
On P!ex Bases In SETI.

Stefan M. FreUlknberger

SETI, Newsletter 216
C.Ourant Institute of Mathematical Sciences

New York University

17. May 1981

In ALGOL 68, a linear linked list can be introduced by the following declarations:

mode element = struct(amode value, ref element next);
mode list = struct(ref element first, last);

We can then obtain a (still empty) list by declaring:

list mylist := (nil, nil);

To generate a new element and to insert it into an actual list, we define the following procedure:

proc generate = (ref list list) void :
(heap element new;

)

If ref element (first of list) L, nll then
first of list := new;

else
next of last of list := new;

ft;
last of list := new;
next of new := nil

In SEIL, we can declare the same structure as follows:

- 2 -

lnlt
value := {}, next := {}, first := {}, last := {};

repr
ple:x base element;

value:
next:

ple:x base list;
first:
last:

end repr;

If we now declare:

mylist: elmt list;

and initialise it by executing:

mylist := newat;

local smap(elmt element) amode;
local smap(ehnt element) elmt element;

local smap(elmt list) elmt element;
local smap(elmt list) elmt element;

then we have the same structure MYI.lST as defined before. (Alas, SEIL does not pennit to
merge a variable's mode declaration and its initialisation, as ALGOL 68 does.) The
corresponding procedure for generating a new element and inserting it into an actual list is as
follows:

procedure generate(list);
repr list: elmt list; new: elm.t element; end repr;
new:= newat;
If first(list) = om then

first(list) := new;
else

next(last(list)) := new;
end if;
last(list) := new;

end procedure generate;

where we assume that a programme calling GENERA1E would also supply the required
declaration for the procedure:

generate: procedure(elmt list);

The idea in this representation is as follows. An element of a linked list itself does not
correspond to any computational value. Indeed, we only would like to create such an element
(and assure its uniqueness), and to compare two elements for equality. If we don't need an
element any longer, we just discard it and let the execution environment deal with the clean-up
problem.

The SETI.. atom value represents a value with just these properties. It then comes natural to
represent the fields of the list elements as maps from atoms to the field valuec;. In pure SEIL,
this would have been done as shown above, but without the data structure declarations given.
Titls would have resulted in a structure which allows far more general operations than we would
expect to do with a linked list. It would permit, for example, to print the V ALUE's of all list
elements by just writing:

print(value);

For a linked list, we would have expected to explicitly state how, given the current element, we

- 3 -

can find the next element. From this experience, one might suspect that the SEIL system
maintains more information about each element of a list than is required. Obviously, too, we
shall have to pay, both in space and execution time, for maintaining this information. This is
where the SEIL plex base data structure is useful.

A SETL Plex Base is a very static data structure, and has several semantic restrictions. Most
notably, it prohibits all operations which require a hashing operation or an iteration. As a
consequence, this data structure does not have to maintain a hash table, nor link pointers
between the individual elements of the structure. Thus it is more space efficient, and since this
information does not need to be maintained, also more time efficient.

A Plex Object is a set mode based locally onto a plex base. Only local basing is allowed for plex
bases. Since iteration over a based object requires an iteration over its base, it is not possible to
iterate over a plex object. Since we cannot perform a hashing operation on a plex base, we can
only transfer pointers to elements of the base, but can never compute the address of a plex
element block, given its value. This leads to the following operations defined for plex objects:

If S is a local set of elements of a plex base, and X is an element of the same plex base, then
the following operations are legal:

S with:= X

S less:= X

X ~ S, X I'/. S

$addXtoS
$ delete X from S
S test whether X is an element of S

If F is a local map from elements of a plex base, and X is again an element of the same plex
base, then the following operations are legal:

f(x), f{x} $ return the value of Fat X
f(x) := ... , f{x} := ... $ assign the right-hand-side to Fat X
f les.,t:= x $ delete the range of Fat X

If X and Y are both elements of the same plex base, then we can assign Y to X:

x : = y $ pointer assignment
x := newat; $ generate a new plex element

As mentioned before, it is not possible to (implicitly) iterate over a plex object. This implies
that it is not possible to (implicitly) copy a plex object, and together with the static nature of
locally based objects in general, this means that plex objects can not be used in an assignment
statement. Note that in the above lists, we required all operations to be update operations, e.g.
S less:= X, and did not allow the expression form of the operator, i.e. S lea X. Moreover, this
implies that plex objects must be initialised using an lnlt statement in the scope header of the
scope in which they are defined. 1his scope must be a static scope, i.e. cannot be a procedure
scope, since otherwise the SEIL semantics requires that the object be re-initialised every time
the scope is entered. Thus plex objects can only be declared in a library header, a directory, a
module header, or a programme header. Fmally, plex objects cannot be used as actual
parameters, since the semantics of the value transfer to the formal parameter is equivalent to
the semantics of an assignment.

There is one last item which we believe deserves mentioning: ALGOL 68 allows ref amodes to
appear freely in union modes, as long as the enumerated modes cannot be equivalenced using
de-reference and de-procedure operations. In its current definition, SEIL does not allow us to
do so. More precisely, let X have the mode elmt ples_base, and let Y have the mode general,
the SETI.. equivalent to the ALGOL 68 onion mode. The even though the assignment Y := X
would be legal, the inverse assignment X := Y is not, even if, at execution time, Y would

- 4 -

always have a value with an elmt plex_base mode.

