
0

0

SETL Newsletter f 161

a,_e_cif ications for a new c>"ptilnizer­

oriented SE'l1L front end

Art Grand
December 31, 1975

This newsletter specifies the design for a new SETL front.;

end. Its output is a set of quadruples which can either be

interpreted or used as input to the SETL optimizer.

The front end follows the general scheme outlined in

LITTLE Newsletter 40. It uses a standard scanner-~arser

to produce a reverse polish string in which arguments are re­

presented as symbol table pointers and operations as calls to

semantic routines. The polish string is processed

by a semantic pass whose output is a set of quadruples. In the

initial implementation these quadruples will be.:interpreted

directly. Later we will insert the optimizer lEtween the semantic

processor and interpreter. In a final implementation we may

convert the quadruples into the polish II form described in
newsletter 40, and from there to machine code.

As described in newsletter 40, the parser passes 4 tables

·to the semantic pass:· Symtab, the symbol table, Names, an array

of token names,Values containing values of constants, and polishl,

the polish string. The semantic proeecsor produces an

augumented Symtab, Names and t.he set of quadruples Code. It

also contains conditional code to produce Routab and Blocktab

containing information on subrouti'.'"!es and basic blocks needed by

the optimizer.. The f.ront er~d will gather statistics as to

frequency of operations, etc ... t to facilitate data structure
choi.ce in the optimizer~

Data S t:ructures

We now present detailed specifications of the above mentioned data

structures.

SETL-161-2

Noti.ce that they are all LIT".C'LE bit string arrays, thus im­

plementation of the f.ront end need net aw,3_:i.t the final debugging

of MIDL.

SYMTA13

Symtab:: is a variation of the general purpose symbol table

presented in new~letter 40. As before we provide certain

standard fields and fields whose 1Jse varies from pass to pass

however the number of standardized fields i.s less than previously

described. Symtab requires hashing only during parsing. Durin;

the remainder of compilation it is desirable to have syratab as

compact as possible, without the gaps normally associatr::<l with

hashing. We do this with a linked list algorithm which chains

together entries with the same hash code..The head of each ccil1is.icn
chain: is stored in an auxiliary hash table which is dropped
after parsing.

Symtab has the following fields:

STYPE: Lexical type

SNAME.: Pointer to t.he names, array in which token names are f torf·d •
. ;- ~

SLENGTH: Length of the token.

SSCOPE:

SPJ'ARAM:

SV~.L:

SLINK:

SDEE':

Scope of identifier. This field is set during

semantic proc·essing ·
Parameter number, deterr.."dnedly :-,emo.ntic process-:::.u:.

Pointer to Va 1, for ·.ralue ,of constant.

This field is used differently during each pass.

During parsing it: links different names with t.hi:~

same hash code. In the semantic pass it links varia~,-tes

of the same name in dif fe.,:-r:mt scoi~•E'S. In the optimL·ot·

it point,~ 1:o the ,Jlobal attributP. table ATAB.

Flags procedure-and label constants.

This field gives the block in which procedure and

label cb~stants ~re defined.

SETL-161-3

SNU.M~ 'rhis field overlaps SDEF and gives the number of o

and i occurrences of a variable.

SOFFSET: Th:i.s overlaps SDEF and SNUM a.nd is used by the

SLOCAI .. :

interpreter for storage allocation.

Flags local variables.

NAMES

The names table contain.s the names of tokens represent

as packed characters.

VAL

This array stores the internal values of constants in
their LITTLE repre.sentation.

POLISH

The polish string will be tmplemented as a packed array,

NamP.s and constants are represented as eymt:ab pointers. Counters

and marker nodes are integers biastr!d by the dimension of symtab.

CODE

Code represents the prograro as an arr,'ly of tuples. Each

operation is represented by a 'root' entry which contalns its

opcode, output variable and first 2: input variables. Additional

inputs are stored in successive entries.

The fields of code .ite .. ms arc:

OVAR:

IVA.BJ.:

IVJ\.R2:

NARGS:

Of'CODE:

OPTYPE:

Routab

Th;;"? <.~utput varia.b1e.

First input.

Second input.
Number of .i.i,put.a.

Ope:ra.tinn code.

Extra type :inform.:-; t.i.on gene1·~~ ted by the 01-;thii:?.r~r,

corresponding to th~ e1:ype field. cf run tir1e ohj•.!Ct',

This is an auxilliary table created for the optir:liz.•'..'!:t. It

cont11ins ~::he .following information about each routine~

ROU'l'NAMB; Pointer to sym-t.al.i , for rout:.nc 's name.

ROUTENTRY: Numoer of routinf! t s entry blod:.

R()UTEXIT: Nurn.ber of its exit block ..
ROUTATIG8:

SETL-~161-4

BLOCKrAB

This .1.s another• a.u xillia-cy tab.le giving information about

each basic block. Its fields are:

BSTART~

BLEN:

BCESS:

BNCESS:

BPRED:

BNPRED:

Start of block in code~

Length of block.

