SETI, Newsletter # 171A J. Schwartz
R. Dewar
'Basing Semantics' Revisited December 9, 1976

1. Introduction

This newsletter will outline what seems to be an improved
approach to the SETL basing concept. A fundamental idea of
the proposed semantic revision is not to allow bases to be used
directly as values; that is, all bases will be taken to be
'virtual' in the sense of our earlier terminology. (Of course,
this makes the explicit keyword 'virtual'unnecessary). In our

new stheme, bases are still declared, e.g. in the form

b: base(Eb');

et i e

but a variable declared to be a base cannot appear in any SETL
expression and cannot be an assignment target. (Our former use
of a base b also as a set s is regarded as confounding two
things which are better kept separate; e.g. our former diction
$: basc scb(Cb') is now handled by writing two daclarations b:
basc(¢b') and s: subscet(b).)

Values of bases will be represented in much the same way
as now contemplated, but our new scheme abolishes the notion
of 'ghost element' and with it the firm need for an is_deleted
bit. Iach declared base corresponds to exactly one resolved
name in a total SETL program. For variables <declared base

(which occur only in a repr setting) the qualifier stacked
cannot be stated. (However, bases will sometimes be stacked;
but the rules which determine when this happens are implicit
and explained below.)

If a variable name b is declared base, themdes €b and
subset (b) become available for use in other declarations.

In addition to variable b declared base, our new system
will have 'basc valucs', which can be the values of such variables.
Assignment of a new base value v to base variable b will noct be
called for explicitly, but will take vlace whenever such an
assignment makes conversion of associated non-~base variables

unnecessary.

SETL-~171A-2

Suppose that the variable v has a repr declaration, that
its declared repr is r, and that this repr involves at least
one base variable b and is not simply the repr ¢b. Then the
extype field of each SETL object appearing as the value of v
will describe its repr fully except for the specific bascs
appearing in this repr; and a list of these base values, in
their left-to-right order of appearance within r, will be held
in a part of the run-time representation of v called its

base array. For example, if v has the repr

v: smap (€b) set (<€b, subset(b'),smap(tb,€b)>,
then the extype field of its value will convey as much information
as shown in

smap (*) set (<€ *, subset(*), smap(*,*)>), while the basc array

associated with this value will contain the values of thc base

: , .
varlables bl bl bl b in order.

A variable v declared to have a given repr will conform
precisely to this repr. When the value of v is assigned to
a general variable g, then its extype and base array will he
carried along as part of its value and will show the actual
structure of g in all detail. Then, if g is subsequently
assigned to a declared variable v', its structure can be checked

quickly, and full examination of the details of g can be avoided.

In making an jncremental modification such as f(x)= y or
s with y of compound objects f, s with declared repr's, we
convert x and v (or y alone) to stand in suitable relation to
the full declared repr of f (or s). If f lacks a declaration,
it may be best simply to convert f to type general if it is
incrementally modified. (Though as a matter of fact in some
cases, e.g., if f is a based map or smap, we can check to see
whether the actual repr of y matches the range extype of I,

and if this is so can refrain from modifying the extypc of f.)

SETL=-171A--3

Note that the proposed system of extypes makes the
following approach to assignments d = g possible, where we
assume that d has a declared repr (other than €b) and g is
general: check the extype field of the value of g for equality
with the extype field required for 4, and then check the bases
in the base array of the value of g for identity with the:
list of bases specified for d. The routine which performsthis
latter check can be passed the base array if g and an array of
symbol table pointers (defining the bases of d) as its arguments.

2. Base Assignments.

If the declared repr of a variable v contains the base
name b, then v is said to be based on b. Suppose that immediately
prior to a given point in a program, all the objects based on
a set of base variables bl""’bn are dead, and that the set of
variables is closed in that it contains b if it contains a b’
with the repr b': base(€b). Then we say that the bhases bl,...,bn
are substitutable at that program point; we are free to

substitute new values for the current values of bl""'bn
without spoiling any basing relationship on which we might be
relying. In sonme cases, we will find it advantageous to
generate new null base values for bl,...,bn; in other casgs,
it can be advantageous to assign existing base values to the

base variables bl""'bn'

More precisely, consider a simple or multiple assignment

() <fl""'fk> = d,

and suppose that the substitutable base variables at point of
occurence of (*) are bl""'bn' Let fl"“'fk have the declared
repr's ry,...,T,. Let bys...,b, be the largest substitutable
subset of bl"“’bn with the property that all bj’ j <m appear

in at least one ry - Given a base name b in this list, let fj

be one of the first variables in (*) such that be appears in

ry. (lere we say 'one of the first' rather than 'the first!'
since if rj is, e.g., 'smap(€b)mode’, while r. is '€b', we

will wish to use fj rather than f, to

SETL-171A-4

determine the new value of b, even if k <'j. Let g(3j) be
the j-th component of the right hand side of (*). If the
extype of g(j) matches that implied by rj, and if the actual
base value B occurs in g(j) where b occurs in bj' then (*) is

said to imply the base assignment b = 8. If this extype

match fails, then (*) is said to imply the base assignment b = n{,

that is, to imply the creation of a new base value.

