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Most of the talks at this informal s~posium on optimisation 

of high level languages will concern SETL optimisation. This 

introductory lecture aims to describe and project the 

optimisation effort which the SETL group is now beginning, 

and to make a number of general points which put our present 

work and planned effort into perspective. 
.. 

The optimisations which can profitably be applied to any 

programming language L (whether this be FORTRAN, PL/I, or SETL) 

fall naturally into two categories. Some optimisation problems 

are artifacts of the language, in that they 
depend in a relatively sensitive way on particular details 

of Land would not arise had certain featuies of L 

been defined differently. Other optimisations are basic, 
in that they will necessarily arise in connection with any 

language of roughly the same level and general nature as L, 

whenever such a language is translated into a language of 

lower level. To illustrate this distinction, we note that it 

is the declaration-free nature of SETL which makes it ne­

cessary to analyse a SETL program to Aiscover the types of 

the objects which it uses. Had type declarations been 

included in the specifications of SETL (which would have 

led to a language of somewhat different flavor, but not to 

an essentially different language) optimisation by typefinding 

would have been unnecessary. Similarly, copy optimisation 

is necessary in SETL because consistently value-oriented 

semantics have been specified for SETL (as for APL). 
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Had value oriented semantics been insisted on less firmly, 

and some of the responsibility for the insertion of object­

copying operations left to the SETL user, copy optimisation 

would have been a much less important part of the SETL 

. optimisation problem than it actually is. For this reason 

both the typefinding problem and the copy optimisation problem 

may be described as artifacts created by particular details 

of the specification of SETL. In contrast, optimisation 

of SETL programs P by choosing concrete data structures 

which efficiently represent the abstract objects appearing 

in P is an inherent problem bound to arise whenever a language 

of the level of SETL is compiled down to a language having 

roughly the level of PL/1. 

We note that even the optimisations which we have 

classified as artifacts of a language's definition 

are worth study. By developing methods for handling 

optimisation problems of this type, we oan hope to learn how 

to treat more central and fundamental problems. Moreover, 

contingent problems are apt to be easier than fundamental 

ones, since knowledge of the declarations or slight redefinitions 

of language which would cause these problems to disappear 

gives us a valuable clue concerning the global information 

which needs to be gathered if they are to be optimised away. 

For this reason, to redefj.ne a language in order to eliminate 

(soluble!) optimisation problems is not necessarily a terribly 

worth-while undertaking. Optimisation problems will certainly 

arise in the treatment of any language which is not simply an 

assembly language; slight language redefinitions can postpone 

but not eliminate these problems. 
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r.At any rate, the problem of data structure choice is 

certainly central to the question of optimisation of programs 

written in a language of very high level. Such programs in 

general, and SETL programs in -particular,can be considered 

.to represent algorithms as they exist before the detailed 

data structure choices which are required for algorithm 

realisation in a language of lower level (such as PL/1 or 
ALGOL 68) have been made. It thus falls to a SETL optimiser 

to choose both the data structures which will represent 

the abstract objects of a SETL program and the code sequences­

which will realise the abstract operations to be performed 

on these objects. Ideally, these choices should be made 

automatically using facts collected during analysis of a 

SETL text to be translated. It is seen however that some 

parts of the information relevant to data structure choice 

(such as the frequences with which certain operations will 

be executed, or the expected size of certain data objects) 

are in fact not deducible by an optimiser which is given 
the text of a program and nothing else. Faced with this 

obstacle to fully automatic optimisation of SETL, one may 

decide full back on a semi-automatic scheme, in which an 
optimiser works both from the text of an algorithm and from 

supplementary set of hints or declarations, which we might 

imagine to be roughly analogous to the optional•frequency 

statements' of an old version of FORTRAN. Note however 

that a satisfactory semi-automatic optimisation scheme is 

characterised by the fact that the extra information it 

requires supplements the text of algorithm as this exists 

in pure SETL, but does not imply anything more than light 

rewriting of an original SETL text. 
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If to make them efficient programs must be extensively re­

written, we have a scheme for compiler.;..assisted manual 

transcription rather than a declaration-assisted optimiser. 