Pointer to optimi~er's cessor map.

Number of cessors.

Pointer to pz.-edecassor map.

Number of predecessors.

THE QUADRUPLE LANGUAGE

The quadruples produced by the semantic pass serve two

purposes: first these will function as primitives for ~he

interpreter; second they w:i.11 ser.re as input to the optimizer.

Thf..!!'3e goals are not always compatible. In many cases the

interpreter will require more detailed primitives than the

optimizer and vice versa. As a result certain operations

are only ust~d by one or the ot..her.

The following is a list of quadruple of codes:

~inary Operati_ons
odv division

omxm maximum
omnrn minimum

oad addition
osb subtraction
omult mul ti.piication

oor or
oand and
oxor exclusive or

orm remainder

SETL-161-5

~--
/

Relational_Operat~

oeq equal·

one not equal

ole less than or equal
olt less than

ogt greater- than

oge greater or equal

oelm membership test

oinc inclusion test
oirnp implication

y~ary Operation~

oabs obsolute value

osiz number of elements

onot logical not

ohd head

(; otl tail

oarb arbitrary element

ooct octal conversion

odec decimal conversion

otype type

Operations on Sets

oset set former

opw powerset
onpw n-power set

owth with

olss less

olsf lessf

~£_erations on Tuples and strings

otpl tuple former
osub s { i: j)

l oend s (i:)

SETL-161-6

oof

oofa
oofb
oindex
ofcall

Assisnments

oass

argin
argout·
osof

osof

osofb

osubs

oretasin

osend

oindexs

f (x) and f (:x1 .•. xn)

f{x} arid fl'.x1 x} . n
f[x] and f (x1 • ,, .Jr.n]

f (x) where X is knC'JWn to be a tuple.

f(x) ,,.•he.re X is known to be a function.

simple ciSSigrunent

argument-in a:s13.l.gnment

argument-out assignment
f {x) .:,: y and. f {x1 4. ,.xn} = y

f{x} = y and f {x1 ••• xn} z: y

f[x) = y and f [x1 ... xnJ = y

s(I:j) :r.: y

.return assigmnent

s{I:) = y

s {I) = y where s .i.H a tuple

Control Statements

ocall

ogoto
oifgo

oifnot

oretgo
oexit

onext
onextq

onexts

oinit

subroutine call

go to i1,ar2

if ivar1 then goto ivait2

if not ivar1 then 9oto i~aP2

return
program exit

set theoretic .i. ter.:) tor

as onext, but as part of quantifier expression

as onext, bL1t as part of set former.

branch to ivar2 i.f this· is· not the first- c,tll. to

the cutzent routine

/

\,

0

SETL-161-7

ofile

oprint
owrite

oread

Miscellaneous

onew

makefile

print
write

read

newa.t

Pseudo O~rations

These operations have no run-time seman.tics and are used only

to simplify.value flow analynise

auxset
auxass

auxtl

dummy~ operation
dummy set former
dummy assignment
a pseudo operation used to aid the analysis

of mappings. It. has the semantics:

define£ a.uxtl ·.x1

return if !le~ x ~ tupl then orm
else if t x'· 2!_ 2 then tl x
else x(2);

end auxtl;
This operation is designed to.return the same values for

<1,2,3> and <l, <2,3>>.

auxoralt

auxnonull

auxissing

auxlab

a1.1xsub

declares two variables to have the same value.

dec1a·res its argument to be a non-null set.

not containing its fi.rst element.

declares a single.valued mapping.

defines a label

defines a subroutine.

SETL-161-8

Most of the above operations have an obvious meaning. We

concentrate on the more complicated cases. We denote quadruples

by the notation <output., input;1., .. • , inputn>

§eneral progra~ structure

Each routine will have compiler generated entry and exit

blocks containing auxiliary assignments used for value flow

analysis. Functions return their values by means of the operation

<temp, retasin, value>

The optimizer will view this as an

r

0

0

SETL-161-9

assignment to a temporary, while the interpreter will view

it as an assignment to a special global variable, register, etc.

The following is a typical entry block for an n-parameter

procedure named sub:

<sub, auxsub >

<p
1

, auxass, p1 >

..

•
<pn, auxass, pn>

where p1 through Pn are the formal parameters. The correspondin~,­

exit block will be

<elab,. auxlab>
<p1 , auxass, p1>

<pn,.auxass, pn>

where atab is a compiler generated label. A return statement

will be translated as·

<oretgo, elab>
O~etgo is treated as a goto by the optimizer and a return by

the interpreter. For funct.ions we generate a temporary :res t~mp

to store the result. The exitblock is then compiled as

<elab, de~lab>

<p1 , auxa.ss, p1>
•
•

<pn, auxass, pn>
<restemp, auxass, restemp>

The extra auxass is used to chain the function value to

its uses. The statement

return x;

is translated as

<resternp, retassin, x>
< ; oretgo, elab>

SETL-161-10

Subroutine calls

Subroutine calls are preceded by ar-gument in assignments

and followed by argument out assignments. Argument in assignments

are always generated by t.he semantic processor. Argument out

assignments are generated when the arguments are program

variables as opposed to temporaries.

