SETI. Newsletter § 161 ' Art Grand

December 31,

Specifications for a nmew optimizer-~

oriented SETL front end

This newsletter specifies the design for a new SETL front :
end. Its output is a set of quadruples which can either be
1nterpreted or used as input to the SETL optimizer.

The front end follows the general scheme outlined in
LITTLE Newsletter 40. It uses a standard scanner-varser

to produce a reverse polish string in which arguments are re-
presented as symbol table pointers and operations as calls to
semantic routines. The polish string is processed
by a gemantic pass whose output is a set of quadruples. 1In the
initial implementation these quadruples will be interpreted
directly. Later we will insert the optimizer letween the semantic
prccessor and interpreter. In & final implementation we may
convert the guadruples into the polish II form described in
newsletter 40, and from there to machine code.

As described in newsletter 40, the parser passes 4 tables

‘to the semantic pass: Symtab, the symbol table, Names, an array

of token names,Valueg containing values of constants, and polishl,
the polish string. The semantic proeecsor produces an

augumented Symtab, Names and the gset of quadruples Code. It

also contains conditional code to produce Routedb and Blocktab
containing information on subroutines and basié blocks needed by
the optimizer, The front end will.gather statistics as to
freguency of operations, etc., to facilitate data structure

choice in the optimizer.

Data Structures
We now present detailed specifications of the above mentioned data

structures.

-3

[#a)

. SETL-161-2

Notice that thev are all LrirrLy bit string arravs, thus im-

- plementation of the front end need net await the final debugging

of MIDL.

SYMTARB

Symtab:is a variation of the general purpose symbol table
presented in newsletter 40. As before we provide certain

standard fields and fields whose use varies from pass to pess -

~however the number of standardized fields is less than previcusiy

described. Symtab requires hashing only during parsing. During

the remainder of compilation it is desirable to have symtadb zs

compact as possible, without the gap8 normally associated with

hasghing.

We do this with a linked list algorithm which chains

together entries with the same hash code.The head of each colligicn

chain: is stored in an auxiliary hash table which is dfOpped

~after parsing.

Symtab has the following fields:

STYPE:
SNAME 2
"SLENGTH :
SSCOPE :

SPARAM:
SVAL:
SLINK:

Lexical type

Fointer to the names . array in which token names are ¢tored,
Length of the token. _ _ ‘
Scope of identifier. This field is set during

semantic processing .

?arameter number, determinedly semantic processny,
Fointer to Vel for value of constant.

This field is used differentlv during each pass.

During parsing it links different names with the

same hash code. In the semantic pass it links variables
of the same name in differeni scoues. In the cptimizer
it points to the globai attribute table ATAB.

Flags procedure and label constants.

Thiz field gives the'block in which procedure and

Iabel canatants are defined.

C

C

SETL-161-3

SNUM: This field overlaps SDEF and gives the number of o©
and i occurrences of a variable.

SOFFSET: This overlaps SDEF and SNUM and is used by the

interpreter for storage allacation.
SLOCAL: Flags local variables.

NAMES .

The names takle vontaing the names of tokens represent
as packed characters.
VAL

Thig aryay stores the internal values of constants in
their LITTLE representation,
POLISH -

The polish string will be implemented as a packed array.
Names and constants are represented as symiagb pointers. Counters
and marker nodes are integers biased by the dimension of symtab.,
cong

Cede representg the programr as an array of tuples. Each
cperation is represented by a ‘root' entry which contains its
opcode, output variable and first z input variables. Additional
inputs are stored in successive entries,

The fields of code items ara:

OVAR: The catput variasblie.
IVARL: Firgt input.

IVAR2: Second input.

NARGS @ Numbexr of inputs,

CPCOLE: Operation code.
OPTYPE: Extra type information genmerated by the optinizer,

corresponding to the etype field o run time objuct:.

This is an auxilliiary table created for the optimizar, It
containg &he‘follmwiﬁg infaormation ahout sach routine:

ROUTNAME: Pointer to symiab, foxr recutinc's name.

ZOUTENTRY: =Rumber of routine's entry block.

ROUTEXIT: Muamber of its exit hlock.

FOUTARGS : A
Nugber of formal parameters.

SETL--161-4

BLOCKTAB . -

This is another auxililiary tabie giving information about
aach basic block. Its fields are:
BSTART ¢ Start of block in eode.

BLEN: Length of block.

BCESS: Pointer o optimizer’'s cessor map.
BNCESS: Number of cessors.

'BPRED: Pointer to predecassox map.

BNPRED Number cof predecessors.

