SETL Yewslebtltsy ¢ 1353 J, Sghwarvz
July 12, 1L

e

Structureless Trogramming, ,.

-

" The Hetion of ‘'Rubble’, and the Reduction of Programs to Fubble.

This newsletter continues the ruminaticns of Newsletter
135, but attempts to parsue more fundamental conasiderations.
It relates algo to the discussion of trans-SETL dictions, to
which NL 133, 1333, and J. Rariey's Berkeley report on
ﬂptimisaticn by iterator inveféion alsc belong.

Our thesis in this newsletter is as follows: Programming
languages of ‘ultra high' levael, i.0., ©f a level substantially
higher then that of SETL, must and will aim at dictional
forms in wvhich the structured interxelationships which
characterise SETL and languages of sub-SETL sewxantic level
are eliminated. In developing these languages onz will
therefore aim, rot to support 'structured programning’, but
to maks possible a type of 'stractureless programming' whoze
dicticns begin to be as fragmentary and disconnected as
those of natural discourse.

On the scale of structure which runs from the highly
structuraed to the totally siructureless, we may, in ordexr
to fix our idess,distinguish four typical structure-~types:
the cobweb, the tree, the pipeline, and thes rubble. A rublle
consigts of motually unrelated fragments. A pipeline Consieis
of sections which must fit togather, but azch of wWhich
relates Cﬁly to its irmmediate serial corntext,sc that a

Pipuiine can be assembled in serial order and its conplexity

s dees not grow with itg gize, In 2 tree, the context into

which =ach section needs to ba fitited iz move complex, huat
complexity of local context remzing bounded us the tree growe:

-

574

z.“x

hovsgver, a sarial order of construction is ne longer possiia
s¢ some more involved, perhaps top-down, crder of ¢rowih -
mest be used., The patterns of connection in a cobwab can
grow complex without bound. In building a web, secticng will
often have to be fitted into already-built contexts which
imply difficult constraints. Moreover, a change to one part
of the web may make complicated and extensive changes o

other parts of the web necessary.

Programs of every one of these structural forms =wist.
Cobweb programs ave of course familiar to all whe have programued.
A rubble program is one in which program elements are un-
related to each other, can be freely added and removed, ana
for which sach program-output can be ascribed to some
individuzl program clement rather than tc the cooperative
action of many interrelated elements. A hypothetical general-
purpose concordaince generator whose 'programs'are simply (”\
lists «f words, and wherxe the presgence of a word causes all -
its occurences to he tabhulated in some apprepriately arranged
listing, exemplifies ocur nocvicn of rubble program.

Rubile programz are maximally easy to develon and to
debug. Moreover, thev are axecprtionally easy to adapt to new
uses. In developing such a program, one simply adds elements
uniil &ll dzosired effccts have been obltained, parhaps gl -
tracting clements whose effects are undesired. A rulble

progran is ceorract 1f its indavidval elenents zxe corvect,

Prograne of pipzline struchture can be almoest 28 =asy
develop az rabble wwrograma. One builds them secticn by
sacticn in earlal ovder, conforming each newly addad szoticn
tar the ltanm which praceeds it. However, an errsr in a pipsiine

program will nave far more catastrophic effects than a similiar

zxror in a rubbhle, since all the pipeline secticns past the r

point of error will fail o function. HMMorxeover,when any singla

sacticon secticon of a pipeline program is modified very nany

subseqguent sections may have teo be medified as well.

Related remarks concerning programs of tree and of
cobweb structure could be made, but since <the characteristic
of programs of these types axras denerally famillar we shail

w

rafrain from making themn,

One knows that one has deavised 'tiie right' langvage for
troating a given problem when the problem can be soived in
the language by a rubble program. Bevond its description by
a rubblie there will in many cases he no simpler descripticn
of the problem; with a rubble, cne will hava reached a level
at vhich the elemental action of the mind has become directly
mani fest.

Structured complex programs which solve a prchlem may
be congidered to arise from the problem's defining rubbie by
& process of optimising transformation (the transformed
program can of course be vastly more efficient than tHe
rubble program which underijes them.) The ideal of programming
ienguage design is to allow the programmer tc express hiwmgelf
directly in rubble form, lesavino it to an automatic optimisatvion
system to transform this rubble ints a complex structure
whick realises thes same effects as the rubblse hut dces so
mech more efficiently. Howewvey, presently available optimigen:
fandle only limited classes of supexficial rransformations.
currently, therefore, the programrer is himself required o

take over much of the work of optimisation, mnd to express .

 himself in dictie.al siructures complicated, by manual

sptivisation,

o
3
A
L.

