8211 Bewslethter # 135 J.T. Schwaris
October 7, 1975

. Inteymediate Result Recording and
- Other Technigueg for Optimizing
" Recursione and Backtrack Programs.

=
e

1. Genggal Expi&natianvaf‘the “*Memo Function' Technigue.

Recursive routines will scmetimes calculate required

intermediate results repeatedly,and -this inefficiency can

have catastrophic effects on their performance. A well-known
inagtafice of this is the Fibonacci routine, which if written
recursively as ' | -

definef fibon(n); /¢ n-th Fibonacci.number F. */ .
return if n-€ {1,2} then 1 elwe fihon(n-1) + fibon(n-2);

end f£ibon; '

'requlres approximataly 2" steps to cnlculate F . This loss

of afficiancy can bs avoided, at the cost of carrying more
data; by recording intermediate results as they are calculated.
In the preceeding example, this can be done by introducing a

.wap gotfib, initialised to null, and by revising the preceedinq
algorithm as follows:

definef fibon(n); /* improved Fibornacci calculation */
if gotfib(n) is val ne R then return vals
/* if the value desired is not available, it must be calculated */

_gotfib(n) = (if n € (1,2} then 1 else fibon(n-1) + fibon(n-2})

is val;
return val;
end f£ibon;

This improved algorithm requires only Cn staps to calculate
an The transformation (which we shall call traneformation
by tntermedicte result recording) that leads from the first
of the two preceding functions to the second can clearly
be applied mechanically. - -

(R4

ant

SETL-155-2

One can indicate that it has been applied simply by attaching
the keyword remember to the header line of the function, i.e.,
by writing exactly the first algorithm with the single change

definef f£ibon(n) remember; /* n-th Fibonnacci mmber ¥, */

in its first line. ,
ﬁtanaformation by internediate result recording can

_actually be applisd wore generally than simply to functions

free of side ef€facts, Toc do this, one can, e.g., introduce S

“general remember hlocks having tha form - '

'ramemhggg

block /*this’ can be any block of code */

- end remember:
The semantics of this construction are as follows: on entry

to the block, the value of every variable that will be used
in it is saved. Let infoin denote all this information.

“When the block is exited, either by a Jump or by a normal

exit, ‘the final values of all variables changed within the

block are recorded, and the target point of the exit jump ox

trangition is reco¥ded, also. Let infout denote all this
information. A map blockeffect should be associated with

each remember block RB; Bblockeffeect will be initialised to
null, and each time RB is exited blockeffect will be extsnded
by éxecuting blockeffect(infoin) = infout.. Subsequently before
entering RB, one can construct infoin, retrieve the value of
inféut = leCkeff“Ct(lﬁLOIn), and if infout is not 9, simply
execute a series of assignments that modify all variables in

the same way that RB would modify them, and then jump to the
same exit that R3 would ultimately take.

C

SETL~155-3

The technique just outlined applies to both deterministic
and nondeterministic programs. Let us agree to support non-

- terminism by adding the two customary primitives ok and fail

to SETL (cf. SETL newsletter 153).. Then in the first place,
thé blockeffect mappings associated with the various remember f
blocks RB in a program become multiple~valued (since one'ﬁay
enter RB several times, always with the same relevant entry
1n£ormation package infoin, and exit with several different
exit information packages infout, which will reflect the:

‘several ‘different sequences of values that can be supplied

at the (dynamic) occurrences of ok within RB (and within
procedures called within RB)). To take account of this :
gituation, it is appropriate to associate an environment-valued

_subsidiary mapping laetenviromment(infoin) with RB (here we

use the term e¢nvironment, short for data environment (of a
process), in the sense explained in Newsletter 153). The
value e = lastenviroment(infoin) is the environment saved

at the last evaluation of ok (which, since it leads to the
seving cf an enviromment, must yield the value true) before
exit from RB, and after RB has been entered with infoin as

its (relevént) entry information package. Suppose that we let

weld (environmentl,,environmentz, RB)

designate the operation of modifying environment by giving
every variable {(including the program lnstructlon location
counter) which is accessed within RB the value which it has

in enVironment2 {while other variables retain their environment1
values). Let perform (infout) designate the operation of
executing a series of assignments in the manner designated by
one of RB's exit information packages infout, and then of
transferring {past RB) to the RB-exit point that i{mout specifies.
(As explained above, this duplicates the effect which actual
execution of RB would have.) ' -

