SBP?L Newsletter # 145 ' P. Shaw]
. March 1, 1274

" GYVE-oriented Inter-Process Coordination

and Control Features for an Extended SETL, (SETLG)
(Preliminary Notes)

1+ Introduction

This newsletter sete forth an inltial proposal for the
incorporation of GYVE-like capabilities, i.e., facilities
for the coordination and control of multiple parallel processes,
into SETL. The exposition which follows assumes general
familiarity with the GYVE language described in the forthcoming
" doctoral dissertation of its author. .. The system to
be deacribed should provide powerful, sound, and fully protectad
mechanisms for the description of operating systems.

o gummariie the approach which will be explained in
more detaill below: we propose to leave the SETL data types,
aggregates, operations, and procvedures unchanged; to add
keyword and optional keyword syntax to procedures; to add a
new storage class, global, and one new data type,pointex
(to & global object). Global objects will be created and
destroyed explicitly, ard will be referenced by create-returned
peinter's. In the extended system envisaged, all current SETL
data will be process-local, and will ba gargabe collectsd aw
currently; pointer's willi be treated like SETL atoms and thua
will be valid set members, tuple components, etc. In addition,
we propoée to add GYVE MODEz and COMPILATIONs to the extended
SETL system, following the current SETL procedure syniax asg
closely as possible; to perform all protection-checking
. @ynamically, as in current SETL; to onit GYVE aggregates
and to add built-in modes and procedures for GYVE system
objects and operations{which ig alao how they are presented
in GYVE).

will

The resulting language, provisionally designated as SETLG, (f?
be in close conceptual correspondence with GYVE, at least

in regard to parallel process semantics; and operating systems

spec

ified in SETLG should transliterate in relatively mechanical

fashion to GYVE. WNote in this connecticn that SETLG will not

‘réasl

iy be a parfactly general ‘operating system spescificaticn

language', in which description of the totality of ail
conceivable operating systems is facilitated; rather, it will
be made sasy to write systems, functicnally general, but all
‘etructured in the style which GYVE suggests.

- GYVE

The major loss which will be incurred in going from a
to a SETLG version of an operating system is

run-time efficiency. Thig will be balanced by a gain in ease
of use, which of course reflects an underlying dxfference
hatween SETL and GYVE objectives.

2. Syntactic and Semantic Pacilities of SETLG. ' (t)
&, Xeyword and Qﬁtibnallkayword‘Paramater Syntax A

It is useful add the GYVE syntsx for keyword and optional

keyword paramsteré to SETLG, in the following manner showvn in the
following example (where as in GYVE brackets define optional paramie o

wiih

define exacutg(pe) runtime(t) usedtime (ut;

Ireservelimit{rl})i requested resexve(rr)

{porti{ptil [?ri@rity(pr)}‘[messaqa(mzi

fpont(pat]])
. : NS a?er&aptpx&orﬂty(ip)l
“ {interruptmessagaim)]

regalt{x}s

2c srea how useful thiszs ayvatactlec sugaring really le,; coenpars

axecute (PR, 300,ut, ;X2 proopedilt

5

axacuta{ns) 1 n&znaf?ﬁ“} agadiime (ut) reguesied 3

R G o al
TeseTveacyy resal Lo

SETL-145-3

A3 in GYVE we permit the keyword k attached to an optional
procedure parameter to be used within the body of the procedure
as a synonyn for 'the parameter dasignated by k has actuallv
been supplied'.

b. Storage Classes

It is proposed that all of current SETL storage be left
as-is, but defined to be strictly intra-process. Thus, SEYL
storage would correspond to GYVE Local and Private storage—--
except that SETLG objects would, like SETL, be created implicitly,
variable in size, and garbage collected. In particular, thig
means that any current SETL program could be invoked by a
SETLG process.

