
SE'l'L Newsletter #204 

•rarj an' s fast intePral f inc1inq -~:l_gori th~n 

1. The compressed balanced tree representation 

J. T. Schwc1rtz 

M. Sharir 

3 1-1arch 19 7 8 

Let S be a finite set, f: S + S a partially defined 

mapping which admits no cyclic mapping, i.e. Vk ~ 1, x ES, 

fk(x) ·1 x. Then we can define for each x ES, £
00

(x) = y such 

that 3k > 0, fk(x) = y and f(y) is undefined (thus f
00

(x) = x 

for all x for which f(x) is undefined). We will write this in 

infix notatio·n f lim x. We will assume that f = 0 initially, 

and is extended by operations of the form f(y) = x, where f(x), 

f(y) are presently undefined (so that no cyclic mapping will 

ever occur). f can be interpreted as the father mapping in 

a forest of trees, starting with a collection of single-nod~ 

trees, and joining trees ·together by making a root the father 
co . 

of another root. f (x) is the root of the tree currently 

containing x. Then f can be stored in a special form which 

makes these operations ultra efficient: asymptotically, 

f lim x can be computed in an almost constant number of 

cycles. 

Method: 

Represent f by an auxiliary triple of functions g, n, t 

such £hat g has similar properties to those off, g
00

(x) = g(x) 

for all x for which fco(x) has already been computed, 
co co ro · 

n(x) =#of y such that g (y) = x, and f (x) = t(g (x)) for 

all x. g is the father mapping in an auxiliary forest, 

n(x} is the number of descendants of each root x (i.e. the 

cardinality of its tree). The forest of g is equal, as a 

set of sets, to the forest off, but th~ roots in each forest 

need not be the same; t is a "real root" mapping, which maps 

each g-root to the corresponding f-root. These auxiliary 

functions are manipulated as follows: 
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(a) 

(b) 

(c) 

(d) 

Initially, g := n£; n:= { [x,l]: X E S}; t := { [x,x): X E S}; 
0::, 

Whenever f (x) = f lim x is needec:1, perform "path 

compression": 

s 1 := nt; r := x; 

(while g(r) f 0) s 1 with r; r = g(r); ~nd; 

:= r; end; $ path compression (Vz E s 1 ) g (z) 

return t(r); $ r is the g-root of x and t(r) is the f-root. 
0::, 

g (x) (which is needed in the next operation) is 

computed in exactly the same way, only :returning r 

instead ·of t(r). 

Whenever f(x) = y is performed, perform also 11 balancing 11
: 

r 1 :=glim x; r 2 :=glim y; $ first find the g roots of x,y 

if n(r1 ) < n(r 2 ) then_$ g-assignment is the same direction 

$ as the £-assignment. 

g (r 1) := r2; n(r2 ) := n (r1 ) + n(r2 ); t (r 2 ) := y; 

else $ a reversed g-assignment 

g(r2) := rl; n (r 
1

) := n (r1 ) + n(r
2
); t(r2 ) := y; 

It is well known that using such a represantation, a 

mixed sequence of n assignments and limit calculations will 

be performed in O(n a(n}) time, where a(n) is related to the 

inverse of Ackermann's function, so that it is extremely 

slowly growing, and for all practical purposes is less than 3. 

This technique can be applied to several problems related 

to program optimization, producing highly efficient algorithms 

for these problems. Among these problems are: testing a 

flow graph for reducibility and finding intervals for this 

graph, and constructing the dominator tree of a flow graph. 

In this note we will sketch only the first application. 
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2. Tarjan's fast interval finding algorithm 

Let G be a flow graph with a root. An interval I in G 

with a head x is a subset of the nodes of G containing x, 

with the following properties: 

(a) All edges in G which enter I from an outside node, 

must do so through x (i.e. if (y,zJ E G, y ~ I and z EI, 

then z = x) . 

(b) All nodes in I can be reached from x along a path 

wholly contained in I. 

(c) All cycles wholly contained in I must contain x. 

It follows that I can be topologically sorted in such a 

way that x is its first element, and all edges in G between 

nodes of I are either forward edges, or else back edges whose 

target is x. 

