
0

Z:E: 1.l'1J):Tevlf,1ett:-~r t l35A -"'·-·-----~-..-•--- -------
Btr;:.tctu1.--eless Fro_~rarnznin·g..!-~

· :!~'.?~~tlon~~2,~~.!tubble~·,· and ·thtt.'Re'duc·t;!~~..!?~~og!arns_ to R~bl9_~_

•.rois ,new~letter cont.inuea th-e ruminations of Newsletter

13~i~ but attempts to pursue mors fundamental considerations ..

It r.eJ.ate;:s al~o to the discussion of trar:.s-SETL dictions, tc

whi,:~h ::n, 13 3, 13 3A, and J. Earley' s Berkeley 1·aport on

c:ptJ.misati.on by iterator inversion also belong.

Our thesis in this newsletter is as follows: Programming
lan,;;uages of 'ultra high' level', i,o., -of a level substant.i.ally

higher than that of SETL, must and will aim at ~ctional

fouus in \,;'hich t.he structured interrelationships which

characterise SETL and l~guages of aub-SETL semantic level

a.r~ elimin.3ted. In developing these la~guages on1;, will

th(~r.~fore aim, r\ot to support 'st·t"'.;icturcd programming', but

to make possible a typ~ of'str1ctureless progra.,urdng' .who8e
dict.im,s begi.n to be as fragmemt.ary and disconnected c.s

those of nat.~1ral discour.sg,

on the scale of·structure which runs from. th~ highly

structured to the tota.lly structure:tess r we may, in order

to fix our ideas r distinguis.h fou:r typicaJ. structure-typE1.(;i ~

the oobi..ieb, the ·t;ree, t..he pipe t1.~ne., and U:e rubb Ze. ;.._ rt.lb::; l~:!

connis:t5 0f m1.1.tually ur1ralated. fra.gmentB, h pJ.peJ.i.ne CC"\1.;;J_t.;t:.0~

of sectir.ms which must fit t.og~ther, but -B~ch '.:Jf ·...thich

~el3.bes only to its ir.:m,.ediat~; serial r.:,'.lr:text, sc• t:h:1t a

rip1:Jl:i .. ne cc1n bf~ a.s~-;embled in ser.ial ordex ahd its c:or-:iplexit.y

,:leer,; not qr.ow wi·(.'.h its size~ In a tree 1 the cont~xt into

\-.rhic!1 et.eh Recti.on need,s to b~ fi tt:ed ie mo:.-:e complex, bt1t

comr,lexity of local co:."}.text re,M.in~ bot.mded as t.he tr~e g:;:;_:;w1:.,;:

hY--reve:::-, r.1 s,::d.iil or.·der of e:onstruction is nc .longer possfhle;

sc, tiOme mon: i n-1rol ve,d, perhap}l top-down, order of i;:rowt.h ,

m11st bE! use.d. The pat.terns of connection in a cobw:=?b can

grow complex wi.thout bound. T.n bu.ilding a. web, S(:cticns '!;:U.1

of.ten have to be fitted. into already-built contexts which

imply difficult constraints. Moreover 1 a change to one part
of the web ma}• make complicated ·and extensi.ve cha.nges to

other parts of r.he web necessaryc

Programs of every one of ·these structural foxir..s r.~xist.

Cobweb programs are of course familiar to all whc have prr:iq:ta'mUf;;G.,

.''-\ rubble program is one ln which program eh1ments are un-

x-e:la ted to each oth•1 r, can be freely added and re.moved, a:n1:1

for which :1ach prog!:am-output can be ascribed to some

individual program element rather than tc the coope1.:ati"Je

action of many interrelated elements. A hypot."1eti-cal ger.1.eral-·

purpose concorda:1ce generator whose 'programs' are simply

lists ,,,£ words, and where the presence of a word causes a] 1

its occu.rence,1; to be tl'!.hulatec1 in some appropriately i.rran,1et1

listing·, exemplifies oux nod.on of rubble p.:r.ogram.

Rubble programs are maxi1Aally easy to develop and to

d.ebug& Moreover,, they are exceptionally easy to adapt to :,-:e~;'

uses. In developing such a program, one simply adds ele!(,eit1.:

unt.il a.11 ce1a,ired eL~t•:cts have b-acn obtained, perh-o:.ps r,·.1b­

tri,ctin,;; cleraents wht:, -se effect~ a1:-e. und,3sin~o.. 1'. ru!· ble

P::.ogran,~ ~>£ pip~line strt,cbn:,e can he alm,,::ist es r:ias/

:-;.n devoe,lop as c.,bhle 1:.:i:ograzns. One builds t.h~.:t, sect.ion by

;!r:ror in a rubble, since all th.e pipeline S(-?Ctio-ns past th,s

li

:point of error wiJJ fa:i.l to ftmetion. Mox-,,,cver ,when any :sil19J .. ,

~,~ccic,n section of a pipeli.:nc p;:o'::ram. is m.odi fi.ed very mi1ny

subsequent sect.ions may ha,re to b~ modified ai; well.

Related remarks concerning programs of tree and of

Cr,'ibweb structure coulti be made, but since the cha:racterir1tics

of prograns of these typei!J are generally familiar we shall
refrain from making t..i'1em~

One knot.:s that one has devised 'the right' lango.age for

t.!'liating· a given problem when the problem Ci"tn be solved in

the language by a rubble program. Beyond its descr3.pi.:ion by
a rubble there will in many c&ses be no simpler descript.ion

of the problem; with a rubble, one will hava reached a level

at which the elemental action of the mind has becon1.e directly
manifest.

