© @ ©O

©

L« A

@

-

L]

@ @

3,

GO © @

SETL NEWSLETTER 195
AN ALGORITHM FOR COPY OPTIMIZATION, BASED ON NL176,

- 00 & W W o N m Wy W o ™ s B g W WP NG waw TR NN W™ g maw - - -
by -

" MICHA SHARIR
JULY 11 1977

THIS COPY UPTIMJZATION ALGORITHM IS A FLOW ANALYSIS OF #SHADOW
VARIABLES#, AS DEFINED IN NL, 176, IT LOCATES THE POTENTIALLY
DESTRUCTIVE USES AND INSTRUGCTIONS WHERE SHARE RITS ARE POSSIBLY
SET, THEN, BY A STRAIGHT FORWARD TECHMIQUE WHICH COMBINES LIVe/
DEAD INFORMATION AND CONSTANT PROPAGATION FOR THESE SHARE RIT
VARTABLES, WE MOVE COPIES QUT OF LOUOPS, SUPRESS SETTINGS OF SHARE
BITS, ANL FIND ALL UNCONDITIOQONAL COPIES AND NO-COPIES,

ALTHOUGH 1T IS POSSIBLE 7O PERFORM THIS COPY OPTIMIZATION BY AN
INTERVAL=ONIENTED ALGORITHM, WITH TWO PASSES THRQUGH THE DERIVED
SEGUENCE, IT SEEMS BEST TO DO IT IN THE STRAIGHT-FCRWARD HAY
EXPLAINED BELOW, FOR THE FOLLUWING REASONS, ‘

A) MUCH OF THE DATA THAT OUR ALGORITHM USES IS ALREADY
CONTAINED IN THE BFROM MAP, WHICH WAS INDEED ORTAINED
BY SUCH AN INTERVAL ORIENTED A|,GOR]THM,

g) IT IS NUT CLEAR WHICH OF THESE TWO ALGNRITHMS uILL BE MORE
EFFICIENT, THE ALCORITHM GIVEN BELOW IS ALMOST LINEAR IN THE
NUMBER QF POTENTIALLY DESTRUCTIVE USES, AND THE INTERVAL
ORIENTEU ALGORITHM REQUIRES A TIHME THAT CONTAINS AN ADDITIONAL
FACTOR HOUGHLY PROPORTIONAL TO THE NUMEER OF 8ASIC BLOCKS
IN THE PRUGRAM, AND SO MIGHT BE LESS EFFICIENT, ESPECIALLY
IF WE ANTICIPATE THE NUMBER OF DESTRUCTIVE USES TO BE A
RATHER SMALL PORTION OF THE PROGRAM LENGTH,

C) OUR ALGURITHM ALLOWS US TU PERFURM THE COPY OPTIMIZATION
INTER=PROCEDURALLY, THE INTERVAL-ORIENTED ONE [S NOT
SUITABLE FOR INTER=PROCEDURAL ANALYSIS,

WE FIRST BEGIN BY SCANNING Txt CODE, LOCATING ALL POSSIBLE
INSTRUCTIONS WHICH MIGHT #DEFINE# OR zUSEZ THE SHARE BITS,

A #DEFINITIONZ IS EITHER A VALUE CREATIMG INSTRUCTION,

WHICH ASS]UNS 0 TO THE SHARE BIT OF ITS QVARIABLE (MEAMNING
THAT THIS NEW VALUE 1S DEFINITELY NOT SHARED), OR IS A VALUE
TRANSMITTING, RETRIEVING OR EMBEDDING INSTRUCTION, SUCH AS A
SIMPLE ASSIGNMENT, MAP RETRIEVAL, SET INSERTION €TC, , ALL OF
WHICH USUALLY ASSIGN #1# TO THzZ SHARE BIT OF ONEF QR HMORE

OF THEIR VARIABLES, MEANING THAT THE VALUE OF THIS VARIABLE
BECOMES SHARED AFTER THIS INSTRUCTION,

A #USE# UF THE SHARE BIT IS A POTENTIALLY DESTRUCTIVE USE

0F THE CORRESPONDING VARJABLE,

2 &6 @ O ¢

& 6 €& @

&

e o & & O

8 @

SETL - 195 « 2

AN ADDITIONAL COMP|ICATIQON ARISES IN THE CASE OF SIMPLE
ASSIGNMENTS AND ASSIGNMENT=L JKE OPERATIONS SUCH AS ARGIN AND
ARGOUT, AN ASS]IGNMENT X = Y SHOULD SET THE SHARE RIT OF X,

UNLESS Y IS5 BOTH DEAD AND UNSHARED AT THIS POINT, THE

ORIGINAL APPRUOACH, SUGGESTED 8Y J, SCHWARTZ IN NL, 176,

IS TO SET 1HE SHARE BIT OF X UNCOMDITIONALLY AT THIS
ASSTIGNMENT, HOWEVER, THERE ARE TWO VERY FREQUENT CASES FOR
WHICH THIS OVER-ESTIMATION MIGHT PROPAGATE A CONSIDERABLE
AMOUNT OF UNNECESSARY COPY OPERATIUNS,

