
SftL Newsletter t 145

· GYVB-oriented Inter-Process Coordinl\tion

and Control Features for ·an EXtended s~~~.(.§~).
(Prelimin.ary Notea)

.1.- Xntroc2uction

P. Shaw
March l, 1~7~1

This newsletter aetll forth an iultia.1 · pxoposs.l for the

incorporation of GYVE-liks capabilities, i.e., facilities
for the coordination and control of multiple paxallel prccesse5,
into SETL. The exposition which follows assumes general
familiarity with the GYVE language de.Jcribed in the forthcoming

· c!oc::~ral dis•ertation of its author. The system tc

be described should provide powerful,·sound, and fully protectsc.,
mechanisms for the description of operating systems.

~o ~111Urize ·the approach which will be explained in
more de1:ail belOlfs_ we propose to leave the SETL data types,

aggr~ates, operations, and procedures unchanged; to add
keyword and optional keyword syntax to procedures; to add a

new ator~g• class, global, and one new data type, ·pQin•ter
(t.o a global object). Global objects will _be created and
destroyed explicitly, and will be referenced by create-returned
29int!!:,' s., In the extended sy11t:.P..m envisaged, a.11 current SE1I\t

4ata will be proceas-lOQal, and will be gargabe collec te~1 a&

currentlyj pgin~~•s will be treated like SETL atoms and thus.

will be valid set members, tuple components, etc .. In addition,

we propose to add GYVE MOOEs and COMPILATIONS to the ~.xtcna~d

SBTL system, following the current SE'rL p."t"ocedure syntax as

closely as poasi.ble, to perform all protection-·checking

. dynamically, as in current SETL1 to omit GYVE aggregates
and to add built-in modes &nd procedure~ for GYVE system
objects a.nd operations (which is alf11o how they are presentc~

L in GYVE).,

The resultilig 1W"1gu~ge; pI·ovisionall.y dasignated a.s SETLG, C 1

will be in close conceptual co~-reapondence with GYVE, at least
in r~ai:-d to parallel process semantics, and ope1,&ating syst~"ils

upecified in SETLG should transliterate i.n relatively mechanical

fashion to GYVE. Note in thiu connection that SETLG will not
ru.lly be e perfectly general 'oi,era.ting system specification

latlg\l&ge', in which description of the totality of all
conceivable operating systems is facilitated; rather, it ~ill
be made easy to write systems;, funct:lcmally general., but all

structured in the style which GYVE s~ggests.

The major loaa which will be incurred in going from a
GYVE to a SETLG version of an operating system is
run-time efficiency. Thi• will be bal:L~ced by a gain in ease
of use, which of course reflects an underlying difference .
hetween SE'l'L and GYVE objectives.,

2. Syntacti•c and senumt.ic 'Faci1iti"es of· _S!_TL~.

a. · Keyword and oetiona1 Keywo;:d· Parame_~· Syntax

It ia useful a4d the GY\JE syntu for ke}'WOrd and optional

0

keyword parameters to SETLG, in t.h.f following manner sho~"n in thtt

following example .(where as -1n GYVE brackets define optional parHD1f;.e·L,~x·2::'

define exeeute(ps) runt.ime(t) usedti,n~(nt,

{r~s~r.relJ.ndt (rl)] requested_res~rve (rr)

[por't(p·t} l [prit?rit:y (pr)) [me·asa9e (!1'1) J
(poet (pet,)

tint.~xrn:ptprior:L ty (ip)]

Unter.·.•ruptlM";:-;sage (i:m)]

result{ri;
To ~e1m ho"';l1 u111eful th:t~ :'.\?y:;.tnct:ic su,Jn..:.in.g n~ally :if?, cm:1.par~

. - '

0

C

SETL-145-3

As in GYVE we per.mit the keyword k attached to an optional
procedure parameter to be used within the body of the procedure
a11 a *ynonyn for 'the parameter dasignat.ed by k has actual1;i

been supplied.' •

. b.· !~raga c1a·ases

It is proposed that all of current SETL storage be left
as-is, but defined to be strictly intra-process. Thus, SETL
11torage would corrospond to GYVB Local &nd Pri ,rate s:torage•w- u.

except that SETLG objects would, like SETL, be created impJ.i.c:itly,
variable in size, and garb~ge collect.eel. In particular., t.hiCJ
means that any current .SETL px~gram could be invoked by a.
SB'l'LG process.

