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peducing r~~~tionshiPs of 

"inclusion and membership tn· SETL J[rograms. 

J. S'.chwz.·ctz 
l-'.iay 2 9 , .i.(:--, 4 

1, Introdu·cti.on. A--Pr-t·ori: plau·stbili•ty o·f inclusion/1nembersh.i:E_ 

· reTatioz::shi,zs o 

This newsletter takes up the 1 high level optimisation' 

theme of NL.71~ NL.118, NL.121, and of Aaron Tenenbaum's 

thesis (. .hereinafter referenceq as TT). The 9enerally good 

performance of Tenenbaum's 'type-finder' program suggests 

that it may be feasible to deduce deeper properties of the 

objects appearing in SETL programs. In the present newsletter, 

we will outline techn~ues which,building on the approach 

and result of the typefinder ,allow use·ful relationships, 

among them relationships of inclusion .and mem.bership,to 

be established. 

Before entering into technical detail, we make a few 

generalising remarks. Global optimisers are progra.1Tts that 

prove, and then exploit, facts concerning other programs. 
Thus optimisers may be considered as co1.mtry cousins of 

those still largely hoped for, mere sophisticat0d ro,ltin<::s 

which prove the correctness, in some appropriate formai 

sense, of thesE: other programs o ln cont:ra.st ·Lo ful:!.. corrtc'-C Lnet:J •· 

prover systems, which ai;n to prov•::i a fe,,; maJor, hard, 

programmer•- specified factR about a prcgra.m,. an cptL1.1iser 

aims to prove m.ITaerous small, ..-~aFy facts about the programs 

\.th:Lch. j_ t analyses; moreover, opt.irrtisers thems<~l ves :normally 

generate. the surrnises that they ,.:,tt.empt tc) pn~ve. He may 

put this comparison somewhat diffe:tently ,, by consid,?.rinJ 

the nature of the theoren:-provin:r algori thrns ··,/hi eh are 

typically employc!d by program <."i.nci l:i ::;e?./optimi :.;ers on the 
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Theorem prov5.ng programs fall into two main families~ on 

tr_e one hand, those generically similar to the ori~ina:i. 

'geomet.ry theorem prover'of Gele:rnter; on the other hand, 

·rhose: belon:;·:L::1g to the resolution group. ProverH of the 

first kind p~oceed very cautiously in generating objects 

not abnost r;;xplic:i t in the si tuaticns w::_ U:. ·which they a.:::<=-; 

presente<l. Thi.s 1.i.mi ts very significantly t\1e space of 

possibil:L ti-2:sr uhich such a prover needs trJ e::{f)lo.:te I and 

makes i.t possible for such provers to genera-:e facts usin? 
a kind of transitive closure method; of course the 

closure-forming process employed may be optimised in vari.c·..12 

ways or steered by some heuristic. Provers of the second 

kind are more gr:meral, and in principle capable of reachi.ns1 

out much farther from an initially given set of hypott1ese~ r 

largely be ea.use they have Rvailable I and are prepared to 

UEe, constr1..:.ctor mechanisms capable of gener2.ting all t~.e 

objects of some full 'Herbran.d uni verse'" H:::weve:r-, t'!-,si.r 

very generality confronts provers of the second typa ~ith 

tht= problem of searching rapi{!}.y growing, pote.r,·:i.~:'.Lly 

infinite sets of p~•~sibilit:_es: .::.nd at the p~:·e;c>::nt: -:-J.:,,:~ 

provers of tii:i.~ sec:md typf: generally fcunte:: 2~:-d.est 

~ultitides cf unexplcre1 possibilities. We ~a~ ther2fore 
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For such an optimiser to be possible, it is probably 
necessary that rich semantic relationships should appear 

fairly explicitly in the source text with which an optimiser 

is required to work. This is to say that we expect deeper 

optimisations to be possible in a high-level language whose 

primitives are.semantically r:1.ch, than in a language 

of lower level, whose primitives are of a more impoverished, 

hardware-like, character. The technical discussion which 

follows illustrates this gene~al remark, and shows that a 

suitable optimiser will be able to guess and prove relation­

ships of inclusion and membership between the objects of 

SETL programs. In a language of only slightly lower level, 

as for example a LISP-like language, it could be hard to 

formulate these relationships, much less to prove them 

efficiently. 

2. _An algebra ~f. membership and inclusi•on re1·ationshi_ps. 

We supposa the SETL programs w:i.th which we work to be 

schematised in the manner described in T'l' 1 i.e., as et set 

of operator-argument tuples with designated target variables, 

arranged in a collection of basic blocks among which flow 

relationships are defined by a sucessor mapping. We shall 

when necessary write operator-operand-target tuples either as 

(la) targ n op(arg1 ~ tu:·g2 , ••• ,argnj 

as 

(lb) 

or in whatever other notational fprm is convenient. 
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We suppose that John Cocke• s •usr::i·-de£in.:i.tion chaiTling r p:cc;cris~ 

has been carried out1 the algorithm to be dei;cribed will 

use the output data of this procedure, which makes explJ.cit 

the data flow re,lationships within a program P to be analyeed. 

We shall ·call the target variables of operator-operami 

tuples like (la) , (lb) ovaPiab les. The analyrd.s described in 

NL. 71 and TT associates a t:ype symbol with each ovariable. 

This type symbol classifies a."l ovariable I or rather its 

value as understood at compile time,as being one of the 

following: eiementa~y (i.e. integer, real, string, etc.), 

set, kno1.tin-length-tup"le, or unknown-'legth-tuple. Values 

of these last three kinds are described by type symbols of 

the structure {t}, <t1 , ••. ,tn>, and [t] respectively, where 

t, t 1 , ••• ,tn are themselves type symbols and give information 

concerning the type of a set's members and a tuple1 s corrponent;;. 

We now introduce a numhex· of formal inclusion and 

membership relationships between ovariables appearing in a 

schematiE-ed SETL program P; the analysis which follows will 

base itself on these relationsh Let o 1 and <)2 be c,va.riabler; 

of P. Then 

i. o1 e: o 2 mr2!arts that (immediately after t.he definition 

of o1 ) the value of o1 is (necessarily) a. member of the 

(current) value of o 2• 

ii. o1 £_ o2 means that. the value of o1 is a subset of: 

th , f f . d"' 1 ,;=t tt.. ., f . . .... . f e va .... ue o o 2 . J.trune .;·.c1.te y a.~ er .1.,.e a.e 1.n11..ion o · 01 ; 

necessarily; whe:i.Ae 02 refers to it.G cur:rent valu,:;) . 

iiiv e,l e::r.: o 2 means th3.t. ol is a. t.uple of ,:noi-m 1,~ngi'., 

this length being at least n 3 and th...s.t the· n-·th co;;nponsnt 

of o 1 is a member of o
2

. 

iv. ol C -·n 
known length, 

0
2 

roeaw,i ei t:.hex that 
this lenqth bsing ~t 

o., :i.s 
.l. 

a set of tup:i.es 

i (" a.::~; t. 