THE QUADRUPLE LANGUAGE
The quadruples produced by the semantic pass serve two
purposes: first these will function as primitives for the |
interpreter; second they will serve as input to the optimizer.
These goals are not always compatible. In many cases the
interpreter will require more detailed primitives than the
optimizer and vice versa. As a result certain operations (T‘
are only used by one or the other.
The foliowing is a list of guadruple of ccdes:

Binary Operations

odv division

OmXm maximum

omnm minireum

cad addition

osb subtraction
omult multipiication
00X oxr

oand and

oxor exclusive or
orm remainder

SETL-161-5

Relational Operations

oeq
one
ole
olt
ogt
oge
oelm
oinc
oimp

equal -

not equal

less than or equal
less than

greater than
greater or equal
membership test
inclusion test
implication

Unary Operations

oabs
osiz
onot
ohd
otl
oarb
coct
odec
otype

obsolute value
number of elements
logical not ‘
head

tail

arbitrary element
octal conversion
decimal conversion

type

Operations on Sets

oset
opw

onpw
owth
olss

olsf

set former
powerset
n-power set
with

less

jessf

Operations on Tuples and strings

ctpl
osub

oend

tuple formerx
s{i:3)
s(i:)

SETL~1€1-6

Mappings and Functicn Zvaluations

oof
oofa
oofb
oindex
ofcall

Assignments

oass
argin
argout
osof
osof
osofb
osubs
oretasin
osend
oindexs

f(x)
fix}
fix]
£(x)
£ {x)

gimplie
arqgum

agd f{xl...xn)
and f(xl,..xn}
and f{xl.“.xn]

where x ig known to be a tuple.

whare ¥ is known to be a function,

assignment
ent-in asslgnment

argument-out assignment

f(x) =
£{x}
fix)
8(X:3)

[

Yeturn

s{X¢)
s{I) =

Control Statements

ocall
ogoto
oifgo
oifnot
oretgo
oexit
onext
onextq
cnexts
oinit

subrou
go to

y and f(xl;."xn) =Y
y and f{xl...xn} = ¥
y and f{xl'“'xn} = Y
agsignment

=y .

¥y where 8 iz a tuple

tine call

ivar?

if {var? then goto ivar?2

if not ivaril then goto ivar?

return

program exit

set theoretic iterstor

ag onext, but as part of quantifier expression

as one

branch to ivar?Z if this is not the first call. to

xt, but ag part of set former.

the current routine

SETL-161-7

Input - Output

ofile makefile
oprint print

owrite write

oread read
Miscellaneous

onew newat

Pseudo Operations

These operations have no run-time gemantics and are used only

to simplify. value flow analysmis.

auxarb dunmy arb ogeratioﬁ

auxset - dummy set former

auxass durany assignment

auxtl a pseudo operation used to aid the analysis

of mappings. It has the semantics:

definef auxtl .x:
return if type x gg tupl then orm

else if # x' gt 2 then tl x

else x(2); '
end auxtl;
This operation is designed toc .return the same values for

<1,2,3> and <1, <2,3>>,

auxoralt declares two variables to have the same value.

auxnonull declares its argument to be a non-null set.
not ecntainin§ its first element.

auxissing declares a single. valued mapping.

auxlab defines a label

auxsub defineg a subroutine.

SETL~161-8

Most of the above operations have an cbvious meaning. We
concentrate on the more complicated cases. We denote guadruples

by the notation <ocutput, tnputl,...,inputn>

General program structure

Each routine will have coﬁpiler generated entry and exit
blocks containing auxiliary assignments used for value flow
analysis. Functions return their values by means of the operation

<temp, retasin, value>

The optimizer will wview this as an

SETL-~161-3

assignment to a temporary, while the interpreter will view
it as an assignmen£ to a speclal global variable, register, etc.
The following is a. typical entry block for an n-parameter
procedure named sub:
.<sub, auxsub >
<pys auxass, Py

&
.