Structured complex programs which solve a problem may
be considered. to arise from the p:r.oblem' s defining rubble .by

t,: process of optimising transforrr1atlon (the transformed
pro,gram can of' cours~ be vastly more efficient than tHe

r.vbbh~ progr.3m wr..ich ur.derli ea them.) The ideal of progl:aLtin.in',f

hmgua.ge design is tc;• ,all.cw thf; p.x:ogramme:r. r.:c express hims.eif

1 . tl ' " b ~ - J . ' , t ~ · t. t. . · . t 1.::rec y 1.n ruo .J.e rorm, .eavin[J :r. ~O an .1m .. oma 1c op .1.rnJ srnx:i..011

system to tr·ansform thi.s .:rubble .:.nt:., a complex st.ri..1cture

which realises the s,:Une e:f.fec·~.tl as the ri1'bhLs bi.it does so

mrich more effici.ent.ly. H0'1-'•~Vl:.r, pr•;:;ently ,0,v;:d.lable c,pt~_;"1, .. i.s c',;:.:

:t.,';r,dl-t'- only limi-t::ed c}.,eisses o;f st.~:,;1-ex-ficial -r:ransformat.ions.

Curren"'.:l:r r thm:efore, the proqx.-~.m1ner is himself required tc;.

take ever much of tt.-1e w1..1rk of opt..l1rdsatj.cn 1 -E.i.nd to expres:s

.,

r,.,i r.t1:1anJ.x sustainable complexity, a threshold that is ra.th1;"):t

low.. I::,deedr t.h:t·ough custom optimised expression becomes

the progra.Jrane:r. 1 s fixed habit, and the tendency t,.) function

at: high complexity levels an unspoken point of professional

pride. These are the reason.s ~y programming is currently

a difficult, slow a.ffair ..

An addi.tional example will illustrate the points ju£t

made~ A business application syst':!m is a programmed model

of the business ir.. which it is to be used. Written in an

appropriate language u such a. system will be a rubblP., each of

whose elements 'Ad.11 describe the rule according to which

some kina of exogenous or endogenous event is to be handle.d

when it comes to the attention of some p~rson or group with­

in the firm bei.n•:1 described. ThesG :i:ules are inter.related

logically, but only in a loose way, and the misstatement of'

a fe.·.i1 rules wi: .. l produce a system that malfunctio::s slightly

rather than catastrophically. It is a rubble of this kir~,1

·;.;hi~h ,underlies each business application prc,gram of the

~ype ordinarily seen. 'rhe program arises from the :r.uJ:-ibl€

wben characteristic opt:imi~aticns are impot.ed. For

eX-Mlple, one typically_ groups together all processes which deaj_

with the direct ~nd indirect consequences of certain clasges

of exogenous events ,thus allc.:wing incomi~g 1 transactions' to

Th.1:? data files \ihich

Irti.:>.f::t be consultE'd durinq transaction orocess1no. can then he keDt.
... - .J ,t..

in spec.:.~a.l a:n:an9ements which :make;;.1 acce:ss to ne~ded records

~Jtfficient ,:md p:..·edi Gtable, .:' .. ncoming g-roi..rps of tral.·w;;:;ction:1

c.;.1.n be pre··sorh~-'1 :i.nt.o an or.dc.1r '5.etermi:.,.ed l'.'-:f th~ pe. ttern

of filt:? accESSfiz:::: ·,1v·:l:>,ch they wi:U colLe,~!:i •se].y :cegulri::; etc.

Bf .imaginin9 .iin approf!r:iei.te language, i e I:;! , ,. one 1.:,nki:1g

it. easy to exp1c(::s:; rubble· proql.'ams directly. ,;,,·Q ca.n c J.;n·ify

t'".e nat.m:c~ of the op'tirni~ations evisaged ir .. the F-~·cc0:~0.:: .. ,;9

0

0

For describin~ business applicatio.ni~ f an appropriate lang1.::,a~f&

wc;uJ.d be one allowing the definition of systems of inter­

communicati.ng 'clerks 1
, each with one 01· more in-baskets J

and with some simple rule of p.r:ocedure. We imagine all the
clerks to act in parallel, sending messages to each other;

all share the use of certain centralised files and access
certain central de.ta objects. Certain of the.clerks e.re

aensitive to the time and date, a.,d periodically emit

!!less ages. In such a language, a business application system

c&n be described by a rubble of statements (in fact, not
quite by a rubble, but by statements much less hightly connected

than are the statements of an ordinary p:rogram). A few
fragments from such a rubble serve to illustrate what is meant~

order-receipt: ?h~n~ver ·exis·ts order tn· input

/ 1: else */

· ·check name • customer-name (order) and address ::::

custome:r-a~dress (order)· filled-o~.!:

· ·lfnot fi·ntsb ~ ~ <cllstomer-info-.!efect:;.ve. o:r.C.0.:c>

!:.!?. w.rongo.r.der-cle.rk

-~~f!! record • custorne:r:-record·{~=name
, ·ad·dress == address} e,dr-:t.s

-~ .~J~.~ ~ ~ <u.nknown-customex, order>

~o wrongo.rder-·clerk

· ;f~.~ ~ send <order, record> !_2 ,order-clrurn:Lfica;-;.i,m­

cle.dt

billing-clerk: ~r1h~ne·•NJr exis_E,£ lnvoice in .!-E_p_ut;

'.'..et iternlist = item-li.st(invoice)
let total~~ price(item} ~·al_!. item in

.i tem-U.st (invoice) !3~ ti'~.:.~-

a,railable (:L tern) is t,~n.-.::,

let total-tal:'; = ~~ :price (.item) i1: tc.xra.te (category (:t tern) i

· · ""' . ., l ' t· ~ ' ~ 1 . t- . ' .) h 4- 1. ~~r ~='=- .i. em .::E. i .. l" .. in- :.ts~ {1.nvoi.ce .. ~l_':.::;,,_ .,1,.:

available(item) is t.'.:'.'ue" •.. (arid 30/0~•-i;',)

'::'o:r.trcl t.nmsferf; are largely absent f:com this code, which is

:.':i.ose to c,. 1.-ubble 1 e.g., the biZ.ting_cle:rk s;ection is activat~::t\

;:,3r the receipt of an invoice anti not :by transfer of cont:col

from sc;me prior code section., A program like the above can

continue to function even if one of its sections, e.g.

