
SE'l'L Newsletter #204

•rarj an' s fast intePral f inc1inq -~:l_gori th~n

1. The compressed balanced tree representation

J. T. Schwc1rtz

M. Sharir

3 1-1arch 19 7 8

Let S be a finite set, f: S + S a partially defined

mapping which admits no cyclic mapping, i.e. Vk ~ 1, x ES,

fk(x) ·1 x. Then we can define for each x ES, £
00

(x) = y such

that 3k > 0, fk(x) = y and f(y) is undefined (thus f
00

(x) = x

for all x for which f(x) is undefined). We will write this in

infix notatio·n f lim x. We will assume that f = 0 initially,

and is extended by operations of the form f(y) = x, where f(x),

f(y) are presently undefined (so that no cyclic mapping will

ever occur). f can be interpreted as the father mapping in

a forest of trees, starting with a collection of single-nod~

trees, and joining trees ·together by making a root the father
co .

of another root. f (x) is the root of the tree currently

containing x. Then f can be stored in a special form which

makes these operations ultra efficient: asymptotically,

f lim x can be computed in an almost constant number of

cycles.

Method:

Represent f by an auxiliary triple of functions g, n, t

such £hat g has similar properties to those off, g
00

(x) = g(x)

for all x for which fco(x) has already been computed,
co co ro ·

n(x) =#of y such that g (y) = x, and f (x) = t(g (x)) for

all x. g is the father mapping in an auxiliary forest,

n(x} is the number of descendants of each root x (i.e. the

cardinality of its tree). The forest of g is equal, as a

set of sets, to the forest off, but th~ roots in each forest

need not be the same; t is a "real root" mapping, which maps

each g-root to the corresponding f-root. These auxiliary

functions are manipulated as follows:

SETL-204-2

(a)

(b)

(c)

(d)

Initially, g := n£; n:= { [x,l]: X E S}; t := { [x,x): X E S};
0::,

Whenever f (x) = f lim x is needec:1, perform "path

compression":

s 1 := nt; r := x;

(while g(r) f 0) s 1 with r; r = g(r); ~nd;

:= r; end; $ path compression (Vz E s 1) g (z)

return t(r); $ r is the g-root of x and t(r) is the f-root.
0::,

g (x) (which is needed in the next operation) is

computed in exactly the same way, only :returning r

instead ·of t(r).

Whenever f(x) = y is performed, perform also 11 balancing 11
:

r 1 :=glim x; r 2 :=glim y; $ first find the g roots of x,y

if n(r1) < n(r 2) then_$ g-assignment is the same direction

$ as the £-assignment.

g (r 1) := r2; n(r2) := n (r1) + n(r2); t (r 2) := y;

else $ a reversed g-assignment

g(r2) := rl; n (r
1

) := n (r1) + n(r
2
); t(r2) := y;

It is well known that using such a represantation, a

mixed sequence of n assignments and limit calculations will

be performed in O(n a(n}) time, where a(n) is related to the

inverse of Ackermann's function, so that it is extremely

slowly growing, and for all practical purposes is less than 3.

This technique can be applied to several problems related

to program optimization, producing highly efficient algorithms

for these problems. Among these problems are: testing a

flow graph for reducibility and finding intervals for this

graph, and constructing the dominator tree of a flow graph.

In this note we will sketch only the first application.

SETL-204-3

2. Tarjan's fast interval finding algorithm

Let G be a flow graph with a root. An interval I in G

with a head x is a subset of the nodes of G containing x,

with the following properties:

(a) All edges in G which enter I from an outside node,

must do so through x (i.e. if (y,zJ E G, y ~ I and z EI,

then z = x) .

(b) All nodes in I can be reached from x along a path

wholly contained in I.

(c) All cycles wholly contained in I must contain x.

It follows that I can be topologically sorted in such a

way that x is its first element, and all edges in G between

nodes of I are either forward edges, or else back edges whose

target is x.