*

£ <p,s auxass, p,>

where p, through p are the formal parameters. The corresponding
exit block will be

- <elab, auxlab>
<pyr auxass, p,>
<pnhauxass; P,>

where glab is a compiler generated label. A return statement
<:) will be translated as

<oretgo, elab>
Oretgo is treated as a goto by the optimizer and a return by
the interpreter. For functiohs we generate a temporary restemp
' to store the result. The exitblock is then compiled as

<elab, deflab>
<P, auxass, p,>

< uxass >
pn, auxa ’ pn

<restemp, auxass, restemp>

The extra auxass is used to chéin the function value to
its uses., The statement

return x;
is translated as ’
<restemp, retassin, x>

oy < ¢ oretgo, elab>

SETL-161-10

Subroutine calls

Subfoutine calls are préceded by argument in assignments
and followed by argument out assignments. Argument in assignments
are always generated by the semantic processor. Argument out
assignments are generated when the argqumenis are program
variables as opposed o temporaries. '

If an argument is an extraction operator, such as hd x
we generate an argument out assicnment for the temporary which
holds hd x and then a sinister assignment to copy the temporary
into x. General sinister assignments recieve more compléx
treatment.

The statement ‘

f(xl"’f'xn}’
expands to:

<tl, argin., xl>
<tn, argin , x>
< , ocall, £, tl' tz,...,tn>
<xl, argout, t1>
<xn, argout, tn>

Function Calls and Mappings

Function calls and mappings are indistingiushable at compile
time. Whenever we encounter expressions such as y = f(xi,...,xn)
we generate code to treat £ as hboth a function and a mapping.

The primitives oof cofa, and oofb are assumed to include run time
tests of these arguments.

We generate a complex series of qux operators prior to each
function call to provide proper analysis of mappings. The aquztl
operator is emitted once for each argument to simulate a series
of single argument mappings. In addition v2 generate the

argument in and agrgument out assignments used in subroutine

SETL-161-11

calls and eliminate them if the optimizer determines that an

. expression. is a mapping rather than a function call.

For y= f(x,,...,X_) we generate
1 n
<tl, arginass, 3%
<t >
tn' arginass, X,

(1) <temp, auxarb, £>
<temp, auxtl, temp> /* we emit this instructica
. n times */
{2) . <y, oof, tj,...t , temp>

<x1, argoutass, t1>
<x argoutas >,
n’ rgouta g tn

Since f{x} can only represent a mapping, we generate only
line (1) through(2) with oofa substituted for oof. For f[x] we
generate the same pattern as f(x) but omit the argument out
assignments.

Sinister Assignments

Below we list the code generated for primitive sinister

- assignments. Genéral gsinister assignments are compiled into
. combinations of these plus the extraction primitives.

Source Form ‘ Quadruple Form

f(xl,...,xn) =y <t, otpl, Xjs...eX . Y
<f, osof, £, t>

f{xl....,xn} =y <t, otpl, X3, ...¢X , ¥>
<f, osofa, f,t>

f[xl,...,xn] =y <tl""' auxarb, xl>
<tn, auxarb, xn>
<tn+l auxarb, y>

<temp, auxtup, t >

1"..0'tn+l
<temp2, otpl. xl,...,xn, v>

<f, osofb, f, temp, . temp>

&

 SETL-161-12 .

5(I:) = y) <Ss, Qends, S, I, y> ‘ Cf?
S(I? j) =y v <S, osubs, S5, I, j, y>

Multiple assignments are treated as individual indexed
and subtuple assignments, Hoﬁever, in generating
y = s(1)
as part of a multiple assignment we use the oindex primitive

“instead of the cof primitive.

Set Iterators

The code for the loop
Y x ¢ s
" Bloak
end V; .

is the most complex code fragment we emit. We show it first

- without the auxilliary operators required by the optimizers.

<temp, oass, o> /* temp is an auxilliary pointer (:)
used by SRTL x/
_ <test, auxlab> |
<x,.next,.s, témp>
<templ, ceq, x; om>

< oifgo, templ, elab>
~ block
< ; ogoto, test>

<glab, auxlab>
With the auxiliiary operators added we have:
<temp, cass, o>
<g,, auxass, nf>
<s;, auxass, ni>
<test, auxlab. >
<%, cnext, s temp>
<templ, oeq, x, om>
<temp2, oéq, sl, s> (:)
<temp3, auxoralt, templ, temp2>
< P bifgo, temp3, elab>

SETL~161~13

Q \ <temp4, ominus, s, 91>
<temp5, auxarb, temps>
<tempb, auxoralt, x, temp5>
<X, auxass, temp6>
<temp?7, auxset, x>

- <temp8, oadd, Bys temp7>
]) A <s;, auxass, temp8>

bloek

b

<temp9, auxset, x >

<templ0, cadd, 8o tempd>
<templl, auxoralt, templO, sl>
<8,, auxass, templl>

< ¢ Ogoto, test>

<slab, auxiab>

<templz, auxoralt; 8y s>

<g, auxass, templ2>

_ This reflects the code sequence contained in Optimigation
of Very Righ Level Languages II.