!

-
{3
{941
i

A

n O

te the podut et ¥iich they genszrslly approach the threshold
of humnanly sustainabls complexity,.a threshold that is rather
low. Indeed, through custom optimised expression becomes

the programmer's fixed habit, and the tendency to function

i high complexity levels an unspoken point of professional
pride. These are the reasons why programming is currently

a difficult, slow affair.

An additional example will illiustrate the points justh
madz2. A business application'system is a programmed model
of the business in which it is to be used. Wriggen in an
appropriate language, such a system will be a rubble,cach cf
whose elements will describe the rule accoxrding to which
sore kind of excgenous or endogenous event is to be handlied
when it comes to the attention of some person or group with-
in the firm being described. These rules &re interrelated
logically, but only in a loose way, and the misstatement of (j}
a2 fev rules wiil produce a system that malfunctiorng glightly
rather than catastrophically. It is a rubble of this kind
which undexlies each business application procram of the
typo ordinarily seen. The program arises frxom the ruhble
wiien characteristic optimisaticns are imposed. For
exampies, one typically groups together all processes which deal
with the direct ané indirecit consequences of certain classes
of exogenous events,thus allcwing incoming ftransactions' to
be prccessed seslially to complation. The data files which
ruet be consuited during btransaction processing can then he kept
cxds

G

in special arrangements which makes access to nesded re

or

tion:

tS

sfficient and predictable; Incoming groups of tran

{:2
o
)

wt

s

TART Y

FRE -3 wLo

i

]
o
(%

can be pre-soried into an orxder determinad by the pe
of file acoesses wiich they will rﬂllﬁszz"&ay regulyr

By imagining an appropriate language, i.e., one making

it easy to express rubble programs directly.we can clawify KN
tne nature of the optimisations evisaged in the prasceading

P ~'arﬂ"a~wh;

i LS4 3

O

T
IR R IS

For describing business applications, an appropriate language

would be one allowing the definition of systems of inter-

conemunicating 'clerks’, each with one or more in-baskets,

and with some simple rule of procedure. We imagine all the

clerks to act in parallel, sending messages to each other;
all share the use of certain centralised files and access

certain central data objects. Cextain of the.clerks are

sensitive to the time and date, and periodically emit

megsages. In such a language, a business application system
can be described by a rubble of statements (in fact, not

quite by a rubble, but by statements much less hightly connected
than are the statements of an ordinary program). A few
fragments from such a rubble serve to illustrate what is meant:

order~receipt:

whenever exists order in input

" ‘check name = custemer-name (order) and address =

customer-address {(oxder) fillad-out

" ifnot finish by send <customer-info-3lefective, uvder>

7/t else ®/
Billing~clerk:

" let

vy A

" to wrongorder-clexh

check record = customer-record{name=name

- address = address) exists

ifnet finigh by send <unknown-customer, order>

to wrongorder-clerk

- £inish by send <order, recorxrd> to order-classification-

clarlk

whenever existe invoice in input

let jitemlist = item-list {invoice)}

PAFRAE .

total = sum pricelitem) cver all item in

total-tay =

ltenm~iist (invoice) such that
vailable(item) is trwus:

sum price(item) * taxrate(category(item)’

“over all item in item~-list{invoica) sush ths

L —— dser

available(item) is true,...land sofowch

Tortyel transfers are largaly absent from this code,which is (f)
rr08e to & rubble, e.g., the billing_clerk section is activated

oy the receipt of an invoice an€ not by transfer ¢f contzrol

from some prior code szasction. A program like the above can

continue to function even if one of its sections, e.g.

wrongerder _clerk, is defective or missing: the system can

simply generate an input box for each missing section and

accumulate items sent to it.

To transfer a rubble of this kind into a business applicaticn
program of acceptable efficiency, several successive
optimising transformations must be applied. The code fragments
receiving copies of a given data object must be found and
one must choose an executicn crder allowing the elimination
of as many cupy cperations as possible. This execution order
shoul@ be such as to allow the files which must be accessed
during the processing of a transaction to be accessed efficientliy: .~
fcr example, it is desirable for code fragments accessing the (
same record of a file to be grouped together. ‘Loops implied
by calculations involving composite objects should where
possibie and appropriate be'jammed' together to diminish the
number ¢f times that particular data items need to be accessed.
Aduxiliary data structures, as for example auxiliary indices,
skould be defined and the code needed to keep these structures
current. should be inserted into the developing code. Expressions
E implying extensive calculation should where possible and
appropriate be 'reduced in strength’, i.e. kept curxent hy

-

ingerting small adjustmentg of Efs caleulated value at each
rcint at which a variable appearing in 8 is wedificed (this is

v. dariley's method of ‘iterawr inversion'). Through the
Jmanual or automatic applicetion of these and cther optimisatiors,
a tughtly interconnected logical cohwab will eveolve frow an

intleial ravble R.

