
!

0

SETL Newsletter t 135
lntroducto·ry tec·ture at ·the

<

June· ·2a· •· ·rnform:al QPtimi•sat•ion symposium'

J.T. Schwartz
July 1, 1974

Most of the talks at this informal s~posium on optimisation

of high level languages will concern SETL optimisation. This

introductory lecture aims to describe and project the

optimisation effort which the SETL group is now beginning,

and to make a number of general points which put our present

work and planned effort into perspective.
..

The optimisations which can profitably be applied to any

programming language L (whether this be FORTRAN, PL/I, or SETL)

fall naturally into two categories. Some optimisation problems

are artifacts of the language, in that they
depend in a relatively sensitive way on particular details

of Land would not arise had certain featuies of L

been defined differently. Other optimisations are basic,
in that they will necessarily arise in connection with any

language of roughly the same level and general nature as L,

whenever such a language is translated into a language of

lower level. To illustrate this distinction, we note that it

is the declaration-free nature of SETL which makes it ne­

cessary to analyse a SETL program to Aiscover the types of

the objects which it uses. Had type declarations been

included in the specifications of SETL (which would have

led to a language of somewhat different flavor, but not to

an essentially different language) optimisation by typefinding

would have been unnecessary. Similarly, copy optimisation

is necessary in SETL because consistently value-oriented

semantics have been specified for SETL (as for APL).

SETL-135

Had value oriented semantics been insisted on less firmly,

and some of the responsibility for the insertion of object­

copying operations left to the SETL user, copy optimisation

would have been a much less important part of the SETL

. optimisation problem than it actually is. For this reason

both the typefinding problem and the copy optimisation problem

may be described as artifacts created by particular details

of the specification of SETL. In contrast, optimisation

of SETL programs P by choosing concrete data structures

which efficiently represent the abstract objects appearing

in P is an inherent problem bound to arise whenever a language

of the level of SETL is compiled down to a language having

roughly the level of PL/1.

We note that even the optimisations which we have

classified as artifacts of a language's definition

are worth study. By developing methods for handling

optimisation problems of this type, we oan hope to learn how

to treat more central and fundamental problems. Moreover,

contingent problems are apt to be easier than fundamental

ones, since knowledge of the declarations or slight redefinitions

of language which would cause these problems to disappear

gives us a valuable clue concerning the global information

which needs to be gathered if they are to be optimised away.

For this reason, to redefj.ne a language in order to eliminate

(soluble!) optimisation problems is not necessarily a terribly

worth-while undertaking. Optimisation problems will certainly

arise in the treatment of any language which is not simply an

assembly language; slight language redefinitions can postpone

but not eliminate these problems.

2

c,

SETL-135

r.At any rate, the problem of data structure choice is

certainly central to the question of optimisation of programs

written in a language of very high level. Such programs in

general, and SETL programs in -particular,can be considered

.to represent algorithms as they exist before the detailed

data structure choices which are required for algorithm

realisation in a language of lower level (such as PL/1 or
ALGOL 68) have been made. It thus falls to a SETL optimiser

to choose both the data structures which will represent

the abstract objects of a SETL program and the code sequences­

which will realise the abstract operations to be performed

on these objects. Ideally, these choices should be made

automatically using facts collected during analysis of a

SETL text to be translated. It is seen however that some

parts of the information relevant to data structure choice

(such as the frequences with which certain operations will

be executed, or the expected size of certain data objects)

are in fact not deducible by an optimiser which is given
the text of a program and nothing else. Faced with this

obstacle to fully automatic optimisation of SETL, one may

decide full back on a semi-automatic scheme, in which an
optimiser works both from the text of an algorithm and from

supplementary set of hints or declarations, which we might

imagine to be roughly analogous to the optional•frequency

statements' of an old version of FORTRAN. Note however

that a satisfactory semi-automatic optimisation scheme is

characterised by the fact that the extra information it

requires supplements the text of algorithm as this exists

in pure SETL, but does not imply anything more than light

rewriting of an original SETL text.

