1. It is often a useful and inexpensive to maintain two or more representations of a single object. Accordingly, we allow multiple repr's to be stated for a single object. The suggested syntax is illustrated by

\[s:\text{set}(\langle E_{b1}, E_{b2}, E_{b3} \rangle), \text{map}_{E_{b1}} \text{map}_{E_{b2}} \text{set}(E_{b3}) ; \]

The implementation of this is unproblematical; the compiler simply generates additional variable names, and assigns a single repr to each of these names. In our example s would be fragmented into two names \(s_1 \), \(s_2 \); source operations changing s would be compiled into corresponding changes to both s_1 and s_2. In expanding an operation that used but did not modify s, the compiler could choose to use either s_1 or s_2 as input to the expanded operation; the object form leading to the most efficient code would be used. Similarly, operations incorporating s into a larger object will choose the most effective of s_1 and s_2 for incorporation. Assignment of s to a variable g of type general will be implemented as an assignment of one of s_1 and s_2 (perhaps always the first) to g.

2. The implementation of the present \(b_2: \text{base}(E_{b1}) \) construct will be modified so that, whereas a field for a pointer to an element block of b_1 will always be reserved in each element block of b_2, this field will not be filled in until some reference to an element block E_{b2} of b_2 attempts to access this field. When such an access is attempted, the required element block E_{b1} of b_1 will be located by hashing (and inserted into b_1 if necessary), and the field in E_{b2} which points to E_{b1} will be filled in.
When this is done, the value pointer in \(eb_2 \) may also be modified to match that in \(eb_1 \). In the special case in which an object known to have \(Eb_1 \) format is inserted into \(b_2 \), its \(eb_2 \) field may be filled in at once.

An advantage of this scheme is that it lowers the cost of initial insertion of \(eb_2 \) into \(b_2 \). This allows us to base \(b_2 \) on more than one other base, much as if we wrote \(b_2:\text{base}(Eb_1, Eb_3, \ldots) \). However, since we may also wish to declare a \texttt{repr strucra}

\[
\text{b}_2: (b_1, b_3, \ldots) \text{\texttt{base}}(\text{mode})
\]

is to be prefered.

Note that this scheme allows 'circular' constructions such as

\[(*) \quad b_1: (b_2)\text{\texttt{base}} (\text{int}), b_2: (b_1)\text{\texttt{base}} (\text{int})\]

which might for example create a base and a subbase which point to each other. In this way, 'plexes' efficient for certain purposes can be created. Note that if a construction like \((*)\) is used, we can fill in pointers from \(b_1 \) to \(b_2 \) whenever pointers from \(b_2 \) to \(b_1 \) are filled in, and vice-versa.

3. The former construction \(s:\text{set}(\in b) \) is now perceived as redundant, since much the same effect can be achieved by writing \(b_2: (b)\text{\texttt{base}}, s:\text{subset}(b_2) \). This change also has the beneficial effect of speeding up iteration over \(s \). Thus we will drop the set-of-elements construct. This makes the syntax \(\text{set}(\in b) \) that we formerly used for set-of-elements available for what was formerly written as \(\text{subset}(b) \). Note that each element block in a base will have a few bits available for the storage of local subset indicators.
If a base b supports only a small number s_1, \ldots, s_2 of local subsets (but no maps and no elements with $\in b$ basing other than iterators over local subsets based on b) then there will exist no pointers to completely null element blocks of b. In this case, the NELT field of the header of b can be used to keep count of the number of totally null blocks which the base contains; this count must be updated whenever a destructive deletion operation is applied to some s_j. At the start of each iteration this count can be compared to the hashtable size of β, and if the number of null element blocks is excessive the base can be rehashed. By proceeding in this way, the density of null element blocks can be held down to something in the neighborhood of 50%.