
SETL Newsletter# 158

Implementation of Reference Counts in the SETL System.
E. SchonL•:rg
October J 'J, 197 5

This Newsletter extends the remarks of SETL Newsletter no. 57 (Ha~k Warren:

copy minimization in SETL) and describes a somewhat restricted implem~ntation

of reference counts (RF's) in the SETLA interpretive system.

Reference counts are used to suppress redundant copy operations ,1hich

arise logically in SETL whenever an assignment implying a sharing of values

between program variables is performed. [Till now our implementation has in-

serted automatic copy operations whenever a composite object was retrieved

fr01n, 01· made part of, another composite structure. The resulting ov<::rhead

was sizeable, as it involved not only the copying routines but forced re­

peated garbage collections--which are expensive in the current systerr ("' 2 sec

for 32000 words of dynamic storage).)

In the improvement just implemented, reference counts are attach~i to

every multiword heap block which may be the value of a program variable or

temporary. The value of the reference count of a heap block must at all
'('

times be equal to, or greater than the number of live pointers referer.:::ing that

block. These pointers are located either in root words of long items, or in

the clash-lists of hash-table entries.

In the absence of live-dead analysis, a root word must be consid~red live

if it is either a symbol table entry, a local variable of a currently ~ctive

procedure, or one of the calling parameters of a currently active pr0~~dure.

Operations which perform assignments to any of the above must theref0rc- modify

reference counts appropriately.

Potentially destructive operations, 1.e. operations which at the ~mplemen­

tation level destroy one of their arguments (e.g. set union, wl1ich is ~erformed

in place whenever possible) must examine the reference count of their 'irguments,

and perform a copy if this RF is greater than zero.

Sinister assignments, e.g.

f (x) = y;

imply that the value off, or a subpart thereof, is to be modified. ·: ::is can

be done in place if the value of the variable f is not shared by othe~s,

i.e. if the RF of set f is no greater than one. Otherwise f must be ·_::ipied

before modification. Generalized sinister assignments, when implemen:~d along

the lines described in On Programming pp. 181 ff can be treated in t: '~ same

fashion. We discuss them in some detail below.

SE'l'L-158-2

Before describing any additional details of the current implementation,

let us note that the scheme as described is safe but not minimal, in the sense

that all necessary copies are detected, but that some additional redundant

copying is still performed. The savings over previous implementations are

nevertheless substantial.

The following types of operations must modify reference counts: assign­

ments, sinister assignments, creation of composite objects, and destructive

operations. We discuss each operation type in detail.

Assignment statements

The statement: x = y; (1)

is handled in a manner determined by the binding of x, and the namescope in

effect. 3 cases must be considered:

a) x is global (to the whole program, or to a namescope).

(1) is executed as follows:

al.-The RF of the old value of x is decreased by one

a2.-The RF of y is increased by one.

a3.- The rootword of y is placed in the entry,for x.

In this case,

b) x is local to a procedure. In this case 11) is executed as above. In ad-

dition, if the variable is not declared owned by a procedure, it is dead when

the procedure is inactive, and its reference count may be decreased on exit from it.

c) x is one of the arguments of the currently active procedure. In this case,

while the procedure is active, the same remarks as above apply. However, as

SETL allows procedures to modify their parameters, the RF's of program variables

are not affected by becoming the calling parameters of a procedure P. On

exit from P, the delayed argument return mechanism will have to replace the

(possibly ur,clated) val uc c,f each c1.rqument, 1n thl' environn;ent in-hich it resicles

(symbol table, environment block or parameter list of calling procedure). Up­

dating of RF as described by (a-c) above will be carried out for each argument

reassignment.

l\ slight irregularity in our scheme becomes necessary at this point. It a

program variable x appears as one of the arguments of a callPl'O<.: (x,y), the RF

of x is not incremented at the point of call. I.f x is reassigned within /'J'Oc.:,

the RF of the old value should therefore not be decremented. Successive re­

assignments of x will therefore produce RF's which are greater than necessary.

This seems of little practical consequence, as calling parameters are seldom

reassigned, and almost never reassigned successively within the same procedure.

SETL-158-3

Sinister assignments

Sinister assignments can modify their left hand side (the target of the

assignment) in place, as long as its RF is no greater than one. The RF of a

newly modified block is set to zero, and is subsequently incremented to l when

placed in the symbol table. Sinister assignments must also modify the RF's

of their right-hand sides. The following cases arise:

a) f (x) = y;

The RF's of x and y are incremented by 1, because they will become subparts

of f.

b) F(x
1

,x
2

. . xn)= y;

the RF of y must be incremented. Those of x
1

,

when the argument tuple is built.

x will be incremented
n

c) f{x} = y;

The RF's of x and of each member of y (which must be a set) are incremented.

X} = y;
n

Same as c.

e) f [x] = y;

The RF's of each member of x and y

X] = y;
n

Same as e, for all members of x
1

.

(which must both be sets) are incremented.
'(

. x and y.
n

The operator in can be treated as a special case of a):

of the set being augmented has its RF incremented.

the new member

A similar rule applies to the creation of composite objects. The RF's

of all items about to become members of sets or components of tuples are in­

cremented by one. At the implementation level, the procedures augment, gentur:,

tuppaddl do the necessary incrementing. This rule is safe but not minimal,

as the modification 01· creation oµcration in question might be apµlied to a

compiler temporary (which has an RF of O). However, the rule does take care

of the case when an exrJression is subsequently assigned into a program variable.

Destructive operations

These operations include+, - and/ in their various meanings. At the

implementation level they are performed in place. In the absence of live-dead

analysis, their first argument must be copied if its RF is different from zero.

Before copying the ru· of the old value must be decremented by 1, as long as it

does not become zero. This again is a safe but non-minimal prescription,

SETL-158-4

Generalized sinister assignments

The statement ~
2
op

1
x = expr;

is implemented by the following expansion:

op
1

x;

expr;

t;

(2)

(3)

(4)

(5)

Line (3) retrieves a pointer from x and assigns it to the compiler tern-

porary t. Line (4) performs a simple sinister assignment on t. The safety

of this operation obeys the rules stated before. In the simplest case we

have RF x = 1, and the RF of op
1

x is also 1. (4) can then be executed in place.

This of course means that the assignment tot appearing in line (3) has not

modified the RF of the block being assigned into it. Finally (5) can also be

performed in place. If x has become a subpart of other structures, RF > 1.
X

However ~
1

x may still have an RF of 1.

In this case, (4) will be performed in place, while (5) will require

copying. This, however, is unsafe, because (4) is actually executed within

x, and will therefore modify its value before the copying triggered by (5) is
'(

executed. The same problem can arise with long·er sequences of storage opera-

tors. The source of the difficulty is the possible imbalance that may develop

between the RF of a composite and those of its subparts. The straightforward

(and expensive) solution is to update the RF's of all subparts (to any depth)

whenever the RF of a composite is modified. This however seems unacceptably

expensive. From the preceding example it is clear that RF's of subparts need

to be updated only immediately before the points at which they may be modified,

at which time they can be set to the RF of their parent composite object. This

need only be done for the code sequences produced by generalized sinister

assic_:1nments.

Finally, copying itself can be restricted to a single level, as long as

the RF's of subparts are incremented by 1. This means that only the hash

tables of sets need be copied, and the RF's of set members updated. This will

always be cheaper than copying to full depths, and· is clearly safe. Decrementin,1

the RF's of subparts of dead composites (e.g. old symbol table e~tries before

a reassignment) is probably a refinement that lies beyond the point of dimin­

ishing returns.