THE FIRST CASZ CONCERNS RETURN VALUES OF FUNCTIONS AND WRITE
pARAMETCHS. A3 CURRENTLY DESIGNED, THE VALUE TRANSFERS FROM THE

FORMAL WRITE PARAMETERS AND THE RETURN VALUE TO THE ACTUAL .ARGUMENTS

ARE PRESENTED EXPLICITLY IN THE CODE BY ARGOUT ASSIGNMENTS
FOLLOWING THE CALL, THE PREVINUS APPROACH WOULD [HPLY THAT
THESE VALUES wWILL ALWAYS BE JUDGED TO BE SHARED, WHEREAS IN
MOST CASES THEY ARE NOT, AS THE FORMAL RETURN VALUE ACTS ONLY
AS A TRANSHFER MEDIUM FOR THIS VALUE,

. THE OTHER, MUCH MORE FREQUENT, CASE CONCERNS TEMPORARIES, ANY

EXPRESSIUN CUMPUTATION, SUCH AS A = & + ¢ WILL EXPANMND INTO

T =B+ C; A=T; WHERE T IS A TEMPORARY NAME UNIQUELY
REPRESENTING THE COMPUTATIQON B + C, UNLESS R + C IS A

COMMON SUBEXPRESSION WHIGCH WILL LATER BE USED WITHOUT BEING
RE~DEFINED (AFTER THE COMMON SUBEXPRESSION ELIMINATION PHASE),
THERE IS NO NEED To SCET THE SHARE BIY OF A, SINCE IN THE OTHER
CASES T WILL BE AN UNSHARED (BEING CREATED JUST NOW) AND DEAD
VARIABLE AT THE ASSIGNMENT, THE PKEVIOUS APPROACH WOULD
THEREFORE IMPLY THAT ALL NEWLY CREATED VALUES WOULD !MMEDIATELY
BE JUDGED TO BE SHARED, AN ASSUMPTION WHICH WILL NEGATE MOST OF
THE GAINS UF COPY QPTIMIZATION,

WE SHALL THEREFORE TREAT ASSIGNMENTS IN A SPECIAL WAY [N DUR
ALGORITHM, COUNSIDERING THEM AS PARTLY TRANSMITTING,s PARTLY
SETTING THE SHARE glIT, THAT MEANS THAT WE SHALL SOMETIHMES
TRACE THE tARLIEST POINTS OF SETTING THE SHARE BIT, CROSSING
ASSI&NWENTb WHILE DOING SO,

IN THE FIRST SCAN oF THE CODE WE CUMPUTE THE FOLLOWING OBJECTS,

SHAREBIT = A MAP ON OCCURENCES, WITH VALUES 0 OR 1 IF AN
OCCURENCE TURNS OFF OR OM THE SHARE pIT OF ITS
VARIABLE, ANR W[TH VALUE 2 IF THE OCCURENCE IS AN
OVARJABLE OF AN ASSIGHNHMENT FOR WHICH THE IVARIABLE
IS UDEAD (AND THEREFQRE THIS ASSIGNMENT ACTS AS A
TRANSMISSION OF THE SHARE BIT FROM THE IVARIABLE
TO THE OVARIABLE), .

@

@ O 6

C @

D

® ¢ 6 © 6 © © €& 9 O

QD © e O

SETL - 95 =~ 3

OTHERWISE SHAREBIT OF AN OCCURENCE IS UNDEFINED,

‘ INDICATING THAT THIS OCCURENCE DOES NOT AFFECT THE
SHARE BIT,

"SHAREBITUSE = ALL [VARJABLE OCCURENCES WHICKH APPEAR IN

A POTENTIALLY DESTRUCTIVE USE,

AFTER THIS PRELIMINARY PASS, HWE ITERATE OVER ALL IVARIABLES
]V WHICH REPRESENT A USE OF THE SHARE B1T OF SOME VARIABLE

vV, FOR EACH SUCH OCCURENCE, WE FIND THE LARGESY GROSS
INTERVAL I COUNTAINING]V, SUCH THAT THE SHARE BIT OF V WAS
NEVER SET IN | WITHOUT BEING DROPPED BEFORE IV WAS REACHED, IF
1 IS THE ENTIRE PROGRAM THEN NO COPY]S REQUIRED, AND WE SET
COPYFLAGCIV) TO COPY~NGO, IF THERE IS NO SUCH I, THEN

