SETL Newsletter # 160 ' J.T. Schwartz
: ' : Kovember 13, 1373
"An Algebra of Program Events R

Potentially Useful 'in & Debugging Lancuage.

1. Introduction.

In debvgging and also in reasoning about progran behavior
and correctness, one needs to use language describing program
events, and of course if one proceeds informaliy this is no
problem. But to make such language available either within
an impleménted debugging system or in a correctness-~proving
system, formalisation is necéssary. This short newsletter
will sketch the (rather simple) semantics and syatax of a
formal language of program events, and wiil then go on to
indicate the use which such a language might have in systematic

. ‘ - debugging.
: We choose to represent events by boolean-valued functions
of two parameters:. '

£ (now, prev),

« vhere the parameters ncw and prev are both cycles (moments)
.Quring the execution of a particular program. and where w2
always have prev < now (in the sense that prev is an earlier
moment than now}. If, speaking heuristically, f represents
an event-E (in generali, E will have some certain time
duratioﬁa which may howevexr be asvshort as ona cycle; and
E can occur ;epéatedly) then f{now, prev! will have tha value
true for all morents prev prior to now at which the event E
transpires. ' '

An event can either be a primitive program event Or a
‘ compositz. An example of a primitivas procgram event is at L7,
(:)- where & is a label or program point more gemerally; this
event transpires when control reache$ the label 2.

SETL~160-2

in example of & composite gvent is fi ggg‘fz, where ~fl'
f2 are both events. . This trangpires when both events occur
simultaneousiy. o

If it ware always true that f(nl,p) = f(ng,p) when
By, 2 8, 2> p, then single-parameter boolean-valued functions
instead of two-parameter functions could be used to represent
avents. A3 an example showing that this is ncot always the

cagse, consider the composite event

g = and £;

vhere £ is an event. This has the definition

g(n,p) = £(n,p) and (n _{Vp’ >p | mot £(n,p7)) .
Cther useful elementary &nd composite events are as follows.

Elementary events:

at L: control L8 at the program point &.

eall r: control enters the routine r.

raturn r: contrel raturns from the routine r.

€ 3 e i an cccurence of a boolean expression. As an
event, it transpires when this expression, evaluated
ir its cuizently active esnvirBmment, has the value true.

clanges e: e is ar occurence of a boolean expression. Thig

. event tfanspires when the value of e, evaluated within
1t8 currently active envircnment, changes.

within rb: control. is within rb (a routine or klock}

eveluated 2: e ig an occurence of an expressicn. This evant

s, T -

trangpires whenever e is evaluated.
zegignto vi v is an occurence of a varjable, This event
cccers whenever an assignment with v as target is

gxacuted.

@)

'ﬁasn e

szma~lso-3

gft

.9

Vi o0 ow@ @

3

0

Wy

w

not £
fl and fzz
fl 95 f2'~ etc:
end £
atart f£:
after f£:

aftex (k) f£:

-

£. hefore f£.:

= endings £

&

w2 -

startings f:
last £:

first £:

last(k) £:

first(x) €:

) iest
‘}n Fis

et

EE A

9

N
ES
r3T

S

owing £.3
) Erllowing £

r4 pr T e vl [

£, £old

g(m,p) = nct £{n,p)

gin,p) « £,{n,p} and f,{n,p

g(n;p} = £,(a,p) oxr £,(n,p). etc.

gin,p) = £in,p) and {(n > ﬁ&’ > pl not £(n,p”)}

o——

‘gla,p) = £in,p) and (p > ¥p~ > 0] not £(n,p))
g(n.pi
gin,p) =

nct {n > Sp > p l £ln,p})

P2 3@1'5’2"!2'“'%' g a2 py > 9202

Pj > g, and
f(n,ql) and not f(n,pz}:§§ f{n,qz) and not
€(n,p,}) and ... not fin,p,) and r(gqu).
n“=4ifn>3Jp > 06 {(£f,(n,p) and

P> 9; > ol‘not fz(n,p))
then p else if f(n,n) thpu 0 else n;

g{n.p} = £(n" .p).