:.:1.--th comrJ::ri.cnt: ( f. ec,:.:h r.·ic,rnbcr u:° .-::. :i::, ''.. me:;:r;·; :]: c:" ,::,:~; ci 

i.f n "" 2 anothe}: meaning is po:< -; h :, -:~; ,. '::./ .-:.<1.·, U,.c, :: o l:; a 
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v. 0 £: 
]. to 

o2 means that o1 :ts a tuple of un.knm,.rn 

lt!ngth 1 and that every component of o1 is a member of o 2 ~ 

vi. o 1· 5 
00 

o 2 means that ?i is a set of tuples cf 

unknown length, and that every component of every member of 

o1 is a subset of o
2

• 

The type symbols associated with the ovariables of P 

tell us which of these relationships ara plau8ible, i.ee 

possible a priori. Let t 1 and t 2 be the type symbols of o1 

and o 2 respectively. Then the relationship o1 E o 2 is only 

plausible if t 2 = {t} and t.~ t 2 in the lattice of type 

symbols (cf .. TT); o1 £ o.~_. only plausible if t 1 = · { t •}, t 2 = { tj, 

and t ,. < t in the type symbol lattice. Moreover, 

(- o 1 En o
2 

is only plausible if t
1 

= <t
1

, •.. ,~> with k > n, 

o 2 · = { t}, and tn ::_ t in the type symbol lattice; o1 ~n o 2 is 

only-plausible if either t 1 =· {<t1 , ••. ,~>} and these same 

conditions hold; or n = 2, t 1 ,.. [ t ' ] and t 2 = { t} wi. th t '_ < t 

in the lattice;· or n = 2, t 1 = _<t1 ," •• ,tx? r t 2 = {t}, and 

tj < t in the type lattice for all 1 2 j < k. The relaticnshir• 

o 1 £ o is only pla.usible either • f c is of t·_vpe [t], 
00 2 ... 1 

o 2 = { t'}., and t < t' in the type lattice. or if c,1 is of 

type <t1 , .•• t > with t. 
n J 

in. the type lattice fo:r: all j. 

The relatior .. shin o.. 6 
.. .L. _,:n <.">..,, • 1 

~ l i:i on ... y plausible either if o1 

.is of type [ { t}] r o
2 

;:: { t'} and t < t' in the tyµe lattice, ,::·.r 

if o1 is of type <{t1 }, ... ,{tn}> 

l 12.tti\'.:e for all J. 

wi t.h t.; < t' in the type 
' 
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The set of all relationships plausible in this sense 

for a progra."1't P will be calle"d the ma=imu.m plausible set 

of 1•e latior:.shipa for P. 

3 .. 9t1tli.ne of ·a11 anal_ysi•s· ·ai-gori•thm::._ 

Given a SE'i'L program P, we. wi.sh to determine the set 

of all formal inclusion relationships which hold between 

its o~Jar-iables. To this end, we propose an algorithm which 

works 'downwards' (in the set_of relationships described in 

the preceeding section), starting with the maximum plausible 

set of relationships for P, and systematically eliminating 

relationships which might be false until only relationships 

which are certainly true remain. The rules which apply 

are as follows. 

a) Call the 'source' or 'input' variables of operator~ 

operand tuples like (la), (lb) ivaPiables. Each ivariahle i 

will be chained to a set ud(i) of ovariables. We allow 

i variables i to participate in i.nr::::lusion/membership 

relationships i.e:o, i C of i Eno, etcc A relationship i:Ro 

can only hold if. o1 Ro holds for all o1 E ud (i.) • 

b} 1.rhe family of. true :celationships c,Ro.., .,,. 
which an ov.a.riable o participates depends on 1:he 

the operation defining o and. on the relationships which hold 

for the input variables of this operationo 'L) define this 

aspect of the a::1alytic s:i.t.uaticm completely r ;,;. rale :Ls re-iui::.•e,~:· 

for every SE'l'L primitive and (=;very possible Li.cluz5.on 1:e­

lationship. 'l'he SE'fL prirni t.i.ves are enumerah-,d on page 

4 c,f NL» 7L H~i do not give ?:. c:omplete list cf:: -the rr1les 

showing t~1r:; sffi3-:!t. of SETL pri.mitive:s on jncl,.-:s:ion relations 

hJ?.X'~, but or: ly d.isplt-,y a few t~{9ical cases. 

Case ~-: I'elationshJ.t) o c e,._. Tli.i.s i.~ <wavs f:r.,1~:;e 
------- •. ..t -

if thf~ op10 .P:atior: defin~ng o ::.s .:;nyt.hing oth;_;;:;: di.Ti\ 3 :1 ,Jvi J .. 

j (~ \ ! !> .: ' . 1 ·'- 2 1 ' ,L "J. ·. ,. :: , · • ' ' ·'-k ; • 
;::,: :r € c .. s f c~.) .1, 1-: ~-. ,:_- .-: 

G 

( 
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Subcase (la) o .,. ~i. Then relationship o £ o
1

, is :fa.h;..t:~ 

unless i ~ 01. 

(lb) 0 = hd i. Then o £ 01 is false unless i e. 1 OJ 

or i Et.0 01. 

(le) 0., i1<i2>· Then either i 2 must be a known 

constant n and il En ol; or i 1 must be of type <t.1 i • •• , t. > n 

and i 1 Ek o1 must hold for each k ~ n: or i 1 £~ o1 must holdt 

or i 1 must be of type {<t1 , t 2>} and i 1 ~ 2 o1 must hold. 

(ld) o = i 1 {i2 , .•. ,ik). Then i 1 must be of type 

{<t1 , ••• ,~+l>} and i 1 ~ k+l o 1 must hold. 

· Case 2: Relationship o c o 1 • This is always false 

if the operation defining o is anything other than+,-,*, 

with,~, il {i2},i1 {i2 ,.@ •• ik}, o~·{i1}. The rules foL 

these seperate subcases are as follows: 

Subcase (2a) o = i
1 

+ i
2

• B,'.)th i
1 

c o 1 and i 2 ~ o 1 must. 

hold. ln the subcase o = i 1 with i 2 , i 1 s; o 1 and i 2 e: o 1 lil'I.Jst 

hold. 

(2b) f; ·- il - i2 I' c, = i less i2; then il C Ou must 
l - - J. 

(2.-..'- 0 = i • ~ t.hen i.. ~ cl or i2 ~ 02 must hold • ,. I l ... 2. 
..l. 

7 

hold. 

