
SETL Newsletter# 170

Provisional Plan for the SETL

Optimizer Interface

Section I Introduction

Robert Dewar
Art Grand
Ed Schonberg
Len Vanek
April 22, 1976

This newsletter specifies the input/output format of

the SETL optimizer. Its purpose is to isolate ~uv processes:

the abstract specification of the optimizer and the concrete

coding of the remaining portions of the SETL system. We will

specify a number of data structures in this newsletter. It

is important to realize that these in no way effect the design

of the optimizer; they are merely an input/output medium. The

optimizer should view them as a list of information received

and information to be returned, with no relation to th~ optimizer's

internal data structures. The details presented here are

necessary if we are to proceed with the remainder of the SETL

system before the optimizer design is finished. We begin by

discussing the general organization of the SETL compiler.

1. The parser translates source programs to trees.

2. The semantic pass generates more detailed trees and

determines the runtime representations of those

variables which have been declaredcy the user. It

creates 4 tables: a list of quadruples called code;

a map from variahles to their representations called

Reptab; a map of constants to their values, called

Val; and stackmap; a boolean map indicating which

variables are stacked.

3. The optimizer adds information to the tables produced

by the semantic pass.

The changes it ~akes to the program fall into 5
categories:

SETL-170-2

a.

b.

Adding and deleting quadruples.

Setting flags in the quadruples to indicate destructive

use conditions, etc.

c. Filling in Reptab for undeclared variables. This

is somewhat complicated since declared variables

have a single type throughout the program while

undeclared variables may have se~;eral types.

d. Preparing a new table Equivtab; which indicates

variables which may optionally use the same storage

locations.

e. Modifying stackmap.

4. The code generatcr forms a new sets of quadruples

which is suitable either for interpretation or

machine code generation.

Section II. Definitions

In this section we present formal definitions for the

various tables, etc.

Definition 1: a program variable is a pair <name, scope>.

In the LITTLE implementation these pairs are represented by

pointers into a separate table.

Definition 2: a scove is a pair <scope name, extflag> where

exflag indicates whether a variable is external.

Definition 3: During execution of a SETL program a variable

may receive a value, become dead and receive a value of a new

type. We call this new value a reincarnation and say that such

a variable has several incarnations. Each incarnation can be

thought of as a separate variable with a static type. This

allows for simple description of type information.

t
!

I

SETL-170-3

Definition 4: An unoptimized program consists of

1. Code, a vector of quadruples.

2. Rep tab, a map frc-.r. program variab 7.es to :representations.

3. Val, a map from program variables to values, defined

only on program variables which are constants.

4. Staakmap, a boolean map on program variables.

Definition 5:

OPCODE

ARGl

ARG2}
ARG3

LIVEil

LIVE2r
LIVE3 j
DUSE

a "quadruple" is a 13 tuple with the following fields:

an integer demoting an operation

a program variable which is the output of the

operation

program variables used as

inputs.

these fields indicate whether their corresponding

arguments are definitely live, definitely dead,

or undetermined.

this indicates whether ARG2 can le restructively

used. It has three values: yes, no, and must

be checked at runtime.

SETSHARE indicates whether the output's share bit must

CHECKR
STMTNO

NLEV

be set at runtime.

invokes type checking on the result.
statement number inherited from the source program.

indicates the number of loops surrounding the

operation. This is used to determine whether in­

line code or a library call is appropri~te.

NEXT a pointer to the next quadruple.

In the optimizer algorithms we represent a quadruple as

<opcode, output, inputl .•. inputn> with any number of inputs.

Definition 6: a representation indicates how an object is stored.

It indicates both type and basing information.

A representation is defined to be one of the following:

SETL-170-4

1. a primitive type or the union of several primitive types.

The primitive types are

a. bits.

b. blank atoms.

c. characters.

d. integers.

e. labels.

f. procedures whose number of arguments and returned

value type is unknown.

g. reals.

h. tuples whose element types are unknown.

i. sets whose element types are unknown.

2. an element of a program variable PV

3. a set whose elements have type R
1

, and whose average size

is nor unknown.

4. a function with argument types _ff
1

thru Rn returning R.

5. a subroutir.e with arguments R1 thru Rn.

6. a map from R
1

to R
2

•

7. an smap from R1 to R2 •

8. an amap of R 1 's.
9. a known or unknown length tuple whose members are R1 's.

In the case of a known length tuple R 1 may be a tuple

of representations.

10. an aset of R1 's.

Representations are stored in the map Reptab which has the

following fields:

RKIND

RMEMBl

RMEMB2

RBASE

an integer from 1 to 10 indicating one of the seven

rules above.

the member representation. This corresponds to R1 above.

corresponds to R
2

above.

the program variable on which something is based.

corresponds to PV above.

SETL-170-5

RPRIM a 9 bit string corresponding to the primitives

a through g.

RSAFE indicates that the representation is known to be

correct and need not be checked at runtime.

RNOl

RN02

size of a set, tuple, or string, number of arguments

or lowest value of an integer.

maximum value of an integer.

Definition 7: Val is a map from program variables to their values.

It is defined only on constants. In the implementation Val will

be restricted to constants whose values are integers, bits,

characters, labels and procedures. The value of labels, functions

and subroutines is a code index.

Definition 8: Equivtab is a set of sets of program variables

which may optionally share storage.

Definition 9: Staakmap is a boolean map on program variables

indicating which variables are stacked on entry to a procedure.

Section III. The Quadruples

In this section we give a list of the quadruple opcodes

plus descriptions of a few complex code sequences. The

quadruple operations fall into two categories:

1. Quadruples which correspond to executable code.

These quadruples have opcodes with the prefix 'op'.