- g(n,p) = £(n,p) and not fin,p + 1)

g{n,p) = £(n,p) and not fin,p - 1).
g (n,p) = £{n,p) and

{notr > Zp” >p |f(n,p”) and not £ln,p” - 1)}

g{r,p} = fin.,p) and |
(not p > Jp” > 0 {£(n,p") and not £(n,p”
gin,p} = £(n,p} and
(# {p", n>p > p |£(n,p") and rot

gin,p) = fin,p). and
(#{p”| n > p" > 0 | £(n,p") and not

fin,p” + 1V} fe L-2:

ﬁ‘?’i’:t A C’q*f‘ {:(\ f

L Eoru——

last first fr }

o

g = £, and after f
) RN e

f{n.p” - 1)} Le k-1

“

_is tyne, and that (k)last p is th

SETL-160~4 .

Note that last £ is true during the lost contipuous varicd

. L} "
within which £ is stead: by true: that Jastik) T is frue in daricd

p if there do not exist more than k corntiavous time periods
inciuding =nd subseguent to p (but prior to n) during which £
k-*h from the last tire

.C‘l
peried prisr to n daring which f is t:ue, if there exist k

such pericds: otherwise (k)}last f degenerates to fivrst f£f. The
}First cen be described in a

e

e
tny

operations first, £irst(k), and ¢
similar way.

If the aperation cycle n iz such that {(n.,n! is true,
then we ghall =say that f cccurs at ne.

The dictions that have been iantroduced can bhe compounded

in chvious ways. Thus e.9., wo can vwrite

st ¢ and after(3) (in b following (931ast ag f)
to describe . momentas at which acontrol retuyns to 2 after having
entered and left the block kB at least thrso times since f was

last visited,.

Dictinns of this type are bound to be usaful in informal
debugging. They enable us te call for dynamic checks,; program
dunps.etc., at carefully specified program momants, as e.3g.
by writing . '

if at £ snd after(d) (Ln b follawiag {(#)1aSh at #) <hen

PY iet varicus vaviad

ih o
assert (st ¢ and pot after (in b folloving (2)last a3 %)
implies eome-proposition;
or

aggert not scme-gvent-thought~-to-be-I1possible;

etce, In the remainder cof this newsietter, w2 shall outline a
more systematic approach to this way of using the evernt-criented

dictions that have just bheen introduced.

0

SETL~1605

2. 'Significant program events' and systematic debugging.

‘Systematic debugging’ may be defined as debugginé which
aims to make some substantial . part of a full program correctness
ptoof manifest, and which then goes on tc check the Floyd
ssgsertions which thereby appear. A reascnable procedure to use
in systematic debugging is as fnllows:

(a) ‘Write out a careful but informal correctriess proof
fgr the program PR being examined. Tha following example
(culled from Newsletter 155) illiustrates the dicﬁions which
can be expec;ed to appear in such a procfs*' Note that one
statement after the point at which we exit from the Yn-iteration,
assertion (K) reduces to (£). On entry to the v5~iteraﬁ10n, ()
follows from (€) ,since allsorted = allsorted + ha}fsorted»{l:ntaken)
will just have been executed. Only the last statement of the
- mergein routine changes ifs vect argument, and from the férm
'_of this statement it is evident that on exit range{vect) has
become the union of the entry of range(ve=t), plus {elt}... .
s -"(b) Using the program event languagz described in the
preceeding pages, produce formal phrases “describhing each of
the events alluded to explicitly or inplicitly in the informal
proof developed as step (a), and add thess event descriptions
to a 'significant events 1ist', Fach significant evaent description
should be accompanied by an auxllzaty list of conditions +o0 be
chacked when the event occurs.

(¢} A program debugaing system should be akle o sccept
the significant events list and the attached oonditicn lists
built up during step (h). It ghould be able to uvse thoese lises
during debug rung of the program PR, speaifically *+o.produce
both diagnostic statements wherever any ~ondition belonging
to an auxiliary list is not met, and alss after a run to produce
a list of all significant program events which have never accurred.
The debuggiﬁg sygtem should be capable of passing lists of
occurrences from one debugging run to another; then when a
final listing is generated, only significant erents that have
never cccurred in any of a series of debuaging runs neecé to
be printed.