(2d) 0 -· j_1 {i2}. Then J.l ,!\llSi: be of type { <t 'I , t,, >} ' - "· 
and il C 01 mnst hold.. We lea.ve it to the reader to -·2 

wr.i te the similc:i.r rule which applies to· i-1 · { t.., •••• , .i.1 } • 
. '- X 

Th,~.n i~ s o, must. hold . ... 
o 1 £;; o

1 
is always true. 
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Case 3: o kn o1 • This is always false if the operation 

defining o is anything other than+,-,*, with, less, 

.:.t1{i2}, i 1{i2 ,_Ha,ik},<i1 , i 2 P •• ,ik>' or {i1 }. Rules for 

these seperate subcases may readily be stated; most of 

8 

these rules rather closely resemble the rules for the 

corresponding subcases of Case 2. For example, if o = i 1 + i 2 , 

then i 1 en o1 and i 2 ~ on must hold. If o = i 1 · {12}, then 

i 1 must be of type { <t1 , ••.• , tic>}, and i 1 c;;n+l o1 must hold; 

the rule for o = i 1 {i2 , ••• ,in} is a straightforward 

generatisation of this. When n = 2 a few additional 

subcases arise. If o = i 1 + i 2 , then o c 2 0 1 can hold 

if the types of i 1 and r2 represent tuples (of known _or 

unknown length) and 

then o c 2 o1 can hold if 

Case 4: o e;n o1 • This 1-s always false if the operation. 

defining o is anything other than+, <i1 , .•• ,i1>, i 1 (i2), 

or i 1 (i 2 , •.• ,ik). Rules.for the verious subcases are 

as follows: 

mu$t be ~-~le~ If 1 1 is of known length R., and 2.. ~ n, then 

i. 2 ct,-n o1 must hold; if t > n or if i 1 is -of unknmvn lengtht 

i:: O-i must also hold. 
!). 

Then k 

0 



l 

'4c) 0 s:t ·l ('1.' \ '"h~n l,
0 

.. ,.,~.,,t b~-.. ~f ·1-rr= {<t +- :.,,l \ . ""· 1 2 I • .I, >;:. 1 """"'U 'v V • \._l t.••,;c: • 1 I • • • I ~• .£. . , 

with 1 .::_ n + 1, and i 1 £n+l o1 must hold: the rule for 

o = i 1 (i2 , ••• ,ik) is a straightforward generalisation of this. 

It must be provable in both these cases that o is not n. 
Case 5: 0 Em 01. This is .alw,ays false if the operation 

defining o is anything other than +, <i1 , ••• ,ik> ,11 (i 2), ·or 

i 1 (i2 , ••• ,ik)o The rules applying to these various subcases 

are rather like those stated for the corresponding subcases 

of case 4; we leave it to the reader to supply all necessary 

details. 

Case· 6 : o C o
1

• 
co 

This is always false if the operation 

defining o is anything other than +, - , *, wit.~_, ~_!, 

il._{i2}, _:_f1{i2 , •.• ,ik}, or {i1 }. The rules applying to these 

various subcases are rather like those stated for the various 

of case 3 .. 

A few basic SETL constants. will regularly enter into operation.s 

as ivatiables. Each of these constants has properties 

which are to be exploited in applying the abo·,.re rules or 

appropriate slight extensions of them. For example, the 

null set n.l!. satisfies nP~ ~-; c 1 ,• !.}.t ~-n o 1 , and n!l 

every o1 ; the null-tuple nul_t_ h,:rn propsrties Fhich should 

be reflected in appropriate small ('.xte.nsions of the rules 

which have been stated. 
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'l'he rules uhich have ju.st been stated determine a , 

map pi n~J muB t:ho Zd f:com the class of all ndaticnships o:Ro
1 

to the power set of the class of all relationships i.Ro1 • 

1 () 

Given that o is the tal'.'get variable of the operation op(i1 , ••• ~k:,, 

the set muathold(oRo1 ) is defined as the set of all re­

lationships iRo1 which must hold according to the foregoing 

r~.les if ono1 ir; to hold. Using this map, w-0. can describe 

our i.nclusionimembership finder as follows: 

i~ Given a schematised SETL p~gram P, perform a 

type analysis for it and then determine the maximum plausible 

set S of relationships for Pin the sense of section 2. 

Next reduces by eliminating all relationships oRo1 which 

are obviously impossible in view either of the operation 

t'iefining o or of the types of t..lie ivarahles cf this operatlort. 

This should leave a managea.-":;ly small set of rel!'.ticnship 

symbols to be treated. 

ii,. J!.ftsx· the preparatory steps just de:scribed, build 

up a map .o which sends each ovariable o into the set'{o~} 

of all ovariables o' which are chained to an ivariabl~ of 

the operat.io~1 doflning o., and then iterativel.y remove r<-dat:·,.on-· 

A workpile W i.~\ initialised to contain all ovarir.lbles o. 

Fo::.:· each o ~-n the workpile, and each relatior,ship oRo1 

is inr.:luck,d in !:; • If not, cRo., i:::: :t:C;?mi:.,v,2d f:: e:m t, r and c., .• , 
.,t, 

put :i.n t-,, SE~t " 1 of modified v21ri::-\bles • 
. ,, 
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to 
-1 u [W~], and the process repeats. 

.l 
Lets~ be the set 

of inclusion/membership relat.ionships remaining in S when 

W becomes null. We call SO') the set of relationships aonfii•mBd 

by our analysis procedure;· thes4= relationships are necesaa1.·i}.:y 

true. 

r 
The relationships of membership and inclusion utilised 

in section 3 cen. be generalised substantially. The fuller 

· set of relationships which we shall wish to consider is moat 

adequately represented by composite symbols which we shall 

call :relation stztings. Let n1 , n2 , ••• ,nk.be symbols representinq 

monadic mappings on composite SE·rt objects, and let ,, be a 

symbol representing a binary truth-valued operator on SETL c,bj<2~cu1 

o and o1 Q Then 

(11k nk·-l • •• n2 n1 o) n o 1 holds •. '.l"'he following examples ,;,1ill 

indicate the intent of these defin.itions. Let the symbol 3 

signify a monctdic 'random rne:mb~;rship choice' -operati.on on 

sets, let the syz:ibol n. indicate t:,H:i operation cf choosing 

t.he n~·th compone:nt o:f a ituple, let the s.Y)nbol a; signify tl:w 

operation of cho )Sing ;,_ random component. of a tuple, and let th,~ 

-symbol n f~ignii:y the operation of choosi.nq somr:,, :::-anclom 

Let e;; denote the boolean tnH~rJ.:b~ri.,t·ip I relation, a~.d Jct 
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"1'hen the relationships o 3 E 0 11 on E o1 , o«> E o1 r o 3 n E o1 ::..nf,;. 

o 3 « Eo1 , are respectively the relationships o c o 1 , o e:r
1 

o1 f 

o £co o1 , c c n o1 r and o cc-> o1 of section 3, The relatic,n·~ 

ships o 3 3 E o1 , o 3 n 3 Eol., and o 3 ori3 Eo1 are worth 

considering, as are o 3 n o1 and o 3. n 3 E o1 • By working 

with arithmetic relationships_like o > oi, o 3 >· o1 , etc. 

one can hope to prove semantic facts like 'o is a set of 

non-negative integers/ which when known will permit useful 

optimisations. 

