
SETL Newsletter f 194/
./

Nondeterminism,· Backtracking

·and Pattern Matching in SETL

1. Introduction

Sandra Rapps
June 13, 1977

Inherently non-deterministic algorithms are frequently

encountered. Far some of these algorithms, the desired output

is any member of a particular class of objects with no distinction

made as to th~ relative desirability of the members of the class.

Such algorithms characteristically contain some phrase such as

"arbitrarily select an object from a sets". In other cases there

is a unique objective; however the precise steps which must be

taken in order to reach the desired goal cannot conveniently be

specified a priori. Algorithms which handle such situations

provide several paths of exploration which are systematically

explored until the desired outcome is obtained. Implementation

of non-deterministic algorithms generally involves fairly ex­

haustive "trial-and-error" searching of some problem space.

The widely used backtracking method for handling such

situations involves making "guesses" as to the _first steps of a

partial solution, and then attempting to extend the partial solution

to a complete solution. As.soon as it is determined that a

particular exploration cannot lead to the desired goal, the last

guess made is discarded (along with all side effects generated

since that guess was made) and some other provisional choice is

made. Ignoring time constraints, at som.e point either a solution

to the problem is achieved, or all possibilities have been exhausted

and the algorithm terminates with failure.

It is helpful to visualize the backtracki~g process in terms

of a tree. Each node represents the state of the process at the

time that some non-deterministic decision must be made. Every

node has one descendant for each alternative which can be selected

at that point. At each stage of exploration exactly one node of

SETL-194-2

the tree is considered to be "active'', with the root node being .
active initially. Whenever a decision must be made some (previously

unexplored) descendant of the current active node is s~l~cted

and becomes active,

ln a programmed representation of this process, a data

environment is associated with each node of the exploration tree.

This environment indicates the binding of values to all program

variables at the time that the particular node was last active.

Descendant nodes receive a copy of their parent's environment

when they ar~ initially activated. As program execution continues,

all changes of variable values are made in the currently active

environment only. When a node is re-activated (due to a failure

of one of its descendants) its own data environment is on?e again

made active, and the environment of the failed node, which can

never be re-activated, is discarded. Note that any side effects

which occurred while the process was executing in the environment

of a particular node n are invisible to the ancestors of n and

will only affect computation inn and its descendants.

At any point in the simple exploration process that we have

described, only those nodes on the path leading to the active

node may at some future time be re-activated, and only the data

environments corresponding to these nodes must be retained. At

the implementation level, these environments need not be stored

in their entirety, typically they are stored incrementally, i.e.,

enough information is associated with each node so that its

environment can be recreated from its pare~t•s environment {as in

the Bobrow and Wegbreit model) or from its descendant's environment

(as in SETL Newsletter 166).

II. A Quick Survey of Backtracking in SETL

As indicated in NL 166, we can make backtracki~g available

in SETL by introducing primitives· ·ok and fail. ok is a pseudo-boolean

function which always returns true; but whenever it is invoked a

data environment is created and becomes a descendant of the current

environment, with execution continuing in the new environment.

SETL-194-3

Ex~cution of fail causes a return to the most recently executed

instance of ok, reassigning a value_ of false took. The environ­

ment created when ok had the value true is discarded, and pro-

. cessing continues in the environment which was active immediately

before the statement containing the ok was initially executed.

Any side-effects caused by execution of a sequence of

instructions beginning with ·ok and ending in• ·tail are obliterated.

Thus, when the program terminates it appears as though only those

statements which actually led to the solution had been executed.

Example (The 8-Queens Problem) The 8-queens problem involves

placing 8 queens on an 8 x 8 chessboard so that no queen can be

attacked by a~y other queen. The output ofti1e following program

is a vector rows, indicating that a queen is to be placed in

column n of row rows(n).

if ok then

rows:== nult; avail:== {n, l<n< 8};

c1.::_ V n < 8>
usable:= {x E (avail {r(j), r E rows}- -

· { r (j) - n, r E rows}- { r (J) + ___ n, r E rows}) } ;

(while usable ne nl)

x from usable;

· •if ok ·then rows (n) ==

· end while;

fail;
· ·end Vn;

print rows;

else print 'no solutions found';

x; · continue _Vn; ·end l.• +.