2. Dunnny operations inserted into code to simplify

valueflow analysis. These opcodes begin with 'auz'.

Various operations use more than two inputs. For these operations,

ARGl contains the result, ARG2 the first input, and ARG3 the

number of inputs minus 1. The remaining inputs appear in 'OP-PUSH'

quadruples just prior to the operation. These correspona to

pushes onto the runtime stack.

Code Sequences:

We present detailed code sequences for the more complex operations.

Quadruples are shown as

<opcode, output, inputl, input2 .•. input n>

SETL-170-6

Each procedure begins with an entry block. containing dununy

assignments to its parameters. Each procedure has a temporary

rtemp which is used for the returned value. It has an exit

block which begins with a generated label exitZab and contains

a dummy assignment of rtemp to itself.

The statement

return x;

is translated as

<OP-RET, rtemp,

the optimizer treats

rtemp = x;

go to exitlab;

exitZab,

this as

Note that the statement

return;

is a macro for

return om.;

Y = f(x1 , ••• ,xn) is treated as

<auxarb, t 1 , f >

<auxtl, t 1 >

X >

<auxtl, t, >
•

} n aux-tail instructions

<auxtl, t 1 >

<opof, y, f, x 1 , ••• ,xn >

<aux-oralt, x, y, t, >

f(x 1 , ..• ,xn) = y becomes

(1) <aux-tup, t 1 , xn, y>

<aux-tup, t 1 , xn-l' t 1 >
. .

<aux-tup, t 1 , x1 , t 1 >

<aux-with, t 1 , f, t 1>

<op-sof, f, x 1 , ••• ,xn, y>

<aux-oralt, f, f, t 1>

SETL-170-7

f {x1 , ••. ,xn} = y has a similar treatment with

(1) replaced by

<aux-arb, t 2 , x>

<aux-tup, t 1 , xn, t 2>

f [x1 , .•. ,xn] = y is translated as

<aux-arb, t 1 , x
1

>

<aux-arb, t 2 , x 2>

<aux-arb, t, x >
n n

<aux-tup, temp, tn' y>

<aux- tup, temp, t 1 , temp> n-

<aux-tup, temp, t 1 , temp>

<aux-with, temp, f, temp>

<op-sofb, f, x 1 , ... ,xn' y>

aux-oralt, f, f, temp>

SETL-170-8

GROUP 1: EXECUTABLE l~STRUCTIO~S.

BINARY OPERATORS
CP..,AOD
OP..,ANO
op-.cc
OP ... DIV
OP ... EXP
QP-.EQ
CP ... GE
OP-.GT
OP--IMP
OP..,IN
QP-.INC
CP-.LE
OP..,LESS
OP..,LESSF
QP-.LT
OP ... MAX
OP.,MIN
CP.,MOD
OP ... MULT
OP.,NPO,J
OP..,OR
OP-.SUB
op-.xoR.
oP-.wITH

+
AND.
CONCATENATION
I

** E O.
GE.
GT.
IMP.
IN.
INC S.

LE.
LESS.
U:SSF.
LT.
MAX.
MIN.
II

*
NPOW
OR.

EXOR.
WITH.

UNARY OPEl<ti.TORS
OP ... AbS ABS.
GP-.ATO~ ATOM.
GP-.ARB ARB.
OP..,BITR BITR.
OP..,BOT BOT.
op-.oec DEC.
OP.,FIX FIX.
QP-.FLCAT FLOAT.
QP-.NELT NELT.
OP.,NOT NOT.
QP-. □ CT OCT.

' /

SETL-170-9

op-.pow
CP.,RAND
OP.,TOP
OP..,TYPE
OP.,UMIN

POW.
RANDOM
TOP.
TYPE.
UNARY -

MISCELLANEOUS

QP-.END
OP..,NEw
OP..,READ
OP.,SET
OP-.STCP
OP.,SUBST
OP-.TUP
op-.wRITE

MAPPINGS
op-.oF
OP.,OFA
OP ... OFA~
GP ... OFB
oP-. □ FaN
OP ... OFN

ASSIGNMENTS
OP..,ARGIN
OP.,ASN
op-.soF
OP..,SOFA
OP.,SOFAN
OP..,S0ft3
op-.soFBN
OP.,SOFN,
cp-.ssuBsT

S < I : >
NEWAT.
READ
SET
STOP
S(I:J)
TUPLE
WRITE

F(X)
F iX~
F~Xl, •• • XN~
FCXJ
F[Xl, ••• ,XNl
F(Xl, ••• ,XN)

ARGUMENT IN
A=B
F(X)=Y
FSX~=Y
F~Xl, ••• ,XN~ •Y
FCXJ 2 Y
F[Xl, ••• XNJ=Y
F(Xl, ••• x:-n=Y

S(I:J)=Y

CONTROL STATE~ENTS
OP..,CALL SUBR CALL
OP..,FCALL FNCT CALL
OP-.GO GOTO ARG2
OP..,IF IF ARG2 GOTO ARG3
OP..,IFI~IT IF INITFLAG GOTO ARG2
op-.rF~JT If NOT LRG2 GOTO ARG3
□ P ... ~ExT v ARG2 p ARG3

SETL-170-10

OP-.NEXTD
OP..,RETASfli
OP..,RET

GROUP z.
AUX..,ARB
Aux-.ASN
Aux-.sET

AUX..,TL
AUX..,TUP
Aux-.wITH

NEXT ELEMENT OF DOMAIN
RETU~N tSSIGNMENT
RETURN

AUXILIARY OPERATIONS
DUMMY ARa. OPERATION
DUMMY ASSIG~MENT
OLIMMl' SETFORMER

DUMMY X<2) EXTRACTIO~
DUMMY TUPLE FORMER
DUMMY WITH.