3

SETL-135

If to make them efficient programs must be extensively re­

written, we have a scheme for compiler.;..assisted manual

transcription rather than a declaration-assisted optimiser.

To choose data structures and code sequences which

efficiently realise more abstractly stated algorithms is

at present a very central part of the programmer's work. If

we are able to sterotype this process of choice and make

it automatic we will have taken a major step toward the

realisation of 'automatic programming'.

On the other hand, if investigation shows these choices

to be highly varied and not subject to regularisation, then

programming may for a long while remain as much a manual

endearour as mathematics. Note that in attempting to re­
gularise the process of data structure choich '(-1e do not ask

whether all, or even many, of the data-structure related

decisions actually made by an experienced programmer can be

duplicated automatically. Rather, we ask whether we can find

some rather narrow subfamily of the family of all possible

data structure choices, doing this in a way which guarantees

that some choice in our subfamily is an adequate, replace··

ment for any choice which a programmer is likely to make ••

If this can be done, we can regard the remaining devices used

by programmers as irrelevantly personalistic variations
which complicate the process of coding without really improving

ite The situation which we anticipate may be compared to

that encountered in translating a language of the FORTRAN

level down to machine level. An assembly lan0uage programmer

will assign registers to variables in highly varied ways;

but the quite sterotyped action of a register allocator is
seen to produce code which is just as good, and this allows

us to consider much of a machine level programmer's activity

as a process of personalistic, and hence ultimately

undesirable, variation.

4

c·

SETL-135

Concerning the processes which enter into data structure

choice we are still uncertain. What infonnation does a

programmer use in 9hoosing cata structures, and how
does he use it? Although some of the talks to be given

• later today will begin to illuminate this question, a large

part of our answer must still be~we do not know. How then

can this question be approached? One important initial

line of approach is to make a crudely empirical case-study

of.the issues arising in data structure choice. For this,

one requires a source language of high. level (in our work

we use SETL), and a target language of lower level into which

it is to be transcribed (for this purpose, we shall probabl¥

be using a language of a vaguely PL/1-like semantic level,

but one which provides a garbage-collected memory millieu:

this language has provisionally been designated as GLITTLE.)

Some more specifically applications-oriented language than

SETL might be used as source language in such an endeavour;

however, SETL can claim as an advantage both the fact that

it is quite general and the fact that it is a language directly

appropriate for writing the very optimisation algorithms

which one aims to develop.

Once having chosen suitable source and target languages,

we pursue our empirical study by taking a representative

variety of algorithroB written in the source language and

translating them manually into equivalent but efficient

algorithms in the target language. We aim to do this as
systematically as we can, and in a highly 'self-conscious'
way. It is a good idea in translating a program P to work

from an explicit list of the objects appearing in the source

program, and to note carefully all facts concerning.the

l; nature of each such object O, the way in which it is used, and

the relationships which O may bear to other objects appearing

in P, which are significant in selecting ors rcprcsent~tion at

the lower lever of language.

5

SETL-135

It is also well to aim at a trans~ription of P which1 while
eificient, is as close to Pin abstract structure as is

possible. By noting the facts which repeatedly appear relevant

when this process is applied to program P, we take a first
essential step toward mechanising data-structure choice.

In FORTRAN, a similar step was taken with the observation

that in doing a careful allocation of registers a program.~er

will make use of everything he knows about the live/dead

status of variables; this was the crucial observation which

made optimised use of registers· possible.

Deeper initial observations must be made in order to

get well started with the more complex problem of automatic

data structure choice. A preliminary study of examples

highlights some of the factors governing such choice. To

know the type of each of the objects appearing in a SETL program

P is important. It is also important to know any relation­

ships of inclusion and membership which can be shown~ to

persist throuthout the execution of P. We will also want

to know the p".ttern in which operators 9..E. are applied to objects,

arid, if. necessary, to trace this pattern of operator-to-object

application through all chains leading from the initial creation

6

of x, through any statements inserting x as an element or component

into a set or tuple, through later extractions of x from such

o set or tuple, up to the point at which the operator~ is

ultimately applied to the body of x. As such information

becomes avail.able to us we come into position to choose

special representations for x. Note for example that if x is

known both to he a set and to be a subset of some other set y
appearing in the same program P, then we do not need to

maintain the standard SETL representation of x~ but can simply

associate one extra bit with each of the elements of y, and

use this bit to indicate whether a given element of y also

belongs to x.

