value of follow will be a bitstring.



This gives ruch better code than that which resulis from
sanontimised translation of the preceeding SETL source.,

A still more penetrating and global optimiser might be able
to deduce that the values <Znt¢cv can be stored within a
fourth field asscciated with each n € nodes,and that each
vzlue can be represented by a serial number designating
some int € ints. This degree of optimisation would come
clcse to matching the code likely to result from manual
transcription of the preceeding SETL code into a ianguage
cf the PL/1 level,.