Enforcement of the intra-process rule will be patterned
after the GYVE enforcement except that it will be.dynamic
rather static. 'l'he essential aspects of this rule are:
(i) at the implementation level, we must ensure that assigr;mentv

to base variables of ahared instances are on a rigorous
•by value• basis,no dangerous implementation level pointer

sbortcuta being allowed;

:(ii) all process INI'l'CALL argument.a must be transmitted •by ,.ralne•
i.e., with copying of all data objects1 this approach engnres
that no process is able to obtain access to the pri.vate da-t.n.
of nnother· process. An alternative technique of enforceme11t.

of the privacy rule is to stamp every object with the ' idi i:::1:f

the process which creates it, and to eheck ~very refersnce to

guarantee that the referencing procE:tm is the saltle as the

creating process, this seems a lEJ11w daei.rable technique.

c. MODES ---
This key structural 1:'tl.~chanism of: GYVE should fit into s1:•r•1,

quit.a easily~ Plgures
'MODE• example', name.ly

show the corresponding

la and lb below g-.i.ves: a typica."1. G?V.li

a •queue" obj:;;,ct: t.y·per ar~d F'ignres '.i.~.

SETJ,1.-; verslc,n.

The differences between the GYVE and the SETLG MODE syntax

aud ~ema:.1tica may be described as fellows:

i .. Mode he&der ___ ,_
We pattern the SBTLG MODE ai'Ut.wc altel:° the syntax of S:!'TL

procedures, but vith the keyword •mode• replacing ~define•.
We include provision for parameters (and also 1<:eyword par-rcmet-a:;:s

aa described in Section l)~ Note however that in practise SETLG
NODE• would use fewer parameters than semantically simi1.a:r GYVE
HOOEa, because some oft.he pe.rmueters of GYVE modes are gene:r~lly
ued to state dimensions or string lengths for base varia.blel.il:
whereas in SETLG we will permit base variables to vary in

length like other SETi:, variables.. The ot.her use of MODE
parameters, which will _still be needed in SETLG, is for the
transmission ot initial valueso

ii. · £._reating· MODE · Inatanc·f!_!. C
This ia done u~ing a· o~~ato ■tatement:

create (mod•} in (cwaoau1t) spacelimit (nbytes) set (point$:t-'} c,~em.Jl t t.r) J,
the ~•auit parameter in optionalo The 1spacelimit'
parameter, which does not occur in GYVE, defines the total

waount of space, i~ implementation-defined 'byt.e units', which
the mode instance ia allowed to occupy. Base data objecte;

of the instance will reside in, be manipulated in, and be
removed by.a garbaga collector: from a block of space never

exceeding this size;,. A.ny opara.tii:)n which would violate thia

~!Ondition • is said to cauoe a !E~ . ..f~ul~.~ with consequences

to be defined b~lowc

.ti.i .. · INIT ent?:i:!li.S ---~.........____,...._._..4,,,;,;...,,_,_

GY.VE INIT tmt.ries ai.·e wr1.i:te:r4

((INl:T)) ii fil?'l'RV i BLOCK

0

l

reference the MODE parameters. SETLG-should provide this

f.ar.dJ.ity, prohably-wit.h the syntax

. · init~·a~

btook
·en4 initi•a11y,

like that currently used in connection. with SE'l'L procedures.

iv)· Base Variables, EVents

Here we can uae a declaration_ givi~g a simple onumerati<n1

of bue variable namea,e.g.
!?.!!!, b, in, ~ut, q1

Different modes should be permitted to use the same base
variable names, baae variables·must be accessible (only) to
the entries of the modek

Xn GYVB, an. EVBH'1' is a apecial class of PRIVATE MODE;
object.a of this MO~E can only be declared as base variables
of some other MODE, i.e •• car.not be created by the normally
available CREATE statement. In SETLG, we propose to declare
variables of type BVBNT by statem~ts.of the syntactic form

