
•

•

-

SBTL Newsletter 152

An alternative ·deslgp for

a 'MIDL'-level langua9Et:_

I
.I

,J. T oSchwa.rtz
July 5, 1975

If, as now appears quite posslble, SETL can be optimized

to run at speeds within l./3 or so of lower-leYel language
speeds, it may be undesirable to contaminate •pure' SETL with

any efficiency-oriented extensions. On the other hand, if

this level of performance cannot be attained, then MIDL-like

extension of SETL will retain appeal. This newsletter will
outline such an extension, but one which is more systematic

and somewhat more powerful than MIDL. Let us call it "'lIDL'.

In designing such an extension, one must first describe
the class of constructs which one feels can be handled efficiently

enough to deserve incorporation in an efficiency-oriented

semantic structure. The likely choices here are integers,

real.s,and strings; arrays and records with selection operators,

and pointers. This is essentially the semantic .repertoire of

ALGOL 68; so we will assume that in addition to the operati.ons

of SETL, MIDL' incorates these ALGOL 68 constructs and the

corresponding operations1 In particular, we assume that structures

(and arrays) like those of ALGOL 68 can be defined. However,

we will assume that variable types are handled dynamically

rather than static'ally. This accords better with the SETL

approach, and should not impose any significant efficiency

penalty, since global type analysis will in most cases succeed

in determining almost all object types at compile tiroe. (But

type-testing operations should be available.)

In any given program some finite collection of structure

·. types will be defined; each such type can be assigned some

lnteger code which can be treated rather like a SETL type code,

or, if the type has dimension parameters, like a structured

vector consisting of a type code and several integers.

We propose the following rules:

a. SETL objects can have MIDI,' pointers, integers,
~ ~ re&la, and st'....r·ings aq members and component.:,. M!Dl~ ~ ~tructures

may not contain SETr ... objects; however, MrrrrJ' pointers can

.·. point to SETL objects. To cause a MIOL' pointer to point to

a (copy of) the SETL value e, write

p • :e.

For dereferencing a pointer to obtain a SETL value, an ALGOL

like 'cast' operator _.p (which dereferences and evaluates
until a set, tuple, o,: structure is obtained) can be provided.

b. ALGOL 68-like selection, assignment, coercion., etc.,

operations can be provi.ded as part of MIDL' , with a syntax

which allows them to be recognised. The dictions thereby

introducedcan,be intermixed with the existing dictions of
SBTL in MIDL' 'programs.

To encour~ge disciplined use of the dictions (especially

the low-level 'dictions) of MIDL', an amdliary system of type

declarations, which can regulate the pattern in which operations

are applied to objects, may be useful. Such a scheme might be

developed along approximately the following lines:

a. Allow indefinitely many new 'basic' object type names

t to be declared. (These are merely names~ the system of
daclarations in which they appear are distinct from the declarations

of MIDL structures.) Build these basic type names up into a

type name calculus as follows: if t,t1 , ••• ,tn are type names,
then so are {t}, (t] (respectively designating sets/sequences

of elements of type t), <t1 , ••• ,tn>, {t1 , ••• , tn) (denoting a

progrannned procedure with parameters of types t 1 , ••• ,tn}, and

t(t1 , ••• ,tn) (denoting a programmed function with parameters

of types t 1 , .••• tn, returning a result of type t.) A type name
·tor 'general SETL object' should also be available.

..... ".

•

•

&)

b. Allow the type Un t.he SE'nse· just. i.ntroduced) of

variables x 1 , • · •• , xn to be declared, perhap~ in the syntactic

form

.• . -dcl< ,X1s<t1> , . X2•Ct~) , •••

where t 1 • t 2 , •• ; "are ·type· ·rtam~s ~: :·
~-.': ... :.····r ·: -. -:.! ; -~~ .~.

c. Allow ~e typ~s of the parameters expected by a
programrner-de_fi.ned procech1~;,. and the type .of value returned,

to be ~eclar~d_,-_: Possibl~ _syn __ tact.ic fo_rms ar_e

define procname (x1 (t1}, x2{t2}, 4 ••);

definef fcnnrune (x1 {t1,, x2(t2} , •• ~)t;

where t, t 1 , t 2 , ••. are type names.
The followi~g r.:ile~ C"an then be applied: .i.£ types have

be.en declared for the parameters cf a procedure: the procedure

can only be invoked with arguments (variahles or expressions) cf

appropriate type. Moreover, variables whose type has been
declared can only be used as arguments tn. procedures hnving
parameters declared to be of. the sanie type, a.nd only e:,.:pressions

of appropriate type can be assigned to such variables.

d. Type declarations &ttachP-d dire~t.1y to the pararrieters

of a procedure determine the type of arg,.nnent for \.Jhic:h the

procedure can be called. Within the body of th~ procecure, each

of its parameters will gener6lly have a ~e~or.n: different,

declaration. For example, one miqht write

definef sum(m1 (sparsematrix),m2 (sparsematrix))sparsematrix:

d l ({<' t · l'>'' ,,. it ,1, c m1 l.n eger, 1.nteger, rea . t, • ru2 i: 1.ntegPr, r, eqer, rea ... _ ., ;

....
The second declaration supplied for a procedu~~ param~ter e.'lC!ln~es

t.he pararneter.1 A internal d0 ta~_Jt:, for ntl!nipt,Ja.t1rp, tdth:in t.'h~

.proeedure.

Note that the protec-tion!-J furni,;h~~ 't-.y th<' r-111!'-s -5,.,st
proposed can easily be evaded. 5iT".r.e- CH\f• c-:-tr-, ~1\.•;,•:~ 'r«"r--...•ert'

between t.ypee simply by Prit..ing

SRTL-152-4

convert(x(tl.)} t 2 :

retur.r(1e;
f)Jid convert1

In spite of t.ltis. the SC'.heme· just proposed ~:!oes make non-~t.i,.ndar.c1

use~ c,f. nat.e. o?:l:,e-ct.s et~nd out, ~nd,~:t~un._-p~ov:i.J~~~ ,t u~e-.ful

measu~e of pr~ra.mming <'.Hsr. ipline. . 1 t i $\I r.1 SC' 1,..:rir~h rit•si>r..._:-fng
1', " f " • • ' •: • •; I • 0 ,, .. , • ~ ' ,.•

that tbia cchet'lic, ean re':'toily· be· lntf!rJratf!d wh:'1. rt st-:d:.ic
' r • ' l' .~ • .,.

variant of the 11'3er.••e~f ined object typH ro.~r,h(':' n 1.~.::r:r: !'lf: :~Gr.i. b<:>d

in Newsletter 76, llll('"J!,dng the dP.-finition of IN,"r·~ani !';.:".'.~

whic~ prov!..de r:ot. only programming <lir;,.~.ipJine, b,.1+. :n.otat;.t1n?1l

fl~'xibU. i. t:y and convf:nience ~

'•,·

,., , -

•

•