For a relationship on1 n2 ••• nkno to be plausible, the 

type of o must be such as to allow n1 , ••• ,nk to be applied 

too in sequence, and the type of the resulting quantity 

o' = (nk ... an1 o) must be such !is to permit o'no to be true. 

Once the types of the objecti3 appearing in a SETL program 

have been found, this restriction should serve to. 

guarantee that the set of relationships which remain plausiL-Je 

is manageably small. A 'neces~ity rule' can then be given 

for every relationship on1 n2• ·.; nkno1 admitted into an 

analytic system., following which the analysis algorithm 

described in section 3 can b(~ 1.rn-2:d with minim~.l chan;Jes to . 

prove the validity cf some su.:;;s,r:,t of the collaction 0£ 

initially plausible :relationshipH. 
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F'or exar:nplei", c: £ o
1 

car: holrl f.·ven if o is deif'ir1ed by an 

operation of the form 3ii t :Li½;, or i 1 (i. 2 , .... ,in) , provided 

that. the .following condi t.ions are satisfied~ 

Subcaae (a) o • · 3i.. 'l"hen i3 3 Eo must hold. 

(b) o • i 1 (i2). Then 11 must either be of type 

_tupl~. and i 1
003~o must hold,or of type {<t,{t'}>}, and 

i 1 323Eo must hold. 

(c) o = i 1 (i2 ,,~.,in). Then 11 must have type 

· { <t1 , ... ~ ,tn-l' { tn}>} and 1
1

3 rj3Eo must hold. 

{1) 

In~ation· derivable· from the presan·ce,:_p_:_f in•sertion 

an~union oP!:·r~i~. 

Consider the code sequence 

At a program point immediately subseque.Jit to this sequence 

we can be sure that _n is a member of s 1 • But if taken in 

its simple form, the inclusion/ml.? .. mbership an&lysis described 

i:n sect.ion 3 will remain uno:n<1are of, and so fail to exploit, 

this fact. Indeed, it will miss e,..~en the simpler fact that 

n:::s is certain to hold immediately afters= {n) ahas been 

However,, a stra.i.ghtfoD~·ar.:1. imp.rovement of our approach 

1-, 

can remedy this deficiency. Ea.eh appearance of the schematised 

version of an in.structi,m 
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(~!a) t ::. s 1 + s; 

can in effect. be replaced by a."1 appearance e>f the sequence 

each appearan~e of 

(3a) 

by an appearance of 

(3b) 

each appearance of 

(3a) 
J 

by appearance of 

(3b) 

r J'l in a; n =3 {mf;s I m ~ n}; 

s a:· {n} 1 

s • · {n} J. n = 3 s; 

etc. Note that in the schematised progra~ versions with 

which "iie work, the sequence (lb) can most appropria.tely be 

handled by treating it as if it read 

(4) 

where by writing n = 3a; we have indicated the presence of 

a 'pseudoassignment' forcing n to be a meil'tber of Sr but 

where by placing this operation in parentheses we indicate 

that no ot.her relationship involving n is spcil<:.d by this 

{or, indeed, any other) pseudoassigrunent. Similarly the 

schematised form of (2b) may be t.reated in the ;:aa.nner which 

is suggested by the sequence 

0 

0 
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It is occasionally possible to glean useful infon,,ation 

from the form of the conditional transfers determining the 

successor relationships among the basic blocks of a SETL 

program P. Su9poser for example, that such a transfer has 

the form 

(6) if s ~ nR. thl:in go t.o l,abel1. 

then the program point 'label. is reacheq via (6), we may be 

sure that sis nt. 

To ensure that our analysis does not miss information of 

this kind, we apply the following treatment to every conditional 

transfer whose governing condition is simple enough to be worth 

( bothering witha An auxiliary pseudo-block is generat~d from 

the transfer; the transfer is modifie~ so as to j~11p to the 

pseudo-block, which in turn jumps to the original transfer 

destination. The pseudo-block:--Pontains a pseudoasaignment 

which forces the condition appearing in the transfer to be 

true. For example, in treating• ( 6) , we modify it to read as 

l 

(6') if s -~ nt then go to label'~ 

where Zabe Z. ' is a generated label prefixing the pseudo·-block 

{6) label 1 : (s = n1;) go to label1 

'!'his pseudo-block insertion process gives P· a some·v:!-.:at 

different flow graph from that which it would oth~.rwise !':ave,. 

a:1alysis is applied to P. In the modified dato·-:flow •· sorr:e 

ivariables will be changed -to ovariables appearing in 
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c:r;,1:is revised chaining makes explic.i. t more precise infonn&tiox:, 

than would othendse be ava,i,lable, and this enlarges the se 1;. 

of r.elationships which will be established by our analysis 

algorithm. 

Note that it might be useful to allow SETL users to 

write pseudoassignments explicitly. A user-•supplied pseudo·­

assigrunent would act as a kind of declaration, and could 

supply an optimising SETL canpiler with information which it 

was unable to deduce 9 but in a form which it was easily able 

to use. 

6. Inforn,at~~E_lemen·tazy _to in•clusion/membership relati~~-l~:,;~~c 

Once relationships of inclusion and memb:e.rehip bet,,reen 

the objects of a SETL program P have been established, · 

certain interesting optimisations cotne al:most within reach .. 

Our intent is to find Cc?.Ges in which a aet s 1 included within 

a set s ca.."11 do without explicit" represent,-,tion of its o-vm; wia 

hope merely to issue a 'serial number' to each element of s1 

and then to represent &.. by "- bit-vector, the n-th bit of 
J. 

the vecto:r signifying whether the; n-th element of s does or 

do,3s not belong to s
1

. We may also try to ·find cases in 

wh.1ch a map f kncwn to have doma:.in included :;_n B can be· 

pointer dt:tenni.n'?.s one value f (x_.l ,_ 
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For representations of' this kil'id·· to be witJ11.n r~ach, .lt. is 

clearly necessa.ry that the analy1ds descr.ibed in section 3 

and 4 should confirm the relationships s 1 Cs and f ~l s_e 

We must also be sure thft e1 (resp. f) is not set up when the 

set s has one particular value and then used after el&7"3ent.s:. 

have been remo,red from · s. 

