
SETL Ntiwslettc:r # 169

Some Cl1,rngo:3 b) the SETL Lanquage

in Prepur:~1 tio_n for the Optimizer Implementation

I. Introduction

April 11, 1976

Robert Dewar
Art Grand
Len Vanek
Ed Schor.berg

In the course of designing the SETL optimiz,~r we~ have de­

cic cd on a numbt r of changes to the language its, ilf. Several

changes affect .he basic semantics of SETL, whil1i the remain­

der are syntactic and lexi.cal.

11. Semantic Changes

The following semantic changes have been made to SETL.

1. Prograi~ Structure:

A program consists of a set of separately compiled

modules, each of which contains a set of functions and subrou­

tines. Variables are local by default but may be declared

global to a module. Global variables may be rnadE public, allow­

ing them to be included by other modules. The Ut,er nay select

which variables are stored statically and which are stacked or

entry to a routine.

Every program must contain a module called 'main'. This

rnc,dule should contain a block of code before the first pro­

cedure, ~d Leh is treated as a main program.

The ~·.·mtax for modules and declarations is giver1 at the

end of Section III.

2. Parameter Passage:

SETL allows two mechanisms for parameter passing: call ly

value and call by value with delayed value return. All parameters)f

functions are called by value. However for subroutines the

tser can decide which parameters will have value return. Thi[

decision must be indicated both in the define statement and ir

the call statem2nt. In either case value return is indicated

by suffixing ea~h affected parameter with an equal sign.

SETL-169-2

3. p·unct:i orn,..!_ Labels, and Subroutines:

are t1eateJ as constants and may not be redefined. Labels

may appear ,.mywllcre within a routine.

4. A gotc :

can 01 ly branch to a label in the currently active rro­

cedure; it cannot branch into the middle of a loop.

5. Maps:

are sets of pairs. Multivariate maps are described by sets

o/ pairs whose second components are pairs, and not as sets of

longer tuples, as was previously the case. See SETL Newsletter

166 fc•r details.

6. ~everal operators have been redefined:

a. * mean:, boolean and when applied to bit strings

b. + mean:; boolean or for bit strings

c. /, · means exclusive or for bit strings

d. 1
1

means bit, character and tuple concatenation.

e. x ,ubset y means y incs x

f. a11l and or apply only to bit strings of length 1. They

ev1luate their second argument only when necessary.

g. ** means exponentiation.

Th~ 12._recedence of operators has been greatly revised. A list
of operators and their precedences is given at the end of this

neHsletter.

7. Order of Evaluation:

The order of evaluation of expressions is defined only for

the is operator. If a variable is the target of an is and ap-

pears elsewhere in the same expression, the variable will be

treated as if evaluation were left to right. The right-hand

side of an assignment is evaluated before the left-hand side.

8. §ini stc~ assicJnments:

Partia:.ly qcncrated sinister assignments (as described in o. p.

p. 181) are)rovided. Value-receiving expressions have the.following

SE'l'L-169-3

syntax:

<vexpr> = <namc><index>[<index> ...]

where <index> is a bracketed argument list, i.e.:

(x,y, ...) or {z,t, ... } or [S,T,.,.]

General multiple assignments are described by tuples of value­

receiving expressions, e.g.

<f(x) ,g(y) ,h{z,t},<x{2), x(l)>>

Some components of such a tuple may be replaced by a dash,

indicating a dummy assignment to that component. E.g.

<x,-,y> = z; is equivalent to

x = z(l);

y = z(3);

9. InitiaJization:

A simpJe form of the initially block has been added. Only

static varic,bles can be initialized; this initialization is per­

formed before the start of execution.

10. Quit and continue:

The full quit and continue statements have been implemented.

A quit or continue statement is applied to the innermost loop

whose opening tokens match the tokens following the keyword 2it

or continue.

A quit or continue statement applied to a multiple iterator

such as

(\:IX C Sf Y .::. SS)

must act on the outermost loop.

11. An elseif statement has been added.

This allows the construction of-else-blocks which start

with -if~ For example:

g c 1 then

block 1
else

~if c 1 then bloak 2 end;

b2ock3
_end;

SETL-169-4

block
3

wi]l be executed if c 1 is false, regardless of the truth­

value of c ,.

12. 'l'he f ems ~.(I:)= y und y = S(I:) have been implemented.

Substring, ;signments may replace a substring of one length with

a string oi another length.

13. A stop statement has been added.

III. Syntactic Changes

Several new syntactic forms have been added. In most cases

they can be thought of as macros for the standard constructs.

1.

a.