· events

Qu&nti ties of ·this type are automatically ini ti.alised to an
empty condition, they are then address~ble by the two primitives

whoae semantics are the same aa in GYVB. This convention keepa
· each event object strictly local to eome mode instance. We

then propose to omit the GYVE 'P.lnv·.l\'l'E MODE' constructicmi

this construction is t,seful ln GXVi~ f.•:.'lr t.:.ria data structurinq

facility it embod.ies, but not: ap;?n'jp:!tl.!'ltlf; fox SE'!:'LG, wh:tch

like SETL approaches da•i;a atr.1.Gt..u:n:~fJ ir: qu.L t03 a di.ff.ext:mt w&y,

vl,. Entries

A aynt&x like t.hi~t of th~ preiumt SETL•define• statenu,mt

aan be use.d, e .. g.,

entry insert(c) [result{r)J;

'.l'b.e uae of •entry• rather thari "define• as a k-eyword will

help readability. The othe;i: clauses of a GYVE entry header
are the optional RETURNS and READER clauses. •rhe s~~TLG

syntactic convention can _incorporate this information into
a keyword, as ,e_.g.,

d~· Protection.

entry p(l);

readerentry q{j);
roader19ntryf r(k);

'J.1he most eaeential element of the G'KVE protection scheme
ia t.hat which prevents ~ pointer p to n mode :instance from b,ii.:ng

assigned (or otherwise transmitted) to any variable x declared
to b..a a pointer having more •rights' than p. In SETLG we
propose to provide the sa.me protec.tion dynamically. Mm:::e

•~ificall.y, every point.er p to .an infi.t.~1,ce of mode M wili

carry with it a list of all theJ ent-.rit:is of M whici'l are accassihlf~

through p. The:a or. every attempt to use an ~mtry via p

(in the syntactic !ort'l p .. ,:: (x) which wc.11 take ovc:~:r: from GY"·lE)

tb.ilfJ li.st. -w-111 ~a chsckE-ii, at!ist"1 if fi is not a.va"ilable throuqh p

the i.nvocation p.e(x) will b<i:1 treu.b:::d .~s a fatal error leadin;i

to JfrOCl}.lfJS termi.na tlon,, To ,-~l. l.crw p tn he use,c1 to c:r.ea te tt

· poi.nt,ar p* t.o the 6ruta•:) ir.as:ts.nco S.£:\ 'Pi hut:. ~dth a sh-::irt.er H.~t

of entries, WQ:J allow ~.he ,::im-et!:•,.\ctif.·1:.1. ·r.,,... pj·,, l'2 ·1 wh·-1:r.,•0
• ~ j' , '\~· i. i' &- ,f, ,, ,. • :rt. ,,, ') • ~--

.... 1," a~ ,en m:.me the ent.:r14'::B tn r:; ~ 1 nl} c>f wl1i.ct; must ot ccm;:e;,~

be avri.ll.atble at; ent..ries ·b:, :i;:,

(

0

(

r.t is also convenJ.ent to provide the following primitives for

use with modes and pointers:

p. hlllll ..• -
returns true or false, depend~g on whether the entry e is
accesaihle through p;

returns true or false, depending on whether the modem has

e as one of its entriest and

p · isof · m
. w:ee ..

returns true or false, depending on whether or not p points

to an object of modem. In addition, we allow the operations

· ~, !!!_ for pointers as for blank atoms; and also gt, Jl.t, ~-' !.!.r
etc., with implementation-defined but consistent boolean values.