Definition. Let I be an interval in G with a head x. Let us

define a transformation of G, called collapsing I to a

single node, as follows:
(a) . Delete all nodes in I-{ x} from G.

(b) Replace each edge (y, z) E G, where y E I, z ~ I, by

the edge (x, z) • If (x,x) E G, delete this edge.

The resulting graph is called a derived 2raph of G.

Definition. A flow-graph G is called reducible if G can be

reduced to a single node, by repeated collapsing of intervals.

Theorem 1 (Hecht-Ullman, "Flow-graph reducibility," SIAM J.

Computing 1972): G is irreducible if it contains two nodes

n1 ,n2 I root such that there exist paths Pt E path(root,n1)

p 2 E path(root,n2), p 3 E path(n1 ,n2), p 4 E path(n2 ,n1) such

that p 1 does not contain n 2 , p 2 does not contain n 1 , and

p 3 u p 4 is disjoint from p 1 u p
2

(except for the end points

n 1 ,n
2
). Such a configuration is called a double-entry loop,

and is illustrated below:

SETL-204-4

root

lo\
o~o

nl n2
Our problem is, given a flow graph G, to test whether G is

reducible, by finding intervals in G, and collapsing them

in an efficient manner. If G is reducible, then we can use the

sequence of intervals processed by such an algorithm to solve

various data tlow problems for Gin a linear time (in the

length of this sequence and the number of nodes in G).

We begin by constructing a depth-first spanning tree

(DFST) T of G, numbering its nodes in left-to-right, ancestors

first order. Let 'nodeno' denote the node-numbering map, and

let 'ndescs' be another map on T, mapping each node a to the

number of descendants of x in T (excluding x). All the graph

edges can be classified into four categories: tree-edges,

forward edges (i.e. edges (x,y) where x is a T-ancestor of y),

back edges (edges (x,y) where x is a T-descendant of y) and

cross edges (all other edges). It is well known that Tisa

DFST of G iff all cross edges are right-to-left {i.e. all

cross edges (x,y) satisfy nodeno(x) > nodeno(y)).

Definition. For each node x I root, let

reachunder(x) = {all nodes y from which x can be reached along a

path not going through x, whose final edge

is a =back edge}.

Theorem 2. G is reducible iff root~ reachunder(x), for

all x I root.

Proof: If root E reachunder(x), let p be a path from root to x as

in the above definition, and let y be the first point on p such

that the subpath of p from y to x cpntains only descendants of x.

Then there exists a double-entry loop in G, with x,y as the loop

entries, as shown in the following figure.

-SETL-204-5

root

tree path /0-

<
~ y\ back edge

Thus, by Theorem 1, G is irreducible.

Conversely, if the graph is irreducible, let x and y be

entries of a double-entry loop, with nodeno(x) < nodeno(y),

such that nodeno(x), nodeno(y) are minimal. Then, by this

minimality and the definition of a DFST, it can easily be

shown that y is a descendant of x and the path from y to x

in the definition of a double-entry loop contains only

descendants of y and therefore terminates with a back edge.

Since y can be reached from the root via a path which bypasses

x, root E reachunder(x). Q.E.D.

Lemma 3. If root~ reachunder(x), then every node in reach­

under(x) is a descendant of x, reachunder(x) u {x} is a

subtree of T, and all paths into this subtree must go

through x.

Proof: If y E reachunder(x) is not a descendant of x, we can

go from the root down the tree toy, without going through x,

and then from y to x via a path as in the definition of reach­

under. Hence root E reachunder(x).

If y E reachunder(x) and z is an ancestor of y and a

descendant of x, then we can go from z toxin a similar

way as above, obtaining z E reachunder(x). Hence

reachunder(x) u {x} is a subtree of T, rooted of x. If

y E reachunder(x), z f x and (z,y) E G, then a similar

argument shows that z E reachunder(x). Hence, only x can be

a target of an edge from outside reachunder (x) U { x}.
Q.E.D.