--=-'

Note that the final else statement is executed only if the initial

ok takes on the value fa·lse, In each environment, n takes on a

different value and a new set usable is created. When fail is

executed {because the set of possible values of rows(n) for the

current value of n is empty), the previous environment is re-entered,

n and usable resume their former values, and arew guess is made

for rows(n).

..
SETL-194-4

The preceding description of backtracking is too severely

restricted to be useful in the cases ,we would like to handle.

At any point''in a program it only allows execution to continue

in the current environment, fail back to its parent environment

or generate and enter a new environment. No facilities for

interaction or cornrnunic~tion between environments are provided.

To remove these restrictions, we can extend the· ok and ·fail

primitives in various ways:

(1) Introduce a new data type environment and function currentenv

whose value is the currently executing environment. The only
'•

operations we allow on objects of data type env_i]:'.onment are

assignment, testing for equality, or use in one of the special

ways indicated below.

(2) It is often useful for the value of a small numbe£ of

variables to be preserved after a· fail occurs within some en­

vironment. It should be possible to preserve the value that a

variable had in an environment which fails, allowing, for example,

a strategy which is dependant on the conditions that caused a

failure to occur.

For this to be possible, we can introduce an of operator

which enables assignments to ancestor environment to be made.

If the value of env is some environment then

var of env: = exp;

sets the value of var to exp in environment env and all its

descendant environments. A value for env of currentenv or any

environment previously destroyed can be treated as an error.

For reasons of efficiency, the of operator should be restricted

to use only in the target of an assignment and should not be used

to retrieve a value from a previous environment ~sin x:=-y of env)

since descendant environments can always obtain values directly

from their parents.

Examples showing the way in which this operator can be used

are included in the section on SNOBOL-type pattern matchi~g, which

follows below.

SETL-194-5

(3) fail, as described above, alway~ causes a return to the.

most recently executed instance of an ·cv<• It is often the case

that at some point during execution it can be determined-that an

entire sequence of choices has been incorrectly made and all

environments corresponding to those choices should fail. In

particular, a large number of environments may be generated

iteratively or recursively and it is not always convenient or

possible to explicitly include the code for propagating failure

up the chain of oks. For this reason it is useful to provide a

· second form of fail. fail(env), where env is an ancestor of the

current environment, causes the immediate failure of environment

env (and all its descendants). The value of the instance of ok

which generated env becomes false and the parent of env becomes

the current environment.

As an example of the use of the multiple .fill, consider

depth-first search. One commonly used heuristic in depth-first

search algorithms is to provide a limit, maxd, on the length of

any search path. Any attempt to extend the path length of a

search beyond maxd causes immediate failure of that path. Such

a search might be implemented as:

if ok then outside:= currentenv;

(1 .:S. V d .:S. maxd)

· •if ok then blockl;else block2;end if;- end V d;

·fail (outside) ;

Assuming that blockl and block2 contain no occurrences of ok (they

may, of course contain fails), at most maxd environments are

retained at any one time, awaiting a fail to reactivate them,

and therefore no path through the search tree on le~gth > maxd

is completely explored. .
(4) The backtracking scheme thus far described does not allow

nodes to be deleted from the tree unless a fail is executed.

~owever, when a search involvi~g backtracking terminates success­

fully, all ancestors of the environment in which the goal was

reached are still in existence, awaiting a subsequent failure.

I
i
J

I
i
l
j
I
I .

SETL-194-6

Should a second backtracking sequence be initiated within the

same program it would be possible to-inadvertently fail back

into the already terminated search. Tp prevent such undesirable

effects, we suggest a primitive prune(env). As its name suggests,

prune removes a portion of the environment tree. The value of

env must be an ancestor of the current environment, env'.

Execution of prune(env) causes env and all its descendants to

be removed from the tree, with env'' the immediate ancestor of

env, becoming the current environment:

env''

env

env'

In addition all variables retain in env'' the values they had in

env' immediately before prune was executed, making it appear as

though all assignments made in env and its descendants were in

fact made in env''. Execution continues with the statement

immediately following the prune statement ·and ihe next execution

of fail causes the failure of the ok which·created env''.