GYVE has three protection-oriented mechani:ms: access
rights, sub-aggregate reference&q a...~a restricted. members and

.entries of compilations. For reasons to be explained below,
we propose to abandon the second of these mechanisms in SET1...G,

but to keep the third. The accesa-ri,gh.ta n.,:;chanism in Gi:VE has

two aspects: access to entries of mode instances, and

zee.d/wri te access to variable~, and especially to procedur0

parameters. A mechanism restricting access t.o entries of mc~de

inatances is essenti!l.l f and ·wil.l be provided dyna.1,1.ically in

. the manner explained above. Read/l."Tite restrictions a;re by

contras{;;. matters of c<.11w~nierH.~e a.nd .fti.scipl hie ♦ 'l'hey cnn he

prc,,dded in the follcwing ff';r1r. in SSTLG ~ · a pz o;::t~dure ~;a:t:,;,.m,fr.t:e'.<"

marked an:ite, as in

will be .1.nit.iali.sed to Sl on procedure :fmtry, r~.th-ax- t:h~,n being

initialised £1::·om the value i,f the co:r.rea.P(mding actual argument

(in tl\e calllng routin.~} s a parameter marked : read will be

initial iaad on eptry {tr.nns.mi.tHsion being by value, aa always

in S.ETL}, but not transmitt.ed t.o the calling routine on sub­
procedure return. For compatibility with the present SETL

convention the rule applying if nothing is sa1d w.i.11 be

,remd/write (both rea4 · and m·1.te privJ.leges) , r.:ather- t.hc1.11

;reau as in GYVB.

e. !e!_Cf!, _overflow.

Space overflow ia ·a much more in.tbstantial problem i.n tlETLG

than in c;yyt~, since SETLG objects can v&ry in size in t.ot-nlly

dyn&r4ic ways, and since the number of imPlementation level 'bytes"
required for the storage of any partie-ular SETLG object wi.11.

generally not be obvious. Whereas in GYVE only CREA'f'Z operattorw C1
can lead to a space overflf:>W, in S2TLG any ntt.mbe,t of othe.1·

opeJ:~tio?ts, e.g., tuple concatf!nation, set formc'.tion., elE>..men.t

insertion, etc. r ea?. require space and hence cause overflo,._,. ~

To deal wit.h this _problern, we propose t...rie following convent.ion~:
'

i. '1'he fonaation of objects su-r.h as sets and tuplee:

{of arhi trary size) will be assumed to be c.ll.!.·r.ied out in a

nominal 'system workarea', of potentially in~~ird. -tor't si z::~.

Consequently, no such op-e:r.atinn will ge,1erate a spacef anl t

whi. 1..ii st·CL i in p~ogpees {unl,:isa v.:he cpera~:i.cn haa assi s;~U:.lA~'.i.t

1.dda-ef fect:s; see belol'l ~)

:H... The ir1sumce er proc'1;8S to which en c~:,jf:Ct bf::,1011.i; s

-t.!i'l.:tl be n charged 3 for the epa,:;s :!:ev:;rJire1 t:ci form c~ new ol:.,j!:;Ct

t,uly i::,pon, b!.tt ini1ta.i"1t:ar1e-om;;ly upcm., t.h~ a-.~s-5.sp:z~.:~t•,t of thif:',

(- it ••ems to have occurred will be marked for garbage collection,
I

l

t.h:l.!! will determine whether the apparent fault is real .. If
not;, execlttion can continue. If a fault occurs, the assi£rnment

which causes it to occur will be suppressed (but side effects
which preceed the assignment in point of time will persist.)
What happens after a space fault will depend on whether or not
a.n ov•i-floi,, fault ot.m.,s• has be~ attached to the.assignment
st.a~ement which gives rise to the fault. Such fault clauses~
which must always preceed the terminating £1emicolon-of the
atatement to which they are attached, have the syntactic form

where each tj is a label, and no more labels are supplied
than are called for in view of the n\,U1lber of '• 8 and 'is'
operators which occur in the immediately preceeding statement.
An example would be

a• b + c is d + e -
Bach label in a fault clause refaxu to some a..ssign.'llent operation,
and defines the point to which t...r&~sf er is to be made if an

overflow fault occurs at the assignment to which it referso
.Any of the labels of an ove:cflow fault clause may be omitted

e.,g,., we may write 1overfJ.ow(t1 ,, t 2) .- such a.n omission cause~
the corresponding overflow fat,lt -to be hs.ndled as a terminat:ton.