. SETL-204-6

Corollary 4. Under the same hypothesis, reachunder(x) u {x}

is a strongly connected set.

Proof: Any point in this set can be reached from x via a

path wholly contained in this set (namely, the tree path

from x), and can reach x via a similar path (for all nodes

a path as in the definition of reachunder(x) are also in

reachunder(x)). Q.E.D.

on

Lemma 5. Let x be the highest numbered node in T (rightmost­

bottommost) which is the target of a back edge. Then, if

root 1 reachunder(x) u {x}, then this set is the maximal

strongly connected interval whose head is x.

Proof: Lemma 3 and Corollary 4 show that this set is st~ongly

connected and satisfies (a) and (b) in the definition of an

interval with head x. To establish (c), let p be a cycle

wholly contained in reachunder(x). It is easy to see that p

must contain a back edge, and the target of that back edge,

being a descendant of x, has a higher node number, which

contradicts the choice of x. To show maximality, note first

that any interval whose head is x must contain only descendants

of x. Let y be such a descendant which belongs to some

strongly connected interval with head x. Hence, there exists

a path from y to x going only through descendants of x; and so

must terminate with a back edge. Thus y E reachunder(x)

so that reachunder(x) u {x} is the maximal strongly connected

interval with head x. Q.E.D.

For simplicity, assume with no loss of generality that

root is not the target of a back edge.

Tarjan's procedure can now be sketched, as follows:

Given a flow graph G,

(1) Compute a DFST T of G, the maps 'nodeno' and 'ndescs'

and the set of all back edges in G

SETL-204-7

(2) Find x as in Lemma 5. If no such x exists, go to

step (6).

(3) Compute reachunder{x).

(4) If root E reachunder(x), then the graph is irreducible;

halt.

(5) Else, collapse reachunder(x) u {x} to a single node to

get a new derived graph G'. Repeat steps (1)-(5) with G'.

(6) At this point, the graph is reducible. The final derived

graph is acyclic, and can be topologically sorted in a

right-to-left, ancestors first order (of the corresponding

DFST).

It is easily seen that this procedure is correct. To see

that it can be implemented in a highly efficient manner, using

a compressed, balanced tree representation, note the following

observations:

Lemma 6. An edge (x,y) E G is a back edge, or, equivalently,

x is a descendant of y if£

nodeno(y) < nodeno(x) < nodeno{y) + ndescs{y)

Proof: Trivial.

Next, let 'head' be a map on the nodes of G, that we

calculate during execution of the above procedure,in the

following way: Initially, head= ~- After each iteration of

our procedure, set head(y) = x for all y E reachunder{x),

where X is the node chosen at step (2) of the current iteration.

Since all such nodes y are then deleted from the graph, we

will never define head(y) more than once. It also follows

inductively that, at any moment, head has no ~yclic mapping,

and that whenever we define head(y) = x, x and y are limit

values of the current head map (i.e. head(x) = head(y) = n
before this definition). Also, x is an ancestor of yin the

current DFST.

SETL-2O4-8

·Lemma 7. At any iteration of the above procedure, if G'

denote the current derived graph of G, then

00

G'= {(head (x),y): (x,y)EG I head(y)=Q and

if head-1{y} f 0 then head
00

(x)fy}

Proof: By induction. It is certainly true if G' = G, since

head= 0 at this point. Suppose that it is true for some G',

and let G" be the derived graph of G', obtained by collapsing

a new interval I' with head x'. Let head1 , head2 denote the

values of 'head' for G', G" respectively. Then (u,v) E G"

