N S

SETL Newsletter 152 ' J.T.Schwartz
' . July 5, 1975

An alternative design for

a 'MIDL'~level language.

If, as now appears quite possible, SETL can be optimized
to run at speeds within 1/3 or sc of lower-level language
speeds, it may be undesirable to contaminate ‘pure’ SETL with
any efficiency-oriented extensions. On the other hand, if
thisg level of performance cannot be attained, then MIDL-like
extension of SETL will retain appeal. This newsletter will
outline such an extension, but one which i3 more systematic
and somewhat more powerful than MIDL. Let us call it MIDL'.

In designing such an extension, one must first describe .
the class of constructs which one feels can be handled efficiently
enough to deserve incorporation in an efficiency-oriented
semantic structure. The 1likely choices here are integers,
reals, and strings; arrays and records with selection operators,
and pointers. This is essentizlly the semantic repertoire of
ALGOL 68; sc we will assume that in addition to the operations
of SETL, MIDL' incorates these ALGOL 68 constructs and the
corresponding operations. In particular, we assume that structures
(and arrays) like those of ALGOIL 68 can be defined. However,
we will assume that variable types are handled dynamically
rather than statically. This accords better with the SETL
approach, and should not impose any significant efficiency
penalty, since global type analysis will in most cases succeed
in determining almost all object types at compile time. (But
type-testing operations should be avaiiakle.)

In any given program some finite collection of structure

"types will be defined; each such type can be assigned some

integer code which can be treated rather like a SETL type code,
or, if the type has dimension parameters, like a structured

vector consisting of a tvpe code and several integers.

&
-,
- SETL-152-2
We propose the following rules: | c\
) a. SETL objects can have MIDI® pointers, integers,
reala, and strings as members and components MIDL' structures

may not contain SETL objects; however, MIDL® pcinters can

- _point to SETL objects. To cause a MIDL’ pointer to point to

. a (copy of) the SETL value e, write

| ’ w; . :

‘ o P = ce. »

For dereferencing a pointer to obtain a SETL value, an ALGOL

like 'cast' operator +p {which dereferences and evaluates

until a set, tuple, oxr structure is obtained) can be provided.
- b, ALGOL 68-like selection, assignment, coercion, etc.,

operations can be provided as part of MIDL', with a syntax

which allows them to be recognised. The dictions thereby
3 introduced can be intermixed with the existing dictions o6f
SETL in MIDL® programs.
To encourage disciplined use of the dictions (espec1ally

the low-level dictions) of MIDL®, an auxiliary system of type
declarations, which can regulate the pattern in which operations
are applied to objects, may be useful. Such a schemeAmight be
developed along approximately the following lines:

a, Allow indefinitely many new 'hasic' object type names
t to be declared. (These are merely names; the system of
declarations in which they appear are distinct from the declarations
of MIDL structures.) Build these basic type names up into a
type name calculus as follows: if t,tl,...,tn are type names,
then so are {t}, [t] (respectively designatina sets/sequences
of elements of type t), <tl,...,tn>, (tl,...,tn) (denoting a
programmed procedure with parameters of types tl,...,tn). and
t(tl,...,tn) (denoting a programmed function with parameters
of types tl,....tn, returning a result of type t.) A type name
‘for 'general SETL object' should also be available.

- BETL-152-3

b. Allow the type [in the sense just introduced) of
variables xl,.}.,xn to be declared, perhaps in the syntactic
form
Where tl' tz,--c'are type ﬁames. ’ .

s

c.‘v Allow the types of the parameters expected by a
prcarammer—defined procedure, and the type of value returned,
to be declared. Pnsaible synta tic fo:ma are

define procname (xl(tl}, X, 0t,),...)
definef fcnname (xl(tlig xzﬁtzl,...)t;
where t, ty, t,,... are type nares.
The following rules can then be applied: if types have

been declared for the parameters of a procedure, the procedure

can only be invcoked with arguments (variables or expressions) cof
appropriate type. Moreover, variables whose type has been
declared can only be used as arquments to procedures having
parameters declared to be of the same type, and cnly expressions
of appropriate type can be assigned to such variables.

d, Type declarations attached directly to the parameters
of a procedure determine the type of argument for which the
procedure can be called. Within the body of the procedure, each
of its parameters will generally have a sercnd, different,
declaration. For example, one wmight write

definef sum(ml(sparsematrix),mz(sparsematrix))sparsematrix:

dcl my ({<integer,integer, real>i}, m. ! inteaer, integer,

5
40

The second declaration supplied for a procedure parameter expnses

the parameter’s internal details for manipslation within the

.procedure.

‘ Note that the protections furnished ry the rulecs fust
proposed can easily be evaded. sirnee one can 2lwavs 'carvert!
between types simply by writing

L

 SETL-152-4

definef

return” %x;)

cqnvert(x(fl)z tzr

end convert; ‘ :

In spite of this, the scheme just proposed Joes make

uses of dats objects stand out, and-thus pvovides a nseful

measure ﬁf prcqrammAnc 6zs~1p1ine. It is alsc war*k ahRery ng

that th 13 "chewv'~an readily be infea dvpﬂ wiith a static

variant of the user»ﬁnfLrﬁa ob;ect t;ﬁe marsheaisme described
in Newsletter 76, allﬂwlng the definition of merhaninma

which provide rot only programming discipiine, but notational
flexibhility and convenlence,

non=-gtandard

-