Note that ve:-.. ,::y similar rules apply to 'e:-::istence fa,~ltu' 9

:Le., invocations p.e(x) of some entry of an instance whi.t.:h

bas been destroyed previous to 1Jnid invocation~ except that
destroy fault clauses are attached not to assignments :but to

· operations which .invoke entrie:o of mode :tnstances, and are

written an

Note, in connect:f.on·';;itb the garbage collection operation

whir.:h preceeda the occurence of a space fault, that every SETLG
v·alue is strictly local to soma process or mode instance, i.e. ,

none of the implementation lev-el poJ.nters which structure tha
value point· from within an·object belonging to one instance
to an object or object part belonging to some other instance.
This isolation is guaranteed by forming a complete copy
~henever an object i& passed as a...._ argument from one instance

or process A to another Band assigned to a variable of B.
It ia a consequence of this rule that the garbage collection
operation which preceada a apace fault occuring in A only need~
to process the apace belonging to A, and not any larger part

of the total memory area managed by the SETLG system •

. Aa an aid to the management of SE'l'LG objects of unpredictably
variable size, we provide monadic operatorE· ~, ·!!!_«!,!_, and

· sizeleft.. 'l'he ·si•ze operator calculates the number of bytes ·-needed to
argument.
needed to

store a ~plete, fully independent, copy of its
The ·aizel operator calculates the number of bytea

store an independent'l-leve1• copy of its argwnent
(whet"o, e.g., a 1-levol copy of a ~et. d·uplicates t.he implementation 4

•

defined rbody' of the set, but does not duplicate its elements.)
The ai~aleft operator can be applied to a process or mode
in.st4nce t and measures the a.motmt of free space still availa.ble

in it.

..

C

' - .

l

SETL-145-ll

Figure la: GYVE definition of a•QOEUE'MODB

QOmJE: MODE(N:INT)LIMI'l'CL:Dl'r) 1

DECLS 1 a·, (L) .. CHAR (N) ;

mm DECLS;

.IN:D1T:INIT(l); OUT:INT:INIT(l); Q:INT;
FOLL·BVBN'1'1BVENT1 BMP'l'Y EVENT: EVENT; - -

INSBR'l': ENTRY(C:CHAR) [FULL(LzLABEL)J;
IF Q u EXTBN'l'(B) THEN IF FULL THEN GOTO I.;

DD IF1
B(IN) • C1

BLSE BLOCK (FULL _EVENT) ;

BND IF,

IN• IN// EX'l'EN'r(B). + 11 Q ~ Q + l;
lfAKEUP(EMPTY_EVENT)1

·END ENTRY;
RDIOVE: ENTRY(C:CHAR:W) [BMP'l'Y(L:LABEL)]J

Ii' Q • 0 'l'BBN IP EMPTY THEN GO'l'O L;

BRD IP1

ELSE BLOCK (EMPTY_ EVENT) 1

BND IPJ

C • B(OU'l'); OUT• OUT// EXTENT(B) + l; 0 • 0 - 11

11fAKEUP (FULL_ EVENT) ;

BND ENTRY7

PtJRGB: ENTRY; Q • OJ END ENTRY;
COUNT: ENTRY; RETURNS(INT) :READERJ RETURN(Q); ENO ENTRY;
SIZE: ENTRY: RBTURNS(INT_) ~READER1 RETURN(EXTEN'T{B)); END ENTRY.;

END MODEJ

Figl.\re lb: Use o_{_ 'R~' __ MODB

PQr QUEUE;
C:CHAR{80);

. CRF.J"l.TE(Qtr.eUE(SO)LIMIT(lO)) IN(A)SET(PQ)P.f~SUL'J(R);

PO. • REMOVE (C) ; PQ • REMOVE { C) EMPTY (L} ?.