0

SETL-135

This technique can be used directly if x is never made an

element of a still more compound object; if,on the other

hand,x is made pa~ of a compound object c, then the bits

which flag elements of x must be ·collected into a bit-vector

which. can be·inserted into c in lieu of x. If x is used

· only in membership tests and to fo.r:m unions and intersections,

then a pure bit-vector representation of x may be adequate.

However, if iterations over x are performed, and if x is

neither a very small set nor a very large part of y, we may

wish to use both a bit-vector and a list of the elements of

x to represent x.

Although. fragmentary, the preceeding reflections do

begin to indicate the way in which the choice of representing
structures grows out of a programmer's knowledge of facts

concerning the various objects which appear in an abstract

() algorithm. Once we have defined the class of facts which

ll

will enter into the data structure choices which we
hope to make automatically, our problem becomes that of

building up globa+ program analysis algorithms capable of

establishing these facts. We offer the hypothesis that

when we know what information is wanted, it will not be

terribly hard to devise algorithms capable of collecting

this information. Indeed, the material to be presented later

today reveals the first outlines of an analytic approach.

We also surmise that carrying out a full measure of automatic

analysis will remain necessary even if one aims to build not a

fully automatic, but only a semi-automatic or an interactive

optimisation system. Only after extensive program analysis
has narrowed an initially very large family of possibilities

down to a set of two o:t' three crucial choices can as optimiser

system either accept hints stated at a reasonable dictional

level or emit sensible questions.

7

SETL-135

We therefore see a semi-automatic or an interactive optimiser

as a automatic optimiser which reliei on its user to supply

a few final .facts, and not as a very different, easier to

program. kind of system.

It is worth making a few more specific remarks concerning

the analytic parts of an optimiser system. These routines are

in effect specialised theorem provers which prove facts about

programs. But, in contrao.istinction to some of the other

types of program-related theorem provers which have been

considered in the literature, they operate in a 'high density'

rather than a 'low density' range, i.e. they

Prove numerous small a.nd easy facts concerning programs P

(such as the fact that the values of one set valued variable

s 1 are subsets of the values some other s 2) rather than

proving one or two big, hard facts concerning P (such as

correctness and termination). For this reason, it may be

better to call optimiser-associated program analysis routines

fact gathe~ers rather than theorem pravers. We can put this

comparison somewhat differently by considering the technical

nature of the theorem provers which are employed by program

analyser/optimisers on the one hand, and by program-correctness

verifiers on the other. Theorem proving programs fall into

two main families: on the one hand, those gener~cally similar

to the original I geometi.-y theorem pro·ver' of Gelernter; on

the other hand, those belonging to the resolution group.

Provers of the. first kind proceed very cautiously in generating

objects not almost explicit in the situations with which they

are presented. This limits very significantly the space of

r;ossibili ties which such a prover needs to explore, c::..nd makes

it possible for such provers to generate facts using what is

essentially a transitive closure method.

8

()

•l

0

SETL-·135

Provers of the second kind are more general, and in principle

capable of reaching out much further from an initially given

set of hypotheses, largely becuse they have available, and are

prepared to use; constructor mechanisms capable ~f generating

.all the objects of some full 'Herbrand universe'. However,

their very generality confronts provers of the second type

with the problem of searching rapidly growing, potentially

infinite sets of possibilities, and at the present time

provers of this second type generally founder ~midst multitudes

of unexplored possibilities.