EETL~155-4

fﬁgetdcnﬁcr-ggnviggnmant J designate the operation. of‘%ransferrinq \
,@gohtﬂnl tb eﬂviraﬂmentz, gand then 1ett1ng execution proceed (at

oo deant. ﬂntil the . next dynamic occurrence of an ok or ‘fail.), Then

f;entry ¢o RB can be handled as follcwsg DT .
:‘s“' Ka). . Let the relevant part of the environment at the
ﬁ,nnmen;wof entxy. to RB be t{xnfoin. As long as there,exist
_untried exit information packages infout belongiggéto"
. blockeffect(infoin), perform. A new exit informatian.
package will be performed whanever, as a consequence. of a
failure, control is return to the pcint (immediately before
entiy to RB) at vwhich an unsucessful prior exit information
package was tried. e
-+ . .{b) If all prior information packages have been tzied,
-and i€ . taafcnviranmant(tnfozn) is not Q, then, immediately
before entzy to . RB, genarate . -

nevcnv = weld(currentenv lestenvironment(infoan) RB) ‘:’
as e deacendent - of ocurrentenv (the currently executing
envixonment) and enter(nevenv). Subsequently, when exit
from RB occurs. ve add a aescr“pticn of the exit status of
all variables mentioned in RB to (the end of) bZackeffe»t(infozn),
" and also assign the parent environment p of the exit
environment as the new value of lastenvironment(infoin).
It is also reasonable eithexr to attach an implicit
remember action to each cccurrence Of ok in a nohdetermlﬂietic
program, or tc allow such an action to be attached explicitly
to selected.occurrences of ok, perhaps by wrltlng ok remember
_ instead of ok. Then the parts of the data environment re-
. levant to the code following an ok can be remembered when
the ok is first executed in a set S attached to the ok
(call this set fdiled). 1Lf this set is avallable, then before
an ¢k is executed, its current data environment E can Le
tested for membership in failed. If E € failed, then ok
can return the value false instead of the customary iggg. (:)

SBTL-~155~5

This tgchnique suppresses both re-exploration of known dead
ends and attempta to re-enter an eavironment that is already
under exploration. Thus, for example, it allows a solution
of the .wcli-known','bucketn and wellé' problem to be written
in ﬁhe following nicely 'rnbbleized'.torm: .

W Al the follewing ‘mein' program iz standard, and could be impljcit 4
'(while ¢k 2and v ne target) improve(v);;

/* in the particular problem‘at hand,®/

: /® v is & vector of bucket contents 2/
if v ne target then fails; ' ' .
/* now we use the fact that in a nondeterministic language, */
/* many routines all with the same name can be employed. ®/
define improve(v): ' -
(1< ¥n< v)

if ok then B

 w(n) =0 . 'Ezint 'pourout', nj

~else 1f ok then '

v(n) =Cin); /* C is a global vector giving the ¢/
o /*capacities of the various buckets */
© print °£4llup’, n;

end if;
end V%;
return;
end improve;
define improve(v)
i£1<In<tv, 1< Jm< ¥ v]|ok then

v(n) = (v(n) + v(m) min C{n);

vim) = (v(m) ~ C(n) + v(n)) max O0;

print ponr', m, 'ihto’, n;
and if; -
return;
end improve;

| SETL-155-6

" «Artifical intelligence algorithma which use heurgistics
are~use£u1.1fvthey succeéd’with’high probability (even if
they do not work in every case). The following trick‘is

. ‘available ‘for handling algorithms of this class. At oOccurrences
: oflok, save a hash of the relevant data environment Ye.q.,
_ a 64-bit nash) rathexr than a cumplete copy of the enviroument°
oz Befora executinq the ok, raealculate this hash h, and check |
it for identity with some previously saved hash. If h
occurred previcusly, let ths ok return false rather than *
the customary initial true. If we use this trick, which can
save very largao amounts of mewory, then calculations that might:
have subceedad will faii occasionally,but only very rarely.
A variant of this technique, .suggested by M. Hatrison,,
is to discard 'cld' hashes, e.g¢., by throwing away the oldest,
i.e., least recently consulted element on each hash chain
that grows to be more than che or two elements long. This ’
latter variant is somewhat more reliable (i.e., likely to
succeed if auccess is posaible! than ﬁhe'technique shggested
in the preceding paragraphg but will of course make certain
ccmputationa that the former technique would avoid. In some
cases, e.qd., in the'Pibonacci’ example with which we bagin,'
it will reduce the amount of raquired calculation very greatly.
In other cases, e.g., in calculating the function defined
recursively by

£{n) = £f(n=-1} + ... + £{2) + £(1),

it is clear that keeping a complete record of prior function

values will be much more effective than keeping a partial record.
In many cases it will be'inapproPrigte'to save every

detail of the (relevant porticn of) the data environment at

entry to a remember block or occurrence of ok, since ° there

‘may be some mathematical reason, too deep for a compi{&r to ‘:’
dliscover, which ensures that only some limited aspect of the
environment is relevant to the outcome of the biock or to

the success of the ok. |

tee

P

51 1557

gﬁt}g.,‘impmrtant probler symmetries or localisations may be

Invigible 0 a compiler). For handling such situations,
one way wish to allow remember to have a parameter, i.e..
to allow . the optimal forM”remember'e, where e is a SETL
value summwarising all the environmental information which
it is necessary to retain. Then bloockeffeot can be-a B
tunation of & rathnr than of the whole (formally relevant)
dats enviromment on black® entry.