I• PQ.COUHT;

· Figure 2a;. S'ETLG versi?n of qµel.1e mod·a.

mode queue (sizel.im);
· base buf, sizelim.i.t; -

events. fullevent, e.mptyevEintJ

!nif:.;iallI_
buf • nultJ size11mit au 1.1izelimi -

encl 'ini1:i.~lly;
entry insert{c ~read) {result (rl j 1

if !!.!!. c ·!I!:. aiz~limit. them

· termi-r1·ate 1

elae
---... -
b • b + <c::>: overflow (o:f.l} ;

'!,,Be~ emptyevent 1

end if .!!!!.;
ofl: if result /"' i.e*, if Jr~t.Bult 1 parameter iSJ supplltd ...,/ tt.,i,•:1i

r 910 ~.ralut!'represent:ingover f:lc•w, re.tm~n ;·

else

I
· blo-ek fullevent, --end if result7

end entry insert~
entry remove(c:t,frite) tresi1lt.Cr)] 1

if. b ea nult then _..... ._,.. __ ..
if .re1n.1l t ~"ten

r 1111 v•a.luerepre~ent:i.ngiJ,der~l.u·;q r~'i..:urn,

else

~~\ err.ptyiFrv·e:~i:t;,

e..nd if resu.1 t:.;

else

L

l

SETL-145-13

end entry remove;
entry purge; b • ~; end ent:,:y purge7

rea.derentryf count; return fbJ end readerentryf count;
x·eaderentryf sizelim7 return sizelimit: en.d readerentryf eizeii.mi
end mode queue;

T@le 2b: SBTLG uses of the gueue mode.

<:reate (queue(40)) in (a) spacelimit(400) set {pq) result(r);

.....
i:)q • insert ('abc •) J

pq .insert({'abc', 'def.'}) result(ok);
....
pq .remove(c)1
pq .remove(c) reault(isunder)J

•••
· i • pq .count; ·
pq .. purge,

•••

f. Compilations

The GYVE "COMPILATION• object will be retained in SETLG. It is

very convenient for namescoping, and quite useful for protection
(via the restricted members and entries mechanism). Syntacticallyr

it will be written as
compilation,
/* a list of SETLG uefin&'a and modes*/

end [compilation]:
In GYVE, restricted memb~rs and entries o:f a compilation are
denoted by parenthes.i.zing member, and entry identifierst auch aa

P: PROC(I:nn')1
(P2) i PRCc (I: INT) :

MODE1

ENTRY(I:IN'l');
·(E2) ~ EHTRY (I: INT);

l?er~apg th~ bast approach for SETLG would be to add the

k(iyword 'restricted e at the end of the header :U.n'-:; of a.1:

&ntiti•, as in

defina p(i);

define p2(i) restricted:
modem;

E'.ntry e (i) ;

entry e2(i) restricted,

g. -~eckir1g for instance oxi,!¼t.eJ}£~, entz:y ava:i)ability~~~

All checking ln SETLG will be performed, as in SE1'L,

dynamically. Eg., upon the call

pq .insert('cde') result(r);
·the following runtime checks will made:

pq must be a pointer to an instance;

the mode of that insta.nce must have a.n entry named '"'ir~sertq;,,

this entry must have a single po~itional para.meter, ;,ne a C
keyword param~ter group name.d "result" t1ith .3 sin9lo ;.,;p:nc.i::"::h::,:,,.

the "insert" entry must. have no • return value ··~---.Le.,, ic

not an "entryf 111 1 the II insart'-1 must have :no other r.aqt~i:r.ed

keyword parameters.. Further...tJore, du.ring execution cf

the !' inse:r:t• entry, all refe%·encaa to para.,neters _. and

of course to other variables also, wil 1 be-, checked at 4-:} •. rn.e c;f

· reference.

Note that. all of th,~s~1: chac.-kfi can give r:J.se t:.o run-t.:~me

~rrors which are .i.mpc_it:;slble in crt,;1g~ J\11 such Er:r:.>r:c; ::.:an

ba handlea by TEr'.MJ:~.r ... 'rE:.tng ~'-l i 'E cfon.a bi {;tvB fo-c ;_:>et:;:d.bl.-'•

run-ti~me er.rore 3t1ch a_s subscript x:·ange erro.,:.