If s 1 is itself made part of some composite object o, 

either as a set member or as a tuple component, additional 

·complications arise. Por representation of s 1 as an s-basad 

bitvectpr to remain desirable in this case, it is necessary 

that the following condition should be satisfied: 

(Cl) o is dead at each program point at which sis 

diminished., 

Relatively few complications will be caused by insertion 

into o of bitvectors representing subsets of s if the following 

condition is also aatisfiedt 

{C2) All the elements of t~1e composite object o are 

subsets of s. 

Condition (Cl) is not quite: sufficient to ensure the 

desix:abil:i. ty of representing s 
1 

by an s-based bitvector. 

To state a sufficient condition, we must fix-st mak-a some 

appropri:~tc~ definitiomo Given an ovariable o er .an iva:r:t;~ble 

i of a SETL program P, we define the :following functions. 



By cr·this (o} resp. ai-thia ({..) we mean the .set of all ovariables 

wh.ich can create an object which at some moment in the 

execution of P becomes the current value of o (resp~ i): 

If the value. of o or i can be a set, then by crmemb (oJ'(resp. 

CPmemb(i)) we mean the collection of all !variables j whose 

values beco~~ incorporated as members into a set which at 
some moment in the execution of P becomes the current value 
of o (resp. i) If the value of o or i c&n be a vector~ 
then by cPsomcomp(oJ (reap. orsomcomp(i})we mean the collectio~l 

of all ivariables j whose values become i.ncorporated as 

components into a vector which at some moment in the execution 

of P becomes the value of o (resp. i). By crpart(o) (resp. 

oPpart(i)Jwe mean the collection of all ivariables whose 
value might either be equal to or become incorporated, either 
as members, members of members, components, members of 

~ . 
components, components of members, etc. into a composite 

object which at·some moment in the execution of P becomes 

the value of o (resp. i). Methods for calculating these 

functions are described in Newsletter 131. 

Using these functionsr we make the following 

· 'Defin·ition: Let s, s 1 and t be ovariables cf a progra:m P, 

we say that t is auperioP to s 1 if s 1 belongs to 

[~: ie crpart(t)] crthis(i). 

W(;~ say that s 1 i:s; a depanden.t subaet of s ii ~is;; s {in the 
sans-s of section 3) and if the valma of every object superior 

t,:i s 1 is dead. at each operation which might remove an elemeni: 

fn:,m s. ~•Le lTii1f.- f is domain depe,,deri t · o:n s 
.. i' 

j0?sndent en~} J.f f C. s (rasp. f 
. ·--· l.. 

-~•?e.Y:y object ,=:arpe;:-ior to f is dead at 

lD 
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To indicate subset dependency, domain dependency, and. 

range dependen.<..--y we write s 1 C: s., f C: 1 s, f C: 2 s 

respectively. Note that an analogous notion 

may be defined for each 'of the relations o 111 ..... nk n o1 

introduced in section 4 above. 

If s1 C: s, then s1 can,in the manner described at the 

beginning of the present section, be represented by a vector 

of bits. This vector can be inserted, in lieu, of s 1 , into 

each composite object of which s1 is to become a part. 

Similarly, if f C: 1 s, then f can be represented by a 

vector or some other suitable collection of pointers, which 

can be inserted, in lieu of f, into each composite object 

of which f is to become a part. 

Note that once P has been analysed for inclusion/menibexship 

relationships, we can use something very close to a standard. 

live-dead analysis to tell which of the more precise 

· i:elationships s 1 C: s, f C: 1 Sv etc. hold. 
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We luive n.o~:ed abo,·e that insertion into a composite 

object o of bitvectors representing subset~ of swill be 

least problematical when the part of o into which this 

insertion is mad~ can only contain subsets of s. The 

methods which have already been described allow just such 

propert·ies of objects o to be established~ in the notation 

introduced in eection 4 11 the fact to be proved is o 3 3Es 

if o is a set, on3Es or o 0) 3Es if o is a tuple.. Additional 

details concerning the manner in which we propose to treat 

bitvectors representing subsets of s (and vectors of pointers 

defining functions with domain contained ins) will be 

found in the following section. 

7~ QFt;misations which inclusion/men,hership information 

Once the inclusion/membership relationship and other 

forms of information described in the preceeding secticma 

have been made available, one has developed a basis upon which 

optimisation is possible. Some of the optimisations which 

come within reach are global in character, and relate to 

the q·11estion of data-structi1re cho:~ce. Others a.re simple 

but useful peephole opti.miss:t::.:Jn.s. One such local optimisat..io;: 

is the follmv'in.9: .:\.f s 1 ~; a:~ is known to hold~ then the 

. . . 1 . is very s1.mp. e ana Gan be 
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The global optimisations which can be based on the 

analysis presented in the preceeding pages are more numerous, 

interesting, and significant~ Let s a."'ld s 1 be variables 

appearing in a SETL program P 1 and suppose that s 1 C: s has 

been established9 Then,as noted in the preceeding section, 

we can treat s 1 {at the implementation level) as a bitvector, 

each bit position corresponding to some element of s, and the 

associated bit/value determining membership/norunembership in 

s 1 ~ This implies that the elements of shave been assigned 

serial numbers; this can be done simply by issuing serial 

numbers sequentially to elements as they are added to s. 

The bitvector representing s 1 can be carried with two 

auxiliary fields, one detennining ·the number of bits in 

the block which represents it 1 the other representing the 

number of elements present in s 1 • Elements x for which we 

can establish XE:S can be represented as .implementation-

level pairs consisting of an lnte£:er (the serial number of 

x as a member of s) and a supplementary root-word {giving 

x in some more explicit way; perhaps in its st.mda.rd SE'l'L 

rep~esentation, perhaps, i.f for exa.mple x is known to stand 

in the relationship x C: s to some other set :a, in a bi t-vectc:t 

representation detcnnining the ~le:ments <.>f s which belong to x) ~ 

Note that the second component of this pair can in some 

cases be seen to be unnecessary. If ar, optimi ':,dng eornpiler 

decides to use these representc:c=:ionE, ~te shalJ ,,,4·z.-i te s 1 c~ : s ..• 



SETL-·130 

Mappings f for which f c: 1 scan be established can be 

:represented either by a vector v of pointers, v(n) being 

the value f(v} for the xEs with serial nmriber n, or, if 

f is never made part of a composite object; by a family of 

pointers stored directly in the s- representing hashtable. 

If one of these representations is used, we shall write 

f ~: : s. If an optimising SETL compiler decides to use t.J1ez~e 

representations (and the number of possibilities among which 

it must decide will be nicely limited by the set of re­

lationships o n1 ••• nk n: o 1 which it has been able·to verify) 

then quite a number of code improvements will become possible. 

Let us examine a few typical cases. 