In aondetex&iniatic situations allowing a heuristic
treatment, ona can retain a condensed hash of e rather than
a full reprssentation of e if e occurs in the context ok
Tenmember ¢, i.1., 1f e - is associated with an occurrence
of ok. ‘As a matter of fact, a modification of this same
‘technique can be used even if the inaccuracies implied by
& heuristic txeatment are not acceptable. The technique
as modified can appropriately be called statistical steering,
and has the following description:

(i) Associate a one-parameter mapping pastezperience with

'every occurrence of ok remember and ok remember e in a

program P. The parameter h of this mapping is an appropriately
‘defined hash of e (or in the case of a simple ok remember

of the (relevant) dats enyironment of the ok) The value of
pastezparience is a pair of integers ni,nz, which respectively
give the number of times (in the prior execution of P) that

the same instance of ok has occurred (dynamically), with the
same environment hash ?arameter h, and has been given the
respective values true and false.

" (11) To assign a value to 2 newly encountered instance
of ok, calculate its hash, and retrieve <n,,n,> = pastexperience(h}.
I1f n, > n, try the value false for ok first; otheryige try

true first. (Here note that an environment must be saved

at the ok no matter what value of ok is tried first).

SETL-15%~8

~

The tableas of values pastezperience(h) accumulated during -
'wxsuéceséive runs of a given program P might also be allowed
to. ¢uﬁulate, which -can improve the performance of P as it is
used overia-period of time. .. .7 G :
~Jf one tries to:use the trick o£ aaving only a hash h
of,thebrelevant,environment e &t the,staxt,ofxnemember blocks
vhich are not cases of ok remember, one rums the risk of
- having:a program execute (rather than simplyffailing;dnngceﬁﬁazily)g
but of axecuting wrongly, Im such a case the program can
actualily come to a noxmalvtermihatian and print output, but
the output can be wrong. At £irst sight it seems undesirabie
'to'bermit calculations to proceed in this erroneous way; but
in fact there is no compelliing reason to take such an
attitude. Suppose, e.g., that 32-bit hashes are used, and
that each program iz run three times (differenthash functions
heiﬁggnsed each time) to give the effect of a 96-bit hash.
_ l'hen even a program ‘that makes 106- remember-block entries O
before completing should execute with apparent success except
- - in one- case out of 10 21, & false-vesult rate which seems
 quite ‘acceptable. o
“The semantic mechaniems suggested in the preceding
pages;gerve nicely for the description of comprehensive searches
of arbitrarily complex spaces, and ensure that pruning of -
these searches by programméd detection of search-path failure
remains easy and‘convenient. ‘Kowever, in some cases, more
gereral control mechanisms may be desirable. For examplie,
even after well-programmed searchk-space pruning,
spaces may remain to be searched, and investigation of these
spaces may be impossible unlesns search is guided by sdma
“heuristic. Various heuristics have.been considéred in the
xliterature- N
T Dcpth»ftrat aeareh, which is guided by some con-
jectured estimate of the distance between nodes y of a graph G -
being searcned and the target node x. Such a search will (:j
prefer to examine the neighbors of that particular prevxou.11
reached node which ig felt to ba clasest to x before examiniag
any other noints. ’

‘ ;

~(Then fail comes to be equivalient to gstimate «.)

SETL~155-9

Breadth-first search is a variant of depth—first search in

vhich one assumes that the starting point x of the search
1ies near the search's target point x, and theretore eatinates
the diatanca of y from x simply to be y's (xnown) distance
!mn x This sort of search will examine all ymar x before

f?any nodaa y' farther from x are examined.

ti, - Symmetry. pruning. In searching a graph G, . 1t is
important to avoid redundant re-sxsmination of nodes that

'havo already bsen examined. If both G and the predicate C(x)

that one is attempting to satisfy have certain symmetries v,
then one should not examine z point y if a aymmatrical point
oy, has already been examined, since if there exists a path
fron y to an x satisfying C{x) thera will algso exist a: path
from oy to x.

The ok remember mechanism described in the preceding

‘pages allows redundant node examination to be avoided, and

the more general ok remember ¢ diction allows one to prune

. away nodes symmetric to a rode already under examination.

To zllow expressidn of depth-first searches in a nondeterministic
language, one can simply replace the fail statement that

would otherwise be used by a statement estimate a«, whers ¢

is real-valued and defines the amount of work that one expects

to have to do before calculation forxrward from the node (i'e.,
environment) under exumination leads to an x satisfying'cix).

2. General Backtrack Mechanxsms, Some Illustrations of Their Uege.

To alliow the aemantic mechanismg ok remember, estimate,
and other similar constructs to be defined by programs, it
is convenient (following Sussman's CONNIVER) to introduce

_general primitiveé allowing data environments to be treated

as semantic cbjects. An adequate set of rules for this purpose
is as follows (see NL 153):

(a) Environments become SETL objects which are treated

hrather like blank atoms. These cbjects can be set members

and tuple components, and can be. tested for equality. A copy
e'! of an environment e can be created by writing e' = copyl(e).

s
.

SETL-155-10

(b) Only ons enviromment is executing at any given moment: .
Inter-environment transition is eccamplished using the

' éotcutihe-callolike primitive

g \

1) valuereturned = cocall (néwanvironment, valuesent).