iff (i) u ~ I' and (u,v) E G', or (ii) u = x', v ~ I' and

3w EI' such that (w,v) E G'. Applying the induction hypothesis

we get

G" = { (u,v)EG' lu~I'} + { (x' ,v): (w,v)EG' lwEI' and v~I'}

= { (head;(t) ,v): (t,v)EG!head;(t)~I', head
1

(v)=Q and
-1 00

if head1 {v}t0 then head
1

(t)fv}

+ { (x' ,v): (t,v)EGlw=head;(t)EI', #I', head
1

(v)=Q and
-1 00

if head
1

{v}t0 then head
1

(t)fv}

{
00 I 00 = (head2 (t) ,v): (t,v)EG head2 (t)t x', head

2
(v)=Q and

-1 00

if head2 {v}f0 then head 2 (t)fv}

+ { (head; (t) , v) : (t, v) EG I head; (t) =x' , head 2 (v) =Q and

if head;1{v}f0 then head;(t)fv}

(This last, set-by-set equality, should be carefully verified

by the reader.)

= { (head;(t) ,v): (t,v)EG!head2 {v)=Q and
-1 00

if head2 {v}f0 then head2 (t)fv}.

Q.E.D.

Lemma 8. Let G' be the derived graph of G at some iteration of

the above procedure. Then a DFST T' £or G' can be obtained by

starting at T and applying to it repeatedly all the collapsing

operations of the previous iterations (in which similar DFST's

were used) .

SETL-204-9

Proof: By induction. There is nothing to prove if G' = G.

Suppose that the assertion is true for some G', with T' the

DFST obtained for G' this way. Let G" be the next derived

graph, and T 11 the graph obtained from T' by the collapsing

operation. Since a subtree o.f T' is collapsed, T" is also a

tree. By the proof of Lemma 7, any cross edge of G" was

obtained from an edge of G' by moving its initial node up T',

so that this latter edge must have been a cross edge in G',

and by the in.duction hypothesis went from right-to-left in T' •

Thus, the resulting edge in G" must also go from right to left

in T", so that T" is a DFST for G". Q.E.D.

Remark. In this case, head
00

(x) = y always implies that y is a

T-ancestor of x.

Next, if we carefully examine how T' or G' are used when

processed by the procedure, we can show that neither of them

has to be formed explicitly.

Let G' be the derived graph during some iteration of the

procedure. Define n(G') = minimal node number (in T) which

is in the range of the current 'head' map. Obviously, the

values of n(G') are nonincreasing during execution of the

procedure.

Lemma 9. (a) (x,y) E G' is a back edge iff nodeno(y) in T

is< n(G') and 3w I (w,y) is a back edge in G and head
00

(w) = x.

(b) n(G') is the nodeno (in T) of the head of the last

interval collapsed to form G'.

Proof: First observe that if (x,y) E G' is a back edge (in T')

then, since T' was obtained by collapsing subtrees of T, y is

also a T-ancestor of x.

The proof is by simultaneous induction on (a) and (b).

Both are true if G' = G. Assume both to be true for all

derived graphs up to and including G', and let G" be the

next derived graph. Let (x,y) e G" be a back edge.

By Lemma 7, 3(w,y) E G, x = head
00

(w). Hence x is a T-ancestor

SETL-204-10

of w, and by the above observation; (w,y) is a back edge in G.

If nodeno(y) ~ n(G'), let G
0

be a previous derived graph such
I

that n(G
0

) ~ nodeno(y) < n(G
0
). By the induction hypothesis,

co
(x

1
,y) is a back edge in G

0
, where x 1 = head (w), at the

iteration which processes G
0

, and it is easily seen that the

highest numbered node in T
0

which is the target of a back edge,

must be y (here the induction hypothesis on (b) has also been

used), so that after that iteration, head- 1{y} i ~ and
co

head (w) = y. Hence, by Lemma 7, (x,y) cannot ~e an edge in G".

Conversely, if (w,y) is a back edge in G, then y is a T-ancestor

of w, and after each collapsing, it still must be a T-ancestor
co co •

of head (w) (if not, some head (w) will become a T-ancestor of y,

so that we will have a lower numbered node than yin the range

of 'head', contradicting the fact that nodeno(y) < n(G')).