Enforcement of the intra-process rule will be patterned
after the GYVE enforcement except that it will be dynamic
rather static. The essential aspects of this rule are:
(i) at the implementation level, we must ensure that assignments
to base variables of shared instances are on a rigorous
"by value" basis, no dangerous implementation level pointer
shortcuts being allowed; A
Kii) all process INITCALL arguments must be transmitted "bhy valua®
i.a8., with copving of all data obijects: this approach ensures
that no process is ahle t¢ obtaln access tc the private da<a
of another- process. An alternative technigue of enforcement
of the privaqy rule is to stamp every cbiect with the 14 of
the process which creates it, and to check every refersnce o
guarantee that the referencing proceas is the same as the
creeting process; this scems a lews degirable technigue.

"c. MODES

This key structural mechaniem of GYVE should fit into SETL
quite easily. Pigures lz and 1b below gives a typical GYVE
'MODE'®' example, namsly a "queue” obisci iype, ard Filgurss za and b
show the corresponding SETIS version.

The differences betwsen the GYVE and the SETLG MODE syntax
and semantics may be dascribed as fcllows:

i; Mode herdarx

We pattern the SETLG MODE ayntax aftex the syntax of SETL
proéedures, but with the keyword “mode® replacing 'define'.
¥e include pfovision for psrameters(and alsc keyword parmmetars
as described in Section 1j. Note howavexr that in practise SETLG
MODEs would use fewer parameters than semanticalliy simiiaxr GYVE
MODEe, because some of the parsmeters of GYVE modes are generally
used to state dimensions or string lengths for base variables.
whereas in SETLG we will permit base variables to vary in
iength 1like other SETL variables. The other use of MODE
parametars, which will still be naeded in SETLG, is for the
transmigsion of initial values.

ii. - Creating MODE Instances.

Thie ia done uzing a cre¢ate statement: .

create (mode) in {zeeount) spacelimit (nbytes) set (pointer) [resuls

the result parameter iz optional. Tha 'spacelimit’

parameter, which does not occur in GYVE, defines the total
amount of space, in implementation-defined 'byte units?, which
the mode instance is allowed to occupy. Base data objects

of the instance will zeside in, be manipulated in, and be
removed by .a garbage collector from a block of space never
exceeding this size. Any operation waich would violate this
condition is sald to cause a spaca frult, with consequences

to be defined balow. |

iii. INIT entrdos

GYVE IRIT entries are written
((IRIT)} : BHTRY; BLOCE BYL ERYLY
#ntries of this kind srve alvnve pavearetarissg: they sre

zatematically inveked whan a MODE inetznce is crested, ard gan

2

C

e T]
(-9

SETL“14F"S

relerence thg MODE parameters. SETLG-should provide this
fazility, probably with the syntax

“initislly
blook
and initially, _
like that currently used in connection with SETL procedures.,

iv} ' Base Variables, Events

Here we can use a declaration giving a simple enumeration

‘of base variahla names,e.qg.
base b, in, out, q;

' pifferent modes should be permitted to use the same base
variable names; base variables must be accessible (only) to
the entries of the mode.

In GYVE, an EVENT is a special class of PRIVATE MODE;
objects of this MODE can cnly be declared as base variables
of some other MODE, i.e.. cannct he created by the normally
available CREATE statemant. In SETLG, we propose to declare
variables of type EVENT by statements of the syntactic form

" avente - PP 32,.,.,3!\;
- trEntities of this fype are automatically initialised to an
enpty condition; they are then addressasble by the two primitives

"block e; and wakeup eo;

whose semantics are the same az in GYVE. This convention keeps
" @ach event obiect strictly local to some mode instance. We
then propose to omit the GYVE 'PRIVATE MCDE' construction;

this construction im useful in GYVE foar the data structuring
facility it embodies, hut not appropriate for SETLG, which

like SETL approaches dats gtructures in guite a different way,

MR N T ek
SRV~ 1406

v) '?ntriea ' .o ' (

A syntax like that of the present SETL'define'statement
dan be used, 8.9.,

entry ihsert(e) [resulei{r)];

The use cf "entry™ rather than "define®™ as a ksyword will
help readsbility. The other clauses of a GYVE entry header
are the optional RETURWS and READER clauses. The SETLG
gyntactic convention can incorporate this information into
& keyword, as ,e.g.,

entry p(l);
readerentry a{i);
readerantrvf r(k);

d. Protection. _ | (j?