~rongorder_cZe~k, is defective or missing: the system can

simpl:t g,J!nerate an input box for each miasing section and

a.ccumula te i terns sent to it.

To transfer a rubble of this kind into a business application

program of acceptable efficiency, several successive

optimising transformations must be applied. The code fragments

receiving copies of a given data object must be found and

one must choose an execution order allowing the elimination

ot as many copy operations·as possible. This execution order

should be such as to allow the files which rnust be accessed

during the processing of a transaction to be accessed efficiently:

fer example, it is desirable for code ·fragments a.ccessing tht;

same record of a file to be grouped together~ Loops impliad

by calculations involving composite objects should where

possible and appropriate bevje.mraed' together to dimini~h the

number cf times that particular data items need to be accessed.

l'iJJXilia.ry data structures, as for example auxiliary indices,
should be defined and the code needed to keep these structures

cur.rent should be inserted into t.."le developing code. Expressir:ms

E iPlplying extensive calculation should where possible and

appropriate be 'reduc~d in strength 3
, .i.e. kept current by

inserting small .adjustni.ents of E [B (.!a].t~u1ated value at e.:::.ch

r1cint at which a var.t.abl,e appe:lrir.i9 in E is 1r.cdific~d {this i.s

~:. ·iJa:t'.:tey' s method of 'i terat:or inversion') • Through the

. 1a,,r111cd. or autoIT!at.ic applicat.J.ci~ of the.<:ie an.:'i other opt:i.!nisat~ o:r .s ~

'l L .. gh·tly i,.1'!:erc~nneci:~d 1.o~rical ccbw2b will evolve frrnr: nn

.1.n'Li:i,:-il r'.JL)ble R.

(It is worth noting that -the rubble 1-mderlying progr2.ms ·

of business application type lies closer to t..he surface than

1s the case for programs of other types. This is because fo::­

,such programs the transformations which produce an application

from· :tts defining rubble are generally of routine

:t'athe1: than of highly specialised mathematical character.

It is this cc,rrnideration that justifies the decision of

su~reral curruntly active' automatic programming' groups to study

.si•stems of business application type rather than., p:rograms of
" f some other kind.

We emphasise once more that the 'right' language for the

8tatement of a program P has been found and that P has been

given its 'right' expression in this language when P a.ppears

as a X""Uhble. The linguistic fonn in which one describes the

separate fragments of the rubble is a secondary

.i.st•me. It need not be harder to define a rubble in an

approp~ciate fonnal language than it would be tl''j define it in

~a•.:ural language. For this reason, the natural langu.age

emphasis which characterises a certain &,iount of current work

in automatic prc,gramming can be ~.r1e1Jtioned; this empha.f.;:i s can

be regarded ske.ptically as a complicating distraction. from

other more central problems of semantics and optimisation.

In additior, to the constructioA,s introduced into programs

by optimiser actions which can be regard~d as relative1y

i::·..:::ut'i.1H? _. constructions of a differr~nt., distinctly mathematical,
character will appear in p,:ograms. We regard a constructio£1

as routine if it is justified by assertions of predictable

·form which can be generated by processing fcmiiies of l'ltatements

'ii1hose examination is predictably profitable., On the otht1r

-:,r ..,,
~. / . - = .~

::i!.atheEnticaJ. const?:uct5.ons can be reduced t·:> rubble only as

;?11 ;1h Z..:,;1 s tatemerds ·" .not as aZgo:ri tl!ms. Here we di.stin9·uish

prcblem stc?.te,ments from algorithms by the fa.et that they

mc>.ke reference to objects too vast for actual construction,

and to ;;;earches and processes of selection extended over

these vast objects.

Jl,s. an example of this distinction, consider the not.ion

of sorting in its relationship to the algorithms actually
used for sorting. To define the notion of sorting in an

'algorithm free' way we can proceed as follows: an n-permutation

i~ a 1-1 map P from the set.{i, 1 ~ i < n} to itself; given

two vectors v ar.d v of length n, vis said to be in the

pe:z•mutation ztange of v (we write v <i permrange(v)) if there

exists a permutation p such that v(i)= v(p(i)). To sort v
is to find a V in i.ts p3rmutation range such that v(i)<v{i+l)

0

fo:·r· all hl<i<n. w
1
:fuat. wthme ha~e juthst give

1
n
1

is. a profblem stattemt:~nt Q
rDx· .. 1.1er t .an an a gori since e co ection o . n-permu a .ions

contains n! elements and is thus far too large to be searched

~xplicitly~ To obtain an algorithm from this problem statement

one transforms it mathemat:i.cally using a method which may be

described abstractly and generally as follows: An object x
satisfying c1 predicate C (x) is to be found within a set s

which cannot be searched explicitly, either because sis toe

large er becat.1se it is expressed in terms which rr.ake s ve-:r.y

6.iffict2lt to co:npute. To conat,:uct x, one chooses som,: initial

C)bject x ::.n s, and :.:5.nds a tra.')sforrr1a+:ion f: C;f s into i tgelf
-0

which has tJ:-.,c, property that £ (>:} = x implies C (x) • Then one

·i,2,--:.e:ru-::.es the sequence x 0 ,. :i'. (x0), fi (x
0

) , ·~
0
", If f hao been

-::hc-se1: appropria·~ely ~ this sequence wil!. stabilise, arid the

. f~.rst ._:.,,lement J:71 (.,cc;) satisfying fn (:.<
0

) s: fn+l (x
0

} is t}1.s desired. x.

l.