FEITHER A CUPY WILL ALWAYS BE REQUIKED, IF ALL PREVIOUS
GCCURENCES OF THE CURRENT VALUE OF V SET THE SHARFE BIT (AND
THEN WE SET COPYFLAGCIV) TO COPY-PRE), OR A RUN TIME TEST OF
THE SHARE BIT IS WEEDEDs AND THEN WE SET COPYFLAG(IV) TO
COPY~TESI], IN ALL OTHER CASES, WE MOVE THE COPY TO THE TARGET
BLOCK GCF 1. HQOWEVER, THIS MQVED COPY CAN STILL BF EITHER
CONDITIONAL UR UNCONDITIONAL, DEPEMDING ON WHETHER THERF WAS
OR THERE WAS NOT A NEW CREATJON OF THIS VALUE PRIOR TO THIS
INTERVAL ,

IN ORDER TU FIND THE INTERVAL I, WE COMPUTE A SELECTIVE
TRANSITIVE CLOSURE SET, USING THE BFROM MAP AND ASSIGNMENTS
WHICH AC1 AS A SHARE BIT TRANSFER, MORE PRECISELY, WE FIND THE
SET S OF ALL PREVIQUS OQCCURENCES O] OF THE VALUE OF lv, FROM
WHICH [V CAN BE REACHED VIA A PATH, SUCH THAT ALL OTHER
OCCUKENCES OF THIS VALUE ALONG THIS PATH DO NOT SET THE SHARE
BIT OF THIS VALUE (BUT MAY TRANSFER IY FROM ONE VARIABLE TQ
ANOTHER), (THIS CaN BE COMPARED TO THE CRTHIS MAP OF THE
#SHADOW VARIABLE OCCURENCE# CCRRESPONDING TO THE SHARE BIT OF
IV),

‘THEN, FOR EACH OIV IN S WHIGCH SETS THE SHARE BIT, WE DETERMINE

THE LARGES] GROSS INTERVAL | WHICH CONMTAINS [V BUT 4OT 01V
THE MINIMUM OF THESE INTERVALS | 1S THE REQUIRED INTERVAL,

7O DETERMINE WHETHER THE COQPY SHOULD BE CONDITIONAL OR
UNCONDITIONAL, WE ALSO CALCULATE AN AUXILTARY INTERVAL 11 WHICH
IS THE SMALLEST JNTERVAL CONTAINIMNG IV AND ALL THE PREVIOUS NEY
VALUE CREATIONS OF THIS VALUE, THE COPY SHOULD BE CONDITIONAL
IF AND ONLY IF 11 STRICTLY COUNTAINS I, 1L IS COMPUTED IN A
SIMILAR WAY T0o THE COMPUTATION OF 1T,

0 9 e ¢© 66 ©® © o o

S

O

g @ & ¢ 0 ® e 0 & @

SETL - 19 »~» 4

A SECOND RELATED OPTIMIZATION, WHICH IS SOMEWHAT MARGIWNAL, IS™
10 SUPPRESS A SETTING OF THE SHARE BIT IF THIS BIT 1S HEVER
GOING TO Be USED, 1.E, - THERE 1S NO SUBSEQUENT POTENTIALLY
CESTRUCTIVe USE OF THE CORRESPONDING VALUE,

SINCE It THE ABSENCE OF ANY FLAG INFORMATION CONCERNING

SHAKE 811G, THE CODE GENERATOR WILL NOT TOUCH THE SHARE

§17TS AT ALL, WE HAVE TO ASSIGN COPY-~SET TO COPYFLAG(IV)

IF AND ONLY [|F THE INSTRYUCTION OF JV ESSENTIALLY

SETS THiS BIT, AND THERE IS A SUBSEQUENT USE OF

THE SHaPRk olIT OF THE CORRESPUNDING VALUE, (BY #SUBSEQUENTZ WE
MEAN A SELeCTIVE TRANSITIVE CLOSURE, USING THE FFROM MAP AND
SHARE B11T TRANSFER ASSIGNMENTS, COMPLETELY ANALDGOUS TO THE
ABCVE MENTIONED CLOSURE OF BFROM,)

NOTE THal THE SECOND PHASE IS5 INDEPENDENT OF THE FIRST, EVEN
THOUGH CUPLES MIGHT HAVE BEEN MOVED OUT OF INTERVALS IM THE
FIRST PHASE, WHICH MIGHT HAVE CHANGED THE CRTHISINV MAP OF THE
SHADOW VARIABLES, HOWEVER, IT IS EASILY CHECKED THAT

A SHARE BI] WAS SET PRIOR TO EXECUTING THE CUPY [F AND ONLY IF
IT WAS SET PRICR TQ THE DESTRUCTIVE USE (UNLESS [T WAS LATER
CROPPED BEFORE THIS DESTRUCTIVE USE, IN WHICH (ASE WE DO NOT
CONSIDER THIS SETTING AT ALL).

