
SETL Newsletter #133

/l. Higher-Level· co·ntro"l Dictio•n.

1. Introduction 1 Pursue tnocks.

J. Schwartz
June 20, 1974

If dictional and semantic forms of higher level than

those utilised in SETL were available to us, we would be

able to regard SETL programs as 1 hand compiled' versions

of programs originally existing in a still higher level language.

This would r.ave several important advantages:

i. We would know, on firmer grounds than we now do,

what sorts of constructions were likely to appear in typical

SETL programs.

ii.- We might become aware of higher-level constructions

which SETL can only translate in a clumsy way, and this

might suggest extensions to or modifications of SETL. In

general, we could expect to design SETL with a surer hand

if we were able to regard it as a cut-back version of a

language of higher level then itself.

iii. A new level of optimised translation, with SETL

as its target language, ~ould emerge for study.

Till now only a few dictions of higher level than

those provided by SETL have been suggested as SETL extensions.

These are:

a. The suggestions for 'prescriptive' dictions which

grow out of R. Krutar' s generalisations of the s:::TL sinster

call notion; cf. Newsletters 59 and 30.

b. Pattern matching dictions, generalised ite~ators,

and other miscellaneous suggestions of Jay Earley; cf.

l_ 1 Newsletters 52 and 56, 56A, 56B., as wcl l as the pa~:-ers of

Earley cited in NL.

SETL-133

c. Nondeterministic control dictions, as developed

by Hewitt, Sussman, and others in the PLANNER, CONIVIVER,

and QA4 language.s; cf. AIA Newsletter 12.

The present newsletter will suggest a control diction

of higher level than t.hese presently available in SETL.

The diction to be suggested is related tot.he dictions

noted in pointed (a) above: like them, it has its origin

in the observation that in many cases the intent of a code

sequence is simply to force some set of conditions to hold

simultaneously.

The new dictions we introduce center about the not.ion

of a pursue iteration. Such an iterative block is open.ed

by a header having the form

(1) (pursue foratZ-iterato:r) b'look ender.

Here, foral,7,-iterator designates any SETL iterator of the

V type; block any block which could follow such an iter;tor;,

and ender a punctualing terminator which can either be
1
;', 'end ; ', 'end pursue', etc. The semantic rules gover.ning

such an iterator within a SETL program Pare as follows.

Let the iterative block (1) be entered; let the variable~

bound in the forall iterator be x1 , •.• ,xn. As long as

there exist elements v1 v••·,Vn in the range of the itera;or

such that the state of P 'It data is changed by sub:-:;t.:i. tuticn of

V,, .•. ,V followed by execution df bZock, then block is
·'-< n

executed. When no such v
1

, ..• ,vn exist, the finiHh block (l'
is exited.

We a.lso permit degenerate constructions (l '.: :; n which ~he

fcra"l. l-fterato1~ is ·null. The semantic rules whic~ apply ar,·

much the same as those just explaine6, exc~pt that no bound

variables x 1 .•• x need to be replaced: in the d~generate caie
. n

we execute the block of (1)

0

(.\)

l

SETL-133

as l~ng as this changes the data state of P.

Here is a transitive closure routine written as a
degenerate pursue block:

(2) (pursue) s = s + f[s];;

thi:; may be compared to the standard SETL

(2 ') (whiles ne s + f[s]) s = s + f[s];;

no ◄ e that (2) is noticeably less redundant than (2'}.
Th, following pursue block describes the bubble sort:

(3 (pursue 1 ~ "/ n < t f) if f (n) ·S! f {n+l) then <f {n) , f {n+ 1) >

= <f(n+l), f(n)>;;

This is very similar to the standard SETL

(3') (while 1 < 3n < t f I f(n) 2!, f(n+l)) <f(n) ,f(n+l)
I

= <f(n+l), f(n)>;;

When se7eral conditions are to be forced si.multoneously

the pursue cunstruction can be distinctly more confortable

than the while diction which comes closest to it in standard

SETL. As an :?xample, consider a graph g defined by a set nds

of nodes and ,:1 map naybs which send

of all its ne:.ghbors. Let six sets all, al2, a21, bl, b2

be defined on each of the nodes of g, and suppose that we

seek to find two functions fl and f2 on g which for all n £ nds

satisty both the equation
I,

(4) fl(n) = [+: n e: naybs(n)] (all(n) * fl(n) + al2(n} * f2(n)

+ b (n))

and the corresponding equation for f2.