To choose data structures and code sequences which 

efficiently realise more abstractly stated algorithms is 

at present a very central part of the programmer's work. If 

we are able to sterotype this process of choice and make 

it automatic we will have taken a major step toward the 

realisation of 'automatic programming'. 

On the other hand, if investigation shows these choices 

to be highly varied and not subject to regularisation, then 

programming may for a long while remain as much a manual 

endearour as mathematics. Note that in attempting to re­
gularise the process of data structure choich '(-1e do not ask 

whether all, or even many, of the data-structure related 

decisions actually made by an experienced programmer can be 

duplicated automatically. Rather, we ask whether we can find 

some rather narrow subfamily of the family of all possible 

data structure choices, doing this in a way which guarantees 

that some choice in our subfamily is an adequate, replace·· 

ment for any choice which a programmer is likely to make •• 

If this can be done, we can regard the remaining devices used 

by programmers as irrelevantly personalistic variations 
which complicate the process of coding without really improving 

ite The situation which we anticipate may be compared to 

that encountered in translating a language of the FORTRAN 

level down to machine level. An assembly lan0uage programmer 

will assign registers to variables in highly varied ways; 

but the quite sterotyped action of a register allocator is 
seen to produce code which is just as good, and this allows 

us to consider much of a machine level programmer's activity 

as a process of personalistic, and hence ultimately 

undesirable, variation. 

4 

c· 



SETL-135 

Concerning the processes which enter into data structure 

choice we are still uncertain. What infonnation does a 

programmer use in 9hoosing cata structures, and how 
does he use it? Although some of the talks to be given 

• later today will begin to illuminate this question, a large 

part of our answer must still be~we do not know. How then 

can this question be approached? One important initial 

line of approach is to make a crudely empirical case-study 

of.the issues arising in data structure choice. For this, 

one requires a source language of high. level (in our work 

we use SETL), and a target language of lower level into which 

it is to be transcribed (for this purpose, we shall probabl¥ 

be using a language of a vaguely PL/1-like semantic level, 

but one which provides a garbage-collected memory millieu: 

this language has provisionally been designated as GLITTLE.) 

Some more specifically applications-oriented language than 

SETL might be used as source language in such an endeavour; 

however, SETL can claim as an advantage both the fact that 

it is quite general and the fact that it is a language directly 

appropriate for writing the very optimisation algorithms 

which one aims to develop. 

Once having chosen suitable source and target languages, 

we pursue our empirical study by taking a representative 

variety of algorithroB written in the source language and 

translating them manually into equivalent but efficient 

algorithms in the target language. We aim to do this as 
systematically as we can, and in a highly 'self-conscious' 
way. It is a good idea in translating a program P to work 

from an explicit list of the objects appearing in the source 

program, and to note carefully all facts concerning.the 

l; nature of each such object O, the way in which it is used, and 

the relationships which O may bear to other objects appearing 

in P, which are significant in selecting ors rcprcsent~tion at 

the lower lever of language. 
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It is also well to aim at a trans~ription of P which1 while 
eificient, is as close to Pin abstract structure as is 

possible. By noting the facts which repeatedly appear relevant 

when this process is applied to program P, we take a first 
essential step toward mechanising data-structure choice. 

In FORTRAN, a similar step was taken with the observation 

that in doing a careful allocation of registers a program.~er 

will make use of everything he knows about the live/dead 

status of variables; this was the crucial observation which 

made optimised use of registers· possible. 

Deeper initial observations must be made in order to 

get well started with the more complex problem of automatic 

data structure choice. A preliminary study of examples 

highlights some of the factors governing such choice. To 

know the type of each of the objects appearing in a SETL program 

P is important. It is also important to know any relation­

ships of inclusion and membership which can be shown~ to 

persist throuthout the execution of P. We will also want 

to know the p".ttern in which operators 9..E. are applied to objects, 

arid, if. necessary, to trace this pattern of operator-to-object 

application through all chains leading from the initial creation 
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of x, through any statements inserting x as an element or component 