Mruiy of tJ1e8e c-:::hie.:cks can ba rii!ade mor~ etf:: ~:ient ;:,y

F)recompilation.. For exalnple, all tl1e: tckeri:: , ::·1cc;u:rd:e-,._ ,2d

art entry n.ruues du:c:L,ig th.e c,;,.r-1p;t:_;.1tion of ;;;_ ,;-,-::,n:.•:_.(; Lto ~ci: c1 1
-: .'.;\'.·:·~·\"c>,:

c·im ba collected in n ~i~gh: comp:n?hf;!nsL:,f -::d;J;_::, and c,:mv""·· :_,., '.•·

!.nt.e;:ers, t.Jn;rn eubat.n.ntJ~al1y ~p•,:>(~1.Hnq l)J) thE :;'.';~:,r,:h v,;i,:i_.:::1-; ; s••;i- "f.:.r;,:

rerfo~m~d when a nmr;,3d e:<:,t.:.cy O t:f a.n :i..n:tn,,:·,; ;::,"j_ :~_f, Cr.lL~;::;..

he ~~9:r~gates

It is suggested that GYVE aggregates be omm.i. ted entirely fr(.')m

SETLG. Justification is as follows:

GYVE aggregates are stora2e aggregates, and hence rely heavily
upon data descriptions and declarations, whereas SETL
aggregates are aggregate values.These two approaches to aggregates

. . .

would be difficult to combine, and would probably lead to

an unpleasantly redundant syatem of data aggregates. GYVE
aggregates are basically oriented towards efficiency: i.e.,
toward realising savings in storage and in global address ...
bible space by collecting numerous small objects into a
single global objecti and toward the reductions of global
address-table references and the elisions of existence checks

which the GYVE "attach" mechanism make possible. such

savings are less meaningful in the specification-oriented,

del:1)>erately "inefficient" SETL environment.

The GYYE 'VAUTE' mechanism allows pointers to be made

inoperative even after they have been issued, and subsequently

to be made operative again if desired. This construction

can be carried over to SETLG with little change in syntax
and none in semantics .. We propose the syntax

£#eate <valve C:n)} i.n (acct) set {pv) [result (:r} l ~

for the creation of a valve able to hold n pointers: and

· gnk (I>) through (pv) set (p2) [result (r) J 1

for the t.:,peration which subo1·dinates p to · pv> . creating th~

object pi which may be u!eed in. place cf p while pt, re.ma.ins

o~n.... To shut pv and to r~t)pen i.t, we ·write

:-

~•ace (pv J [ret.Jul t (r) J r

and

respectively. Note that if Pt! J..a destroyed, the object.

p2 becomes permanently unusablo~

The g_ui~sce and ~!S[u,iesce operations apply to c>tlte:r

mode instances also. If a.n iru:1te-~'1cs is q-t1iat",ced, no i:"!ntcy

:m~y be made to it (though processes which have already entr-,:r12;d.

are allowed to complete) . To ~;es~~ an i.nE t ;:-;nee, one neec\s

acceug to all· its antries; the same rule app1i.es to d~,:!!:..~S'X.·

C

L

(
\

The pointer 1 global object, and MODEs mechanisms allcrw

fiYCtem objects and operations l.Uce those of GYVE to be def ine:ei

for SE.TLG. Indeed, the system ~">hjects of GYVE itself are

explicitly defined by a 'built-·.i.n compilation'. (Of course,

thG procedures, modes,and mode entries of that nsystem
compilation• occasionally u~e •v~ry primitivee operations
which are unavailable in the aovert" language,such as an operation
of the "'teat and set• kind for defining primitive atomici.ty
of process; moreover, they occas.ionally reference system
components which are inaccessible in the "overt" language,

such as global address tables). In much the same way, the
system objects and operations of SEt~ would be defined by

a built-in compilation. SETLG, like GY.VE, should permit
reference to the modes and procedures of that compilation by
simple name. Thus SB'l'LG statements such as:

define p(a)1

....
create(process space(20000)} in(a) set(ps) result(r);

•••
initcall (f (3) for (j)) in(pa) 'reault (r);

•••
create (port poata(l) meassgelimit(l0)} in(a)set{pt) result(r:,;

•••
execute(ps) runtime(SOO) usedtime(ut)

port(pt) priority{!) m~asage(13)

interrupt,ra,esaa.g e { iro) h1 terruptpr ior i ty { pr. J
reoe:tvelimit (rll re-tecnrer•lquest. (:cq}

result(.r);
will be available.