MOREOVER, 1T CAN BE SHOWN THAT THE ONLY CASE OF INSERTING A
REDUNDANT COPY OPERATION, 1S THE INSERTION OF TWO IDENTICAL

COPY OPERATIONS 1HTO THE TARGET BLOCK OF THE SaME INTERVAL.
INDEED, IF TWQ COPY OPERATIONS OF THE SAME VARIABLE ARE FOUND

TO BE INSCGRTTED IMTO THE TARGET BLOCKS OF TWO INTERVALS 11 AND 12,
THEN EITHEK 11 = I, OR NEJTHER OF THEM CONTAINS THE OTHER, OR IF
11, SAY, CUNTAINS 12 THEN THE OCCURENCE WHICH INDUCED THE COPY AT
THE ENTRY UF 14 IS IN A LOOP=-FREE PART OF Il1, BEFORE THE ENTRY noF
12, SO THAT BOTH coPY OPERATIONS ARE NOT REDUNDANT,

WE MIGHT EVEN IMPROVE THIS OPTIMIZATION, EY SUPPRESSING THE
SETTING UF THE SHARE BIT, IF MOME OF |TS SUBSEQUENT USES HAVE
THEIR COPYtLAG = COPY-TEST, WHICH MEANS THAT THE SHARE RIT WILL
NEVER BE TESTED, SINCE ALl SUBSEQUENT COPIES OF THIS VARIABLE
ARE NOW EXPLICIT IN THE CODE,

FOR THE SAKE OF EFFICIENCY, WE INSERT THIS OPTIHIZATION INTO THE
MAIN TTERATION OVER THE SHARE BIT USES, SPECIFICALLY, WHENEVER

WE FIND A USE WHOSE COPYFLAG HAS BEEN SET ToO LOPYwTFbT, THENs AMD
ONLY THEN, WE EXPLICITLY SET THE SHARE BIT OF ALL PRICR OCCURENCES
WHICH ESSENTIALLY SET THIS BIT,

THE IMPLEMENTATION OF THIS ALGORITHM 1S VERY STRAIGHT FARWARD,
FOR THE SAKE OF COMPLETENESS WE IHCLUDE HERE A SETL VERSION

OF 1T, LATER WE SHALL GIVE SQHE EXAMPLES OF COPY OPTIMIZAT]ONS
THAT ARE CAUGKT BY THIS ALGORITHM, AND SOME THAT ARE NOT CAUGHT,

e e e e T s B WP BT

e ® & o @& & ¢

e @ e & © © O & O

N AR

S o © 6 ©

A A N M

SETL - 195 « 5

MOBULE CUPYQP;

DEF INE CUPYSOPTIMIZE PUBLIC:

THIS IS THE MAIN DRIVING RQUTINE OF THIS ALGGR:THM.
1T INVOK:a THE FOLLOWING PROCEDURES,

SCAN=SHARES = THE FIRST SCAN THROUGH THE CODE TO LOCATE
DEFINITIONS AND USES OF THE SHARE BITS,

FIND-COPJIES = ANALYZING EACH POTENTIALLY DESTRUCTIVE USE
FOR THE REWUIRED cOPY ACTIONS,

SCAN-SHAKES ()}
FIND=COPLES();

RETURN;
END COPYmOPTIMIZE]

DEFINE SUANASHARES;

FIRST SCAN THROUGH THE CQDE TO LOCATE DEFINITIONS AND USES OF
THE SHARE BITS,

COPYFLAG i= NL; .

COPYFLAG IS A MAP ON OCCURENCES, INDICATING WHAT COPY ACTION
SHOULD BE TAKEN AT EACH QCCURENCE, THE RANGE OF COPYFLAG
CONTAINS THE FOLLOWING POSSIBLE VALUES,

COPY~NO = NO COPY 1S REQUIRED,
COPY=PRE = COPY BEFORE THE INSTRUCTION,

COPY-TEST = CoPY BEFORE THE INSTRUCTION IF THE CORRESPONDING
SHARE BIT]S ON, OTHERWISE DO NOT COPY,

COPY~SET = SET THE SHARE BJT,

SHAREBIT 3= NL3;
SHAREBIT IS A MAP ON OCCURENCES, HAVING THE VALUE ¢ IF
THE CORRESPONDING VARIABLE GETS A MEW UNSHARED VALUE, 1
IF THE VALUE OF THE VARIABLE BECOQHES SHARED AT THIS
INSTRUCTION, 2 IF THIS IS A SHARE BIT TRANaFaR BY AN ASSIGNMENT,
AND UNDEFINED OTHERWISE,

SHAREBITUSE iz NL;
SHAREBITUSE 1S THE SET OF ALL POTEWTIALLY DESTRUCTIVE USES,

@ & & © © O

S @ 6 & o © © @

o @

S © 6 & O

A A

N AN

[R e

¥ B L2)

SETL - 195 « 6

{vB « BLUCKS, CODE(B,I))