S e LM

¥t is worth noting that the rubbhle underlying progrzms
of business application type iies closexr to the surface than
ig the case for programs of other types. This is because for
such programs the transformations which produce an application
from its defining rubble . are generally of routine
zather than of highly specialised mathematical character.
It is this ccnsideration that justifies the decision of
several currently active'automatic programming' groups to study
systems of business application type rather than programs of

~ oy

scme other kind.

We emphasise once more that the ‘right' language for the
statemént cf a program P has been found and that P has been
given its 'right' expression in this language when P &ppears
as a rubble. The linguistic form in which one describes the
seperate fragments cof the rubble is a secondary
issue, It need not be harder to define a rubbkle in an
appropriate formal language than it would be to define it in
natural language. For this reason, the natural language
emphasis which characterises a csrtain awmount of current work
in automatic programming can be ¢mestioned; this emphasiz can
ke regarded skeptically as a complicating distraction from
other more central problems of semantics and optimisation.

in addition fo the constructioms introduced into programs
by optimiser actions which can be regarded as relatively
routine, constructions of a different, distinctly mathematical,

character will appear in programs. We ragaerd a construction

&

38 vroutine 1f it is justified by asserticns of predictable

-forxm which can be generated by processing femilies of statements

whose erxamination is predictably profitable, On the othar
hand e construction is mathematical if it can only boe justified
uging some fact found by gaood fortune within an area €00 enQrous

2r Aiscroanigsd to be profitab’y subject to systenmatis search.

far dn

Mathenatical consixuchions can be reduced to rubble only as (:)
prablen sitatemente, not as aigorithms., Here we distincuish

problem statements from algorithms by the fact that they

make reference to chbjects too vast for actual construction,

and to zearches and processes of selection axtended over

these vast objects.

ks ar example of thig distinetion, consider the notion
of scrting in its relationship to the algorithms actually
used for sorting. To define the notion of scrting in an
'algorithm free' way we can proceed as follows: an n-permutation
i3 a 1-1 map P from the set {i, 1 < i_< n} to itself; given
two vectors v and v of length n, v is said to be in the
permutation range of v (we write v € permrange(v}) if there
exists a permutation p such that v(i)Z v(p(i)). To sort v
is to find a v in its p2rmutation range'such that ;(i)fﬁ(i+l)
for all i<i<n. What we have just given is a problem statement (j\
rather than an algorithm since the collection of n-permutations -
contains nl elements and is thus far teo large to be ssarched
e@xplicitly. To obtain an élgcrithm from this problem statement
one transforms it mathematically using a method which may be
described abstractly and generally as follows: 2n cbject x
satisfying a predicate C(x) is to be found within a set s
which cannot be ssarched explicitly, either because s is toc
large ¢r because it is expressed in terms which make s very
difficult to compute. To construct x, one chouses some initial
chiject X, in s, and finds a transformation f of s into itself
which has the properiy that £(x) = x implies C{x). Then one

zenerates the sequence X, I(x.}, fi(xogrgoﬁ’ I# £ has bhaen

el
chosern appropriacely, this sequence will stabiligse; and the
. n, . . Y n+l . .
CEiret eslement £ {x_)} satisfying f“(xoﬁ = £ J(x } is the desired x.
e s

!

AL

SETL-133A

Many variants of this paradigm will occcur. Xt nay fox -
example be convenient to embed 5 in some even larger sat b,
and to use an auxiliary transformation £ which maps t inte t,
but where £(x) = x implies X € s. One may make use of an
auxiliary predicate C'(y) for which C'(xo) holds and for
which C'(y) implies C'(£f(y)); then one need only prove that
the two propositions Ct{x) and fix} = x together imply C(xj.

