SETL Newsletter #133 J. Schwartz
June 20, 1974

A Higher-Level Control Diction.

1. Introduction; Pursue Blocks.

If dictional and semantic forms of higher level than
those utilised in SETL were available to us, we would be
able to regard SETL programs as ‘'hand compiled' versions
of programs originally existing in a still higher level language.
This would have several important advantages:

i. We would know, on firmer grounds than we now do,
what sorts of constructions were likely tc éppear in typical

SETL programs.

ii.. We might become aware of higher-level constructions
which SETL can only translate in a clumsy way, and this
might suggest extensions to or modifications of SETL. In
general, we could expect to design SETL with a surer hand
if we were able to regard it as a cut-back versiocn of a

language of higher level then itself.

iii. A new level of optimised translation, with SETL

as its target language, would emerge for study.

Till now only a few dictions of higher level than
those provided by SETL have been suggested as SETL extensions.
These are:

a. The suggestions for 'prescriptive' dictions which
grow out of R. Krutar's generalisations of the SITL sinster

call notion; cf. Newsletters 59 and 30.

b. Pattern matching dictions, generalised iterators,
and other miscellaneous suggestions of Jay Earley; cf.
Newsletters 52 and 56, 56A,56B,as well as the papers of
Earley cited in NI.



SETL~133 : 2

c. Nondeterministic control dictions, as developed
" by Hewitt, Sussman, and others in the PLANNER, CONIVIVEK,
and QA4 languages: cf. AIA Newsletter 12.

The present newsletter will suggest a control diction
of higher level than these presently available in SETL.
The diction to be suggested is related to ﬁhe dictions
noted in pointed (a) above; like them, it has its origin
in the observation that in many cases the intent of & code
sequence is simply to force some set of conditions to hold
simultaneously. d

The new dictions we introduce center about the notion
of a pursue iteration. Such an iterative block is opened
by a header having the form

(1) ' (pursue forall-iterator) block ender.

Here, forall-iterator designates any SETL iterator of the

¥ type; klock any block which could follow such an iter:itor;:
and ender a punctualing terminator which can either be

';', 'end ;', ‘'‘end pursue', etc., The semantic rules governing
such an iterator within a SETL program P are as follows.

Let the iterative block (1) be entered; let the variables
bound in the forall iterator be KyreoorXy. As long as

there exist elements Vl"“’vn in the range of the iteraior
such that the state of P's data is changed by substituticn of
vL""’Vn followed by execution Jdf block, then bleck is
executed. When no such Vl'f“’vn exist, the finish block (1°
is exited.

We also permit degenerate constructions (1! in which the
ferall-iterator iz null. The semantic xules which apply ar
much the same as those just explained, except that no hound
variahles Xq-eaXp need to be replaced; in the degenerate caie

we execute the hiocsk of (1)



ol

. - §ETL-133

as long as this changes the data state of P.
Here is a transitive closure routine written as a
degenerate pursue block:

(2) - (pursue) s = s + £[s];;
this may be compared to the standard SETL
(2") (while s ne s + £[s]) s = s + £[s];;

no‘e that (2) is noticeably less redundant than (2').
The following pursue block describes the bubble sort:

(3 (pursue 1 < ¥ n < # £) if £(n) gt £(n+l) then <£(n),f(n+l)>
= <f(n+l), £(n)>;;

This is very similar to the standard SETL

(3') (vhile 1 < 3n < # £ | f(n) gt £(n+l)) <£(n),£(n+l)
' = <f(n+l), £(n)>;;

When several conditions are to be forced simultoneously
the pursue construction can be distinctly more confortable
than the while diction which comes closest to it in standard
SETL. As an =2xample, consider a graph g defined by a set nds
of nodes and 1 map naybs which send ) '
of all its ne:ghbors. Let six sets all, al2, a2l, bl, b2
be defined on each of the nodes of g, and suppose that we
seek to find two functions fl and £2 on g which for all n € nds
satisty both the equation

/

(4) £f1l(n) = [+: n £ naybs(n)] (all(n) * £fl(n) + al2(n) * £2(n)
+ b(n))

and the corresponding equation for f2.



SETL~133 g

O

The necessary program cai be written in a very straightforward

way as

i=> {pursue Y¥Yne nds)
£1(n) = [+« € naybs(n)](all(m)*£1(m)+al2(m)*£2(m)+bl(m));
£2(n) = [+M € naybs(n}] (a2l (m)*£f2(m)+a22{m)*£2 {m)+b2(m));

end:

2. A remark on tie optimisation of Pursue Blocks.

We shall rov describe a method which may in some cases
allow pursue blocks to be optimised automatically; the
same method is sotentially applicable to other SETL iterative
forms. Consid:r a pursue construction of the form '

(6) : (pursue Yxes) block;

and lgt aetive{s) denote the set of all X €8 whigh‘have the
follewing property: if x is replaced by X, and block is exeguted,
then some part of the data environment of the SETL program
corntaining (1) is changed, When X, E active(s} and block is
executed, active(s) may of course grow; moreover, it may be
possible by inspecting block to determine the set s' of all
elements which could possibly be added to active(s) when
blczk is executed. Suppose that this is possible, and more
specifically suppcse that one can generate a expression
¢(x0; a, xl,...,xn), involving Koy the current value g of
the set active (s), and certain other wariables XqieeasX
appearing in bleck, such that ¢(xo, active(s), xl,...,xn)
must certainly include €'. Then the pursve iteration (6)
czn be compiled as féllows:

(7° active = s:

(whitle active ne nf doing active = ¢(x,a,xi,...xn);) block: Qv/



—~

Y.

SN

SETL-133

When (6) is transformed into (7) by the process we envisage
it may be found necessary to add to the setactive all x

for which a relationship fl(xo) * fz(x)'gg nf holds; where
f1 and f2 are maps which appear in block. To guarantee

that these x can be found efficiently, an optimising compiler
may chose to make use of the inverse map.fz . If this

is done, code updating the value of f;l may have to be
generated.

As an example of all this, consider the bubble-sort
program (3). It is seen by inspection of the block B appearing
within the pursue iterator (4) that when B is executed for
a particular n only n-l1 and n+l can be made active. Thus
a suitable optimiser might be able to ccmpile (3) as

(8) - active = {n, 1l<n<#f};
(while active ne n%)
n from active;
if £(n) gt f£(n+l) then
<f(n), f(n+l)> = <f(n+l),£(n)>; .
if n gt 1 then (n-1) in active;;
if n %t # f then (n+l} in active;;
end if £(n);
end while;

Generally speaking, (8) is a better algorithm than (3);

especially if as we may assume without grave lack of realism,

an optimising compiler handles the set agctive appearing in(8) either

as a bit-vector supplemented by a list or simply as a bit-vector.
As a second example, consider the transitive closure
routine (2). If this is rewritten slightly as

(9) ' ' (pursue Yxes) s = s + fi{x};:;



SETL-133

then the optimising procedure vwe have suggested might be

able to realise it as

(10) active = s;
(while active ne nf)
x from active;
news = s + f{s);
active = active + (news - s);
S = news;

end while;

In many cases, (1) will perform much more efficiently
than either (2) or (9).