ITERATE UVER THE CQDE

OV = GETAOVAR(I)}
oV IS THE OVARIABLE
CASE OPCODE(]) OF

(» OPS~ASSIGN)
IN AN ASSJGNMENT, CHECK IF THE IVARIARLE 1S DEAD
IV 1= GET-IVARSCI)(1) § GET THE IVARIABLE
IF FFROM<IV2 /= NIl THEN
IF THE IVARIABLE 1S LIVE, THEN BOTH IT AND THE OVARIABLE
SHARE THEIR VALUES,
SHAREGIT(OV) 1
SHAREBIT(IV)
ELSE SHAREBIT(QOV)
INDICATING A SHARE BIT TRANSFER (1,E, THE SHARE BIT OF ov
SHOULD BE SET IFF THE SHARE 41T OF IV IS SET AT THIS POINT),
END [F}

(» OFPS-RETRIEVE + QPS-EXTRACTS)
IN A RETRIEVAL QR AN EXTRACTION, SET THE SHARE BIT of
THE OVARIABLE, -
SHAREBIT(OV) 3= 1)

(» OPS~NEWVAL) ¢
IN A VALUE CREATING INSTRUCTIOMN, TURN OFF THE SHARE BIT
OF THE OVARIABLE, |
SHARERIT(OV) = 03

(+» OPS~DESTRUCT)
IN A POTENTIALLY DESTRUCTIVE USE, THE OVARIABLE 1S NEVER
SHARED, mAAVING A NEW VALUE, IF THE DESTRUCTIVE USE IS LOCAL
M NATURE (NAMELY, A MODIFICATION OF A GROSS ORJECT BY INSERTING
OR DELETING AN ELEMENT) THEN THIS ELEMENT VALUE SECOMES SHARED,
IN ANY CASE, THE SHARE B]T OF THE GROSS O0BJECT 1S ZUSEDZ,
SHAREBIT(OV) iz 0}
SHAREBITUSE WITH LARGE~DBJ(]1);
IF OPCODE(I) IN OPS~LUCAL THEN
SHAREBIT(SHALL-OBJ(I)) = 133
END CASE;
END v;

FIND FOR ALL OCCURENCES WHOSE SHARE BIT IS 2 WHETHER THEY SHOULD

BE TREATED AS A SETTING OF THE SHARE BIT, OR A DROP, OR BOTH,
PREVSETS := PREVDROPS 1= NL;

PREVSETS |5 THE SET OF ALL PAIRS [OIV,RCS), WHERE OV

IS AN DVARJABLE IN A SHARE B]T TRANSFER ASSIGNMENT, AND

2 @ ¢

@ 6 © 6

© © ® @ ©

3 © © © 6 0 & © © ©

SETL » 195 - 7

§ RCS IS A RC-~STRING LEADING FROM A PREVIOUS SETTING OF THE
§ SHARE BJT UF THE TRANSFERRED VALUE TO THIS ASSIGNMENT,
$ PREVDROP 3 THE SAME, EXCEPT FOR A DROP INSTEAD OF A SETTING,

(v OIV » DOM(SHAREBIT) ¢ SHAREBIT(O]V) = 2)
SEEN 1= < 01y 2:
WORK = < [HNULL-PATH,0]V) 23
(WHJLE WORK /= NL)
[STR,0V) FROM WORK}
IV 1= IVARN(OV,2)3
FREVS 3= £ [STR2,0IV4i] ¢ [STR1,0IV1] + BFROM(IV) 1t
OIVY NOTIN SEEN AND
(STR2 t= STR1 CC, STR) /= ERROR-PATH >}
CHECKED 1= NL3J
(WHILE PREVS /= NL)
{STR2,01V1) FROHN PREVS;
CHECKED WITH [S8TR2,01V1);
CASE SHARERIT(OIVL) OF

(oMY 3
PREVS + < ([STR3,0IV2) ¢ [STRO,01V2) = BFROM(QIVL)
t (STR3 = 5TRO CC, STR2) /= ERRQR~PATH 2
= CHECKED; . ‘
(0) 3
PREVDROPS WITH [0O]V,STR2);
(1)
: PREVSETS WITH {O]V,8TR2}3
(2) 3
SEEN WITH 0IVL}
WORK WITH [STR2,01VL);

END CASE}
END WHILE}
ENU WHILE}
END v;

RETURN;
ENU SCAN~SHARES;

DEFINE FINU~COPIES:
$ MAIN ROUTINE = ITERATE OVER THE USES OF THE SHARE BITS,

(vIVASHAREBITUSE)

$ WE NOW COHPUTE INTSEQ = THE TUPLE OF ALL THE INTERVALS
$ CONTAINING Iv,
INTSEQ ;= [B & (FOR B 1= INTOV(BLOCKOF(INSTNOCIV))Y);
WHILE 8 /= OM DOING 8 i= INTOV(B))];

O w ® o €

9 ¢ © @

& O 6

©

& ©

¢ ® ©

o O ©

9 H A

B

& W86 B

A A

& o7 B

SETL " 195 =~ 8

« INTZERU 3= g}

CINTZERO IS THE SMALLEST INTERVAL CONTAINING]V SUCH THAT

ALL ZERO SETTINGS (NEW VALUE CREATJONS) T0O THE SHARE BIT OF
THE VALUE UF [V, DONE PRJOR TO IV, ARE IN THIS INTERVAL.