Definition. Let I be an interval in G with a head x. Let us 

define a transformation of G, called collapsing I to a 

single node, as follows: 
(a) . Delete all nodes in I-{ x} from G. 

(b) Replace each edge (y, z) E G, where y E I, z ~ I, by 

the edge (x, z) • If (x,x) E G, delete this edge. 

The resulting graph is called a derived 2raph of G. 

Definition. A flow-graph G is called reducible if G can be 

reduced to a single node, by repeated collapsing of intervals. 

Theorem 1 (Hecht-Ullman, "Flow-graph reducibility," SIAM J. 

Computing 1972): G is irreducible if it contains two nodes 

n1 ,n2 I root such that there exist paths Pt E path(root,n1 ) 

p 2 E path(root,n2 ), p 3 E path(n1 ,n2 ), p 4 E path(n2 ,n1 ) such 

that p 1 does not contain n 2 , p 2 does not contain n 1 , and 

p 3 u p 4 is disjoint from p 1 u p
2 

(except for the end points 

n 1 ,n
2
). Such a configuration is called a double-entry loop, 

and is illustrated below: 
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Our problem is, given a flow graph G, to test whether G is 

reducible, by finding intervals in G, and collapsing them 

in an efficient manner. If G is reducible, then we can use the 

sequence of intervals processed by such an algorithm to solve 

various data tlow problems for Gin a linear time (in the 

length of this sequence and the number of nodes in G). 

We begin by constructing a depth-first spanning tree 

(DFST) T of G, numbering its nodes in left-to-right, ancestors 

first order. Let 'nodeno' denote the node-numbering map, and 

let 'ndescs' be another map on T, mapping each node a to the 

number of descendants of x in T (excluding x). All the graph 

edges can be classified into four categories: tree-edges, 

forward edges (i.e. edges (x,y) where x is a T-ancestor of y), 

back edges (edges (x,y) where x is a T-descendant of y) and 

cross edges (all other edges). It is well known that Tisa 

DFST of G iff all cross edges are right-to-left {i.e. all 

cross edges (x,y) satisfy nodeno(x) > nodeno(y)). 

Definition. For each node x I root, let 

reachunder(x) = {all nodes y from which x can be reached along a 

path not going through x, whose final edge 

is a =back edge}. 

Theorem 2. G is reducible iff root~ reachunder(x), for 

all x I root. 

Proof: If root E reachunder(x), let p be a path from root to x as 

in the above definition, and let y be the first point on p such 

that the subpath of p from y to x cpntains only descendants of x. 

Then there exists a double-entry loop in G, with x,y as the loop 

entries, as shown in the following figure. 
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Thus, by Theorem 1, G is irreducible. 

Conversely, if the graph is irreducible, let x and y be 

entries of a double-entry loop, with nodeno(x) < nodeno(y), 

such that nodeno(x), nodeno(y) are minimal. Then, by this 

minimality and the definition of a DFST, it can easily be 

shown that y is a descendant of x and the path from y to x 

in the definition of a double-entry loop contains only 

descendants of y and therefore terminates with a back edge. 

Since y can be reached from the root via a path which bypasses 

x, root E reachunder(x). Q.E.D. 

Lemma 3. If root~ reachunder(x), then every node in reach­

under(x) is a descendant of x, reachunder(x) u {x} is a 

subtree of T, and all paths into this subtree must go 

through x. 

Proof: If y E reachunder(x) is not a descendant of x, we can 

go from the root down the tree toy, without going through x, 

and then from y to x via a path as in the definition of reach­

under. Hence root E reachunder(x). 

If y E reachunder(x) and z is an ancestor of y and a 

descendant of x, then we can go from z toxin a similar 

way as above, obtaining z E reachunder(x). Hence 

reachunder(x) u {x} is a subtree of T, rooted of x. If 

y E reachunder(x), z f x and (z,y) E G, then a similar 

argument shows that z E reachunder(x). Hence, only x can be 

a target of an edge from outside reachunder (x) U { x}. 
Q.E.D. 
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Corollary 4. Under the same hypothesis, reachunder(x) u {x} 

is a strongly connected set. 