0

Many V3.riants c:d: this paradigm will occ:ur. :rt mf',y for ·

example be convenient to embed :s in some even J.arqer set t:. t

and to use an ~wdliary trar1sfo1~tion f which maps t int(', t,

hut where f(x) ~ x implies x e So One may make use of ~n

auxiliary predicate C' (y) for which C' (x
0

) holds and for

which C' (y) implies C' (f (y)) 1 then one need only prove that
the two propositions C'(x) and f(:ic} = x together imply C(;-.t).

A predicate et with theoe pro.9ertifJS is said to be a oonf;inuing

a.6eertion of the iteration x ~ f(x
0
), £2 (x

0
), • The

0 .
target predicate C(x) may be decomposable as a conjuction
c1 (x) ~ c2 {x}; in this case, one can try to find two trans­
formations f 1 t £2 of s into itself, such t.hat f 1 {x) = x
implies c1 (x), such that £2 (x) = x i~plies c2 (x), and such
that c 1 (y) implies c

1
(£2 (y)•). When thtl!se ara found, one can

select x
0

ins, carry the sequence x
0

, f 1 (x
0
), £1

2 (x
0
), •••

to convergence to obtain an element x' , and then carry the . 0

sequence x~, f 2 {x~), £2
2 (~'

0
), ••• to convergence to obtain

the desired x.

We see from· t.he above that set-theoretic expres.sions
which use unpleasantly large sets as intertrtea.iate terms in

the definition of objects of mo:r~ readily calculable si~e.

a:r.·e. replaced by whi Za or unti 1. loops which construct these

objects in far more efficient ways. We shall call tnis prc,~;;::,s

mcithemati,:c.1, e:r.paneion, ai,d speak of the l\)Op as arising from the

itc:t.hematicaJ. expansion of the :se-t•¥theo1:·eti•.:- mcpressL;r. whic:h

underlies it. WithL-1 a loop arising in this way loop subsidiary
set-theoretical e.:,:pressions may occur, and these will them­

selves exp..!!nd into tf!hi z.~ lcops r ne~it:ed to some modest depth,

To b~ solved, ,;\ mathematic:c1.l proJ.?L';!."t\ "fJ :n.ust fiY.~:.t he'.

recognised, and must therefore hav,~ a set-theoretical stat:e:,\1~nt

which is x~ot toe, cozr.pLicat.'l?,d.

An ,?'.J.qprithm.i~ sr;J-,:ti.c,::1 of P is. obtained, first by restati-iHj

it Jn :wJre adva~1Liqeous but. still n.ot vastly complicated

s1~t-theoretic terms, and th.eu by progressi11ely transfornd.Eq

its statement int.o a.n al9,orit.hm. Hence we expect most

mathematical algorithms tc consist of nest.ed sets of wh1: te
loops ul tima:tely contalning elementar.1 set-theoretical

-sxpj:es,sions. Inplici t in such a program is a tree {we shalJ.

ca.11 it the detex•mining t!"e~ of P) whose nodes are the set·~

th.ecretic expression which the while-loops of the program

z·ealise. Trees of this type can be developed directly by

the mathematical ,;,cti vi ty of the mind, the mathf,tpatical

expansion of each node leading, in a manner isolated enou9h

t.o be comprehensible., to the generation of a few descendant

nodes. The determining tree T of a program should be loosely

.c::eflected even i11 the loop structure of the program's final

forrn and the overall structure of '1' should therefore correspond

to the structural facts which interval analysis of the program
w:i.lJ. reveal .. Note that we -:::onsider aach loop Lin a mathematically
::lavored program to realiui some under.lying set~~theoretical

i:?xpression E which the: loop is contrived to evaluate 1 E

defines the 'mear1ing' of r. and the role that L plays in any

:targer loops in which it may be embedded. By p::-ogressively

r.:r,~converting each loop L of a prog:r-am P inte> the E from whi eh

X. arises by mathf!.':m1atical expc:1.ns:i.,on, we make explicit thi:

strategic approacl, usf1d to deveJ.(;p !>, and ultimately red·,.1,:;e

each P. G~ mathe1:1aticaJ. character to the definitional stateni-ent

f.rom which it was generated. This latt·~r stat0r,1ei1t may in

turn bE"·. a f::r:agment of sort1e rubble in which the mathematical

The way in 1;thich ·,;e choo.:H:i to i?:xp;ind a ~et-theoret:i cal

A~?ression E into a lcop will depand o~ t~e context of f2cts
1 :·.:.t.;,Jn 'fihi.ch E j_5 t:i be t::!Vdlt..·,.-i.tecL

Cl

0

lJ

For exan-.ple, to find the smallest component of a vector v .

whid1 C{CE'(~ds a given quantity x requires a. full sear~::h of v

i.n the general case, but only a binary search if v is kno~vn

to be sorted. Consequently, it will sometimes be advantageous

in ·t..'t"ansforrning a set-theoretic expression E into a loop to

co:o.struct a loop L within which set'.'""theoretic expressions E1 just
as complicated as E or even identical to E appear, provided

that the context of assertions available inside Lis sub­

stantially more advantageous that the context in which L

itself appears. This makes it plain that a set-theoretical

expression Eis not a full description of the algorithm which

realises it. Generally speaking, t.he cost C of evaluating

n set-theoretical expression E will be a function both of

E•s parameters and of the context of facts within which E

must be evaluaterl; and C can depend very sensitively on this

context. If E1 occurs inside a loop L, then the total cost

of its repeated evaluation will be the cost of a aingle typical

evaluation times the expected number of times that Lis

executed, which minimised (in a manner taking advantage of

i:he fact-context in L) gives the cost of evaluating E in its

context. ·R::?peating this calculation recursively for all the

aodf.1s of the determining tree T representing an algori tJ1m under

development gives the expected efficiency of the algorithm.
'l'he essence of algorithm design is to structure T in

such a, way as to guarante~ each significnnt E,xp.ression E

appearing in Ta surrounding fact-context allowing E to

be evaluated in an especially efficient. way.