INTONE := 4INTSEQ + 11
INTONE IS 1HE LARGEST INTERVAL CONTAINING IV SUCH THAT ALL
SETTINGS OF THE SHARE BIT OF THE VALUE OF IV WERE DONE
QUTSIDE UF THIS INTERVAL,

PREVS = BFROM(IV) LESS [NULL~PATH,IV1;

PREV=BITSETS = Nk}
PREV~RBITSETS 15 THE SET QF ALL PREVIOUS OQCCURENCES OF THIS
VARTABLE, WHICH SET THE SHARE BIT, WE KEEP THEM TO INSERT IV
THEM EXPLIUITLY THE COPYASET ACTION, SHOULD A COPY-TEST ACT!O:
BE REQUIRED AT 1V,

CHECKED = NLj

(WHILE PREVS /= NL)
(STR,01V] FROM PREVS}
CHECKED WITH [STR,01V)}

CASE SHAREBIT(QIV) OF

(OM) 1
PREVS + < [STRyg,0IV1) : [STRO,01V1) « BFROM(OIV)
(STRY 1= STRO GGy STR) /= ERRORAPATH 2
m CHECKEDS '

(0) 1
INTZERO 3= INTMINCOIV,S8TR, INTZERO);
INTMIN RETURNS THE SMALLEST INDEX I IN INTSEQ SUCH THAT
1 2 INTZ;RU AND Q1v IN INTSEQ(]),

(1} 1
INTONE := INTMAX(OIV,STR, INTONE);
PREV-BITSETS WITH QIV;
INTMAX RETURNS THE LARGEST INDEX | IN INTSEQ SUCH THAT
1 < INTONE AND OIvV NOTIN INTSEQ(])

(2)
A PREVIOUS TRANSFER ASSIGNMENT, CHECK IF THERE IS A RC-STRING
LEADING TO THIS ASSIGNMENT FROM A SETTING (DROP) nF THE SHARE BIT,
WHICH IS CUMPATIBLE WITH THE CURRENT RC~STRING, IF 50, REGARD
THIS ASSIGNMENT AS A SETTING (DROP) OF THE SHARE RITy NOTE THAT
THIS ASSIGNHtNT MAY BE REGARDED AS BOTH A bETTINF AND A DROP

& © ¢ © © e @ 6

© ® 6 O

G 86 o & €6 O ©

S

e TR A T AT (3T O TN IS A T T T €W SO R A A Sy PRI .25, ™1 T S S R v > T

&# Gy

FB AR N

A I

SETL - 195 = 9

-~ IF (% STR1 =+ PREVSETSSOIV2 ¢
. STR1 CC, STR /= ERROR-PATH) THEN
INTONE = INTMAX(OIV,STR, INTONE);
PREVABITSETS WITH OV}
ELSEIF (= STR1 -+ PrEVDROPSSQIV2 ¢
STR1 CC, STR /= ERROR~FATH) THEN

INTZERO = INTMINCOIV,STR.,INTZERO);
END 1F;

ENU CASE;
END WHILE;

NOW DETERMINE, ACCORDING TO [NTZERQ AND INTONE, THE COPY ACTION
TO BE DONE AT v, '

IF INTONE > $INTSEQ THEN
NO PRIOR ScTTING OF THE SHARE BIT, SO
COPYELAG(IV) 1= COPY-NQ3

ELSEIF [NTUNE = g THEN
NG COPY MOTION S POSS|BLE, CHECK IF CONDITIONAL GR UNCONDITIONAL
CORY IS KEUUIRED,
IF INTZERO /= 0 THEN

PRIOR NEW VALUE CREATION, A CONDITIONAL COPY

COPYFLAG(IV) 3= COPY~TEST;
AT TRIS POINT, PRIOR SETTINGS OF THE SHARE BIT WERE INDEED
NECESSARY, SET THEM EXPLICITLY,

(vO1V » PREV~BITSETS)

COPYFLAG(O[V) 1= COPY~SET;}

ELSE COPYFLAG(IV) 3= COPY~PRE; § UNCONDITIONAL COPY
END IF;