3

SETL-133

The necessa;.y program CcY! be written in a very straightforward

way as

f~! {pursue VnE nds)
fl (n) = [+ :•, e: naybs (n)] (all (rn) * £1 (m) +al2 (m) *f2 (rn) +bl (m)) ;

f2(n) = [+~ E naybs(n)] (a2l(m)*f2(m)+a22(m)*f2(m)+b2(m));

end;

2. A remark on t"ie optimisation of Pur~ue Blocks.

We shall no, describe a method which may in some cases

allow pursue blc,:ks to be optimised automatically; the~

same method is :,otentially appli.cable to other SETL iterative

forms. Considir a pursue construction of the form

(6) {pursue Vx£s) btock;

and let active(s) denote the set of all x e:s which have the
- 0 ,' .

follc--wing property: if x is replaced by x
0

and b Zoak is exe,cuted,
then some part of the data environment of the SETL program

containing (1) is changed, When x
0

E active(s) and block is

exe~uted, active(s) may of course grow; moreover, :i.t may be

posr;ible by inspecting btoak to determine the set s.' of all

ele:nents which could possibly be added to active (s) when
b lc,-Jk is executed. Suppose that this is possible, and more

sp~cifically suppcse that one can gemE:rate a expression

t(x
0

, a. x1 , . .. ,x), involvina x , the current value a of · n .., o
the set aative (s), and certain other variables x 1 i ••• ,xn
<'Jppear:i.ng in bloe!k, such that <f,{x, active(s)., x1 , .•• ,x)

o n
must certainly include s'. Then the pursue iteration (6)

cf.m be ::ompiled as follows:

(7:· active = s;

(whi'Le active ~ n.i doing active = <I> (x ,a,xi, .•• xn) ;~ block t L ·

c-

t!. ,- r

SETL-133

When {6) is transformed into (7) by the process we envisage

it may be found necessary to add to the set aative all x

for which a relationship £1 {x
0

) * £2 (x) ne ni holds; where

f 1 and £2 are maps which appear in blook. To g'~arantee
that these x can be found efficiently, an optimising compiler

r -1 may chose to make use of the inverse map £
2

• If this

is done, code updating the value of f;1 may have to be

generated.

As an example of all this, consider the bubble-sort

program (3). It is seen by inspection of the block B appearing
within the pursue iterator (4) that when B is executed for

a particular n only n-1 and n+l can be made active. Thus

a suitable optimiser might be able to compile (3) as

(8) active= {n,
(while active

n from

if f(n)

·1<n<#f};

~ nt)
active;

2!, f (n+l) then

<f(n), f(n+l)> = <f(n+l),f(n)>;

if n s.! 1 then (n-1) in active;;

if n 1t t f then (n+l)· in active;;

end if f(n):

end while;

Generally speaking, (8) is a better algorithm than (3);

especially if,as we may assume without grave lack of realism,

5

an optimising compiler handles the set active appearing in{8) either

as a bit-vector supplemented by a list or simply as a bit-vector.

As a second example, consider the transitive closure
routine (2}. If this is rewritten slightly as

(pursue Vxes) s = s + f{x}:;

SETL·-133

then the optimising procedure ,.,,e have suggested might be

able to realise it as

(10) active= s;

(while active~ nt)

end while;

x from active;

news= s + f{s};

active= active+ (news - s);

s = news;

In rnany cases, (HJ) will perform much more efficiently

than either (2) or (9}.

C