We execute (*) by first performing all the base assignments
which (*) implies, and then by going on to perform the in-
dividual assignments fj = g(j), during which all necessary
conversions are made. (Note again that the base assignments
(versus creations of new bases) to be performed are determined
dynamically, by examination of the right-hand side of (*),
except of course when by global analysis it becomes possible
to make this same determination statically.) It is also
important to note that the number of conversions which is
necessary will be diminished by the base assignments which wc
perform in connection with (*); indeed, in some cases, assignment
of new bases will make all conversion unnecessary. It is
precisely for this reason that we choose to associate one or

more base assignments with (*).

Note that the compiler may be able to detect sequences of
simple assignments which can be treated in the same way as a
multiple assignment (*), even though the syntax of a sequence
of simple assignments is less explicitly helpful than the
syntax of a single multiple assignment. The preceeding rule
can then be applied to such sequences of assignments.

Note also that the above rule applies even if the fl""'fn
appearing in (*) are fairly general sinister expressions,
provided that we agree that the sinister expression h(x) is to
be taken as having the declared repr 'mode2 if h has the
declared repr map(model)modez, etc.

SETL-171A-5

3. Parameter Passing, Recursion and Base Stacking.

Transmission of arguments oOn procedure entry can be regarded

as a multiple assignment <pl,...,pn> = <a1,...,an>. Like any

other assignment, this will imply certain associated base
assignments, and certain conversions. If necessary, these conversions
will be performed in the called procedure. Similarly,

in the case of returned parameters the return operation can be
regarded as a multiple assignment <@yyeesrdy > = <PyreserPy>

which again implies certain base assignments and certain

conversions. 1f conversions are necessary after return, they

are parformed in the calling routine.

Since conversion on call and return can lead to particularly
elusive forms of time~wasting, statements which might generate
such conversions should always be noted in emphatic compiler
warning messages. Of course, we will also want the compiler
to note all conversions,even those not associated with procedure
calls.) TIf a particular subprocedure is never used as the
valuc of a procecdure variable, then it will be possible to
locate all its points of call, and it may be possible to
precalculate the repr's of all the variables passed to it
and thus to detcrmine all the conversions which take place
on call (and perhaps, with some additional difficulty, on return
as well.) If available, information of this sort can be used
to suppress some call-conversion messages and to increase
the prccision and severity of others. Warning messages should
also be given when the value of a procedure variable is invoked.
It is also quite important to provide good histogram of a

program's run-time behavior.

If a simple or multiple assignment (*) has a right-hand
side g which is cither nult or some other constant which is
not associated with any particular base, then the general rule
stated in the preceeding subsection implies that every substitutable
base variable b associated with the assignment (*) is to be
given the value n’%, i.e., that a new base is to be created

and made the valuc of the variable v. (However, values v

SETL-171A-6

actually based on the former value bv of b do not cause
trouble, since they retaln pointers to bv, which among other
things implies that bv is preserved from ruin by the garbage
collector.) By giving b the value nf in such cases, we

shorten the length of the vectors needed for storage of objects
remotely based on b, and also cut down on the time needed for
iteration over subset's of b and map's locally or remotely
based on b. (0f course, this way of proceeding can gencrate
indefinitely many base values bv.)

A related case is that in which all the variables f {

P &
of (*) are stacked by a call to a given procedure (and uistackeg
on return), in which case the assignment (*) simply represents
the operation of re-initalising all the stacked variables
fl""'fn to 2. Clearly in this case all the substitutable

base variables associated with (*) can be assigned new n&
values; but the old value of each of these basewriables should
be stacked when this happens, and then unstaclked on return,

so that the current values of f ...,fn always stand in proper

ll
relationship to the current values of these hase variables.

4. Repr determination for tempories, implied conversions.

The repr of a temporary variable will where possible be
determined from the use to which the temporary is put, but
where this is not possible from the expression defining the
temporary. For example, consider the assignment
(**) s =u+ v with x - vy.
in which the set s has the declared repr r. Then the temporarics
t; =u+vand t, =u+ v with x will both inherit the repr r.
Before performing the operation (**) u and v will be converted
to the repr r, while x will be converted to the repr r' naturally
associated with elements of sets having the repr r. The eclcoment
Y requires no conversion. If there exist one or more base
variables b which are substitutable (in the sense defined in
section 2) at the point (**), then u will be examined to
determine what the new value of b is to be. If the actual repr
of u is at least as specific as the declared repr of s, then

SETL-171A~7

new vaolue of b will be a base obtained from an gpropriate
field of u; otherwise the new value of b will be a new,
initially null, base.