The determir.ing tree cf a prog·ram P serves als<.) as a.

guide to the construction of a proof of P's correctness.
•.r.·o build such a proof; one wi 11 aim first of all to sbm-·,·

that each loop L in P does realise th,: sr~t-theoretical trans­

f.:n."!l1a.tion which it is meant to rea'.:.ise.

f,act will constitute th~ core clause of L'n. output aese~~t·­

{r:m . ., which must be shown to be true on exit from L. To

prov3 this output assertion one will require an input assertion

giving facts known to be true on entrance to L; in addition, a

continuing assertion steadily valid within L will be used.

The output assertion of each loop L must be compatiblf! both

with the input assertion of any loop L' which follows :G and with
the continuing assertion of the loop E including L if Lis

notsoutennost'. The determining tree of P, taken with the

various as~ertions hung on the nodes of P, is what

we call the annotated determining tree of P, and describes the

mathematical content of an algorithm P of mathematical type

completely. That part of a programmer's work which lies at
the design level consists in the development of this tree;

12 ,

the rest can be regarded as the manual application of routine

optimisations (which application may of course still be quite difficult

to accomplish.) An ideal language for the ritatement of (-

mathematically flavored algorithms would be one which allowed

the annotated determining tree of algorithms to be stated

_directly, and which itself evolved programs from these trees.

Note that the items which appear in a program's annotated

determining tree do not share the dynamic character of the

program but have a purely static set-theoretic character.

Experience shows that static, tree-like constructs
tend to be relatively error-free1 for examp]_e, expressions,

including complex set-theoretic expressions,can be written

with a lower proba.bili ty of error than even rather simple

loops. It is also instructive to make the technical remark

that form.al proofs of proyrarn. correctness w:i..11 be subject

t:.o a. minimum of irrelevant complication if the language in

wh:.ch on~ \-1ri.tes the prog~arns which a:re to he proved correct

i.s semantically and syntactic.ally identical ·.-.1:::.trir or at least

a sub-language of, the langus.ge in w;iich the correctn_ess proofs

.are, to be g.i ven.

3E.'l'L-13 5A

Since set theory is very· l:i.ke1y to be th1:.:: lang-uc.ge in 1"7hi.cb

all but -;ery !dmple proofs are couched, this remark ,1e:rv1:'?.s

to justi :f.y SE'l'L, A similar remark justifj~es SETL' s deci.sio.r.~

to a·vcid pointer semantics enti:J:ely: a. language i.n which ti':ie
·final instruction of the code eequence

X •· -0;

. . .

changes scan be massively irritating to the would-be correctness

prover. Indeed, it is hard to see how programs written in

a language.having this character can be proved correct. axcept

by re-expressing their semantic intant in explicit set-t~eoretic

terms, i.e., r~progrananing them in a manner much like that

Q which would be used if they were to be transcribed into SE'.t'L.

The well-known bubble sort algorithm furnishes a ve.ry

simple illustration of the general points made in the proceeding

pages. We will find it convenient to wr:tte this algorithm.,

as well as a few oi: the other al9·orit.hr11s to be exaTUined later,
using an until loop construct:ion of the form

{l) {until C) bZook;

wh{~re C denotes a boolean expression and block a block of code ..

Semantically! an unti?, loop 5.s execti.'ced until either the

condition. C becomes tr..-ue (which we call te:cmir.ation by success)

or the executio~1 of b, ock is seen to be without effect:.,· (which

. l'Ie call tE,rrrilnat: :i.on by fut.il:J.ty) • Xf C is expressed usin9

one or rnc,re univ•'=':rsal quant:i.fif::::~:f, involving one or mo:ce

parameters x 1 , • •• ::-: . 1 then ,sach time b loc1:.: is ex.0cut.,~d ~ scci;. of . r,
parameter va}ues makJ..ng € .. tals:3 w:UJ. be supplied to bZoc:k.

•

An advantage o:.: the. construct (1) is that when the loop (1)

is terminated by suc,;!ess the condition C is known to

be t:i:ue as a.n output assertion.

With these conventions we maiy write the bubble s01.·t as

(2) u = v;

(until l ::_ \/n < t u! u (n)· ~ u (n+l))

14 ,

<u(n), u(n+l)>=<u{n+l) ,u(n)>;;

The input assertion is that ,.., is a. vector of reals; in order

that (2) should be a sorting routine, we require that

(3) u £ permrange(v) ~ 1 ~Vn < t uju(n) ie u(n+l)

should be an output assertion of (2). But the second clause

of (3) is simply the condition appearing in the until clause

of (2); and nE permrange{v) is easily seen to be a continuing

assertion of this until clause.