into a set or tuple, through later extractions of x from such 

o set or tuple, up to the point at which the operator~ is 

ultimately applied to the body of x. As such information 

becomes avail.able to us we come into position to choose 

special representations for x. Note for example that if x is 

known both to he a set and to be a subset of some other set y 
appearing in the same program P, then we do not need to 

maintain the standard SETL representation of x~ but can simply 

associate one extra bit with each of the elements of y, and 

use this bit to indicate whether a given element of y also 

belongs to x. 
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This technique can be used directly if x is never made an 

element of a still more compound object; if,on the other 

hand,x is made pa~ of a compound object c, then the bits 

which flag elements of x must be ·collected into a bit-vector 

which. can be·inserted into c in lieu of x. If x is used 

· only in membership tests and to fo.r:m unions and intersections, 

then a pure bit-vector representation of x may be adequate. 

However, if iterations over x are performed, and if x is 

neither a very small set nor a very large part of y, we may 

wish to use both a bit-vector and a list of the elements of 

x to represent x. 

Although. fragmentary, the preceeding reflections do 

begin to indicate the way in which the choice of representing 
structures grows out of a programmer's knowledge of facts 

concerning the various objects which appear in an abstract 

() algorithm. Once we have defined the class of facts which 

ll 

will enter into the data structure choices which we 
hope to make automatically, our problem becomes that of 

building up globa+ program analysis algorithms capable of 

establishing these facts. We offer the hypothesis that 

when we know what information is wanted, it will not be 

terribly hard to devise algorithms capable of collecting 

this information. Indeed, the material to be presented later 

today reveals the first outlines of an analytic approach. 

We also surmise that carrying out a full measure of automatic 

analysis will remain necessary even if one aims to build not a 

fully automatic, but only a semi-automatic or an interactive 

optimisation system. Only after extensive program analysis 
has narrowed an initially very large family of possibilities 

down to a set of two o:t' three crucial choices can as optimiser 

system either accept hints stated at a reasonable dictional 

level or emit sensible questions. 
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We therefore see a semi-automatic or an interactive optimiser 

as a automatic optimiser which reliei on its user to supply 

a few final .facts, and not as a very different, easier to 

program. kind of system. 

It is worth making a few more specific remarks concerning 

the analytic parts of an optimiser system. These routines are 

in effect specialised theorem provers which prove facts about 

programs. But, in contrao.istinction to some of the other 

types of program-related theorem provers which have been 

considered in the literature, they operate in a 'high density' 

rather than a 'low density' range, i.e. they 

Prove numerous small a.nd easy facts concerning programs P 

(such as the fact that the values of one set valued variable 

s 1 are subsets of the values some other s 2 ) rather than 

proving one or two big, hard facts concerning P (such as 

correctness and termination). For this reason, it may be 

better to call optimiser-associated program analysis routines 

fact gathe~ers rather than theorem pravers. We can put this 

comparison somewhat differently by considering the technical 

nature of the theorem provers which are employed by program 

analyser/optimisers on the one hand, and by program-correctness 

verifiers on the other. Theorem proving programs fall into 

two main families: on the one hand, those gener~cally similar 

to the original I geometi.-y theorem pro·ver' of Gelernter; on 

the other hand, those belonging to the resolution group. 

Provers of the. first kind proceed very cautiously in generating 

objects not almost explicit in the situations with which they 

are presented. This limits very significantly the space of 

r;ossibili ties which such a prover needs to explore, c::..nd makes 

it possible for such provers to generate facts using what is 

essentially a transitive closure method. 
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Provers of the second kind are more general, and in principle 

capable of reaching out much further from an initially given 

set of hypotheses, largely becuse they have available, and are 

prepared to use; constructor mechanisms capable ~f generating 

.all the objects of some full 'Herbrand universe'. However, 

their very generality confronts provers of the second type 

with the problem of searching rapidly growing, potentially 

infinite sets of possibilities, and at the present time 

provers of this second type generally founder ~midst multitudes 

of unexplored possibilities. 

Fact-gathering analysis routines associated with program 

optimisers can be expected to use the limited method of 
2 proof by transitive closure• rather than the more general 

'resolution' method. This observation is certainly valid for 

all the pro·gram analysis routines which will be described in 

the talks to follow. These routines have another noteworthy 

characteristic in common. Each is built around some 'algebra' A 

of properties or relationships upon which SETL programs P 

act symbolically in a manner homomorphic to the detailed 

action of Pon its environment during actual execution. 