Iterators:

The set theoretic iterator can have a general left-hand

side as its first argument, e.g.,

(V<x,y> ,:. s)

This is a macro for

(Vt <: s)

<x,y> = t;

Like all multiple assignments, this \'1ill cause an abort if

t is not a tuple. This iterator may be used only for sets.

b. A new iterator form for tuples and maps is provided. It

has the following syntax

V <left-hand side>= <map exp><index>[<index> •••]

where <mapexp> is either a name or a parenthesized expres­

sion which evaluates to a map or tuple. <index> is either

(x,y ..•) or {x,y ... }. For example

(\jy = f (x)) (1)

(V<y, z> = f{x} (t))

(\ig(x) =- (t(2)) (x))

if f is a map, then (1) is equivalent to

('; xc domain (f)) y == f (x); ...

if f is a tuple, then it is equivalent to

(V 1 < = x < = # f) y = f (x) ; •••

SETL-169-5

2.

3.

a.

The iterator statement, the existential quantifier and

the unj_versal quantifier may begin with a list of bound

variables. The list is optional; however if it appears

it must contain all the bound variables in the order in

\-.hich they appear in iterators.

Some examples are:

(Vx, 1 <= X <== 100)

-:i y I x, y = f(x) I c(x,y)

Set formers:

Three types of expressions may appear in set formers:

A single iterator. For example

{x t::: · s I c (x)}

{ 1 <= j <== n}

Here the set will contain all the values of the bound

variable.

b. An expression followed by a series of iterators i.e.

{<x, <y, z>>, x c:: s, <y, z> E:: sl}

c.

4.

5.

A list of expressions.

Tuple formers may contain the same expressions as set

formers. E.g. <e(x), x c sic(x)>.

The membership operator is written in. Its complement

is notin.

6. Functions and operators may be applied over the range of

a set. Examples:

f [x] means {f(t), t C x}

clec [x] means {dec(t), t - x}

[A] + 1 means {t + 1, t (.'.;, ~}

7. Calls with no arguments must contain a null argument list:

x = dummy () ;

SETL-1 9-6

8. Assignments of the form

(ll
(2
(3 I

a==a~ i

may be abbreviated

a~ •••

For example

a + l;
x with Yi
X less Yi

The in and out statements are replaced with (2) and (3)

above.

The syntax of the from statement:

e from s i

is retained. However, e can be a general value-receiving

expression, s must be a simple name.

9. Code blocks have been removed from t~e language. The

operators hd and tl have also been r,~moved.

SETL-:169-7

10. Declarations

i.

Declaratory statements serve 3 purposes:

a) They establish the scope of program variables

b) They specify the storage class of program variables.

c) They assign modes to them and describe structural

(basing) relations among them.

There are 4 declaratory statements: module, declare,

external, and mode.

Each module is bracketed by the statements:

module module-name ;

and

finish;

ii. declare statements appear at the beginning of a modul.e,

before procedure definitions or executable code; or at the

beginning of a procedure definition. The variable3 being

declared are global to the module in the first case, local

to the procedure in the second.

The declare statement has the form

declare <dlist> [,<dlist> .••];

where

<dlist> ~ <name> [,<name> ..•] <options>

The options specify scope, storage class and basing mode

of variables. For the first two options, the following

attributes can be specified:

a) public: makes the variables in the <dlist> public

b) stack(<rname>): The variables in the <dlist> are

stacked each time the routine rname is entered.

c) static variables are stored statically.

Tlte options for local variables are

a) stack variable is stacked whenever its routine is entered

b) static

The stack and static options are mutually exclusive.

The default is static for global variables and stack for

local variables.

SETL-169-8

E;·arnple:

declare x, y, z static public,

xl,x2 stack (procl),

sl,s2; /*sl,s2 are global
and static*/

basing options are described in detail in the following

section.

i .. i. The ex·ernal statement gives one module access to public

variab es from another module. The included variables may

be usel und8r an alias. The syntax of the external state­

ment i-;:

<external>+ external <epart> [,<epart> .••]

<epart> + (module name) <aliased namelist> <basing options>

The ccnponents of an aliased namelist are either names, or

parenl1esized pairs (global name:aliased name)

Example!:

external (libl)

(lib2)

(x:liblx), y, z

(x:lib2x), (fun:lib2fun);

This statement makes variables x, y, and z from module Zibl

accessible within the current module; y and z under their

origin~l names, x under the alias liblx. Similarly, var­

iables x and fun from module Zib2 are a_ccessed under the

indicated aliases.

SETL-169-9

11. The syntax of mode declarations

Each program variable can be declared to have a mode. A

mode descriptor specifies the SETL type of a variable, and

in addition may give structural information about it, e.g.

its size, its relationship to other program variableE (in­

cluded in, subset of, based on). The user can introduce

mode names to refer to mode descriptors and use thesE:

names somewhat as if they were SETL types. Mode descriptors

can be of 4 types: a) Basic modes, b) derived modes,

c) composite modes, and d) based modes.