The most essential element of thae GYVE protection scheme
is that which prevents a pointer p tu & mode instance from baing
agsigned (or otherwise transmitted) to any variable x declared
to ba a pointer having more ‘rights' than p. In SETLG we
propose to provide the same protection dynamicaliy. More
specifically, every pointer p to an instance of mode M will
carry with it a list of all the entriez of M which are accessible
through p. Then or every attempt toc use an entry via p
(in the syntactic form p.z(x) which we take over from GYVE)
this list will be chacked, and if e¢ ie not available through p
the invocation p.e(x) wili e traaied 38 a fatal evror leadlng
to proceass termination., To allow p te be used to create ar_
"pointar p' to the same instsnce ap o but with a shorter list
of entries, wa allow the vonstyvostion p » P{ul,,buren}, whts
Gy a0 @ nAme the entrdes trn p°, il of which wmust 0F coulge
be available as entries to p,

It i8 also convenlent to provide the following primitives for
uge with modes and pointers:

p has .e

returns true or false, depending on whether the entry e is
accessible through p;

® has ¢

returns true or false, depending on whether the mode m has
e as one of its entries; and

P isof m

returns true or falsae, depending on whether or not p points

to an object of mode m. In addition, we allow the operations

' eq, ne for pointers as for blank atoms; and aiso gt, it, ge, Le,
etc., with implementation-defined but consistent boolean values.

GYVE has three protection-oriented mechanisms: accass
rights, sub-aggregate references, and fegtricted members and
entries of compilations. For reasons to be explained below,
we propose to abandon the second of these mechanisms in SETLG,
but to keep the third. Tha accaess-righta mechanism in GYVE has
two zspects: access to entries of mode instances, and
read/write acceas to variables, and especlaily to procedure
parameterz. A mechanism restricting accaess to entries of modde
instances iz essential, and will be provided dynanically in
_the manner explaineid ahowve., PRead/vrite restricticns azre by
contrast mattars of conveniencs and discipline. They can be
provided in the following form in SETLS: 2 procedure pavametex

wmarksd :write, as in

define rout {(xwwrite, . ymead, ©7

ETL -1k

(63}

will be initialised to 2 on procedure entry, cather than heing
initialised from the valus of the corresponding actual argument
(4in tha calling routine}; a parameter marked :read will be
initialisad on epntry (transmission being by value, ag always

in 8ETL), but not tramsmitted to the calling routine on sub-
procedure return. For compatibility with the present SETL
convention the rxule .. applying if nothing is suid will be
iread/write (both read and write privileges), rather thau
iread ag in GYVE.

a. Space Overflow.

Space overflow ig a much more zubstantial problem in SETLS
than in GYVE, since SETLG objects can vary in size in totally
dynanic ways, and since the number of implementation level ‘bytes
required for the storage of any particular SETLG opject wiil
genarally not be obvicus. Whereas in GYVE only CREATE operatlonz
can lead to a space overflow, in SRTLG any numbexr of other
oparstions, e.g., tﬁple ooncatenation, set formation, element
insertion, etc., can require space and hence cause overilar,

To deal with this problem, we propose the following conventicns:

i. The formation of cbjects such as sets and tuples
{of arbitrary size) will be assumed to ks carried ocut in &
nominal ‘system workarea'®, of potentially infinite gizns.
Conseguently, no such operation will generate a spacefaunlt
whila still in progrees {unless the cperation has assigiment
slda-effects; see bhalow.)