This caoalz exite from the currernt environment ce, enters -
newenvironment, and leaves ce suspended ‘halfway thru' the

vobaaZZ,‘teady to receive a value back when and if control is

evsntually returned to ce. Note accordingly that,with the
exception’of the ofie environment that is currently executing,
all otlier environments represent procésses which are suspended
awaiting-a value to be returned by a ecocall. The value tranas-
mitted by ece’ toc ncwenvironment via the cocall (1)is the pair
<ce. valueaent>

(c) ‘The special cocail ‘

(2 = - © 1 cocall (Q. valuegent)

_generatés & copy env of the'cuxreatiy running environment ce,

and transfers control to env. |

The system of primitives which have just been explained
embodics the follé&ihg semantic appréciation3° to allow one
environment A to manaqe other environments B, it must be
possible for information to be trarsmitted from A to B and
vice-veksa. On thé other hand, the internal structure of an
environment can béioéaque, and thus it is not reasonable to
let A and B write .directly into each cother. Hence we insist
that informatlon passed between R and B be 'packaged' as a
standafa form SETL object. The receiving environment, which
knows 1ts own structure, is responsible for installing this
information inte itself. 7To create new environments, the copy
operatlon is provided, in an actual implementation, this operation
should be implerented in a h;gh;y esficient way. The operation {2}

" gives an envirdnmgnt an appropriately standardised way of

referring to itself.

O

-

form

SETL-155-11

>3

Wa shall now describe another useful control structure,
resembling that defined by the simple ck and fail primitives.
pravidusly diﬁcussed, but supporting several additional features;
this structure can éaai;y bé represented in terms of the ¥ery

:general-aéaail primitivei,ﬁhidh;éave just been reviewed. The

yrimitives of this control structure are as follows:
(1) A new primitive trials,intended for use in iterators

having the form ,
| f .t € trials (Zabal, eapn)) block;
{2) A generalised variant of the fail statement, with_thé

" fail cx?n;
(3) A generalised ok statement, having the form

- ok (namsx,...,namek}.

The intended semantics of these three primitives are as
follows: whenever a trials iterator is (dynamically) encountered,
a new sequence of backtracking explorations (or 'trials') is

 opéned. Whenever a 'fail expn® statement (2) is executed during

this exploration,erpr is evaluated, the value which results is
assigned to t (cf. (1)), and control is returned to the beginning
of the block of (1). Before the start of the next iteration of (i),
control is returned to the ok point which would normally have
received contrcl from’ the fail statement /{2) (if this statement
were a simple fail). But in cases in which this last rule
implieb that control would revert to an environment established
prior to entry into the trials iterator (1), one simply falls
out of the iteration.

Explicit exit from a trials loop (1}, whether via a quit
statement or by a go-to whose target label lies outside the
loop, terminates the loop and erases all environments created

" in support of it.

e bt

SETL~155--12

The initial enviromment for the segrence of trials started
by (1) is obtained by copying the anvirorseent in which (1) is
oxccuted, but then by transfezring,in th@vcop1ed enviroament,
to Zabel o : e e g HE
_ Aftcr control has been returned tc the start of bZoaP
(in (1)) hy a fail and bZock has been cxecuted, the value 17

1y of the expn of (1) will be caleulated. Then, when at the f
start of the next iteration {1y control returns to. an ok point,
the calculated value v is made available, and if ok .has the
extended form (3), i.e., if i invo-ves a name. list, the

multiple assignment - S T

9

) T 4%+ £
<namez,e..,namsx> I S

is executed immediately before any*hing else happens in the
environment: containing the ok. . ' '

The set of primitives just introduded«stays “¢ldse in
concept to the easily comprehensibie kind of backtracking defined
by ok and fail in their simplest form, but allows a substantially
greater measure of interaction between~g§i§*§. B

It is convenient to allow £l L &
(1% | Yt € trials (label)) bloakg ‘
as an abbreviation for i v

Me € trials (label,) block:

To represent the primitives (1), .{2), (3) in terms of the
more general cocall operations introduced previously, it is
conveniengnto begin by introducing anrauxlllary control construct
having the form . T P
(4) ' Lenv,val> = try {label); o [

The intended gemantics of this construct are as follows: it
.forms a new environment ¢, whose internal state is a; copy =f the
internal state of the environment ce within which (1) is e:xecuted.

O

SETL~155-13

Control passes to ¢, which immediately transfers to label,

from which its execution continues.. In e, env has the

value éﬁ, and val the value . Later, by executing cocallfenv, v/,
¢ can return to ce, transmitting <e,v> as the value of the
function ¢ry in (1). Ths following code represents this handy
control construct in terms of the cooall primitive. '

 <xenv,xval> = cocall (8,2); /* form & and transmit ce to it */
if xvel eg Q then /* wa are in ¢ */
<env, junk> = cocall (xenv,true); /* return control to ce */
. go to label; /* when control given back, go at once to ladei */
- else /* we are in o6, having recaived control back from ¢ */
<env, val> = cocall(xenv,f); /* rsturn control to a */
end if;
Using this construct, we can represent the primitives
{1), (2), (3) as follows. From an initially given environment
init, we split off the first of a family of experimental
environments e¢xp by executing the atatement