The condition on y implies that head(y) = Q and head- 1{y} = ~
so that, by Lemma 7, (x,y) E G" and is therefore a back edge.

Now, concerning (b) , let y be the highest numbered node

in T' which is the target of some back edge. By the induction

hypothesis, nodeno(y) (in T) < n (G') . This y will be chosen

at step (2) of the iteration which processes G', so that at

the end of this iteration y will be the only new element in

range head, so that n(G") = nodeno(y), which proves (b) for G".

To conclude, there is no need to produce explicitly any

derived graph or DFST. Instead, the nap 'head' should be

maintained during the execution of the procedure, using a

compressed, balanced tree representation, and the procedure

itself should be modified as follows:

0 Perform step (1) only once, for the given graph G.

Q.E.D.

0 At step (2), iterate from the last found such x in a decreasing

node numbering order (Lemma 9(b)), and use Lemma 9(a) {and

Lemma 6) to test for back edges.

oAt step (3), one can use the graph

{ (head
00

(x) ,y): (x,y)EG!head(y)=Q} insead of G' (cf. Lemma 7).

Indeed, this graph contains G', and all extra edges are of the
' form (y,y). Since we want to construct a set of nodes, these

SETL 204-11

extra edges will not produce additional nodes in rcachunder.

(Alternatively, one can use the more complex representation

of G' in Lemma 7.) In either case, since these graphs have

to be traversed only in a reverse order, this can easily be

accomplished using G and 'head' alone. (However, the first graph

can be traversed this way more efficiently tha~ the second.)
0 Step (4) is unchanged.

oStep (5) amounts now to extending the head map for the nodes in

reachunder(x) and branching back to step (2).

Here is a SETL code for the modified procedure:

proc intsof(graph,root); $ 'Tarjan's interval finder

$ Step (1)

nodes := dom graph+ range graph; $ the nodes of the graph

inverse:= { [y,x]: [x,y] E graph}; $ the inverse graph

[fa,nodeno,ndescs,rleftno] := dfst(graph,root);

$ depth-first spanning tree

$ fa is the father mapping of this tree

$ rleftno is a node-numbering map in a

$ right-to-left tree walk order, needed in step (6)

nodevect := { [n,x]: [x,n) E nodeno}; $ vector of nodes in order

backedgesinv := { [y,x)Einverse!nodeno(y)~nodeno(x)~nodeno(y)+

+ndescs(y)};

$ set of all inverse back edges

targbackedges := dom backedgesinv; $ target nodes of back edges

head:= ni; initaux; $ initialize auxiliary tree maps

intervals := nult; $ tuple of all intervals

intno := ni;

m := O;
$ step (2)

$ a map from interval heads to the index of

$ their interval in intervals

$ number of intervals encountered

(Vn := #nodevect ..• 2 I x := nodevect(n) in targbackedges)

$ steps (3)-(5)

m := m + 1;

intervals with [x]; $ x is the head of the m-th interval

SETL 204-12

intno(x) := m;

reach under : = { head lim y: yEbackedgesinv{ x}};

$ all sources of back edges leading

$ to X

(while 3yEreachunder-{x}lhead(y)=Q) $ build all reachunder

head(y) := x; balance(y,x); $ perform 'balancing'

if root in newreachunder := {head lim z: zEinverse{y}}th~n

return Q; $ the graph is irreducible

else reachunder := reachunder + newreachunder;

end if; -- --
end while;

end V;
$ step (6)

$ The remaining nodes form the last interval in the sequence;

$ its head is root. Extend 'head' to these nodes.

(Vy E nodes I head(y) = Q) head(y) := root; end;

intervals with nult; intno(root) = m+l;

rleftvec := { [n,x]: [x,n]Erleftno}; $ vector of nodes in right-to-

$ left tree walk order.

(Vy:= rleftvec(n)) intervals(intno(head(y))) with y; end V;

return intervals;

end proc intsof;

l