Proof: Any point in this set can be reached from x via a 

path wholly contained in this set (namely, the tree path 

from x), and can reach x via a similar path (for all nodes 

a path as in the definition of reachunder(x) are also in 

reachunder(x)). Q.E.D. 

on 

Lemma 5. Let x be the highest numbered node in T (rightmost­

bottommost) which is the target of a back edge. Then, if 

root 1 reachunder(x) u {x}, then this set is the maximal 

strongly connected interval whose head is x. 

Proof: Lemma 3 and Corollary 4 show that this set is st~ongly 

connected and satisfies (a) and (b) in the definition of an 

interval with head x. To establish (c), let p be a cycle 

wholly contained in reachunder(x). It is easy to see that p 

must contain a back edge, and the target of that back edge, 

being a descendant of x, has a higher node number, which 

contradicts the choice of x. To show maximality, note first 

that any interval whose head is x must contain only descendants 

of x. Let y be such a descendant which belongs to some 

strongly connected interval with head x. Hence, there exists 

a path from y to x going only through descendants of x; and so 

must terminate with a back edge. Thus y E reachunder(x) 

so that reachunder(x) u {x} is the maximal strongly connected 

interval with head x. Q.E.D. 

For simplicity, assume with no loss of generality that 

root is not the target of a back edge. 

Tarjan's procedure can now be sketched, as follows: 

Given a flow graph G, 

(1) Compute a DFST T of G, the maps 'nodeno' and 'ndescs' 

and the set of all back edges in G 
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(2) Find x as in Lemma 5. If no such x exists, go to 

step (6). 

(3) Compute reachunder{x). 

(4) If root E reachunder(x), then the graph is irreducible; 

halt. 

(5) Else, collapse reachunder(x) u {x} to a single node to 

get a new derived graph G'. Repeat steps (1)-(5) with G'. 

(6) At this point, the graph is reducible. The final derived 

graph is acyclic, and can be topologically sorted in a 

right-to-left, ancestors first order (of the corresponding 

DFST). 

It is easily seen that this procedure is correct. To see 

that it can be implemented in a highly efficient manner, using 

a compressed, balanced tree representation, note the following 

observations: 

Lemma 6. An edge (x,y) E G is a back edge, or, equivalently, 

x is a descendant of y if£ 

nodeno(y) < nodeno(x) < nodeno{y) + ndescs{y) 

Proof: Trivial. 

Next, let 'head' be a map on the nodes of G, that we 

calculate during execution of the above procedure,in the 

following way: Initially, head= ~- After each iteration of 

our procedure, set head(y) = x for all y E reachunder{x), 

where X is the node chosen at step (2) of the current iteration. 

Since all such nodes y are then deleted from the graph, we 

will never define head(y) more than once. It also follows 

inductively that, at any moment, head has no ~yclic mapping, 

and that whenever we define head(y) = x, x and y are limit 

values of the current head map (i.e. head(x) = head(y) = n 
before this definition). Also, x is an ancestor of yin the 

current DFST. 
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·Lemma 7. At any iteration of the above procedure, if G' 

denote the current derived graph of G, then 

00 

G'= {(head (x),y): (x,y)EG I head(y)=Q and 

if head-1{y} f 0 then head
00

(x)fy} 

Proof: By induction. It is certainly true if G' = G, since 

head= 0 at this point. Suppose that it is true for some G', 

and let G" be the derived graph of G', obtained by collapsing 

a new interval I' with head x'. Let head1 , head2 denote the 

values of 'head' for G', G" respectively. Then (u,v) E G" 