More conventional bubble sort algorithms arise from (2)

by the application of relatively routine optimisations. Note

in particular that evaluation of the 'V'-quantified expression C
in (2) involves a search loop which can search indices in

ascending orde~: and that immediately after finding a first n

violating c and performing the interchange which this implies

W!! car. be sure that u (j) R.e u (j +l) for j <n-1. This i'!llows us

to rewrite (2) in a convention.al form as

:;1 :.:: 1;

(while n ·tt I u)

if n !:9. Q then n = l 1 :

if u{n} R.e u(n:+1) then n::: n + l; .
else <u(n), u(n+l)> = <u(n+l),

.and while;

C

For a more substantial example of the process of develop­
ment which we take to underlie programs of mathematical type,

we consider R .. Floyd's heapeort. We shall develop this

algoritr.m in top~·down form. The algorithm. has a ·vector v

of reals as input: 8 It is requi.red to be a sorting routine,

i.e. to have

{1) U€ pennrange(v)· ~ l ~ Vn < I u I u(n) 1e u(n+l)

as an output assertion. The problem statement (1) is what

we aim to optimise by a process whose first stages are manual

but which becomes automatic as soon as possible. As the

algorithm's first form we take

(2) /*vis input*/
u = ~; y = v;

(until y ~ nult)

y :::: m1n~~£.!: y;

u(lu+l) = y(l);

y(l) i,: y(ffy);

y{ty) = r.;
end until;

Here mir,b0t :l.s a subsidiary transforma.tion, . for which an

algor.ithm must still be 9iven; we require this transformation

to have the output proposition

(3) (minb9.._!._ y) € permrange (~·) and 1,v:n.~tyl <!!!inbot. y) (1) g,e

(min.bot v) (nJ • ~---

Given this fact concerning !ni!!_bo~., :Lt is not hard ~~o see tht;.i

(2) h~s (1) as output assertion. Indeed, the untiZ loop of (21 n

{4) u + y e: permrange (v) ~ l ~ Vn_ < I u I u (n) · ·R,e u (n+l)

~ 1 ~: Vm !_ t y lif u ~ nult then t else u(tu) R.e y(,n)

as a continuing assertion: This assertion is clearly true

on EF\i.:.rance to the u.n ti Z loop since on lo-op entry u ~3. nul.t

and. y ~ vi in. view of the outpu.t assertion (3) of the

t:ran.sformation minbot, the body of the until loop of (2)

preserves the assertion (4}. On loop exit we have y ~ nult,

and therefore {l) results from {4).

Now we must realise the transformation minbot~ For this,

we can use the following code:

(5) /* y is input and~ output*/

w = y;

(until 1 :5.. Vn < f w/2 I w (n} x.e w (2*n) and

if 2*n+l ·2! :! w then t. else

W\n) ~!:.. w(2*n+1})
x = if (2*n+l) ~t t w then 2*.n else :if w (:2*n) le w·(2*n+l}

then 2*n else 2*n+l;

If the until conditicm of (5) is sati.sfied, then the
,c:f:-c:o:ad clause of {3) is satis.'!:ied as well, s.ince if net the

minimum component. of w wouid t1-2:ve an ind.e!f.. m different from

lr hence of the form 2*n or 2*n+l, and this would vioJ.ate

r: \(~ ; m t:i Z r.1.,ndi tion. On the other hand, if the u n t t Z cond1.. U.on

~::; not ~atisfied, then ei the:r. w (n) 1t w <: 2*n) or w (n) ~- ".7 (2*n+ 1) ;

(~\
i 1 '.'.:'his mak(-:!S it clear that the until loop of (5) cannot termint;(.:(':

0

·.:mti:t t.he second cla.1.1se of (3} ls satisfied. On the other

nand ., the loop clearly has w e: perm1:.-ange (y) as a cont5.nuing

,:~;::r.;,?.rtion; thus the first clause of {3) is also an output

assertion of (5).

By substituting (5) into (2), we therefore obtain a

complete SETL.algorithm having (1) as output proposition ..

However, the efficiency of this ali.;1orithm can be improved

considerably by applying a few transformations to it.

Suppose that the input vector y of {5) satisfies

(6) 1 < Vn ~ i y /2 f y(n) ~ y(2*n) and
if 2*n+l 2! i y then t else y(n) R.e y(2frr:.+l)

'!'hen it is not hard to see that (if we insert x = 1

at the beginning of (5)) the until loop of {5} \¥ill have

l ~ Vn ~ t w/2 I if n ne x t.'len (w (n) · le w (2 111 n)

B.nd if 2*n+l ~ n then t el$e

w(n) te w(2*n+l) i

as a continuing assertion. This makes it plain that if (6) is
satisfied the code (5) will produce the same output was the co1e

w ~ y, x = 11 fixedup = f;
(while 2*x te i w ~1. ~.~ .fixedup)

x"" if {2*:n+l} it t w then 2*n

t?la'=' if w{2*n) t~ w(2*n+1)t..'1~n 2*n else 2*n+l:

;,. si.m:';.lar a.rqumer..t &hows that if the input. vector y of { 5)

{9} 1 < Vn. ~ (#y-1)/2 !y(n} !e y(2*n) ~Ed

if 2~n ·21 t y then t else y(n) 2..e y(2*n+l)

t:.1:':!n (5) will produce the same output as the code

(10) w = y; x = I y;

(while if (x/2} ~ 0 then ! else w(x/2) !it w(x))

~w(x/2), w(x)> = <w(x), w(x/2}>;

end while~

It is ec1.sily seen using arguments like those which are given

abc>ve that the code

(ll) w = y(l:1)1 z n y(2:);

(while z ~ ~)

w = minbot w;

w (i w+ l) ..,.. z (1 } ;

end while,

:ce.:Jlis::::s the transform.ation w =-• mir~ot y. Hut (9) (with w

2u.bsit.1..\ted for y) is E. continuing asse1~tion c.f (11}. Thus

-.r~·u.··d.n {12.) the code (10) can be used to re.a.lis(1 the mint.et

w ,: y { 1 : l) ; z :::. y (2 d ,
{v?hi le z ~ !_l_u:~t)

X = f W;

(while if

cl

!cl:n.d while;

w (# w+l) = z {1);

z = z {2:) ;

end while;

We have seen that any vector y = !!!!,nbot z constructed by (5),

or by (8) when (8) is equivalent to (5), must satisfy (6).