& predicate C! with these properties is said tc be a continuing
ugeertion of the iteration xo,.f(xO), f2(xo),..« . The
target predicate C(x) may be decomposable as a conjuction
Cy(x) and C,(x}; in this case, one can try to find two trans-
fcrmations fl‘ fz of & into itself, such that fl(x) = X
implies Cl(x), such that fz(x) = x implies Cgix), and such
that Cy(y) impliies Cl(fz(y)). When these &ara fougd, one can
o! fl(xOE, fl (xo),...

to convergence to obtain an element x‘o, and then carry the
sequence xé R fztxé Yo fzz(x'o),... to convergence to obtain
the desired x.

gelect X in 8, carry the sequence x

We see from th: above that set~theoretic expressions
which use unpleasantly large sets sg intermediate terms in
the definition of obijects of more readily calculable size
are replaced by whiie or untii loops whiclt construct these
objects in far more efficient ways. We shall call this proosss
methematical expansion, and spesk of the loop as arising from the
mathematical expansion 0f the szei-theoreti: expressicn which
underlies it. Within a loop arising in this way loop subsidizvy
set-theoretical expressions may coccur, and thesce will them-

selves expand into vhile 1cops, nested to aome wmodest depth.

To be solved, a mathematical problem P must fivst e
recognised, and must therefore have a set-thecretical statevent

which is act too complicated.

et

(—)
Ay algorithmic scicztion of P is cobtained, first by restating /
it in awre advantageous but still not vastly complicated
sekt~theoretic terms, and then by progressively transforming
its statement into an algorithm. Hence we expect most
mathematical algorithms tc consist of nested sets of while
loops ultimately containing elementary set-theoretical
sxpressions. Inplicit in such a pregram is a tree (we shall
call it the determining tree of P) whose nodes are the sef-
thecretic expression which the while-loops c¢f the program
realise, Trees of this type can be developed directly by
the mathematical activity of the mind, the mathgmatical
expansion 0f each node leading, in a manner isolated enouch
to be comprehensible, to the generation of a few descendant
nodes. The determining tree T of a program should be loosely
reflected even in the loop structure of the program's final
form and the overzll structure of T should therefore correspond
to the structural facts which interval analysis of the procgram L
will reveal., Nots that we consider sach loop L in a mathematically
*lavored program to realise some underlying set-~theoretical
axpression E which the loop is contrived to evaluate; E
defines the 'meaning' of L and the role that L plays in =mny
larger loops in which it may ke embedded. By progressivaly
reconverting each loop L of a program P into the E from which
L arises by mathematical expansion, we make explicit the
gtrategic apprcach used to develosp P, and ultimately reduce
2ach ¥ ¢f mathematical character to the definitional statement
from which it was generated. This latter statement may in
furn be a fragment of some rubble in which the mathematical
algorithm 2 is used as a device,

Tk way in which we chocse to expand a set~theoretical
prrrasgsion B into a leop will depend on the context of funts

B

ig to ha evaluanbed,

For example, to find the smallest combonent of a vectoxr v
which exceeds a given guantity x requires a full search of v

in the general case, but only a binary search if v is known

to be sorted. Consequently, it will sometimes be advantageous
in transforming a set-theoretic expression E into a loop to
coastruct a loop L within which set-thecoretic expressions E; just
as complicated as E or even identical to E appear, provided
that the context of assertions availzble inside L is sub-
stantially more advantageous that the context in which L

itself appears. This makes it plain that a set~theoretical
expression E is not a full description of the algoxrithm which
realises it. GCenerally speaking, the cost C of evaluating

a set-theoretical expression E will be a function both of

E's parameters and of the context of facts within which E

must be evaluated; and C can depend very sensitively on this
context. If El occurs inside a loop L, then the total cost

of its repeated evaluation will be the cost of a single typical
evaluation times the expected number of times that L is
executed, which minimised (in a manner taking advantage of

the fact-context in L) gives the cost of evaluating E in its
context, Repeating this calculation recursively for all the
nodes of the determining tree T representing an algorithm under
development gives the expected efficiency of the algerithm.

The essence of algorithm design is to structure T in

such a way as to guarante= each significant expression E
appearing in T a surrounding fact-context aliowing E to

be evaluated in an especially efficient way.

The determining tree of a program P serves alsc as z
guide to the construction of a procf of P's correctness.

- %o build such a proof, one will aim first of all te show

that each loop L in P does realise the szet-thecretical trans-

formation which it is meant to reziisc.

pot

SEYL-135A

w3

nis fact will constitute the core clause of L's output assert-

(R

07, which must be shown to be true on exit from L. To

prova this output assertion one will reguire an input assertion
giviang facts known to be true on entrance to L; in addition, &
eontinuing aesertion steadily valid within L will be used.