If s 1 C;;~s and s 2 C::s, equality tests become bit-equality 

tests, unions and intersections become boolean operations 

on bit-vectors. If in addition XE::s, then the test xEs1 

becomes a bit-condition test .. Even if ye:::s ia false, inc1~ed, 

even if the membership relatio~ ye:s remains tmcertain, 

the test ye:s1 can be transformed into the ~oc£• sequence 

conveyed by 

(l} 

1-Ierei> serial
5 

(y} is an implemente.tion-level Jr1apping which 

transforms Gia.eh y into .its seric1 l nurr.bEJr as 1 member of s, 

if y if found to be a m~mber of s; othexw:.s:,~ 

ir:; n. If s must su.pport tha mapplr;g se:t'ial
5

, th.e :-.nteger 

val~es requ:Lrec c~n be stored d:1.re,ctly with ':h1:! hash- 1.::able 

0 
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dynamic test y£s is made. Note that the calculation implied 

by {1} is no faster than the standard SETL t:E:st ye:s1 ; 

howe,ter, by keeping s
1 

in bitvector fa)rm we speed up 

the tests xi:;s1 when XE::s, and can also hope to save 

space since s 1 is represented i~ a highly condEmsed way. 

If s 1 c: :s but s 2 (.:: :s is false, then to form the union 

s 1 + s 2 we will have to transform s 1 back into a form 

compatible with s 2 ; perhaps the standard SETL fonn, perhaps 

some other. The code sequence which results can be that 

suggested by 

(2) · z = copy(s 2); CV x e: s I serial
5 

{x) E s 1 ) x in z;; 

We emphasise that (2) may ha no faster than ':.he standard 

SETL union-form~.ng operatL:.m. Inc:.eed·, it may be slower, 

since it involves an iteration overs (rather than over s 1 , 

which is smaller} . Nevertheless, keeping s 1 ,is a bit-vecto:.:­

may yield a worth-wh.ile,,saving in space. And by modifying 

our implementation techniquer we can avoid the loss of speed 

which the full iteration ove:c s appearing in (2) seems to 

imply. An approach can be employed which is useful wherever 

a set s 1 ~ : : s appears, explici tl:r or implicitly, in an iterat•)r -

Suppose that this is t.he case. Thtm, if s 1 is: :.:·t:.Lltively 

'dense' ins, i.o., if (i s 1 )/(i s) is expect0J to exceed 

10% approximately, then 1-m H:arr,.-cor {\'fxEs 1 } c.:;;:. without. g-:r:avc 

inefficiency g~nerate the sequence of a .seria1 Ili.l.'Ttbers n 

for which the n-th position i.r; thr.~ 



pro-:.~e&s. Bupp:,f.e n1~xt that {i 61)/(f s) is CQnsiderably 

smaller than t.l-1i.s. Then to represent sl we can uee a list 

(of serial numbers) and a bit.vector V in combination; the 

bitvector as before, the list chaining together all those 

integers which correspor1d to '1 1 bits in the bi tvector. 

Then iteration C'irer s 1 can be iteration over this list. 

If deletions from s 1 must sometimes be mad.a, then L can be 

a two-way list; alternatively, one may delete the element x 

L 

with serial number n simply by turning off t..lle n-th bi t~·positiox: 

in v, but leaving n in L until the next iteration over L, at 

which time n can be removed. Note that to chOC;se the most 

advantageous way of represent:i.:ng Lone requires density 

information of a type hardly likely to be_ deducible automaticalJy. 

This information can be elicited interactively or made 

a.vailable through 9rogrammer-suppl.i.ed declarations. 

I~ serial numbers n assigned to elements of s mu.et ever 

be converted back into standard SETI. 1:ep:tesentati.ons of the 

objects x which they represent (,?, cg., on assign1Lent y = x of 

an xe:: s to a variable y not poi,essin9 this proFerty) than 

as noted above x may b:! represented by ,1 _r:,·c.:dr wrus~ :f.ixst 

CC!!lponent is a ser.iaJ. number ,ui.d w.hoae second. cio:.1ponent 

points to the standard SETL rE:cp::-ese.ntaticn of x. If no such 

ond t:ted. 

( 
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If the :EHlt ,:;l satisfies s 1: c;_: s, then the elements of s 1 

can be represente.d simply by hi t.vetJtors, possibly supplemented 

by lists. If ~l can assume V.!tlues which are not aubsets of s, 

then we may ·have to attach a compile-time 'type' field to 

each value of s 1• This field will define the manner in which 

the value of s 1 is to be interpreted: whether this be as a 

bitvector defining a subset of s, a SETL object in its standard 

representation, or whatever. If· f is a mapping or a tuple 

satlsfying f ~: 2 s then f can be treated as a set of ordered 

pairs in which the second element of each pair is a 

serial number. If this is done, we shall write f s:: 2 s. 

If s 1 is a set of sets satisfying 

c--, s 1;.) 3E :s, then the elements of s can be represented by 

b:i.tvectors; if then :s2 c: s 1 ,, we can issue a oerial number 

for each bitvector, and represent the set-of-sets s 2 as a 

bitvector or ao a bitvector supplemented by a list. 

.. 



Leto and o1 be two ovariables of a SETL program P, a:nd 

suppose that both are kn()wn to be of type !}1t~g_er. Then 
_, 
'• 

relationships o ~ o, o1 ~ O, etc. may be provable. In 

addition to relations of this simple, essentially una.ry, form,, 

we may also hope to prove binary relationships of the form 

o ~ o1 etc. Proved assertions ensuring that particular 

integers appearing in Pare necessarily short can be of 

considerable value, since they can allow these integers to 

be held in LITTLE rather than in SE'l'L form, possibly yielding 

great improvements· in the speed of arithmetic and indexing. 

If o is the integer output·of an operation o = i 1 + i 2 

then o > O will hold if il ~ 0 and i 2 ~- 0 

hold. By using this rule in connection with the analysis 

algorithm described inrsection 3, we will be •Jble to prove 

'monadic' inequality relationships o ~ O" o1 ~ O, etc. 

•rhe proof of binary relationships o ~ o1 wilJ generally 

depend on the improvements to the a.nalysis al~1or;L thrn which 

are outlined in section 6, and, in particular, require use of 

inf,?1.,nation o.bt(lined the fo1."Ill of -'::he condi t.1ons appe,.1.xu1g 

in condi tion;;d transfers such afl 

(1) 

{2) • • • 

0 

0 
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{uc1efi of i., but no ope1•ations mc-difying i) 

i "" j + .l; 

(more usee of i .. but no opePationB modifying l) 

it' i < j then go to label; 

The technique outlined in section 6 changes this to what is 

essentiaUy 

(2') 

j = ft s; 

i =- O; 

label: (uaes of i) 

i.= i + l; 

(more uses of ii 

if i < j then go to label'; 

label' : (i = 3{k < j};) go to label; 

!n this modified program the f :l.rst group of uses of L chain~; to 

the two assignments i :: 0 and 3, "" 3 {k < j}. Thus W"':.! can be rm.~: :> 

that i < j for these uses of i. :a follows that i. <: j 

after i ~ i + l is executed 1 and hence that· < j i·; vali6 

for all uses of i in the second group. 