All these algebras are finite enough for the symbolic action 

of Pon A to stabilise after finitely many steps, which 

implies that the interaction of P with A is a matter which can 

be fully worked out at compile time. In implementation 

terms, such algebras A are represented by medil.L'n to large 

tables whose seperate entries describe the action of each of 
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the primitives of the language L to be analysed (in our case SETL) 

on the symbolic entities of A, Such a table defines the basic 

'knowledge' concerning L which an analysis algc,ri thm .. will 

have; a suitably structured process of transitive closure, 
almost common to all O\.lr analyses, distributes this knowled9e 

l_) in a suitably global way over a program to be analysed. 
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These reflections emphasise thP. very large part which. an 

understanding of what we are looking for is apt to play in 

our total approach to the problem of program analysis. 

It is worth observing that a similar approach, i.e. 

analysis of a program P by symbolic compile-time application 

of P to the elements of an associated algebra, emerges in a 

recent IBM technical report (Yorktown Research) by Gernot 

Urschler. 

Certain of the most basic algebras A used in global 

program analysis, as for example the Boolean algebra of 

bitstrings used to determine operation redundancy, basic 

data-flow relationships, and variable live/dead status., 

have· special properties which allow the action of Pon A 

to be calculated in just a few iterations. For certain of 

the other algebras A to be described later today no such 

principle is available, so in working ·out the action of P 

on these A we are forced to use algorithms which simply 

iterate over the control or data flow of P until our analysis 

stabilises. Perhaps it would be better to say that,knowing 

no better algorithm at the present time, we use a crudely 

iterative technique in our an<\lysis. This latter formulation 

emphasises the fact that i-n the present primitive state of 

our und~rstanding of many of the optimisation processes to 
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be described today, we are concerned more with the specification 

cf some algorithm c:apable of deducing important program-related 

facts than with the choice of efficient fact-gathering 

algorithms. However, it is to be expected that improvements 

of our algorithms will follow rapidly upon their initial 

ntatement. 

C 
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We have emphasised that optimiser-associated programs 

analysis routines are bound to search for numerous small 

and easy facts concerning programs rather than Eor de8per 

but much less easily established facts. Indeed, the difficulty 

which an automatic theorem prover experiences rises with 

immense rapidity as the depth of the problems presented to it 

increases; hence in optimising it is only p~ofitable to 

search for facts which can be routinely established. 

Generalising, we can assert that at the present time automatic 

theo:-em provers are only lik~ly to apply sucessfully to 

problems which the mathematician can regard as 

routinely soluable,i.e., problems for which general approaches 

are known and for which a satisfactory approach can be 

deduced in a reasonably straightfozward way from the problem 

itself. It is worth noting that programming itself has thts 

c·:1 same character: programming begins with what mathematics 

considers to be a problem.'s solution (i.e. with an algorithm 
formulated in general outline),and the thought processas 

which programming involves have (at their best) the character 

of systematic elaboration rather than of discovery. The 

characteristic difficulties of programming arise from the 

fact that the programmer is forced to work for extended periods 

at complexity levels close to the maximum thresho1d of 

sustainable complexity, which in~vitably introduces errors 

into his product, errors whose removal is a very large part 

of his actual work. From this definition of the process o.f 

programming we conclude that it should be subject in large 

part to auto~ation. More specifically, it should evegtually 

be possible to build systems which accept abstract fonnal 

process definitions (written at roughly the SETL level, or at 

a level somewhat. higher) as input, and which are theuselves 

responsible for the routine but higt-complexity steps of the 

(__ programmin9 process. We expect however that a system of this 

kind will be capable of making only routine but not deep 

dedi..:ctions 1 
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so that the input text presented to such a system will have 

to describe every mathematically essential aspect of 

each program which the system is to develop. 