1. Basic modes

These ilre the modes of atomic types. They can be qualified

with a range specifier, giving minimum and maximum size (or

value)

int (range)

char (range)

bits (range)

b1ank --·---
label

The range specifier has the form nl ••.• n2, where nl and

n2 are integers. It is always optional. The range speci­

fier (O .•. n2) can be abbreviated (n2}

2. Derived modes

The user can introduce new mode names with the declarative

statement:

mode modename: <mode descriptor>

modename can be used subsequently in the program as a

valid mode descriptor.

3. Composite modes

The mode descriptors for sets, tuples and procedures are

constructed recursively from other modes, using the fol­

lowing templates:

SETL-169-10

a) set {model} (size)

describes a set whose elements have mode model, and whose

expected size is ei~e. As elsewhere, this parameter is optional.

b) tuple <reode2> (size)

c)

describes a homogeneous tuple whose components have mode

mode2.

tuple <model, mode2, modc3 ••• >

describes a tuple of known length whose components have

specified modes.

For these 3 descriptors, the keywords set and tuple are
optional.

d) subr (model, mode2 •.•)

declares a procedure whose arguments have the specified

modes

e) fnct (model, mode2 •.•) moder

declares a function and the mode of the value it returns.

f) map (model) mode2

declares a map, i.e. a set of pairs. The domain of the

map has mode model, and its range has mode mode2.

g) map(rnodel, mode2 ...)moder

declares a multivariate map.

h) In the 2 preceding cases, the keyword smap can be used to

specify a single-valued map.

4. Based modes

Based modes introduce structural relations among specific

program variables. The building block of based mode.de­

clarations is the membership mode:

a) E varname

where varname is the name of a program variable which has

pr<lviously been declared to be a set. Subset declarations

taLe the form:

b) set {Es}

which describes a subset of sets, i.e. a set of elements

of s.

SETL-1G9-ll

A based map is declared as

c) map (s) moder, etc.

In addition subsets of a given set which can advantageously

be described by membership bits or by bit-strings, are de­

clitred using the keyword subset.

For example:

d) subset (s)

The semantic restrictions which apply to the:~e declaratior s

will be described elsewhere.

IV. Lexical Changes

1. All SETL keywords are underlined. The comp:: ler allows tbe

user to select one of two keypunching conve1;tions, either

using periods after keywords or merely trea~ing them as

reserved names.

2. The macro processo~ uses a syntax similar to the one given

in On Programming. Macro definitions have the form

macro <name> '(' <namelist1 >; <namelist2 > ')';

<body>

end <name>;

The first namelist contains the macro's arguments, The S!C­

ond lists names occurring within the macro which are to b~

replaced ,ith unique names on each expansion. Either lis~

may be omitted, If namelist
2

is omitted the semicolon is

unnecessary; if both lists are omitted the parentheses ma~,

be omitted. End must be followed by the macro name and may

be followed by additional tokens,

~acros may be nested to any depth; inner definitions are

absorbed when the macros containing them are expanded.

Mlcros can contain compile-time variables called params.

3, Ptrams

P.trams are compile time variables. They may appear any­

where in a program. They are designated as r,arams and as-

sj gned integer values by their first appearance in a statement

SETL-169-12

pararn name= expression;

where expression can contain params, integer constants,

parentheses and the operators+, -, /,and*,

Macros and params may occur between modules, i.e. after a

module's end statement and before the start •>f the next fol­

l >wing module. Macros or params occurring i:1 this position

a1e global to the entire compilation in whicll they occur.

Macros and params defined at the beginning of a module are

global to the module, while those defined within a routine

are local to that routine.

Macro and parameter names may be 'stropped'.

4. Scanner and listing controls:

Several special cards are allowed in SETL pr, >gram. They

begin in column 2 and control scanner operat_ons:

.EJECT starts a new page of the li :ting

.TITLE 'string' starts a page with title 's :ring'

.COPY 'file' reads input from fiZe till ,mend of

record is encountered.

V. Operations , 1nd Systems Constants

1. Binary oper,'.ton;

o;eerator ;erccedence

AND 1

OR 1

IMP 2

IN 2

NOTIN 2 -
!:Q 2

NE 2

INCS 2

SUBSE'l' 2

GE 2

SETL-169-13

Operc1tor :erecedence

LE 2

GT 2

LT 2

WITH 3

LESS 3

LESSF 3

MIN 3

MAX 3

REPL 3 string replication (n<:w)

+ 4

4

11 4

II 4

* 5

I 5

** 6

IS 7

User d~fine,: binary operators have precedence 8.

Unar:.Y_,Jpera ~ors

All unary operators have precedence 8.

arb

not

t~
dee

oct

top

bot

BUILT- .N Functions

random

pew

npow

domain

range

atom

newat

time

System Constants

NULC

NULB

NL

l ULT

CM

JNT

IEAL

CHARS

B 1'1.'S

BLANK

SUBR

FNCT

TUPL

SET

'I'RUE

FALSE

l

r