If an arqwnent is an extraction operator, such as hd x

we generate an azt(tU.mttnt out assignment for the temporary which
holds hd x and then a sinister assignment to copy the temporary

into x. General sinister assignments recieve more complex

treatment.

The statement

expands to:

<t, n
< I

argin.,
•
•
•
argin ,

ocall.,

argout,
•
• .
ar.gout,

Function Calls and MaJ?pin~s

"1>

xn >

f, tl, tz,·•·,tn>
t1>

Function calls and mappings are indistingiushable at compile

timee Whenever we encounter expressions such as y = f(xi, ••• ,. a\./

we generate ,~de to treat f as both a function and a mapping.

The primitives oof oofa., and oofb are assumed to include ruri time

tests of these arguments.

0

0

We generate a complex series of aux operators prior to Pach

function call to provide proper analysis of mappings. The auxtl

operator is 1:?rrittcd once for each argument to simulate a series Q
of single argument mappings. In addition '-· r~ generate the

argument in ar.,d argiimerzt out assignments used in subrnut.ine

0

0

SETL-161-11

calls and eliminate them if the optimizer determines that an

expression. is a mapping rather than a function ca.11.

For y a f(x1 ,e •. ,xn) we generate

<t1 , arginass, x1>

(1)

(2)

<tn, arginass, xn>
<temp, auxarb, f>

<temp, auxtl, temp>/* we emit this instruction
• f/ n times

<y, oof, t 1 , ••• tn, temp>

<x1 , argoutass, t 1>

<x, argoutass t >. n n

Since f{x} can only represent a mapping, we generate only

line (1) through(2) with oofa substituted for oof. For f[x] we

generate the s~~e pattern as f{x) but omit the argQ~ent out

assignmenta ..

Sinister Assignments

Below we list the code generated for primitive sinister

· assignments. General sinister assignments are compiled into

. combinations of thes~ plus the extraction primitives.

Source Form

f (x1 , ... , xn) :w:a y

Quadruple Form

<t, otpl, x1 , ... , xn 1

<f, osof, f, t>

<t, otpl, x1 , ... ,xn'
<f,. osofa, fft>

<t1 , •.• , auxarb, x 1>

<t, auxarb, x > n n
<t

11
+l auxarL, y>

y>

y>

<temp, au:x:tup, t 1 , ••• , tn+ 1 >

<temp2 , otplr x1 , ••. ,xn' y>

<f, ~sofb, f, ternp~f temp>
,t.,

. i

SETL-161-12

S(I:) IC y

S(I: j) = y

<S, oends, S, I, y>

<S, osubs, S, I, j, y>

Multiple assignments are treated as individual indexed

and subtuple assignments. However, in generating

y r. s(l)

as part of a multiple assignment we use the oindex primitive

·instead of the oof primitive.

Set Iterators

The code for the loop

<V X £. S)

Elook
end Vr

is the most complex code fragment we emit. We show it. first

without the auxilliary operators required by the optimizers.

0

<temp, oa•s, o> /* temp is an auxilliary pointer Q
used by SRTL */

<test, auxlab> .
<x, next, s, temp>
<templ, oeq, x, om>
< , o~fgo, templ, elab>

block

< 2 ogoto, test>

<elab, auxlab>

With the auxilliary operators added we have:

<temp, cass, o>

<s1 , auxass, :1R..> ...
<s2 , auxass, nt>

<test, auxlab~ >

<x, onext, s temp~

<templ, oeq, x, 9_!!!>

<temp2, oeq, g.1 , s>

<temp3, .auxoral t, templ, temp2>

": , oifgo, temp3, e tab>

0

•

t

•

SETL-l.61-13

<temp4, ominus, s, s 1>

<temps, auxarb, temp.,>

<temp6, auxoralt, x, temp5>

<x, au.xass, temp6>

<temp7, auxset, x>

<temps, oadd, s 1 , temp7>

<s1 f auxass, temp8>

block

<t.emp9, auxset, x >

<te.mplO, oadd, s 2, temp9>
<templl, auxoralt, ternplO, s 1>

<s 2 , auxass, templl>
< , ogoto, test>

<elab, ·aux lab>

<templ2, auxoralt, s 1 , s>

<s, auxass, templ2>

This reflects the code sequence contained in Optimisation

of Vs'l'y High Leve.1. Languages II.