The prune operator may also be used to cause a sequence

of decisions to be treated as a single decision and force them

to all fail together, if at all.

Execution of prune has the side effect of freeing storage

by discarding all information associated with the deleted en­

vironments. Judicious use of prune can alleviate the stack

overflow problem which might arise when a large number of en­

vironments must be saved.

III Nondeterministic Select Operators

A more_ general approach to providing non-determinism in

· SETL is the introduction of a new select operator, 3*. This

operator is defined to select an arbitrary element of a set in

the same way that the current 3 does, but would 'remember' which

elements had been selected. If at some subsequent point it is

SETL-194-7

determined that the element selected does not lead to a desired

solution, backtracking will occur and a different object will be

selected. The semantics of the 3* operator are as fo~lows:
' ~-

When x:= 3*S is executed, and element of Sis selected and

assigned to x, this element is somehow marked as 'already selected',

and a new environment is_ generated and entered. A failure occurs

when an attempt is made to select an element from a set which

has no more unselected elements. When this happens, the most

recent successful execution of 3* is determined {that is the

instance of 3* which generated the current environment), the

current env'fronment is discarded, a new element is selected by

3* and assigned, a new environment is opened, and processing

cc;mtinues in this new environment at the st~tement immediately

after this 3* operation. All computations performed between the

time that 3* selected an element and the time at which a failure

occurred are effectively 'undone' by discarding the old environment.

The only exception to the des~ription given above occurs

when the last element of a set is selected. In this case no new

environment need be generated, since a failure caused by the last

element triggers an immediate failure back to some other instance

of 3*. Another important point to note is that if code such as:

X := 3* S;

S ·-.- s + t;

y: = 3*· nl; /* this causes a failure back to

the first statement*/

is executed, x will only be selected from thecriginal elements of

s. This is because the selection of elements from sis done in

the old environment, after the new environment, which contained

the redefined value of s, has been discarded.

It is convenient to introduce for the 3* nondeterministic

primitive, a set of side-effect operations such as those described

for ok and fail. But if we allow such operations we can write

code like:

oldenv: =· cu·rrentenv;

x:= 3* s;

s of oldenv:= s + t;

SETL-194-8

To define the semantics of such cases unabiguously, we must

assume that 3* operates on a copy.of the originals and not ' .

ons itself, otherwise there would be difficulty determining

which elements of s had already been tried, and which elements

remained to be chosen. The same rule holds if we have expressions

such as x:= 3*{y E sjp(y)}. The set on the right-hand side is

computed once, in the original environment before the first element

is selected, and any subsequent changes to s or to variables in

p do not affect the set of values which may be assigned to x.

In general, 3* .will always use a copy of a set,although some

form of copy optimization could probably be successful in

avoiding unnecessary copying.

Example: Using these nondeterministic selection operators a
solution to the·a-queens problem can be written as:

rows:= ·nult; avail:~{n, l<n~8};

(1~ V n< 8) rows (n) := 3*· {x E (avail~{r(j),rE rows}~{r (j)-n,rE rows}

- {r(j) + n, rE rows})};

end Vn;
;erint rows;

For each n a set of possible values for rows(n) is computed and

one of these values is initially selected forrows(n). When, for

some n, this set is empty or all of its elements have been tried

and discarded, the previous value of n is restored and a new

element of its set of possibilities is selected.

In many non-deterministic algorith.~s, such as some forms

of heuristic search, the order in which elements are chosen is

very important. Since the representation of a set, and thus

the selection a~gorithm, is implementation-defined, it is not

possible to control the order in which elements are selected.

For this reason we allow 3* to operate on tuples:

This operator will select first v
1

, then v
2

, etc.

SETL-194-9

In SETL the existential quan·tif ier 3 is also a selection

operator, and the semantics proposed 'for 3* could be extended

naturally to .3 *, e.g., we can agree that j * xEs I p(x) would be

equivalent to x:= 3* {y Es I p(y)}.