ii. Tha instance cr procegs to which an object belongs

will be ’charged? for the space reguired to form @ new object

cudiy wpon, bdat instantanesusly upon, the sesigunent of this

new o2hiject Lo 3 bass variabie oYy Lo oa ioval variable of
tha procses, Any assignmant will he triaveved by ap ooouvneads
of. one of the cperaters '=* or 'is! convention serven

b

nicaly toflocalise’ the polints ac whick & space overflow foailt

& i B gy mdie o Lol $ P . - P B R TIY C e ' PN
in datenty w3, the instance or TEOURED ETOYaEs Snete nr whiow

GAPL 1450

it seems to have occurred will be marked for garbage collection;
this will determine whether the apparent fauvlt is real. If
not., execution can continue. If a fault occurs, the assigmment
which causes it to occur will be suppressed (but side effects
which preceed the assignment in point of time will persist.)
What happens after a space fault will depend on whether or not
an overfiow fuilt'olauac has been attached to the assignment
stacement which gives rise to the fault. Such fault clauses,
vhich must always preceed the terminating semicolon of the
statement to which thay are attached, have the syntactic form

.zmrfIWQzl' !‘2, L W] 'zn) [4

where each &, ims a label, and no more labels are supplied
than are called for in view of the number of '=' and ‘ia’
operators which occur in the immediately preceeding statement.
An example would be

-

a=b<+c 1g a + e roverflow(l,, £,);

Bach label in a fault clause refars to some assignment operation;
and defines the point to which transfer is to be made if an
overflow fault occurs at the assignment to which it refers.

Any of the labals of an overflow fault clause may be omitted
@.9., ve may write :overf&ow(il,,lz) - guch an omission causes
the corresponding overfiow fault to be hendled as a termination.

Hote that vexy similar rules apply te 'existence fauwles®,
i.e., invocations p.e(x) of some entry of an instance which
has been destroyed previocus to sgaild invocation; except that

~ destroy fault clauses are attached not to assignments :but to
" pperations which invoke entries of mode instances, and are

writtan aa

tdastroyadilg

HEL0-345-10

" Mote, ih’connedtioﬁ§§fth the:garbAge collection operation
which preceeds the occurence of s space fault, that every SETLG
value is strictly local to some process or mode instance, i.e.,
none of the implementation level pointers which structure tha
valte point from within an object belonging to ons instance
to an object or object parﬁ‘helqnging to some other instancae.
This isolation is guaranteed by forming a complete copy
whenever an object is passed as an argument from one insténce
or procesas A to another B and assigned to a variable of B.

It is a consequence of this rule that the garbage collection
operation which preceeds a space fault occuring in A only needs
to process the epace belonging to A, and not any larger part
of the total memory area managed by the SETLG system.

.As an aid to the management of SETLG objects of unpredictably
variable size, we provide monadic operators gize, sizel, and
" sizeleft. The size oparator calculates the number of bytes
needed to store a complete, fully independent, copy of ite
argument. The sizal operator‘calculatea the number of bytes
nesded to store an independent'l-level' copy of its argument
{where, e.g., a l=level copy of a set duplicates the implementation-
defined ‘body' of the set, but does not duplicate its elements.)
~ The sizeleft operator can be applied to a process or mode
inaténca, and measures the ampount of free space still available
in it, '

N

C

SETIL~145-11

Figure la: GYVE definition of a'QUEUE'MODE

QURUE:s MODE(N:INT)LIMIT(L:INT):
" DECLS; B: (L) CHAR(N) ;
- IN:INT:INIT(1); OUT:INT:INIT(1); Q:INT;
. FULL_EVENT:EVENT; EMPTY_EVENT: EVENT;
~ END DECLS; :
INSERT: ENTRY(C:CHAR) [FULL(L:LABEL)];
IF Q = EXTENT(B) THEN IF FULL THEN GOTO L;
ELSE BLOCK (FULL_EVENT) ;
END IF; |
ZND I¥;
B{IN) = C;
IN = IN // EXTENT{B) + 17 Q= Q + 1;
WAKEUP (EMPTY_EVENT) ;
-BND ENTRY;
REMOVE: ENTRY (C:CHAR:W) [EMPTY (L:LABEL)];
IF Q = O THEN IF EMPTY THEN GOTO L;
ELSE BLOCK (EMPTY EVENT) ;
END IF;
. END IF;
C = B(OUT); OUT = OUT // EXTENT(B) + i; Q = Q - 1;
WAKEUP (FULL_EVENT);
END ENTRY;
PURGE: ENTRY; Q = O; END ENTRY;
COUNT: ENTRY: RETURNS (INT) :READER; RETURN(Q); END ENTRY;