Hence (6) will be a continuing assertion of the until loop

of (2) if (6) is true on entrance to this loop; which can

be secured by modifying (2) slightly, to make it

{13) u = ~ult; y = minbot v;

(until y ~ nult)

y = minbot y;

u(fu+l) = y(l);

y (1) = y (ty);

y(,rry) = O;

end until;

Then in 0.3) we can realirie minbct in its efficient form (8)

inside the until loop of (9), and i.n its_ general form (12)

outside t.his loop. Making the substitutions implied by this

remark, and eliminating a few tmnecessar.1 variables, we obtain
the following code:

(14) u = nult;

y = v(l:l); z ~ v(2:);

(while z ne ~u~~);

X.: f Yi

(while i.£ {:</2) -~ 0 then

<y(x/2), y(x)>

end while;
y (i y+ l} :: J; { 1) t

z:::z(2:);

•~nd while~ ·

(while y !~~ ~lt}

w = y; x = 11 fixedup • f;

(while 2 * x .te i w ·and not fixedup)

n = x;
x = if (2*n+l)· ~ t w then 2*n

else if w(2*n) 9.e w(2*n+1j tlwn

2*n el~~ 2*n-:-1r

if w(n) ie w(x) then fixedup = t; eiss

<w(n), w(x)> = <w(x), w{n)>.:;

end while·;

u(tu+l) = y(l};

y(l) = y(i y);

y(t y) = Q;

end while;

Additional improvements, having essentially the nature of

cor:.v':'mtional optimisations, can now be applied to (14} to

prod-;ice heapsort in its ordinary fo:nn. The ~ain

observation required is that all the vectors appearing in (14)

can be represented as subsections of one single vector.

Applying some of transformations which this observation makes
\

possible and a few convimtiona.l. optimisations in addition

W€! obt·ain heapaort in its final form:

nv = f; v:
ny = 1; ;·• v(1:ny) will represen1: y1

v(ny -J· 1_.; will be z ,~;

(while ny tt. n-:/)

X"" ny;

(whi!.~; i,f (x/2) ~'.l tJ then f els-~ ·v(:-\/2) 5t v{x)~

,v(x/2), v(x) > ,.-., <v(x) 11 v{x/2} >::

end while;

(ny = ny + l;

l)

end while ny:

/* now y will be v(1:ny)

and u will he v {ntt+J:) ir. reverse o:cde,: * /
(while ny ~- O}

x = l; nyo2 = ny/2i

(while x ·.9.~. nyo2)

n = XJ

x " if {:2*n+l} ~ ny tb.t?n 2*n

else if v(2*n) ie v(2*n+l) then 2*n

else 2*n+l;

if v(n) .Ct!l v(x) tb.en quit; else

<v(n), v(x)> ~ <v(x), v(n)>;;

end while;

<v(l), v(ny)> ~ <v(ny), v(l)>;

ny = ny - l:

end while;

I

Jn the (,rdinary informal senfie which attaches to the

word 1 proof', e.g·. in connection with proofs publi.shed in

mz:thematical journals, we may claim to have proved the

progrru-:1 (13) to be correct. Of coux·se (13) m,3.y well be

i:ncorrect anyhow, since we have given only an informal proof

of its correctness, and it is en.tir.el~• pcs.sible either that

scl!'.e roisp:t·int has intruded iti;.elf into the text either of

t13} or of some one of the program texts which led up to (13) ~

or that some minor logical error ha.s come into either the
explicit or the implicit part of our reasoning. Gen.er,?..lly

speaki.nq, we are only guarantrc:ed a9ainst malf-i.:mcti.oni.ng of

a. proqra.m which has been °prcved' ccrrect if its corn!ctness

proof :1as either b,.?en generate-la by an automaton or stated

in a fornml lan9uage and ,,er:i.fi~d by an automaton Without

autom.3 d.c ve ri f jc.ation, no stronger: guarant2e -attaches t.o

a proof of prog·ram correctness t:han attaches tci mathe:Mo:tica.~

proof generally, to wit, that the reader, by maiing 1 appropriate

small emendations', can very pr0bably correct any erro=s

which tl1e proof may contain. In p::::-act.ical terms, this is

net a better guarantee than that which atta.ches to programs

developed and debugged in the ordinary way. Of course, a

cr.:rrectness proof for a program P serves to 'double-check' P

Jn much the same way as would the developn1ent of a very

careful set of comments for P. Moreover, adherence to the

mathematical rules of proof will generally result in checks

which are particularly exhaustive.

What then is the role which proofs of program correctness

can be expected to play in the development of programming

technique? In confronting the question, it should first of

all be noted that co.rrectn.ess proofs developed for existing

algorithms will generally be mathematically uninteresting.