Fact-gathering analysis routines associated with program

optimisers can be expected to use the limited method of
2 proof by transitive closure• rather than the more general

'resolution' method. This observation is certainly valid for

all the pro·gram analysis routines which will be described in

the talks to follow. These routines have another noteworthy

characteristic in common. Each is built around some 'algebra' A

of properties or relationships upon which SETL programs P

act symbolically in a manner homomorphic to the detailed

action of Pon its environment during actual execution.

All these algebras are finite enough for the symbolic action

of Pon A to stabilise after finitely many steps, which

implies that the interaction of P with A is a matter which can

be fully worked out at compile time. In implementation

terms, such algebras A are represented by medil.L'n to large

tables whose seperate entries describe the action of each of

9

the primitives of the language L to be analysed (in our case SETL)

on the symbolic entities of A, Such a table defines the basic

'knowledge' concerning L which an analysis algc,ri thm .. will

have; a suitably structured process of transitive closure,
almost common to all O\.lr analyses, distributes this knowled9e

l_) in a suitably global way over a program to be analysed.

SE'rL-135

These reflections emphasise thP. very large part which. an

understanding of what we are looking for is apt to play in

our total approach to the problem of program analysis.

It is worth observing that a similar approach, i.e.

analysis of a program P by symbolic compile-time application

of P to the elements of an associated algebra, emerges in a

recent IBM technical report (Yorktown Research) by Gernot

Urschler.

Certain of the most basic algebras A used in global

program analysis, as for example the Boolean algebra of

bitstrings used to determine operation redundancy, basic

data-flow relationships, and variable live/dead status.,

have· special properties which allow the action of Pon A

to be calculated in just a few iterations. For certain of

the other algebras A to be described later today no such

principle is available, so in working ·out the action of P

on these A we are forced to use algorithms which simply

iterate over the control or data flow of P until our analysis

stabilises. Perhaps it would be better to say that,knowing

no better algorithm at the present time, we use a crudely

iterative technique in our an<\lysis. This latter formulation

emphasises the fact that i-n the present primitive state of

our und~rstanding of many of the optimisation processes to

10

be described today, we are concerned more with the specification

cf some algorithm c:apable of deducing important program-related

facts than with the choice of efficient fact-gathering

algorithms. However, it is to be expected that improvements

of our algorithms will follow rapidly upon their initial

ntatement.

C

SETL-135

We have emphasised that optimiser-associated programs

analysis routines are bound to search for numerous small

and easy facts concerning programs rather than Eor de8per

but much less easily established facts. Indeed, the difficulty

which an automatic theorem prover experiences rises with

immense rapidity as the depth of the problems presented to it

increases; hence in optimising it is only p~ofitable to

search for facts which can be routinely established.

Generalising, we can assert that at the present time automatic

theo:-em provers are only lik~ly to apply sucessfully to

problems which the mathematician can regard as

routinely soluable,i.e., problems for which general approaches

are known and for which a satisfactory approach can be

deduced in a reasonably straightfozward way from the problem

itself. It is worth noting that programming itself has thts

c·:1 same character: programming begins with what mathematics

considers to be a problem.'s solution (i.e. with an algorithm
formulated in general outline),and the thought processas

which programming involves have (at their best) the character

of systematic elaboration rather than of discovery. The

characteristic difficulties of programming arise from the

fact that the programmer is forced to work for extended periods

at complexity levels close to the maximum thresho1d of

sustainable complexity, which in~vitably introduces errors

into his product, errors whose removal is a very large part

of his actual work. From this definition of the process o.f

programming we conclude that it should be subject in large

part to auto~ation. More specifically, it should evegtually

be possible to build systems which accept abstract fonnal

process definitions (written at roughly the SETL level, or at

a level somewhat. higher) as input, and which are theuselves

responsible for the routine but higt-complexity steps of the

(__ programmin9 process. We expect however that a system of this

kind will be capable of making only routine but not deep

dedi..:ctions 1

11

..

SETL-135 12

so that the input text presented to such a system will have

to describe every mathematically essential aspect of

each program which the system is to develop.