iff (i) u ~ I' and (u,v) E G', or (ii) u = x', v ~ I' and 

3w EI' such that (w,v) E G'. Applying the induction hypothesis 

we get 

G" = { (u,v)EG' lu~I'} + { (x' ,v): (w,v)EG' lwEI' and v~I'} 

= { (head;(t) ,v): (t,v)EG!head;(t)~I', head
1 

(v)=Q and 
-1 00 

if head1 {v}t0 then head
1

(t)fv} 

+ { (x' ,v): (t,v)EGlw=head;(t)EI', #I', head
1 

(v)=Q and 
-1 00 

if head
1 

{v}t0 then head
1

(t)fv} 

{ 
00 I 00 = (head2 (t) ,v): (t,v)EG head2 (t)t x', head

2
(v)=Q and 

-1 00 

if head2 {v}f0 then head 2 (t)fv} 

+ { (head; ( t) , v) : ( t, v) EG I head; ( t) =x' , head 2 (v) =Q and 

if head;1{v}f0 then head;(t)fv} 

(This last, set-by-set equality, should be carefully verified 

by the reader.) 

= { (head;(t) ,v): (t,v)EG!head2 {v)=Q and 
-1 00 

if head2 {v}f0 then head2 (t)fv}. 

Q.E.D. 

Lemma 8. Let G' be the derived graph of G at some iteration of 

the above procedure. Then a DFST T' £or G' can be obtained by 

starting at T and applying to it repeatedly all the collapsing 

operations of the previous iterations (in which similar DFST's 

were used) . 
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Proof: By induction. There is nothing to prove if G' = G. 

Suppose that the assertion is true for some G', with T' the 

DFST obtained for G' this way. Let G" be the next derived 

graph, and T 11 the graph obtained from T' by the collapsing 

operation. Since a subtree o.f T' is collapsed, T" is also a 

tree. By the proof of Lemma 7, any cross edge of G" was 

obtained from an edge of G' by moving its initial node up T', 

so that this latter edge must have been a cross edge in G', 

and by the in.duction hypothesis went from right-to-left in T' • 

Thus, the resulting edge in G" must also go from right to left 

in T", so that T" is a DFST for G". Q.E.D. 

Remark. In this case, head
00

(x) = y always implies that y is a 

T-ancestor of x. 

Next, if we carefully examine how T' or G' are used when 

processed by the procedure, we can show that neither of them 

has to be formed explicitly. 

Let G' be the derived graph during some iteration of the 

procedure. Define n(G') = minimal node number (in T) which 

is in the range of the current 'head' map. Obviously, the 

values of n(G') are nonincreasing during execution of the 

procedure. 

Lemma 9. (a) (x,y) E G' is a back edge iff nodeno(y) in T 

is< n(G') and 3w I (w,y) is a back edge in G and head
00

(w) = x. 

(b) n(G') is the nodeno (in T) of the head of the last 

interval collapsed to form G'. 

Proof: First observe that if (x,y) E G' is a back edge (in T') 

then, since T' was obtained by collapsing subtrees of T, y is 

also a T-ancestor of x. 

The proof is by simultaneous induction on (a) and (b). 

Both are true if G' = G. Assume both to be true for all 

derived graphs up to and including G', and let G" be the 

next derived graph. Let (x,y) e G" be a back edge. 

By Lemma 7, 3(w,y) E G, x = head
00

(w). Hence x is a T-ancestor 
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of w, and by the above observation; (w,y) is a back edge in G. 

If nodeno(y) ~ n(G'), let G
0 

be a previous derived graph such 
I 

that n(G
0

) ~ nodeno(y) < n(G
0
). By the induction hypothesis, 

co 
(x

1
,y) is a back edge in G

0 
, where x 1 = head (w), at the 

iteration which processes G
0 

, and it is easily seen that the 

highest numbered node in T
0 

which is the target of a back edge, 

must be y (here the induction hypothesis on (b) has also been 

used), so that after that iteration, head- 1{y} i ~ and 
co 

head (w) = y. Hence, by Lemma 7, (x,y) cannot ~e an edge in G". 

Conversely, if (w,y) is a back edge in G, then y is a T-ancestor 

of w, and after each collapsing, it still must be a T-ancestor 
co co • 

of head (w) (if not, some head (w) will become a T-ancestor of y, 

so that we will have a lower numbered node than yin the range 

of 'head', contradicting the fact that nodeno(y) < n(G')). 