The output assertion of each loop L must be compatible both

with the input assertion of any loop L' which follows L and with

the continuing assertion of the loop L including L if L is
not‘outermost'. The determining tree of P, taken with the

various assertions hung on the nodes of P, is what

we call the annotated determining tree of P, and describes the
mathematical content of an algorxrithm P of mathematical type
completely. That part of a programmer's work which lies at

the design level consists in the develcpment of this tree;

the rest can be regarded as the manual applicaticn of routine
optimisations (which application may of course still be quite difficult
to accomplish.) An ideal language for the statement of ' (M
mathematically flavored algorithms would be one which allowed N
the annotated determining tree of algorithms to be stated

‘directly, and which itself evolved programs from these trees.

Note that the items which appear in a program's annotated
determining tree do not share the dynamic character of the
program but have a purely static set-theoretic character,
Experience shows that static, tree-like constructs
tend to be relatively error-free; for example, expressions,
including complex set-theoretic expressions, can be written
with a lower probability of error than even rather simple
locps. It is also instructive to make the technical remark
that formal proofs of program correctness will be subject
- to & minimum of irrelevant complication if the language in
which one writes the programs which are to be proved corrxect
iz gemantically and syntactically identical with, oxr at least
a sub-language of, the language in waich the correctness proofs

are to be given.

@

Since set theory is vervy likely to be the language in which.

d, this remark serves

o

2ll but very zimple proofs are couch 5
o justify SETL. A similar remark justifies SETL's decision

to aveid peinter semantics entirely: a language in which tie

‘final instruction of the code szegquence

X =0;

put x”ig 83
> & W :‘\4}
x=x + 1;

changes s can be massively irritating to the would-bke correctnass
prover. Indeed, it is hard to see how programs written in

a language having this character can be proved correct except

by re-expressing their semantic intent in explicit set~tbe0rétic
terms, i.e., reprogramming them in a manner much iike that

which would be used if they were to be transcribed into SETL.

The well~kncwn bubble sort algorithm‘fuxnishes a very
simple illustration of the general points made inr the proceeding
pages. We will find it convenient to write this algorithan,
as well as a few of the other algorithms to be examined lalter,

using an until loop construction cf the form
(1} funtil €) bloock;

where C denotes a bosclean expression and bIock a block of code.
Semantically, an until loop is executed until either the
condition C becomzs true(which we call termiration by success)

or the execution of bicek is seen to be without effect, (which
in

cwe eall termination by futility'. If C is expressed using

ore or more universal quantifiaeys involving one or more
st of

parameters Tyseeed s then =ach time biock is exccuted & s
parametey values making € falege will be supplied to bisck.

&

SETL-135% 14 .

in advantage oi the construct (1} is that when the loop (1) (f'
is terminated Dby success the condition C is known to

be true as an output assertion.
With these ccnventions we may write the bubble scrt as

(2} u=yv;
(until I < ¥n < # ulu(n) Le u(n+l))
<u(n), ui{n+l)>=<u{n+l),u(n)>;;

The input assertion is that v is a vector of reals; in order
that (2) should be a sorting routine, we require thac

(3) ¢ £ permrange(v) and 1 <¥h < # uju(n) fe u(n+l)

should be an output assertion of (2). But the seccnd clause
of (3) is simply the condition appearing in the until clause <jx
of (2): and ne permiange(v) is easily seen to be a continuing
assertion of this until clause.

More conventional bubble sort algorithms arise from (2)
by the application of relatively routine optimisations. Note
in particular that evaluation of the '¥'-quantified expression C
in (2} involves a search loop which can search indices in
ascending order; and that immediately after finding a first n
viclating C and performing the interchange which thies implies
we: car be sure that 2(j) le u(j+l: foi j<n~-1. This a2llows us
to rewrite (2) in a conventional form as

(4} un = v;
{while n 2t & W)

ifn eq Q then n = 1;;
if u{n} e u(n+l) then n = n + 1;

L

—-

else <uf{n), v{n+l)> = <ui{n+l), v(a)>; n=n ~- l::

end while;

~

SETL-335A

For a more substantial example of the process of develop-
ment which we take to underlie programs of mathematical type,
we consider R. Floyd's heapsort. We ghall develop this
slgorithm in top-down form. The algorithm has a vector v
of reals as input. It is reqguired to be a sorting routine,

i.e. o have
{1} ue permrange(v) and 1 < %¥a < § u | u(n) fLe u(nt+l)

as an output assertion. The problem statement (1) is what
we aim to optimise by a process whose first stages are manual
but which becomes automatic as soon as possible. As the
algorithm's first form we take |

{2) /¥ v is input %/

u = nult; y = v;

(until y eq nult)
Y = minook y;
ufdu+l) = y(1);
y(l) = y(#y):;
y{#y) = Q:

end until;

Here minbot s a subsidiary transformation, for which an
algorithm must still be given; we raquire this transformation

to have the output proposition

" (3) (minbot y) £ permrangely) and i<¥n<ty|(minbot y) (1} e

s s,

(minbot v) {u}.