Similar considerations apply if we attempt to define

· the notion •programming language'. If Land L' are notational

systems and if Lis more abstract than L' but can be translated
into L by a proc~ss which makes use only of routine deductions,

0

then we may say that L and L • are related as higher and lo·wer levels

of programming language. On tn,e other hand,if reduction of L to L'

is mathematically possible but requires the deduction of

deep facts, then L may be a useful mathematical system but

is not really a programming language compilable into L.

By sophisticating his source language to a point at which it

can only proceed by making deep deductions, the designer of

a system for automatic programming can easily b~ing himself

to shipwreck.

Deep, hard-to-prove logical facts are publishable

mathematical theorems. If we accept the assertion that

automatic theorem provers will for the present only be able

to prove much more superficial results, we must ask the

question: :.n what applications are we likely to find use

for masses of specialised and relatively superficial facts?

Various possibilities suggest themselves. Optimisins translators

between levels Land L' of language require such facts.

Data base systems may eventually incorporate dynamic al3orithms

which minimise the size of the search gener2tcd in res?onse to

a quary, and dynamic optimisers of this type may come to

have fact-gatherers as components. Data bases of certain

types car: probably be compressed by storing only some of the

more fundamental facts relevant to a given area and leQving

others to be obtained by deduction~ and routin1:ly deduced

(

I

SETL-135

information would clearly be useful in such a system. Finally,

we note that there are a few ,situations in which the outcome

of a large set of routine but tedious deductions can be
directly useful to a person. Interactive algebraic manipulators

_are typical of such applications.

The fact-gathering processes.within an optimiser are

inescapably global in character. The data which these processes

collect must ultimately be cast into some suit.ably localised
form, since these facts must ultimately be used by a code

generator which we expect to act in 'peephole' fashion.

However, data structure choices have global implications,

and must be made coherently for the whole of a program.

Thus only after global data structure choices have been made

can we expect code generation to become a problem treatable
locally. Exactly how to treat the global interactions

which will confront us in making these choices is a new and

nontriv:i.al problem, and net necessarily one which can be
wholly absorbed into the design of the fact-gathering process

which preceeds data structure choice.

Many of the algorithmic investigations to be reported on

later today have the development of _a comprehensive SETL

optimiser system as their·ultimate goal. At present, we

expect this goal to be reached via the followina sequence of
steps. First we must complete the work whose earli0st phases

will be reported on today: the specification of numerous

seperate optimisation algorithms, essentially one for each

major class of program-related facts to be gathered. Next

these seperatc algorithms must be integrated into a design for

.a comprehensive SETi... analysis system; to prepare th i.s sysb:'rn

f.or implementation, we n,ust write it out in SETL. At this

(' point, implementation proper will begin.

SE'fL-135

The next step of actual implementation will be the development

of a progra.'11 to translate SETL source code into s0me appropriate

intermediate text, probably resembling the 'quadruples'

used as input to A. Tenenbaum's typefinder. This 'translator

can be obtained by modifying the present SETL parser. Once

we have a source of intermediate text we will be able to

debug the SETL text of the comprehensive analysis al9orithm,

thus making a SETL analyser available in a first running

version. By attaching a relatively simple back end to this

analyser, we will be able to use it as a program annotator;

used in this way, it will simply attach the facts which it

gathers to the SETL texts presented to it for analysis. By

running a variety of texts through this annotator, we will

be able to assess the completeness with which it uncovers

potentially available facts, and to modify it to achieve

greater completeness if necessary. Once a relative exhaustive
fact-gathe~r is in hand, a detai.led data-structure choice

algorithm can be designed ~nd developed. Our last design task

will be the definition of a peephole optimiser capable of

usir.g the results of all the preceeding analyses to gl~nerate

good LITTLE code. Finally, all the algorithms of the rather

extensive collection which has just been sketched will have

to be realised in production versions, prob2bly using GLITTLE.

All this clearly adds up to a major undertaking, but hopefully

one that we can carry through., and hopefully one that. by

doubling or tripling the efficiency cf SETL wU. l move it into

a performance range in which it can be of wide appeal to

~ substantial body of users.

... .,, ,..

14