As an example of the code defined by the preceeding rules,
consider the case in which we have declared

repr s: subset(b);
and compile the code fragment
s ={x+1, x€u|Cx1I};

this expands into the sequence

21: t = nl;

22 (Yxeu)

23: if not C(x) then continue;;
24: t =t with (x + 1);

25 end V;

263 s = t;

Since the (necessarily unique) programmer-defined variable to
which the compiler temporary t is assigned is s, t inherits
the repr t:subset(b). Thus the guantity x + 1 formed in line
24 will be converted to the element representation €b before
the with operation is performed. This leads to an efficient
treatment of the original code sequence; in particular, un-

necessary conversion operations are avoided.

Hopefully, it will not be hard to define efficient basings
by exploiting the rules stated above., As an illustration of
some of the effects that can be achieved, consider the following

repr declarations and associated code:

repxr b:base, c:base,
s:set,
x:€b, f: smap(€b) €b, g:subset(b),

»x:€c, ff: smap (€Ec) €c, gg:subset(c);

SETL-171A-8

21: X = ,..; £F={...}; g=1{...};
L2 s with <x,f,g>;
£3: <xx, ff, gg> = 2D s;

In this example, conversions to the declared basings of x,f,
and g take place in line 21, at which point a new basc value
may be generated; no conversion is implied by 22, since s has
been described as a set of general objects; and no convcrsion
is implied by 23, since it will be discovered dynamically that
the object 32s is a tuple, and that after a base assignment
the components of this tuple can be assigned to xx, ff, gg

respectively without any conversion.

5. A Remark Concerning Local Objects.

The possible kinds of local objects are local subset,

local map,and local smap. Local objects can be used somewhat

more efficiently than the corresponding remote object lypes,
but a substantial part of this benefit may be dissipated if
it is not known statically whether the object is local or remote.
Since the likely fate of an object whose shared bit is set
is to be garbage collected (this is illustrated by the sequence
f =g; £(x) = y; g(u) = v;) we will not want to allow sharing
of local objects (even though remote copies of these objects
could in principle be created when copies were recessary). On
the other hand, we would like to be able to pass local objeccts
to procedures as parameters. Finally, we wish to avoid situationg
in which a local object would have to be converted to rcmote
form, but where the corresponding remote object could be used
without copying.

To meet this complex of requirements, the following approach
is suggested.

(a) A variable f will be called potentially local if it

has a declared or inferred repr of the form subset, map, or
smap, and i1f it never appears in a context in which its
share-bit would be set, or in which its value would be in-

corporated into a composite object without copying.

SETL-171A-9

In particular, {1his mcans that at each simple assignment g = £
either the valuc of f is dead, or the value of f is not dead
and will certainly be modified, so that copying of f would be
required even if f were represented remotely. Similarly, at
an indexed assignment g(x) = f or with operation s with £

we require that f be live and certain to undergo modification,
so that £ would have to be copied even if its representation
weré remote.

(b) If the variable f might have subset repr and appears
as an argument to one of the operations £ + g, f-g, £ * g
we do not consider it potentially local, since for these
operations the usc of bit-strings in their remote form may
have docisive advantages.

(¢} If the variable f appears in a simple assignment
statement g = £, and g is not part of the collection of all
potentially local variables, then f should be dropped from
this collectio unless f is live and certain t be modified.

(d) If f is accessible outside a single ;xocedure p and
is transmitted os a parameter, or if f is accessible only within
p, is not stackaed by p, and is transmitted as a parameter, then
f should be excluded from the collection of potentially local
variables. Morcover, if f is itself a parameter to which a
value other thon the value of a potentially local variable
is passced, or if f is passed as an argument to become the
value of a paramcter which is not potentially local then f
should also be excluded from this collection.

The variables which survive these various exclusions can
be designated as definitely local, and the values of these

variables can be represented by values of type local subset,

local map, or local smap as appropriate.

-SETL-171A-10

6. A Remark on Subprocedure and Function repr's.

By providing suitable repr declaration for subroutines
and function, we could in principle reduce the number of
dynamic checks required in the treatment of procedure variables.
On the other hand, the necessity for conversion or procedure
- call return is more often determined by the consistency with
which arguments are based than on the preciselmses used.
Since we have no way of expressing relationships of this type
without substantial extension of our current basing syntax,
and since procedure variables to not seem to be of very
common use in SETL prodrams, we shall not use the extype
of subr or function to represent anything else than the
number of arguments it expects and the pattern of arguments

which it modifies.