Given this fact concerning minbot, it is net hard %0 see thas

-

(2} has (1) as output assertion,

aas

Indeed, the until loop of (2}

{4} u + y € permrange(v) and L < ¥n < # u | u(n) Le u(a+l)
‘and 1 < ¥m < # y |4f u eq nult then t else u(#u) fe yim)

ag & continuving assertion:
e~trance to
ané ¥y eq v; in
transformation
preserves the assertion (4).

and therefore (1) results from {4)

This agsertion is «learly true
the until loop since on loop entry u eg nult
view of the output assertion {3) cf the
minbot, the body of the until loop of (2)

On loop exit we have y eq nult,

Now we must realise the transformation minbot. For this,

we can use the following code:

(5)
w o=

]

.
[

{until 1 < ¥n < & w/2|w(n) fe

if 2%n+l

o W{R)> = <wix), win)>;

Y the until condition of (5}

second clause of (3)

is gatisfied as well,

/* y is input and g cutput */

w{2*n) and
alse
w({Z2*n+1})

gt & w then %

win) fe

if {2*n+l) gt & w then 2*n else if w(2%n} Re wi2*n+i)

then 2*n else 2#%*n+l;

is satisfied, then the

since if not the

minimum component of w would have an index m different from

1, hence of the form 2*n or 2%n+l,

the andil condition. On the other
i3 not satisfied, then either win)
.:’}(3;

RN S 14 [
THing, wirds =

<win}, w{x)> chanqges

and this would violate

hand,if the wuniil condition

gt wi(2*n} or win) gt w{2*n+l);

then win) gt wi{xj is certsian, s5 thet the permutation

W

LB

o

@

~ e ot
SO L30A

"his makes it clear that the until lodp of (5) cannot terminate
sntil the second clause of (3) is zatisfied. On the other
frand; the loop clearly hazs w € permrange(y) as a continuing
sznartion; thus the first clause of {3} is alsc an output

assertion of (5).

By substituting (5} into (2), we therefore obtain a
compiete SETLAalgorithm‘having (1) as output proposition.
However, the efficiency of this algorithm can be improved
considerably by applying a few transformations to it.
Suppose that the input vector y of (5) satisfies

{6) 1<¥n<#y/2| yln) 2e y(2%n) and
if 2*n+l gt # y then t else y(nj Le v(2*n+l;

“hen i% is not hard to see that (if we insert x = 1
at: the beginning of (5)) the until loop of (5} will have

{7) 1 <V¥Yn<#w2)| if nnpe x then {(w(n) Le w(2*n)
and if 2*n+l gt n then ¢ else
win) fLe w(Z#*n+l};

as a continuing assertion. This makes it plain that if (€) is
satisfied the code (5) will produce the same outpuat w as the code

ig) w=y: x = 1; fixedup = £;
(while 2#*x f£e # w and not fixedup)

= M3

n
x = if {2%¥n+l} gt & w then 2*n
else 1f w{2*n) fe wi{2*a+llthen 2%n else 2%n+l:

“ra.
if win} L2 wi{x) then fixedup = &; alse

r
<win), wixi> = <wix), wia)>;;

end while;

if 2%n gt ¢ y then ¢

W=y X=$§y;

1 < ¥n < (#y-1)/2 |yin} Ze y(2*n) and
else y(n) 2e y(2%n+l)

will produce the same output as the code

O

(while if (x/2) =2¢ 0 then f else w(x/Z) gt w(x))

wix/2), wix)> =

end while:

<wi{x), w(x/2)>;

It is easily seen using arguments like those which are giwven

above that the code

w=y(l:l); z = y{(2:3);
(while z ne nult)
w = minbot w;
wi$ wtl} = z{1);

2 = 2{23);

- {1)

end while;
reslises the transformation w = minbot y. ©ut
for y) is & continulng assertion cf
{(19) can be
that

does {(5j:

trarsformetion. This shows

cutpuin woax

(12} w= y{l:1}; z =
iwvhils 2z ne nult}

ommmon s v—arn e

X = § w;

(while if {(%/2) eg & then
< {2}, wi{x)>

(9)
{11} .