SIZE: ENTRY: RETURNS ({INT) :READER; RETURN(EXTENT (B})}; END ENTRY;

END MODE;

Figure 1b: Use of 'QUEUE®' MODE
PQ: QUEUE:;

C:CHAR(80) ;

" CREALTE {QUEURE (80) LIMIT (10} } IN(&)SET(EQ}E}SULT(R};

o e

PQ JINSERT({'ABC'); PQ.INSBRI{'CDER"}SULL(L);

- e

PO .REMOVE(C); pQ.REMOVE{C)EMPTY (L) ;

SUTLeL 4502

I = PQ.COUNT;
P PURGE s

" Figure 2a: SETLC version of quene mode.

mode queue (sizelim);
“base buf, sizelimit;
- evente fullevent, emptyevent:
initially
buf = nults sizelimit » sizelin;
end initially;
entry insert{c:read) (resulitixr)i:
if size ¢ gt sizelimit then '
terminate;
¢lse
bmh + ¢>: overfiow(ofl);
wakeup emptyevent;
end if gize; '
ofl: if resuit /* i.e., if ‘result’ parameter is supplisd */ thau
r = valuerepresentingover ficow; return:
elss S
- block fullavents;
end if resuit;
end entry insere;
antyy remeove{v:iwrite) [resnlt{r}l;
if b eg nult then
if resalt then
r = valuereprezentinginderflow; retuin;
elss
block emptyevent;
end if resulr;

&lae
€ o= i)

»
I

and 1§ k-

(-

SETL-145-13 .

end entry remove;

‘entry purge; b = nult; end entry purge;

readarentryf count; return #b; end readerentryf count;
readerentryf sizelim; return sizelimit: end readerentryf sizeiimg
end mode queue;

- Pable 2b: SETLG uses of the queue mode. .

create (queue(40)) in (a) spacelimit(400) set {pq) resultirf;
g .insert('abe’); ,
pq .insert({'abc', 'def'}) result(ok);

o e

"PY .remove(c);

pg .remove(c) result(isunder);

os e

"4 = pg .count;’

pq .purge;

£, Compilations

The GYVE "COMPILATION" object will be retained in SETLG. It is
very convenient for namescoping, and quite useful for protection

(via the restricted members and entries mechanism). Syntactically,

it will be written as

compilation;

/% a list of SETLC definse's and modes */

end [compilation]; '
In GYVE, restricted members and entries of a compilation are
denoted by parenthesizing member, and entry identifiers, such as

P PROC (X211} ;

(P2) : PRCT (I:INT):

%: MODE;

B: ENTRY (I :INT) ;
' {E2): ENTRY (I:INT);

‘“;Tlu '&':' 1‘5

Perhape the bast approach for SETLG would be to add the
keyword 'regtricted® at the end of the header line of an
entity, as in

define pi{i);

define p2(i) restricted;

mode m;

entry e(i);

entry e2 (i) restricted;

9. Checking for instance existences, entry availability, etc.
All checking in SETLG will be performed, as in SETL,
dyramically. Eg., upon the call

pPq .insert(‘cde') result(z)}
“the following runtime checks wilil made:
pq must be a pointer to an instance;

the mode of that instance must have an entry named “insert®;

this entry must have & single positional parameter, and & (:f
keyword parameter group named "resuit"” with a single parvemetewn;
the "insert" entry must have no - return value -~--~j.g., ic