ELSE & IN THIS cASE COQPY MOTION IS POSSIBLE
COPYELAG(IV)Y 3= COPY-NO;
VI $3 UI=NAME(IV)}
I 3= INS~TARGCINTSEQ(INTONE),Q1~ASN,(VI,V1));
THIS ROUTINE CHECKS WHETHER AN IDENTICAL COPY ASSIGNMENT
ALREADY EXISTS IN THE TARGET BLOCK OF THIS INTERVAL, IF NOT.
IT INSERIS THAT ASSIGNMENT INTO THIS BLOCK, AND RETURNS
THE NEW INSTRUCTION IDENTIFIER, OTHERWISE 1T RETURNS OM,
IF [/= OM THEN
IF INTZERO > INTONE THEN
A NEW VALUE CREATION PRIOR TO THIS INTERVAL HEAD,
A CONDITIONAL CoPy,
' COPYFLAG(I[,2])) t= CUPY-TEST}
AT THIS POINT, PRIOR SETTINGS OF THE SHARE BIT WERE INDEED
NECESSARY, SET THEM EXPLICITLY,

© © ® & 0 @

g & & @ © 6 o

®© O

a7 0 8 ©

D ©

]

55

o &

SETL ~ 7195 = 10

(vOIy » PREVAB]TSETS)
COPYFLAG(O]V) 3= COPY~SET;;

ELSE ¢ OWNLY SHARE BIT SETTINGS PRIOR TO THIS POINT,
COPYFLAG(T142])) t= COPYnPRE}
END 1F;
END IF3;
END IF;

END vV

RETURN;
END FIND-COPIES)

DEF INEF INTMAX(O],RCS,IND}Y}
THIS FUNCTION COMPUTES THE LARGEST INDEX | IN INTSEQ,
A TUPLE CONTAINING ALL INTERVALS CUNTAINING A CERTAIN
OCCURENCE, SUCH THAT I S IND AND [O0I,RCS) NOTIN INTSEZQ(I),

BEGIN

IF IND = 0 THEN RETURN IND;
THERE ARE ALKEADY #BAD# (QCCURENCES INSIDE THE FIRST
CRDER INTERVA[CONTAINING THIS OCCURENCE, NOTHIMNG TO DO,

ELSEIF RCUS /= NULL-PATH THEN
THE OCCURENCE IS IN ANOTHER PROCEDURE,
IF RCSC4RCS)I(1) = RCACALL THEN
0l REACHES THIS PRQCEDURE THROUGH ITS ENTRY,
IF IND » +INTSEQ THEN RETURN $INTSEQ;
ELSE RETURN JND3
END IF;
ELSE INT t= RLOCKOF (RCS(#RCS)(2))3
OTHERWISE, Ol REACHES THIS PROCENDURE THROUGH A RETURN TO
SOME CALLING INSTRUCTION, PROCEED AS If 0@ OCCURED AT THIS
CALLING INSTRUCTION.,
ENU IF; '
ELSE INT t= BLOCKOF(INSTNO(O]))}
INT IS THE BLOCK CONTAJNING OI,
END IF; '

NOW ITERATE THROUGH THE DERIVED SLWUENCE AND FIND THE FIRST
INTERVAL IN JNTSEQ CONTAINING Ol, IFf IT IS OF ORDER | > IND
THEN RETURN IND, OTHERWISE RETURN -1,

cC © &8 ® @ ® © ¢

O 8 & & © © © © & ©

o 6

O ©

i

B B A

SETL =~ 195 - 11
v 1 15 1 +,, $INTSEQ)
INT 3= INTOV(INT);
[F INT = INTSEQC]) THEN RETURN] =~ 133
IF 1 = IND THEN RETURN IND;}
ENL v

NO SUCH INTERVAL, THE GRAPH MUST BE IRREDUCIBLE AND

IND MUST BE > ¢INTSEQ, RETURN THE LARGEST INDEX IM INTSEQ,
RETURN ¢ INTSEQ;

END;

END INTMAX;

DEFINEF INTMIN(OI,RCS,IND);}
THIS FUNCTION COMPUTES THE SHALLEST INDEX I [N INTSEQ,
A TUPLE CONTAINING ALL INTERVALS CONTAINING A CERTAIN
CCCURENCE, SUCH THAT I 2 IND AND [OI,RCS) IN INTSEQ(D),
THE FLOW IS SIMILAR TO THE PREVIOQUS ROUTINE,. INTMAX.