{with w

Thus

used to realiso the minhot

o e

the following code produces

SETL-10EA

gnd while;
w($ wtl) = z{1);
2z = z{2:);

end while;

We have seen that any vector y = minbot z constructed by (5),
or by (8) when (8) is equivalent to (5), must satisfy (6).
Hence (6) will be a continuing assertion of the until loop
of (2) if (6) is true on entrance to this loop; which can

be secured by modifying (2} slightly, to make it

(13} u = nult; y = minbot v;
(until v eq nult)
¥ = minbot y;
u(fu+l) = y(1);
¥{1) = y(#y);
y{dy) = Q;
end until;
Then in (13} we can realise minbct in ité efficient form (8)
inside the until loop of (8), and in its general form (il
outside this loop. Making the substitutions implied by this

remark, and eliiminating a few unnecessary variables, we obtain

the following code:

{14) u = nult;
y = vi{i:l); z = w{2:¢);

{vhile z ne nulti;
X = % yy
{while i7¥ {x/2) eq 0 then

<Y (xrfz) 13 Y(x) >

else v{x/2)

N ith

end while;
y(§ ¥+l = = (1)
z = z(2:);

and while; -

ot yin)s

<y (x), yix/2)>:

(while y ne nult) - 1

we=y; x= 13 fixedup = £;
(while 2 * x %e # w and not fixedup])
n = x;
x = if (2*n+l) gt # w then 2%n
else if w(2%n) Le w(2*n+1} then
2%n else 2*n+l;
if w(n) Le w(x) then fixedup = t; else
<w(nj, wix}> = <w(x), w(n)>;;
end while;
Y = W;
v (#u+l) = y(1);
y(l) = y(# y):
y(# y) = @;
end while;

———

Adcitional improvements, having essentially the nature of (\c

conviantional optimisations, can now be applied to (14} to
produce heapsort in its ordinary form. The main

observation required is that all the vectors appearing in (14;
¢an be represented as subsections of vne single vector.
hpplying‘some of transformations which this observation makes
possible\and a few conventionzl optimisations in addition

we obtain heapsort in its final forms

{25 nv = ¢ v

4

ny 1; /% v(l:iny) will represent: y;.
viny 4+ 1,, will be z n/
{while ny -E-i:‘ nsl
X = ny;
{while 1f (x/2) eg & then £ elee vix/2) gt vix
Cpla/3, vix) » o= o<v(x), vix/2)>:

end while;

' ’ NG

GET -1 058 . al

ny = ny + 1;
end while ny;
/* now y will be wv{l:ny)
and u will he v{nu+l:} in reverse crdex */
(while ny ge 0
x = 1; nyo2 = ny/2;
(while x f%e nyo2)
n = X
x x iFf {2%n+l) gt ny then 2%n
else if v(2*n) Le v(2*n+l) then 2Z*n
- else 2%n+l;
if v(n) Le wv{x) then quit; else
<vin), vi{x)> = <v(x), vi(n)>;;
end while;
<v(l), viny)> = <v{ny), v(1)>;
ny = ny - 1;
end while;
A7
in the ordinary informal sense which attaches to the
word ‘procf', e.g. in connection with proofs published in
mzthematical journals, we may claim to have proved the
program {12} to be correct. ¢f course (13) nay well be
inceorrect anyhow, since we have given only an informal proof
of its correctness, and it is entirely possible either that
some misprint has intruded itself into the text either of
{13} or cof some one of the program texts which led up to (13),
or that some minor logical error has come into either the
explicit or the inmplicit part of our reasoning. Generally
speaking, we are only guaranteed against malfunctioning of
& program wihich has been ‘proved' correct if its correciness
prooi has either been generated by an antomaton or stated
in a formal language and verified Ly an automaton Without
automatic vwerification, no stronger guarantee attaches %o
a proof of procram correctress than attaches to mathemztical
proot generally, to wit, that the reader, by waking ‘appropriate

small ewendaticns', can very probably correct any errors

N
[

which the proof may contain., In practical terms, this is
n.t a better guarantee than that which attaches to programs
developed and debugged in the ordinary way. Of course, a
correctness proof for a program P serves to ‘double-check' P
in much the same way as would the develcpment of a very
careful set of comments for P. Moreover, adherence to the
mathematical rules of proof will geﬁerally result in checks

which are particularly exhaustive.