The ck and fail primitives can be defined in terms of

these non-deterministic selection operations by ok = 3* ·<~, false>

and fail= 3* nl. Note that ok will behave exactly as the ok

pri:rn.itive did since no new environment will be opened when false,

the last el~ment, is selected, and also that ok = 3* · {~, ·false}

would work equally well, but in this case the value false might

be assigned took first.

We also observe concerning the non-deterministic selection

operators that if x:= 3*.{exp
1

, exp
2

, ••• ,expn} is executed, all

of the expi are evaluated at once, with any side effects caused

by the computations occurring immediately. In most cases not

all of these n values will be needed, so some unnecessary, and

potentially harmful, computations will be performed.

One possible solution would be to include the 3* primitive

in a language which had some type of delayed-evaluation, or

'call-by-need' semantics. The evaluation of.{exp
1

, exp2 , ••• ,expn}

would then yield a set of pointers to code for the evaluation of

the exp .• These code blocks would be executed only for those
l.

elements which were actually chosen as values for x. These

computations would be performed in the old environment and side

effects would occur where appropriate. Also, elements could

·be selected from infinite sets since the sets would not actually

be computed. Instead, some form of_ generating function could

be used to produce one element at a time, as needed.

Since these semantics are not possible in SETL, 3* and .3 *

are only available in the more restricted form.

IV · SNOBOL· pattern Matching Expressed Using Backtracking

The ok---fail primitives and environment.operations are

sufficient to implement an imitation of SNOBOL in SETL. This

section describes such an implementation. A collection of

SETL-194-10

pattern primitives which access a set of_ global variables is

provided. These primitives are functions which attempt to
' .·.1 (.

match a portion of the subject string and either return the

successfully matched s.ubstring, or else execute_. fail. The

. global variables needed are:

globstring = the subject string

cursor= pointer to the rightmost character of

globstring which has already been matched

. globenv = the environment which was active at the

time that pattern matching began

Other global variables can be used to imitate other SNOBOL

features, such as ANCHOR.

The code for.functions corresponding to SNOBOL pattern

primitives appears in the next section. Note that most of the

functions are straightforward. The value of the cursor usually

increases when a successful match is made. The most interesting

patterns are those wi~h implicit alternatives-arbno, fenae, arb,

suaaeed and baZ. Each of these functions executes an instance

of ok whicn introduces a new environment and provides alternative

action to be taken if a subsequent failure should occur.

Consider, for example the definition of arb:

(O ~ Vn ~ # globstring-9ursor) if ·ok then len(n); end if;end V;fail;

arb initially returns the null string (i.e., the string of length 0).

Should fail be executed at some subsequent point in the computation,

the value of ok is false, the iteration continues with the value

·of n increased by 1, a new

returns a string of length

hausted, arb itself fails.

environment is generated, and arb

n. When the subject string is ex­
Note that ·fail forces a return t0

the previous environment, causing the cursor to automatically

resume the value it had prior to the unsuccessful match.

SETL-194-11 ·

More complex patterns may be created by the operations of

concatenation and alternation. Concat~nation of patterns is

represented simply by stri!1g concatenation. For example, the

SNOBOL pattern
BREAK (t ') LEN (1) ARB

becomes

break(' ')II len(l) 11 arb()

Alternation is considerably more complicated. Ideally, one

would like to he able to represent-

Pl I P2 I PN (*)

by

3* {p1,P2r•••,Pn} (**)

where p. is the code representing a pattern. However, because
l.

the entire ·set in {**) must be created at one time, p1 , •.• ,Pn'

each of which contains function calls, must be evaluated immediately,

in the current environment. However, to get a SNOBOL-like effect,

the pattern matching functions p. must be applied at precisely the
J

appropriate times, and, therefore, the =>-* operation cannot be

used in its full generality. Of course, if the semantics of SETL

allowed evaluation of elements to be delayed until they are

actually used, then each of p1 , ••. ,pn would be evaluated as necessary

in a new environment, and the desired effect would be achieved.
One method of circumventing this problem:is to restrict

p1 , ••• ,pn to be parameterless functions, and then executing

3* <p1,P21••·,Pn>.
Another method, which does not require this restriction, involves

the use of ok and fail and encodes (*) as

the macros

· If ok then p1 ; else if ·ok then p 2; ••• ·eTse •if ok then pn; •

e"lse fail;

eo(p) = "if ok then p; - --
0 (p) - else if ok then p; - - --

oe =· e"lse ·fa•i1; - --
can be used to make this code more compact:

eo (p1) o {p2) • • • o (pn) oe;

SETL-194-12

SN0B0L has two assignment operators which can be used

within patterns. The conditional assignment operator (.) performs

an assignment only after the match hAs been successfu.11y completed.

