
SETL Newsletter# 179 S. C. Liu 

Oct. 9, 1976 

Dynamic Multiple r-:enber Basings 

A·declared membership basing x :ss improves the efficiency 

of locating x ins by keeping within x a pointer to the element 

which has the sam~ value as x ins. This pointer however does 

not help in locating x in any other set. To ascertain whether 

(x ins') requires a standard search or multi-level referencing. 

Quite often an object appears as an element of several sets. 

If we insist that member basings be static as domain basings 

are (e.g., based maps), then the full advantage of basings is 

not achieved. Consider the following example. 

define example: 

declare sl base set, 

s2 base set, 

fl smap (ssl) int, 

f2 smap (ss2) int · __ , 

Ll x = 3 sl; 

L2 s2 with x; 

L3 f2(x) = fl(x); 

end· __ , 

... 



SETL-179-2 

Whether x is declared as ' £sl' or ' £s2', a redundant locating 

operation will be required at instruction 13 if no extra code 

is inserted; however since 11 and 12 provide pointers to sl and 

s2 respectively, no locating should actually be required to reach 

fl(x) and f2(x) at 13. 

It is important to observe that member basing pointers can be, 
' 

obtained as 'fringe benefits' from several operations (3, with, 

mapping application, etc.) at little or even no cost. If we can 

keep these pointers and retrieve them efficiently then the efficien­

cy of a program may be considerably improved. In other words, 

dynamic multiple member basings are probably more appropriate than 

static single member basings; although users can force static single 

basings by explicit declarations. In the following we aim to show 

how this scheme can be applied to undeclared variables. 

Derived Pointers 

Usually one or more pointers are involved in the execution of 

a SETL operation. For example, in the case of 's with x', a 

pointer pointing to the element x ins is always available after 

the insertion ins is performed; another pointer to the corre­

sponding element in the base of sis also available ifs is a 

based set. These pointers can be useful subsequently if they are 

kept. The pointer which points to the element of s (ifs itself 

is a base) or the element of the base of s (ifs is based) is most 



SETL-179-3 

useful. This pointer will be called the derived pointer of the 

operation. SETL operations such as with, £, from, and map appli­

cation all yield a unique derived pointer which can be determined 

statically during compilation, if the set which is the argument 

of the operation is a base or based. Operations with this proper-

ty will be called pointer-producing operations. 

Incarnations 

Whenever a pointer-producing operation is p·erformed, the 

produced pointer will be kept with x. If the original x already 

has some other basing pointer, a new version of x, which 

is called an 'incarnation of x', is then created. All incarna­

tions of a variable have the same value, but have different 

basing pointers. On subsequent uses of x, an appropriate incar­

nation will be selected to replace x thus avoiding a locating 

operation; if no appropriate incarnation exists, then locating 

- , 

is still required and a new incarnation will be created as the 

byproduct of the instruction. All the incarnations of a variable 

become dead whenever a new value is assigned to the variable; 

of course, an assignment may also create or recover an incarnation. 

If we apply this idea to the preceeding example, two incar­

nations of x, ·say xl and x2, which have the basing 1£ sl' and 1 £s2' 

respectively, will be created at Ll and L2. The x at L3 is then 



SETL-179-4 

replaced by xl on the right hand. side of the assignment, and x2 

on the left. The code sequence becomes 

11 x = 3 sl is xl ; 

12 s2 with (x is x2) , 

13 f2(x2) = fl(xl) ; 

Algorithm 

Our scheme applies this idea globally by the assistance of 

standard interval analysis techniques. It is assumed that domain 

basing information be available. Just before each use of variable x 

which requires locating operation we assign x the appropriate 

incarnation. The original use of the variable is then replaced by 

the newly created incarnation. Finally, the redundant.expression 

elimination algorithm described on O.P II pp.273 can ~e performed 

to delete redundant incarnation creations or assignments. iJote 

that all the incarnation assignments associated with a variable 

become unavailable when the variable is a~signed a ne~ value. 

An incarnation becomes unavailable whenever the corresponding 

assignment becomes unavailable. 

Refinements 

In the redundant expression elimination algorithm an 

expression is available at a given point in a program only if the 

expression is available along every path leading to this point. 

However, quite often an incarnation assignment is 

available along one path but not along another path. In such 

a case, it might be worth inserting an extra assignment instruction 



SETL-179-5 

to create an incarnation which is already available along a path 

of higher frequency (such as backward branch from the exit of a 

loop), to make it available also on the paths of lower frequency 

(such as the initial entry to a loop). If so, the 'meet' function 

which the elimination algorithm uses can be defined as 'the inter­

section of all incarnation assignments which are available along:' 

the main paths (of highest frequency) to the interval' instead of 

'the intersection of all incarnation assignrr.ents which are available 

along every path'. Furthermore, we only need to consider the 

assignments whose target incarnations are live, if a live-dead 

analysis is performed beforehand. An incarnation need not be 

created if it is used only once. Finally, a post-process is 

required to insert necessary incarnation assignments on every 

minor path. 

Efficiency of incarnation creation 

Another possible refinement is to improve the efficiency of 

incarnation creation by using the pointers whicb link elements 

of based sets to the correspondirig elements in their base. An 

incarnation can be created by series of referencings instead of 

by search if any other equivalent incarnations with proper base 

exist. (Two incarnations are called equivalent if both are 

associated with the saffie variable). This can be achieved 

statically as follows. A tree is constructed to reflect the basing 

relation between base sets. Each base set is represented by a node 



SETL-179-6 

;i..n this tree. A node nl appears as an immediate desc·endant of 

another node n2 if the base set, say sl, represented by nl is 

based on the base set, say s2, represented by n2, i.e., sl : 

base set {£s2} . This implies that each element of a node (set) 

contains a pointer pointing to an element of the immediate 

- ' ancestor of the node. Then, at an incarnation creation, other • 

available equivalent incarnations are checked to see whether 

their bases appear in the tree as descendants of the sets which 

the new incarnation is going to reference; if such exis~, the 

incarnation whose base is·a nearest-descendant of scan be used 

to replace the original variable. Then a series·of referencings 

is sufficient to obtain the 6esired incarnation. 