What then is the role which proofs of program correctness
can be expected to play in the development of programming
technique? In confronting the guesticn, it shcoculd first of
all be noted that correctness proofs developed for existing
algorithms will generally be mathematically uninteresting.
Indeed, as has been observed in section 1 above, an algorithm's
annotated determining tree, from which the algorithm is
produced by what is an essentially routine process of manual
ccmpilation, includes propositions which together constitute
a procf of the algorithm'’s correctness. To prove the algorithm
correct is therefore only to make explicit an argument which
the algorithm's inventor may have left implicit; this may be
a valuable expository service, but it will generally not in-
volve anything that can claim to be a new mathematical dis-
covery. The problem of proving programs correct is therefore
a problem of pragmatic character, namely that of developing
automatic or semiautomatic systems which will allow purported
oreofs to be stated formally and checked automatically, and which
wili lighten the heavy burden of preparirng. correctness proofs,
espacially for very large programs, automatically generating
routine proef details. 2t the present time, we are far from
pcssessing proof-generating algorithms capabable of generating
proofs of a length or complexity comparable to that sketched
gxove irn connection with the hecpsort algorithm; thus a procf

verification system is in fact all that can be hoped for as

&

T

; g
Snlli—~130hk

& ely near-—temm possibility. To be practical, such
& system will have to hendle asserhions written in gereral
t theoretic terms and understand the propositional im-

plicarions of & wide class of program transformations. It

is particularly essential that a cerrectness-~vevification
systenr 2fford its vecer a large measure of stability, making
it unnz2cessary for him to readjust the whole of a proof

each time some modest adjustment is made in the algorithm
which he ig working. To develop such a system at the present
time is a formidable task. Stability will of course be
enhanced if algorithms are stated in a language of abstract
character in which many incidental, implementation-related
details are suppressed. We therefore assert that the de~
velcpment ¢f correctness-proof techniques to a level of
practical utility will be closely bound up with the develop-
ment of high level languages and of methods for the autcmatic

optimisation of these languages,

3. Summary.

For emphasis, we repea®t our main point: a program ? arises
the application c¢f optimising transformations to a defining
rubble R. Fragments of two types will be found in rubkles
R: elemental frayments, which directly defins some desired
element of cutput or of system response; and mathematical
fragments, which define some set-theoretic object or operation
Lo be realised or constructed efficiently in P. Mathematical
fragments eve introduced into F either by manual cptimisation
operating in a range which lies keyond the reach of asutomatic
optimisation procecdures, or because the problem described
by R has or can appropriately be given some inherently

mathematical formulation. Programs are given wuch of their

from

structure by the action of an coptimiser actuing on the essentizl .-

8tructureless K; what additional structure they have will

generally derive from structure inherent in their input or

e e e
LRI L3RR

dazired output, or wore generally in the data envivonment (fﬁ

",

irn viich they operat:,

e have projected structureless programning, i.e. the
~development of systems in which programs can be defined in
ruhrle form and all else done by an automatic optimiser, as
av ideal. What then is structured programming? We offer
the folliswing definition: structured programning is a technique;
veeful as long 33 optimisers of the power neaded to support
structureless programming are unavailable, which by impnsing
an appropriate discipline helps the programmer to optimissa
programs manually while avoiding the development of un~

manaoceable complications,

a

SEUL~138A

It is suggested in zection 1 that prograns of mathematical
type will generally consist of nests of while loops, in
which each loop realises some simple set-theoretical trans-
formation. A debugging aid which displayed the state of
relevant dats on entrance to and exit from each of the while-
Loops ¢f a program might be useful. On entrance to such &
roop, all data values to be used within the loop ought to be
saved. On exit from the loop, all data values modified within
the loop and alive on Loop exit cught to he collected, and
printed together with the data cathered on loop entrance.
Excessive output will he avoided if this trsce data is only
printed fcox the first few entrances/exits made to/from each

loop.

he line of argument set forth in section 1 suggests

=

that program debugging by the insertion into code of assartions
%0 be checked dynamically must always fail to be mathematicalls
tions constituting

m
;5»
H

decisive. Indeed, the full set of .
the proof that a program is corrsct will gererally make
reference toc at least a few excesdingly large cbjects, ia-~

pussible to calculate explicitiy.

3iblicgraphic Note:

& proot of the correctness of Agapeort was fiwvst given by
Halph Iondon in Preof of HLQﬂw*t?na. & new kind of certification
(Curtificctlvn o Algorithm 245 TREESORT 3). CACM 13, 6, June
1278, pp. 271-37: The prood ﬂtre1eu above is of course vory
muach like La:dos ;,hu* our intent is somewhat diffexent Irom
his since he aims to annotate an oxisting onde wvhereas wa have
peer at pains to @nphasz e the gquiding role which an implicit

‘proect plays in the genesis of an zlgorithm. o a quod recent
T

s

"5.;-)“'

survey of literature on program corvactness p "0 see London’s

& o
© LOM 25%h

£=
An &
b &g A 1A

:.2 g

fhe Current State of FProving Prograns Jorrs
hanjversay Conference, August 18732,