<master, val> = try (start):
Here, master is a global variable, which will have the value init
in all ‘experimental' environmernits. The primitives (1), (2}, and
13) , which will be executed only in'expeximental' environments,
but not in init, are then represented as follows:
{a) The_g& (namel,...,namek} primitive is represented‘as

{1f not (hd (cocall(master,0)(2) is response) is okval) then

<namel,....namek> - respoﬂse {2); end if;

return okval;]j

SETI~155-14

Rote that response i here expected to haVe oither the Form
<t, 8> or the form<f, v>. o , :

(b) The fail eapn primitive is repreaented as |

dend

junk =. cocall(maater, <false, expn>); -

(c) The (\J't € triale (la.hel, expn)) blooks primitivo is
represented as :

 if cocall (master,l) (2} is save eq 2 then go to Iabel
/*.when the °magter environment zntt is called wzth ®y
/* parameter 1 by an experimental environment ezp R & */
. /? will form two copies of ezp, and pass G back to the *®/
/* first of these; when control is’ returned to the other */
/* copy, either a value oz the form <false, t> (for final */
/% iterations) or <okenv, t> (for iteratlons which are to.*’
”{'/*‘pass control to an environmeér that is in the midss %/ (:)
/* of executing the ok primit ve) will be transmitteo ®/
_go to enter; /% jump to first trials loop lteration w/

retrys <junk, save> = cocall (okenv, expn) 7 /* give ‘control o ckenv %/
eénter: <okenv, &> = sgve;y /* decode parameter ®/
oA block; /* execute block * .

f* to attempt next trials */

5.

1€ okenv ne falsze then go to retry

(&) The code prorogue executed wifhiﬁ'thevenVLronment intt

is as follows:
<mas~er, val> = gy (start),

exp = master; /* within £ni¢ the value of the variable ®/
' /® mcster is the initial experlmental spvircnment; %,
/* within- experlmental env1ronments ‘it g Init ®)
envstack = nult; /* initiallse stack of env1ronments #f
control: if val eq O then /* we deal with &n ok call */

envstack (§ envstack + 1) = <¥, copy (exp)>: ' C

<exp,val> = cccall (exp, <true, 2>); /* return tiue to ecp *;
else if val eq 1 then -

SRFL=155-15

Lo

. - /? we deal with the cocalil which initistes a new family of %rialg */
envstack (§ envstack + 1) = <, copy {exp)>;
/* note that the t flag distinguishes.an enviromment in ® 4
/®* which & trials loop is being executed. */ '
: <exp,val> « cocall (exp, €); /* return & to exp, thus “/
ST ' . /* starting trials &/
elge if val »g 2 then
/* we deal with an explicit exit from the last trial loop entered */
if & envstack > Zn > 1 | hd envstack(n) then
/* drop all enviranments gince last trials loop entxy %/
envstack = envata"k {l: n~1);
end if # envstack:
<exp,val> = cocall {exp, Q)3 /* now re-snter enviromment sxp %/
else /* a fail operation has just beern executed */
if envstack eg nult then
print ‘attempted run results in total failure®;
stop; '

#ise /¥ pop environment off envstack */
<fiag, env> = envstack (# envstack) s
envatack (§ envstack) = Q;
if flag then /% tgégigven?ircnment. pasg parameter */

/* indicating imminent loop exit */ .
<exp, val> = cocall (ehv,val); /* note that hd val is fzlse %/
else if 4 envstack » Zn > 1 | hd envstack(n) then

trier = envstacki{n) (2)3 /* last preceding trials +/
_ /* environment */
.<axp,va1> = cocall {trier, <9nv,val(“)>);
/* this passes data from fail operation to trials */
/* environment and also passes the environment which ig #/
/* pubsequently to recei,ve control */ |
- alse /* there is no preceding trials environmeat; control */
/* returns to lust preceding ordinary environment *f
<exp, val> = ¢ocyll {env.val);
(:) end if flag; ’

PRI SR RTINS s g s gt =

g v o v o= Sy o

- start: .

8ETL~155-~16

and if-val;
go to control;
/¥ the @nvixonment init heg ing to execute here */

Note that it is assumed in tha preceding code that :

'cxplicit exits from a triels loop, whether by quit or by

go-to statements, are complled as

B junk = cocall (master,Z);'quit; .
and as : . . R
. : CJunk = cocali (master,2); go to label;
£é3péc€16élyg 1f label iz a variable, then the somewhat more

complicated code pattern

if label not € labeiset th@n Junk = cocall (master,z
. go to label; .
is required Here labelset is the collection cf all labels
vhich are internal to the trizls loop in which the go-to appears.
To handle nested trials loops, a yet more complicated treatment,
which we leave it to the reader to work out, is required.