The condition on y implies that head(y) = Q and head- 1{y} = ~ 
so that, by Lemma 7, (x,y) E G" and is therefore a back edge. 

Now, concerning (b) , let y be the highest numbered node 

in T' which is the target of some back edge. By the induction 

hypothesis, nodeno(y) (in T) < n (G') . This y will be chosen 

at step (2) of the iteration which processes G', so that at 

the end of this iteration y will be the only new element in 

range head, so that n(G") = nodeno(y), which proves (b) for G". 

To conclude, there is no need to produce explicitly any 

derived graph or DFST. Instead, the nap 'head' should be 

maintained during the execution of the procedure, using a 

compressed, balanced tree representation, and the procedure 

itself should be modified as follows: 

0 Perform step (1) only once, for the given graph G. 

Q.E.D. 

0 At step (2), iterate from the last found such x in a decreasing 

node numbering order (Lemma 9(b)), and use Lemma 9(a) {and 

Lemma 6) to test for back edges. 

oAt step (3), one can use the graph 

{ (head
00

(x) ,y): (x,y)EG!head(y)=Q} insead of G' (cf. Lemma 7). 

Indeed, this graph contains G', and all extra edges are of the 
' form (y,y). Since we want to construct a set of nodes, these 
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extra edges will not produce additional nodes in rcachunder. 

(Alternatively, one can use the more complex representation 

of G' in Lemma 7.) In either case, since these graphs have 

to be traversed only in a reverse order, this can easily be 

accomplished using G and 'head' alone. (However, the first graph 

can be traversed this way more efficiently tha~ the second.) 
0 Step (4) is unchanged. 

oStep (5) amounts now to extending the head map for the nodes in 

reachunder(x) and branching back to step (2). 

Here is a SETL code for the modified procedure: 

proc intsof(graph,root); $ 'Tarjan's interval finder 

$ Step (1) 

nodes := dom graph+ range graph; $ the nodes of the graph 

inverse:= { [y,x]: [x,y] E graph}; $ the inverse graph 

[fa,nodeno,ndescs,rleftno] := dfst(graph,root); 

$ depth-first spanning tree 

$ fa is the father mapping of this tree 

$ rleftno is a node-numbering map in a 

$ right-to-left tree walk order, needed in step (6) 

nodevect := { [n,x]: [x,n) E nodeno}; $ vector of nodes in order 

backedgesinv := { [y,x)Einverse!nodeno(y)~nodeno(x)~nodeno(y)+ 

+ndescs(y)}; 

$ set of all inverse back edges 

targbackedges := dom backedgesinv; $ target nodes of back edges 

head:= ni; initaux; $ initialize auxiliary tree maps 

intervals := nult; $ tuple of all intervals 

intno := ni; 

m := O; 
$ step (2) 

$ a map from interval heads to the index of 

$ their interval in intervals 

$ number of intervals encountered 

(Vn := #nodevect ..• 2 I x := nodevect(n) in targbackedges) 

$ steps (3)-(5) 

m := m + 1; 

intervals with [x]; $ x is the head of the m-th interval 
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intno(x) := m; 

reach under : = { head lim y: yEbackedgesinv{ x}}; 

$ all sources of back edges leading 

$ to X 

(while 3yEreachunder-{x}lhead(y)=Q) $ build all reachunder 

head(y) := x; balance(y,x); $ perform 'balancing' 

if root in newreachunder := {head lim z: zEinverse{y}}th~n 

return Q; $ the graph is irreducible 

else reachunder := reachunder + newreachunder; 

end if; -- --
end while; 

end V; 
$ step (6) 

$ The remaining nodes form the last interval in the sequence; 

$ its head is root. Extend 'head' to these nodes. 

(Vy E nodes I head(y) = Q) head(y) := root; end; 

intervals with nult; intno(root) = m+l; 

rleftvec := { [n,x]: [x,n]Erleftno}; $ vector of nodes in right-to-

$ left tree walk order. 

(Vy:= rleftvec(n)) intervals(intno(head(y))) with y; end V; 

return intervals; 

end proc intsof; 

l 