In SETL all assignments are made as soon as they are encountered,

but are 'undone' if the match is unsuccessful and ·fa•il is executed.

The SN0B0L immediate assignment operator ($) performs art

assignment whether or not the pattern containing this assignment

is successful. Upon failure, the target variable of the assign­

ment retains its new value. This effect can be imitated in SETL

by use of tbe_ environment globenv, which is known to be the

ancestor of al~ environments generated within the pattern matching

segment of the program. SN0B0L assignments such as

VALUE$ X

are coded in SETL as x of globenv:= value;

Note that if the match fails completely and the ancestor environment

of globenv is re-entered, this value of x is not retained. If

this value must be saved the user could, of course, have executed

x of ances:=.value; •
where ances is the value of the ancestor of globenv.

The code needed to match a pattern p against a string s is:

if ok ·then globenv:= currentenv;

'else

cursor:= 0;

globstring:= s;
-

prefix:= if anchor then nulc else

some expression involving p
prune(globenv);

success:= true;

success:= false; end if;

arbO; }
{*)

}(**).
The initial· ok is used to generate a new environment which is

considered the 'global environment' of the indicated pattern

matchi~g segment of the program. Failure of this environment

indicates complete failure of the match, and thus success is set

to false when ok = false. Matching in the 'unanchored mode'

(if the match fails, restart the ·match with the cursor set to

1, then 2, etc., until the match fails with the cursor initially

at #globstring) is achieved by executing arb(), which first

SETL-194-13

matches the null string, then the first character of_ globstring

and continues matching larger and larger initial portions of

.. globstring, which are then assigned eo prefix. At -this point

pattern matching begins and any code which includes pattern

func.tions may be executed. Upon successful completion of all

pattern-representing code, the intermediate environments are

prune 'd and the success flag is set to· true. Otherwise, some

·fail must have caused ok to take on the value· false and success

is set accordingly. For convenience, the macros startmatch(s)

and endmatch may be used in place of code fragments (*) and(**),

respectively •.

Examples:

1. The SNOBOL statement

STRING PATTERN= REPLEXP :S{LABELl)F(LABEL2)
is coded as

startmatch(string);

junk:= pattern;

string:= prefix I I replexp I I rem();

endmat:ch;

·g success ·then -~ ·to labell; ·else -~ to label2;

2. STRING PATTERN. X :F(L~EL)

becomes

startmatch(string}; x:= pattern; endmatch; if not success
then go to label;

V · A Library of Primitive Pattern Functions

(1) ANY

· ·def inef any (string) ;

· if cursor= #globstring then fail;

· if 3 s (i) E string l globstr.ing{cursor + 1)

· ·then cursor:= cursor + l;· return s;

:~·!@_;
end any;

= s

SETL-194-14

(2) NOTANY

def inef notany (stri!}g} ;

· •if cursor = #globstring: ·then: fadl;

· if 3 s (i) E stri!}g 1. globstri!lg (cursor + 1) = s

, · -~ fa•il;

else cursor:= cursor + ·1;- retu·rn s;

end notany;

(3) LEN

definef len(n);

•if n = O then return nulc;

-lf :ftglobstring - cursor< n ·then: fail;

else return globstring(cursor + 1: (cursor:=(cursor+ n)));

·end len;

(4) POS

definef pos(n);

· •if cursor = n: then ·return n·u1c; ·eTse ·fail-;

end pos;

(5) RPOS

define£ rpos(n);

if cursor = #globstring - n· ·then: ·return nulc; ·else fa•il;

·end rpos;

(6) TAB

defin:ef tab(n};

if n = cursor then: return nulc;

if n < cursor then: fail;

· ·else ·return globstring{cursor + 1: cursor:= n) i

· ·end tab;