BEGIN

IF IND > +INTSEG THEN RETURH IND}
NO HAY TU FIND A LLARGER [NTERVAL THAN THE CURRENT ONE,

ELSEIF RUS /= NULL-PATH THEN

IF RCSC(4RCS) (1) = RCACALL THEN RETURN +INTSEQ + 13
ELSE INT = BLOCKOF(RCS(4RCSY(2))3

END EF;
ELSE INT = BLOCKOFC(INSTNO(O]))}
END [F3

JTERATE OVER THE DERIVED SEQUENCE AS BEFORE, RETURN
THE MAXIMUM OF INpD AND THE INDEX OF THE FIRST INTERVAL IN
INTSEQ CONTAINING QI,
(v 1 3 1 ,,, ¢INTSEQ)
INT $= INTOV(INT)S
IF INT §= INTSEG(I) THEN
' W 1 > IND THEN RETURN 13
cLSE RETURN [ND;
END IF3;
END IF;
END v;

© @ 3 ¢

53]

G © © 0 @ ©

@ ¢ © ©

o

o 6 O 6 O

P
<

SETL - 195 = 12

$ NO SUCH INTERVAL FQUND, RETURN AN INDICATION THAT
$ 01 IS OUT UF THE | ARGEST INTERVAL IN]NTSEQ,
" RETURN ¢INTSEQ + 1:
END3}

END INTHMING

END COPYOP}

EXAMPLES

P L R]

1, CONSIDER THE FOLLOWING SETL CODE FRAGMENT,

L1 A = B;
L2 (X + §)
L3 A WITH X33

SUPPOSE THAT B IS LIVE AFTER INSTRUCTION {1, OR THAT THE
VALUE OF 8 IS SHARED BEFQRE EXKCUTING L1, THEN OUR ALGORITHM
WILL MOVE THE COPY THAT WILL BE QOTHERWISE REQUIRED REFORE
THE DESTRUCTIVE USE OF A AT L3, OUT OF THE LOOP TO THE

POINT JUST BEFORE L2, THIS OPTIHIZATION IS ALMOST IDENTICAL
TO THE ZUOPY ON ASSIGNMENTz OPTIMIZATION, SUGGESTED BY

R+ DEWAR IN NL, 164, WHICH I3 TO COPY JUST AFTER THE ASSIGNMENT
AT L1, OUR OPTIMIZATION IS EVEN SUPERIOR T0O THE OTHER ONE,
SINCE IT INSERTS THE COPY OPERATION AT THE POINT OF MINIMAL
LOOP=NESTING LEVEL ON THE PATH FROM L1 TO L3, WHEREAS THE
COPY=ON=ASSIGNMENT OPTIM]ZATION MJGHT CREATE UNNECESSARY
COPY OPERAJIUNS IF, FOR EXAMPLE, L1 1S CONTAINED IN ANOTHER
LOOP,

MOREOVER, 1F B IS DEAD JUST AFTER L1 (AS WILL BE THE CASE IF
L1 15 ACTUALLY A VALUE TRANSFER FROM A FORMAL WRITE PARAMETER
TO AN ACTUAL ARGUNENT), THEN OUR COPY OPTIMIZATION DEPENDS ON
THE WAY IN WHICH B WAS CREATED, IF ALL PREVIOUS CREATIONS OF
B THAT REAUH L1 WERE NEW VALUE CREATIONS, THEN HO CNOPY WILL
BE INSERTED., [F SOME OF THESE CREATIONS YIELD- NEW VALUES AND

B

e ®© © O ©

e & © @

® 8 © @ ©

O

o o 6 9

CSETL = 195 = 13

SOME YIELD SHARED VALUES, THEN WE SHALL INSERT A CONYDITIONAL

COPY JUST BEFORE L2, INVOLVING A TEST OF THE SHARE 31T OF A.

IF ALL OF THESE CREATIONS YIELD SHARED VALUES, THEN AN
UNCONDITIONAL COPY WILL BE INSERTED THERE, FINALLY, THE
INSTRUCTION AT L1, WHICH POTENTIALLY HAS TO SET THE SHARE BIT
OF Ay HWILL DO 50 ONLY IN THE CASE WHERE A CONDITIONAL COPY

OF A HAS BEEN INSERTED,

2, AS FAR AS COPY OPTIMIZATION WITH RESPECT TO LOOPS IS
CONSIDERED, OUR ALGORITHM WILL DO BETTER THAN THE COPY=0ON-
ASSIGNMENT ONE, HOWEVER, THERE ARE SOME CASES OF STRAIGHT=-
LINE CODE COPY OPTIMIZATIONS WHICH OUR ALGORITHM WILL NOT
CATCH, WHEREAS THE OTHER ALGURITHII WILL, HOWEVER, WE RELIEVE
THAT THESE CASES ARE QUITE RARE. 3tSIDES, TO DETECT THESE
CASES REWUIRES A FULL VALUE=FLOW INFORMATION, WHICH 1S NOT
NEEDED FUR OUR ALGORITHM,

ONE SUCH EXAMPLE IS AS FOLLOWS,

L1 B i= A3

L2 C iz A3

L3 (v [X,Y) » S)
B WITH X3
C WITH Y33

SUPPOSE THAT A HAS BEEN CREATEDN BEFORE L1 AS A MEW VALUE,

AND THAT IT 15 DEAD AFTER L2, OUR ALGORITHM WILL INSERT

COPY OPERATIUNS OF B AND C BEFORE 1.3, BUT ACTUALLY QNLY ONE OF
THEM SHOULW BE COPIED,