O

SETL-155-17

- As’an example illustrating the use of the semantic and
syntactic mechanisms sketched in the preceeding pages, we

shall naﬁ.give a number of parsing algorithms. We begin
vith a variant of the 'nodal spans® algoiithm, for which
wa agsume that we are given a grammar of Chomsky normail

- form productions a -+ 88, represented as a set gram of

triples <a,§,6>. plus a set tcrmpza of terminal productions
@ + A, ropresented as pairs <a,A>.,

definef splitspan (1,0,j) remexber:
return if j eq i + 1 then

if input(i) € termpro{a}then i else 0

/* here 0 is simply used to mark spang 'not present in the input'*/

else if 1 < Jn < 4, <8,8> € gram {a} |
splitspan (i,8,n) ne 0 and splitspan (n,§,j) ne 0
. then <B,n,$> else 0;

ead splitspan; ' '

It is interesting that this algorithm very much resembles
& top-down parsing algorithm in foxm,

The usual nodal span algcerithm determines ambiguity,
which the preceding algorithm does not; of course, an easy
mcdification of the precédihg will determine ambiguity also.
Note that the preceding algorithm, like Earley's improved
variant of the nodal span parse, never comes to consider any
span (i,a,j) which is not relevant to the parse tree of some
continuation of the left-hand context string input(l: i=-1) of
{ ilclj) .

Next we shall use ‘our general semantic mechanisms to
représent an interesting, highly generalised variant of the
bottomwup parse. In writing this algoxithm, it is important:

~to keep the following issuves in sight.

(8) We want our algorithm to be able to deal with illformed
input.

SETL~L55-18

“nus it will have to distinguish between °temporary' failures
ﬂecurring during explorataon of a parse tree,and 'real' failures

caused by lllformed input. In case of a 'real' failure, .it

should be able to pinpoint an exror locatzon, and specify a
diagnostic message. S oem

-(b) We do not want our algoxithm to be grossly inefficient.
In particular, we want it to be lenear in cases where a linear
parse exists. ' '? a
' To ensure that condition (b) is met, we shall make use of
the fact (discussed at greater length in Phil Owen's thesis,;g
Courant Computer Science Report § 4) that the collection«c
of all potentiaily handle-free santential strings of a contextw
free language L is a regular ianguage, and may therefore be
?ecognised by a finite state automaton AC. By using this
automaton in our algorithm, we can ensure that we will not
.carry our exploration past any peint at which the presence
of a syntactic error can definitely be asserted. This implies ‘:,
that our algorithm, although general and nondetermlnlstic,

'will in most cases be linear if the grammar with whlch it is
working is LR({k) for some k. .

We handle errors as follicws. Possihle parses are explored
by generating new environments. During this exploration, we
keep a record of the maximumn number of lnput symbols accepted
in each environment. If a definite failure is detected, i.e.,
if in every environment a fajilure occurs before the 1nput is
fully parsed, we use the environment E in which the maxlmum
namber of input symbols has been accepted to define an error
 location. A diagnostic messege i3 then emitted, the particular
message chosen being a fﬁnct‘en of the first symbol in the
environment E. and also of the state o of the aufomaton AC in
this environment at the moment of reject“on.

SETL=155-19

' When a diagnostic is emitted, &he’part of the input which
~has been scanned in E is deleted, and analysis of the remaindexr
KL of the input continues; of course, RI must be analysed 4
using the grammar G'which describes tails of sentences rather
than complete senténces. If the productions of the original

' grammar aren - sl..,an, then G"inclndes not mly these productions

by also all productions of the forma + 1 B4...8,, where
2<j<n and n is a dummy ‘start of sentence' symbol. In the
'algorithm shown below, which has the standard ‘shift/reduce’
structure, we treat the stack vector (on which shifted symbols
are placed) as if it had two copies of n appended to its left,
provided that an error has already occurred. Likewise,since an error -
may occur, the automaton AC should be replaced by an automaton

- AC' whose states ¢ are subsets of the set of all states of AC.
The transition and rejection rules for AC' are derived in an
dbvioaa way from those for AC; AC can be regarded as haviné

a set of states identical with the set of all singleton states

o = {a} belonging to AC'. The initial state ol of AC' is simply
the set of all states of AC. If an error has occurred, we
start AC! in the state ol; if no error has occurred, we start

it in the state'{ao}; where o is the initial state of AC., 1In
this latter case, AC® simply mimics the action of AC. If no
error has occurred, the stack vector is initialised with two
copies of a sentence start symbol F instead of two n's. The
extended grammar G' is always used for parsing, but none of the
productions belonging to G'-G can be'relevani unless an errox
has occurred and the stack initialised with n's. We assume

that every input string is terminated with an end-of-input

mark 7.