(7) RTAB

· def inef rtab (n} ;

if place:= (#globstri!lg - n) = cursor then: return n:ulc;

if place <. cursor ·then fail; - . - ~ ---
·else ·return globstring (cursor + 1: cursor:=place);

SETL-194-15

(8) REM

definef rem();
' if cursor = #globstring ·then retu·rn nulc;

·e1se ·return_ globstring(cursor + 1: cursor:= #globstring);

· •end rem;

(9) SPAN

definef span{string);

•if cursor = #globstring ~ ·not j s (i) E string I
s =. globstring(cursor + 1}

--~ fail; $ span must match at least one character

(cursor+ 2 2 1/i 2#globstring)

· if !!£!: :f s (j) E string I s = globstring (i)

· ·then return globstring(cursor + 1.: cursor:=(i-1));

· end Vi;

· return globstring (cursor + 1: · cursor:= #globstring);

~ span;
(10) BREAK

definef break(string);

- •if cursor = #globstring ·£!:. 3 s (i) E string I
s = globstring(cursor + 1)

then fail; $ break must match at least one character

cursor·+ 2 2 Vi 2 #globstring)

•if 3 s(j) E string I s = globstring(i)

~ return globstring(cursor + 1: cursor:=(i-1)};

end Vi;
· ·return globstring(cursor + 1: #globstring);

end break;
(11) EXACTLY

Any arbitrary string may be used as a patte!n component in
SNOBOL, In SETL one must explicitly invoke the function ·exactly

which either matches its_ a!gument, or fails.

·define£ exactly(string);

if cursor+ #string> #globstring ·or

globstring(cursor + 1: cursor:=(cursor + #string)) -:/

string
--~ fail;

· else return string;

en~ exactly;

SETL-194-16

(12) FAIL

The SETL ~maybe used exactly as the SNOBOL FAIL

primitive is used.

(13} 'FENCE

definef fence();

if not ok then fail(globenv); else ·return nulc;

· ·end fence;

Any fail which is executed in the environment created by

the ok in fence causes failure of the global environment and

therefore terminates the match unsuccessfully.

(14} ABOR'r

Execution of fail(globenv) causes immediate termination

9f the current instance of pattern matching.

(15) ARB

define£ arb();

(0 ~ Vn ~#globstring cursor)

if Ok then return len(n);

· ·end Vn;

'!!!!i
end-arb;

(16) SUCCEED

define£ succeed();

(whil-e true)

if ok then return· nulc;

end While;

·end succeed;

(17) -ARBNO

Although the argument of the SNOBOL function ARBNO may be

any pattern, in SETL the argument is restricted to bring a
. . .

parameterless pattern function which either returns a matched

substring of globstring, or fails. Under this constraint, the

function is:

SETL-194-17
..

definef arbno(pat);

if• ok then: return nulc;
...

· ·else return pat() 11 'arbno (pat);

· ·end arbno;

Example:

SNOBOL-- ARBNO (ANY (I ABC I) SPAN (I XYZ t) .. X

SETL--- definef p () ; return any ('abc ') 11 span ('xyz ') ;' ·e·na p;

x:= arbno(p);

Another way by which the effect of ARBNO can be imitated

is to execute the following code:

z;= ·nulc;

('While not ok) z:= zl I pat;' ·end 'Whi'le;

/* next statement*/

pat may be any pattern expression. This code violates the

convention that the value of a pattern must be the substring

which it.matches. However, the value of z at the next statement

is always the matched substring.

{18) BAL

baZ can be implemented by using an auxiliary primitive

function, gbaZ, which matches the shortest non-null string

balanced with respect to parentheses.

definef gbal();

if globstring (_cursor + 1) = ') •· then ~;

paren:= 0;

(cursor+ 1 ~Vi~ #globstring)

if globstring(i) ='('·then paren:= paren + l;·

· ·else if globstri!lg (i) = t} '

: ·end.Vi;

· ·fail;

end gbal;

· then par en:= par en - 1;

· •if paren = 0 ·then return

globstring (cursor + 1: cursor:·= i);

BAL can now be defined as:

· definef bal () ;

return gbal I I arbno(gbal};

end bal;