It would ~hen be reasonable to include i ~ i :n ~he set of 



(i =3{k < j};) appears .iri the modified program source. 

Mo~e generaily, we can choose to regard certain kinds of 

relationships R as •marginally 1 ikely apriori' and investigat<:: 

the truth of such relationships only when this is suggested 

by some expli.cit feature of the ·source code being analysed. 

9 .. t:::rovin~ 'Nonc~._up!.J:.cation' of Elen1ents Added to a Set; 

If one knows (by operator-operand tracing} that a SETL 

program P adds elements to a sets, and removes unspecific 

elements (essentialy by the from operator); if one knows 

in addition that sis never used for a me~hership test xcs; 

and if one knows finally that none of the elements added to 

s are members of s at the morr...ent at which addition is atte:m~3tc~d, 

then we may say that sis being used as a 'simple workpile'. 

In this case it is very reasonable to implements either as 

a pushdown stack or as a list of pointers used in pushdown 

fashion. In the present section, we shall show how to 

establish those assertions of the form x nE: s which .'.'l.re r.eeded 

to justify su.ch a representation. \'le ach.ieve 

this by quite a straightforward adf:'ptation of the methods 

described in sections 2 and 3, It is convenient to proceed 

by :i.ntroducing :.in expiici t no'::ation for set COfi,plements into 

the algebara ~f celationships given in section 2. Suppose 

that we der:,cte the complement of s by the symbol s. 'I'hen 

proceedinq much as in section 2 we can defin..:! :-elationship.s 
r= - - n .. ,--__ 0 0 0, --o..,,, o 1 <_=D•;r '-'· ,__ -

' ,. -- .,_ .1 -n 2 ' 1 ':::n 
.. -
0:)2' 0 1 r-:: 0 2· -··oc, 

J~recver, generalised relationships o 1 ~ 1 ... nk E ~
2 

Jike 

those introdncc~a :;n sect-ion 4 c;m ~1so bf: ,'iefin<.:?cL 
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The rules defining the effect on ·these r-~lat.it)nships 

of the various SETL primitives ,!ery much resemble those 

described in sections 2 and 4~ As an example, note that 
the relationship o E o1 will fail if the operation defining 

o is anything other than 3i, hd i, i 1 (i2 ), i 1 <i 2 , .... ., ,ik) or 

newat~ The rules for the first few of these cases are the 

same as those stated in subcases·la-ld of sectlcn 2. If o 

is defined by o = ·newat, then o E o1 is certainly satisfied~ 

Note also that, if additional relationships are carried, 

then o E o1 may be found to hold in a few additional cases. 

For example, if in the notation of section 4 we have o13~ i 

(resp. o 1 3:: i) and if o is defined by o = i + 1 (resp. o = i - 1) 

then (?.:f.o1 will hold. 

-The relationship oco1 can hold if o is defined by 

+~ -, *, with, less, i 1{i2}, i 1{i2 , ••• ,ik}, {i1}, i 1 (i2 ) or 

i 1 (i 2 , .•• , ik). The rules controlling the validity of o c o1 

in the case of defining operation +, *, wit.E_, ~' i 1 {i2 l 1 

i 1{i2 ,., •• ,ik} {i1 }, i 1 (i2 ), end i 1 (i2 ,& ... ,ik) are very much 

like those stated in cases 2a and 2c-2e of section 2 (as well 
~s the remarks concerning o Co, made in section 4) and 

- -L 

will not be restated. Concerning the case in whicrh o .is 
defined by o :--= i 1 - i 2 , we note that o £;o1 wi.i.l remain 

1 ·a · f . h . . vc1-..1. .1.. ei t er 1 1 s_ o1 or o 1 c i;~. 

Observe that we will need to inv·estic~iate relationships 

like o Eo1 or o ~ol only if o E.o1 (reap. o c;: o1 ) is plaus:Lble, 

lf o Eo1 is implausible, then ot ccurse o Eo- is true. 

Infot·mati.on useful in. d<:::duc.~.:Y.! relat:lonsh:'.pr:, o':::=o1 , 
· c, co1 , etc.. will sometimes be G('·:c,:_vable from the forrn of 

the conditional trans.fers whir:'h appear in P. _;c._ ~"Ondi ·d .. cnal 

transfer of tl-:e form 
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c,m, in much the. :mt.·tnrher describe.a. in section S, be .rewri ttt-r~ 

if x £ s then go to label': 
{x = 3 s;) 

... 
which maket:J the facts£ s available along the non-transfer 

branch. 

As an example of the foregoing, we may consider the 

following transitive closure routine 

(3) 

Ll: 

L3: 

definef tranc{f 1 s); 

new= s: all~ s; 

(while new ne n~) 

x from new; 
newer~ f{x} - all; 

611 =all+ newer; 

new - ner~ + newer; 

end while; 
return all; 

and tranc; 

Appl.yi~g the Jr.ethods that ha,re ::>E·~n r.,utlined above 011•.? wi:t l 

'.\,=du~e that n:0w 5..: all,. a.11d henC~! th.c=:.t 1.n line s .}. }i(;:We:C C aYL 
·7 :com this .it :i:'ol1ows that newer c: ·n,:~w in line ::.3. l:'rom thi~ . 

• ;=:1 optimising compiler cou.ld t}O -:.n to the deci:,~.on to represent 

; ':-1..e set new aF a. simple list. 

JO 

C 

L 
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In ik~,!$.ling with E;1aps it is. geriera.11:t imp.:)rta.nt to know 

wlum they are single<Qvalued. When true, this fact can 

often be proved by a simple method, which as t.he reader 
j,, 

will see is a stra~ghtforward variant of the tecl'lniqt:r.es 

used earlier in the present newsletter. Specifically, 

we introduce a family of monadic assertions concerning 

a set f of ordered n-tuples; these assertions are wri.tten 

as anf, where n > 1. The assertion a f signifies that f 
- n 

is a single-valued mapping of n parameters. This relation-

ship is only plausible if f is a set of (n+l)~tuples or 

if f is the null set. The necessity rules for C& fare as n 
follows: the assignment f =!!!,,or any assignment of the 

form 

Q confirms anfe For anf to hold after an aBsignment 

l 

f{x1 , ... ,xn) = e, it must hold before this assignment. For 

o;nf to hold after f = fr>with <x1 , ••• ,xn,y>, one of the. 

assertions xj£jf must be provable. 
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In order to assess the improvements likely to be attained. 