3

SETL-155-20

Detailed conventiors ars ag follows. The grammar. 18 given
as & set- of pairs <a, <Bl,...pB >> which _correspond to pro~
ducti.oné*’ o+ B ,...,8 ‘ta:!.l of aentence _productions.

a $onBs FeelBy are aisn repreaented in gramqar., The. special
symbolsa+““and n are’ called alaanstart and erroretart regpectively.
. thafaitomaton AC’ desciibed in the preceding paragraph is
represedted by a mapping transitton(etate symb), the initial
state of AC" 1s called aZeanetartetatq,kand the state into .
which Ad® passes each timé an error is detected and diagposed
is erroretartstate. We assume th&* we have avallable a.table
@rrormes%age(atafe nextsymbol), thch selects nmessages depending
on the s%ate of AC' at the moment at which an error .is detectea
and on the ‘gymbol follow1ng the poinu of . error. - i iGg
' Sincé it suggests a technique allowing the efficiency of

the foll&wing algorithm to be improved, we have written -the ok
operatioXs appearing in the algorithm ag ok remember: ¢, where
¢ is- ‘a pair consisting of the current state of the automatcn
ACY together with a few symbols (more precisely, contextlength
synbols) “of right-hand context. This is essentially the irn-
formation which an LR-parser wculd use in making condense/no-condernss
‘decisiond’. The remember feature which is thereby assumed-
could be implemented using a pastexverience mapping in. the
manner sketched on page 7 above. (Note however that. theiccde
iven above to implement the trio of eontrelbprimitives'ggg fail,

rials does in fact not suppert any ok remember feature). It ig
interesting to observe that, if the ok remember construct were
supported in this manner, the efficiency ¢f the mrser which
now follows would imprcvé-stee&ily as it processed a stream of
text, and in mdst cases would becomz astptoticelly proportional
to the efficiency of a deterministic LR parser.

SETL~155-21

/@ grammar, rool end eontezitlength are global quantities of this */
/* algorithm Initialise atarteymbol and startstate to indicate */
/* that no error has yet occurred. - *f
<startsgubol, startstate> = <nxean3tart, cleanstartstate>;
ipointer = 1; /* initialige inout pointer */
statefar = gtartstate; /* note that auxiliary automaton begins %/
farthest = 0 /* in initial state */
(while ipointer &t § input) ' -

(V%.E'trials‘(start)it(l)'gg farthest)

<farthest,. statefar> = t;

end Yt

print errormessage (statefar, input (farthest)):

ipointer = farthest + 1l; /* bypass bad input */
/® reset startsymbol and startstate to show error */

<startsymbol, startstate> = <errorstart, errorstartstate>;

statefar = startstate; |
end while; ,
print 'all syntactic errors have ncw been diagnosed';

~ stop;
staxrt:

/* entry ?oint to begin each sequence of trials */
stack = <gtartsymbol, startsvmbol>;
statestack = <startetate, startstate>;
{vhile ipointer fe & input and
stack ne <startsymbol, startsymbol, root>)

if Eipair € grammar |(# st tack) ge (#(pair(2) is rtside) is n)

" andd stack ((# stack -n) is ilength + 1:) eq rtside
" andd transition (statestack(ilength) is oldstate,
‘pair(l)) ' is newstate ne Q

andd ok remember +<oldstate,input(ipointer:contextlength)>
then /* perform cohdgnsation action ®/

stack = stack (1: ilength) +
if ilength gt 1 then <pair(l)> else
<gstartsymbol, pair (1)>;
statestack = gtatestack (1l: ilength) +
if ilength gt 1 then <newstate>
elgse <startstate, newstate>;

SETL~155-22

-

elae /* chack 1ega1ity ot shift action ®/
if trans*tion (statestack(#statestack)’ is oldsta
input (ipointer}) 'is rewatate ne o '
andd ok remember <oldetate,1nput(1po;nter'contextlenqth)*
then /* perform shift action */ w
ot -+ . stack = stack + <input(ipointer)>;: = . -
v stétastack = statestack + <newstate>y -
else /* neither condense or shift action is possible */
/* therefore we fail, returning input position and shate*/
- fail <ipointer, oldstate>;
end if;
end while; S
A% if we fall out of thie loop, then tail of input is acceptable LV
EEEEE if startstate eq cleanstartstate then : :
. “.Q'string is syntactically acceptable' else _
| ‘remainder of string is syntactically accebtable';-
stop; ' : o C
An optimization, based on glcbal analysis, which applies
in the semantié context defined by the three primitives ok,
fail,and trials can be described as follows. Call an occurrence
p of ok bounding if no occurrence of fail can be reached from
p when ok is given the value false.or more generally and
recursively if no such occurrence of fail can be reached without

first passing through some other bounding occurrence of ok.

Now note that if an occurrence of ok is bounding then whereas
failure can propagate back to it, thefeby requiring retrieval

of the enviromment logically saved when the ok is first

evaeluated and given the value true;, it can never fail completely,
l.e., failﬁre can never be propagated back to an environment
saved before evaluation of & bounding occurrence of ok.. Therzfore
on evaluating a bounding ok, one can destroy all the envstack
entries ancestral to it, béck to the last preceding occurrence

of a trials entry on envetack. g (;:

SETL-155-23

¢

This will generally save space, and, in implementations which
represent environments differentially, may also speed up
execution. /

cékfain?globalﬂSBTL-level pptimizations carry over from
the defsrministic to the nondeterministic case without _
difficulty. - Consider, for example, relationships of inclusion and
membership iRo' and oRo' of the sort studied in Newsletter 130.
In.the presence of primitives permitting multiple environments,
but where we assume that all these environments share the same

- ivarisbles aund ovariables (this will be the case for all the

systems of control primitives that we have discussed) we
consider iRo' (resp. oRo') to hold if it holds in every en-
vironment. Since the variables internal to an environment e

are modified only by statements executed within e, relationshipé
of inclusion and membership can be deduced by fixing attention
on some single environment and treating its cocalls to other

-environments as if they were read statements.