Similar considerations apply if we attempt to define 

· the notion •programming language'. If Land L' are notational 

systems and if Lis more abstract than L' but can be translated 
into L by a proc~ss which makes use only of routine deductions, 

0 

then we may say that L and L • are related as higher and lo·wer levels 

of programming language. On tn,e other hand,if reduction of L to L' 

is mathematically possible but requires the deduction of 

deep facts, then L may be a useful mathematical system but 

is not really a programming language compilable into L. 

By sophisticating his source language to a point at which it 

can only proceed by making deep deductions, the designer of 

a system for automatic programming can easily b~ing himself 

to shipwreck. 

Deep, hard-to-prove logical facts are publishable 

mathematical theorems. If we accept the assertion that 

automatic theorem provers will for the present only be able 

to prove much more superficial results, we must ask the 

question: :.n what applications are we likely to find use 

for masses of specialised and relatively superficial facts? 

Various possibilities suggest themselves. Optimisins translators 

between levels Land L' of language require such facts. 

Data base systems may eventually incorporate dynamic al3orithms 

which minimise the size of the search gener2tcd in res?onse to 

a quary, and dynamic optimisers of this type may come to 

have fact-gatherers as components. Data bases of certain 

types car: probably be compressed by storing only some of the 

more fundamental facts relevant to a given area and leQving 

others to be obtained by deduction~ and routin1:ly deduced 
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information would clearly be useful in such a system. Finally, 

we note that there are a few ,situations in which the outcome 

of a large set of routine but tedious deductions can be 
directly useful to a person. Interactive algebraic manipulators 

_are typical of such applications. 

The fact-gathering processes.within an optimiser are 

inescapably global in character. The data which these processes 

collect must ultimately be cast into some suit.ably localised 
form, since these facts must ultimately be used by a code 

generator which we expect to act in 'peephole' fashion. 

However, data structure choices have global implications, 

and must be made coherently for the whole of a program. 

Thus only after global data structure choices have been made 

can we expect code generation to become a problem treatable 
locally. Exactly how to treat the global interactions 

which will confront us in making these choices is a new and 

nontriv:i.al problem, and net necessarily one which can be 
wholly absorbed into the design of the fact-gathering process 

which preceeds data structure choice. 

Many of the algorithmic investigations to be reported on 

later today have the development of _a comprehensive SETL 

optimiser system as their·ultimate goal. At present, we 

expect this goal to be reached via the followina sequence of 
steps. First we must complete the work whose earli0st phases 

will be reported on today: the specification of numerous 

seperate optimisation algorithms, essentially one for each 

major class of program-related facts to be gathered. Next 

these seperatc algorithms must be integrated into a design for 

.a comprehensive SETi... analysis system; to prepare th i.s sysb:'rn 

f.or implementation, we n,ust write it out in SETL. At this 

( ' point, implementation proper will begin. 
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The next step of actual implementation will be the development 

of a progra.'11 to translate SETL source code into s0me appropriate 

intermediate text, probably resembling the 'quadruples' 

used as input to A. Tenenbaum's typefinder. This 'translator 

can be obtained by modifying the present SETL parser. Once 

we have a source of intermediate text we will be able to 

debug the SETL text of the comprehensive analysis al9orithm, 

thus making a SETL analyser available in a first running 

version. By attaching a relatively simple back end to this 

analyser, we will be able to use it as a program annotator; 

used in this way, it will simply attach the facts which it 

gathers to the SETL texts presented to it for analysis. By 

running a variety of texts through this annotator, we will 

be able to assess the completeness with which it uncovers 

potentially available facts, and to modify it to achieve 

greater completeness if necessary. Once a relative exhaustive 
fact-gathe~r is in hand, a detai.led data-structure choice 

algorithm can be designed ~nd developed. Our last design task 

will be the definition of a peephole optimiser capable of 

usir.g the results of all the preceeding analyses to gl~nerate 

good LITTLE code. Finally, all the algorithms of the rather 

extensive collection which has just been sketched will have 

to be realised in production versions, prob2bly using GLITTLE. 

All this clearly adds up to a major undertaking, but hopefully 

one that we can carry through., and hopefully one that. by 

doubling or tripling the efficiency cf SETL wU. l move it into 

a performance range in which it can be of wide appeal to 

~ substantial body of users. 
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