by the optimisation algorithms described in tb~ t.he proceeding 

section, we shall consider a few exa.mples. The follm·ring 

small 'transitive closure' routine bears examination:. 

define£ tranclose(f~ startset); 

/* ,f is a· mapping from a set s to itself; ata:rt:net a subset of a ,':/ 

tranc = startset; new= startset~ 

{while new ~ nK.) 

new= f[new] - tranc; tranc = tranc + new; 

end while; 

return tranc; 

end while; 

We assume that an optimising compiler is able to r8congnise ( 

that the return statement should be written as rs tul'n copy ( trmn) J 

then the relationships tranc s_:a and netJ c:s can be a.educedr 

and hence compilation can proceed on the basis t:ttana c~: f:;. 

new c::s. This will lead to the use of a pure bit-vector 

representation for t:t'anc, and a bi.t-vector-plus-J.ist rer,,resen::,-,•;_i.on 

for new (since an iteration cve.r neu> is implicit in the 

operation f[11ew] ,) With these representations, the set. diffe:cc:mc·:: 

3nd union operations appearing inside the Mhile-loop will be 

9erforme:d either as boolczn op<?.rntions or as a sequence of 

Next. we corir.-d.der one of U1.,~ 1 Huffma.n code' :ront:Lnes 

changes, is as follows t~ha~ges 

L 
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cl = getmin wor:q c2 ::::. get;nin Wi:i,rk; 

i(n) ~ cl, r(n) ~ c2; 

wfreq(n) - wfreq{c1) + wfrE'.(J(c2}; n :i.n work; 

end while,: 

code = ni:_; seq =• rl'}-_]l?; w·alk.\:) work: is top) i 

n~turn <code, .£. , r , top>; 

end huftables, 

definef ~~in set; /* &,fr-eq :ls global*/ 
<keep, least.:>:: < 3 set •is x, wfreq 1,:r;) >; 

{'</x€ set) 

if wfreq(x) f.t lt:!ast: then <k:e:ep, least> - <x, f:req_{,:,: >J: 

end Vx; 
keep out set; return keep; 

end · g,_e--tniin i 

We shall suppose in thE''- discussion which follows tha:t: 

the types of all the quani.:i-i::ii;,D uGed in. the above code have 

bt::en determined. WE, also c.SZU.ltR" t.h;;1t. an una.ly sis li~e thnt 

described in the proceedir!.g sections hut applying ew~n acros;; 

£. c" basis, wfreq c:., bas:-f, 'l't:e t.Eichnia_u,::, uB;:l L·1 t.he pr~,·->:·.,ci ,is._1 
-.t. -- -- J. --;1 

}~t1ction wil::.. riet~hJ.isb. ::he re1.:;:-,t.1.onsh.ip n f~ 'h'•i.-a::: fo:r the 



t.:r·a~n lo. li()r1 ., 

t;,·,t(~ howeve:c that a progr,3mme.:r. implE:menU.ng this :;,ame 

.l}_g,Jri thm might c;;oose to repxesent thi::: tree functions t 

... me r by arrays. Of course, this c:an only be done i.f comp,~nsating 

,_;;han~,res are iT:;trodu.ced into whatever code callri the huft,,blf:s 

r<:;tttinlii: ~ ~nd such clumges may be r,,.:::1 ond tha capabil:1 ty of 

·c.he autorriatic opti:niser we ,m•qisag1::. 

As a fin.-=:tl example, we consi.r.k.1: ,x pr.:>rtion of tLe 
1 interval finder' routine described in o.~.YI, pp. 269-270. 

The code in question:-is as follow.s r 

~1ef.:inef interval {nodes, x) ; 

/<, npreds, fotiowers~ a.nd cesor are ass1.ui:ed to be global */ 
..:1pr12:d.s = { •:x: 0> :-:!:£ nodes} ; 

(1 x E'. 11odes, y t: ceeox- (x}) 

npreds{y) =- npreds(y) + 1;; 

-:::ount (x) "" npred£: {x) ; 

r~~,j~iJ..e {y C fol.l(;Wers 

c'i/ z £ n(-ndn) 

count 

intll int + 1) u z, 
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definef intervals(nodes, entry}; 

/*foZZower-~,follow, intov are all assumed to be global*/ 

ints = n.t: seen == {entry}; follow -- ·nt; intov = :nJ,; 

(while seen n~ E,l-) 

node ·f :;:_~ seen f 

interval (nodes, node)· "is i 'in ints; 
follow(i); followers; 

( 1· ~ '(k· :5. i i) intov Ci (k)) ::: 1; 1 

seen= seen+ followers; 

end while; 

return ints; 
end intervals; 

Once more we suppose that the types of all quantities 
used in the above-:! code have been determined, and that an 

analysis like tha.t described in the preceeding sections but 

applying even ac:coss subprocedures has.been applied to this 

code. Then, applying the techniques used in t.he preceeding 

section!' one will establish the following relationships~ 

npreds c: 1 nodes,, int f::o:, nodi~s, followers'.;-;.: nodes,1 count 

newin c: ·nodes, ~~E: nodes; y£ ~ nodes, seen c: nodes c 

i E: nodes, ints 3 E.,., nodes: fo.l~ew c: 2 nc,des, i C~ nodes, 

follow 3 E: 2 nodes, intov c.1 nodes, intov C 2 ints. Koreover r 

.,, f ... 

: ) 

nodes" 

the only sets which must s1.ipport ib3rat.ior~s are nodes, fo!,lo:.,;er,r ., 

neti.,in and aeen.. An optimising SETL compiler could tr-.e:refo:r-e 

generate a. trans:ia.tion in whi.ch the elements o:: notfrs and 

of in ts carried sG-rial nu.mbe:<.'.'fc-, ;and in which z ic.ili.d !-f were 

represented by serial numbers ,-i' and int by a ',t~;;ctor of 

serial nmnl:>€!:"S, a.nd fol 7..ou>e:rs, ,;e:.,,in., and seen. by list/bi.t"'H:c~':o;· 

combinat.io;1s. ''he values of the maps np1•eda _. c,;;1,mt and 

fol z.o'/J, ca.n be st(•red in a group of three fields 2;:;sociated 

w·ith each r. E no·:''ee; the value 0£ follow will be a t>itstri11~;r. 



This gives :much better code than that which re~-mltB from 

~noptimised translation of the predeeding SETL source. 

A still more penetrating and global optimiser might be able 
t.n deduce that th_e values in·tov can be stored within a 

fourth field associated with each n e: nodes,and that each 

VB.lue can be represented by a se+ial· nUJT1ber designating 

some int e: into~ This degree of optimisatic>n ,-muld come 

close to matching the code likely to result from manual 

transcription of the preceedin~ SETL code into a language 

of the PL/1 level. 
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