{)s

not an “entryf"; the "insert® must have no other raguire
keyword parameters. Furtharmcre, during executicon cf
the ®insert® entry, all references to parameters, and
of course to other variables also, will be checked at *ime of
‘reference,

Note that all of thase checks can give rise to run-time

errore which are impossible in GYVE, 311 such erroars can

by handledl by TEEMIXATEIng &9 is dene in SYVH for sossible

rim-time errors such &8 subscript range error

Many of thege cheacks can he made morve 2fficient oy
precompilation. For exawple, all the tokens cncounteuvad

ag entry names during the compilation of & oouvlete 3ot

can ke cellected in a single Compretensive Tabis aud convasho
integers, thus subatsntially speeding un the sesroh which st he

verformed when a newed entry o of ar inctnece o Le oolled,

SETL~145-15

h. Aggreqates

It is suggested that GYVE aggregates be cmmited entirely from
S8ETLG. Justification is as follows:

GYVE aggregates are storage aggregates, and hence rely heavily
upon data descriptions and declarations, whereas SETL

_aggregates are aggregate values, These two approaches to aggregates

would be difficult to combine, and would probably lead to
an unpleasantly redundant seystem of data aggregates. GYVE

" agaregates are basically oriented towards efficiency: i.e.,

toward realising savings in stcrage and in global address-
table space by collecting numerous small objects into a
single global object; and toward the reductions of global
address-table references and the elisions of existence chacks
which the GYVE "attach" mechanism make possible. Such
savings are less meaningful in the specification-oriented,
deliberately "inefficient"” SETL environment.

i. valvesz"gniesce"and"Dequiesce*.'Other built=in éyst&m-modeaa

The GYVE ‘VALVE' mechanisgm allows pointers to be made
incperative even after they have been issued, and subsequently
to be made operative again if deslired. This construction
can be carried over to SETLG with little change in syntax
and ncne in semantics. We propose the syntax

" create f{valve(n)) in (acct) set (pv) [result(r)];

for the creation of a valve able to hold n pointers, and
';;35(5) ihrough(pv) get{p2) [result(r)]l;

for the operation which subordinates p to pu, . creating the

object p2 which may be used in place of p while py remainsg
open. To shut pv and to reopen it, we write

quiesce(pr) [resvlt(cil:

and

deguiesce(py ; ([recultlr)i;

regpectively. Note that if' P . is destroye2, the okject
p2 becomes permanently unusabls.

The quiesce and dequiesce cperations apply to other
mode instances also. If an instance s guiesced, no antey
may be made to it (though processes which have already entsrad
are allowed to complete). To gquiesce an instznce, one nescs
socesy to all its antries; the same rule applies to destrey.

[us

¢

o
[
b

e

EETFL~L

The pointer, globel object, and MODEs mechanisms allow
syatem: objects and operations like those of GYVE to be definec
for SETLG. 1Indeed, the system obiects of GYVE itself are
explicitly defined by a 'built-in compilation'’. (Of courss,
the procedures, modes, and mode entries of that "systenm
compilation® occasicnally uee ‘very primitive' operations
which are unavailable in the "overt™ language,such as an operation
of the "teat and set® kind for defining primitive atomicity
cf process; méreover, they occasionally reference system
components which are inaccessible in the "overt" language,
such as global address tables). In much the same way, the
system objects and operations of SETLG would be defined by
a built-in compilation. SETLG, like GYVE, should permit
reference to the modes and procedures of that compilation by
simple name. Thus SETLG statements such as:

define p{a):?
create(process space(20006)) in(a) set{ps) result(r);

initcall(£(3) for(j)) in(ps) result(r};

create (port posts(l)) maaaagelimit(lO)) in{a)set(pt) resultixi;
execute({ps) runtime (500} usedtime{ut)
port(pt) priority(l) m&ssage(13)
interruptuessige{in) interruptpriority (g}
reservelinit(rl) raservereguest(cqg)
resultir);
. will be available.