Similarly, if we assume that values transmitted by cocalls
are always copied (this assumption is reasonable since to

" define most of the control structures considered above only

boolean and integer values need to be transmitted by cocalls),
then global value-flow analysis can be carried out simply by
fixing:itteﬁtion on a single environmeht e. This same remark
then carries over to copy optimization, operator-operand
analysis, etc. However, to decide on the implications of all

of this for data-structure choice, & closer study of data-
structure .choice issues in backtrackiné environments is required.

 §ETL-155-24

3.’Ah‘éd§itiéhél‘cdmmeﬁt bu:the Optiﬁizationfof,seardhes.

. The mechanisms suggested in the preceding . pages make it igs
‘easy to describe both comprehensive. and deptl -, first searches.
., of arbitrarily complex spaces, and to.ensure -that pruning of .
tggselggggngg.by;p:pgrammed detection of search-path failure . .

remains easy and convenient. Moreovesr, -these same mechanisms
- allow symmetry pruning, which is another important and general
techniqye of search optimization, to be expressed easily. We
shall nqw describe a third technique. for guiding searches
over large sets, which can be quite powerful in certain cases
in which. . simple depth first and symmetry pruning techniques
&re imnsufficient. This technique can most readily be com- -
pggpqugguiffégenggsidersithe problem of séérching a product
graph G.=.G, *XG, to find a target element x = <x,,x,> satisfying
a predicate C(x) of the form C,(x,) and C,(x,). If G is.searched
without taking account of its product space structure, -:then
ny xn2§e1ements may have to beiexamépgd,»wgere_sl contains
n; and G, contains n, elements. On the other hand, suppose
thgt one first searches for an element x.=¢<§l, §2> satisfying
the simple predicate Cl(§l), treating elements as equivalent.
during this search if they have the same second component; and
then sté:ting from X searches for the desired x, now taking
second qomponenté into account but confining the search to
elements. y = <¥y¢¥p> satisfying'cl(Yi); Then it may not .be
negcessary to examine more than ny + n, :elements. v

It is clear that the same remark applies in searching

product graphs G = Glx...xG involving several factors. What

is more interesting is thatnéhis remark can be generalised to
apply when one searches graphs that are almost but not quite
products. We shall assume that tie 'almost product' structure

of such a graph is defined by 2 sequence ¢l,¢2,.;.,¢n of mappings
{which in the product graph case would be the projections of

Gon G X G, X...% G).

O

8ETL-155-25

' 8uppose first that the'predicate'C defining the target
point x of our search has the form C(x) = C,(x) and ... and
Ck(x).' Then we might use d(y) = § {3j| mot c (y)} as an
spproximate measure cf the distance between a given point y
and the gearch target x. Let £(D)} be a monotone decreasing
function of the distance variable D, and suppose that £{1}) = n
while £(k) is substantially smaller, e.g., £(k) = 1. Suppose
that a remember clause is added to each occurrence of ok in a
program searching G, and specifically that we always wnge

- ok remenbar 6(1i: £(D))

at occurences of ok; whers ¢ = <¢yee-cs$, >, and where as above
D counts the mumber of target predicates Cj which fail to hold
in a particular environment (i.e., graph node) under exploration.
This will have the effect of limiting the number of environments
which are explored; e.g., we will never examine two environments
er e, unless e}ther ¢1(el) and ¢1(e2) differ or one of e,, e,
satisfies at least one of the target predicates Cj. In generzl,
the more target predicates are gatisfied in an environment e,

the more detailed a view we take of it, i.e., the more of the
functions ¢j we are wiliing to regard as'significant' attributes.
(The ‘feature ¢j(e) is ‘signiticant' if we are willing to examine
both e»and an env%ronmenu e' whenever ¢J(e) are different.) Note
that by using the scheme just oudtlined and the auxiliary function
£(D) = n - D + 1, we solve the prctotjbe problem oﬁ connecting

_ two points

o o .A-A) . ’
Xy XeaoX X and %l xa..x.xn in a product graph Gl X...XGn without

difficulty, whereas more conventional search techniques, whether
depth first or breadth~first, can be ekpected to fail when
applied to this problem, Observe also that this scheme can
remain useful even in connection with 'searches whose target
predicate C is not a ccnjﬁcti.bn, ‘provided that we use a distance
heuristic function D having the property that # {x € G | D(x) < 8}
diminishes suitably with diminishing &.

SBETL-155-26

References

I.

2.

!Jémga R. Bitner and Edward M. Reingold, “"Backtrack _
Programming Techniques®, Coma. ACM (nov. 1873}, 651-655.

PR

Donald E* Rnu£h, *Zatinating the Efficlency of
- Backtrack Programg”, Tech. Pep. Stan~C5-74—442,

Computer Science Department, Stanford Univeraity,
August 1374,