Indeed, as has been observed in section 1 above,an algorithm's
annotated determining tree, from which the algorithm is

produced by what is an essentially routine process of manual

compilation, includes propositions which together constitute

a proof of the algorithm's correctness. To prove the algorithm

correct is therefore only to make explicit an argument which

the algorithm's inventor may have left implicit; this may be

a valuable expository service, but it will generally not in­

volve anything that can claim to be a new mathematical dis­
covery. The problem of proving programs correct is therefore

a p:.:-oblem of pragmatic character, namely that of developing

automatic or semiautomatic systems which will allow purported

p,:-oof!:> to be stated formally and chacked automatically, and which

w11:,. lighten the heavy b,Jrden of preparing. correctness proofs,

esp1~cially for very large programs, automat.i.cc.lly g'=nerat.ing

rm1tine proof details. 1!,t the present time, we are far from
pcssessing proof-generating algorithms capababJe of generating

proofs of a length or complexity comparable to that sketched

a.':iove iri. connect:i.on with the heapsort algorithm; t.hus a proof

verification system is in fact all that can be hoped for as

u

c1, ~·elatively near··t.2rm possibiU.ty. To b,"! practical, such

a sy.stem wi:1 have to hc.ndle assertions written in general

set theoretic terms and understand _the proposi tio!.al im··

plicati.ons of a wic.e class of program tra.nsfo1.1nations. It

is particularly essential that a correctness-ver.ificati.on

system -3fford its use:r a large measure of stc...bilit~/, making

it unn·~cessary for him to readjust the whole of a proof

each time some :modest adjustment is maEl.e in the algorithm

wh.ich he is working. 'J"·o develop such a system at the p.::-esent

time is a formidable task. Stability will of course be

enhanced if algorithms are stated in a la.nguage of abstract

character in which many incidental, implementation-related

details are suppressed. We therefore assert that the de~

velcprnent of correctness-proof techniques to a level of
practical utility will be closely bound up with the (1evelop­

ment of high level languages and of met.hods for the aut-::;matic

optimisation of these languages.

3 • S ununary •

For emphasis, we repeat our main point.: a progJ:·am ? c.r.i.ses from

the application of optimising transformations to a defining

rubble R. Fragments of two types will be found in rubbles

R: elemental fra::5ments, which directly define some desired

element of output or of system response1 and ~athematioaZ

fragments, which def.ine some set-theoretic object or operation

to be realised or constructed efficiently in P. Mathematic~l

fragIPe:nts er~'! .introduced into F either by manual optimi.sation

opera~i~g in a range which lies beyond the reach of autcrn~tic

optimisation procedures, or because the problem described

by R ha3 or can appropr:iately be given some inherently

matheruatical formulation. Progrems are given much of their

structure by the action c,f an optj_miser a~ting on the essentia}:.v

s-~ ruc-!:ure less R; ,,·l1at addj~ tional structure they h,,\ve 'di.l 1

generally derive fr-om structurf> inherent i.n th(".ir input or

We have projected strw,·tureZ.ess prog:ra.1m11.:ng, i.e. tht~

de:v1:-lopment cf syst.ems in which programs ca.n be defined in

rnht-10. form and all else done by an automatic optirniserf as

ar; ider1l. What trh?n is etru~tux•ed p:rogramrrl'i.ng? We offer

tlv? foll,:;wi:--.g de.f inition: strw.ctu.red programJr.,ing is ?. te{;hr.icr,1: 0
'7

UBsful as long ~a optimisers of the power n0eded to support

stn.ict,_treless programming are unavailable, which by impnsing

a.n a.ppropriate discipline helps the programmer to optimise

pro,graro:':l manually while. avoiding the development. of un-

..

C

Xt is suggested in section l that prograr.1s of mathematical

typf} will generally consist of nests of while loops, i:n

whi.c:--;. each loop realises some simple set-theoret..ical trans­

formz-.tion. A debuggin9 aJ.d whiGh displayed the state of

relevant dnta on rmtrance to and ex.it from each of the whi.le-

1oops of a program might he useful._ On entrance to such a

loop, all .data values tc be used within the loop ought to be

:;aved. On exit. from the loop, all data values modified within

the loop and alive on loop exit ouqht to be collected, and

pr.·inted together with the data qath,?red on loop entrance~

;sxcessive output will be avoided if this trace data is only

printed for. the first few entrances/exits made to/from each
loop.

The line of argument set forth in section 1 suggests

that program debugging by the inse.rtion into code of aasartiorw

t,o be checked dynamically m,J.st. always fail to be mathematicall~·

decisive. Indeed 1 the full set of assertions constituting

the proof that a program fr; corr-ect will gene~olly ma};e

refere:ict~ to at lGast a few exce·2d::i..ngly large c,k:iject.ti, i;n1~

possible to calculate explicitly.

A proof of t.~ic: c,:,rrt";.ctne:as ,;:;;f lwap1:u:i1':~ was fi::r:st given hy
R.a}.ph I,o:ndon in Proof' of o:lom:•{tbus.' c,: l'HH>i i-:ind of certi-f,:a,:ztion
(. " + · ,:, • t · ··· A 1 • · "- 2 L ,. r- ~ r:. ~- "O •1T ':!' ' "'~ ,-. .. i: 1-:, 5· ·r '"" ·· /.,,./Y, •. ·l-)1-CC: ·1✓ on. (1J ,vfJ0?:'1. r;nr:~ ~,.:i ~·11.t,t.; .. , i,' v). ,_,t:1.,, .• L'l. • ·'t ~ ,.\,.~.e
19·,o, pp. 371 .. ·373. 'Ite proof ,::ff.t,r,~d <'~bove is, of l"::Ourse ve:ry
:".n.1c:h Like Lo;-:do:rd n, but our intent is: Eomewhc,t diffe:rent from
his si nee h~: aims t:0 annotate an ~1:>dsting cn1e ul1.c>:cea~ w,~ haVE.'
b~?!er: 2;.t. painr; tc, i~mpbo.s::i.r:;e thl:: g·uid~.nq role which an inpJ,icit

· p:rec:f plays :Ln the genesis of an c.l ·Jo:t:i thm. F\Jj.'.' a good recent
su:c-.rr:ry of literature on program ;:::cr~<1ctne.sc:: p3·,.x:-f;:; ~ ~H:'-e t,ondor:. 1 ~'?.

The Ciirrent 5'tate of P~oving· .P2°,.,:J1•a?t:J Cor'f'•::oL !'rG,::,. ACM 2Sth
Annjversay Conference, Au9ust 19i'~.

