Overloading in SETL is not (Syntactic)
Overloading after all

Fritz Henglein
Courant Institute of Mathematical Sciences
New York University
251 Mercer St.
New York, N.Y. 10012, USA

Internet: henglein@nyu.nyu.edu

April 8th, 1987

Abstract

Operator overloading is one of the characteristic features of SETL
that contributes to SETL’s intuitive character, ease of use, ease of
modification, and its overall high level character.

However, as we point out, it is distinctly different from the usual,
static kind of overloading. We present examples that elucidate these
differences. The implications, mostly complications, for type analy-
sis are introduced, and we point out where a type finding algorithm
proposed by [DGDFJ87] is bound to fail since it derives its notion of
overloading from classical syntactic overloading instead of the poly-
morphic overloading of SETL.

1 Introduction

Overloading in programming languages is an old feature. It was proba-
bly first incorporated in FORTRAN, where + denotes both integer addition
and real addition, and it is found at least in some rudimentary form in all
high-level programming languages. When properly used it emphasizes the
similarity in which an overloaded operator works on different datatypes.
Parenthetical remark: This notion of similarity has a formal counterpart in

abstract algebra, where a mapping f : § — T is said to be structure preserv-
ing (homomorphic) if it satisfies f(z +y) = f(z) + f(y). The overloading

of + here is justified, since f correlates the structures of S and T and thus
makes + in S and + in T very “similar”. We think that this notion of sim-
ilarity in algebra could also serve as the basis of a category theoretical or
algebraic theory of overloading in programming languages.

2 Overloading in SETL, Ada, and ML

With the advent of very-high-level languages like SETL [SDDS86], polymor-
phic languages like ML [Har86], and freely overloadable languages like Ada
[Uni83], overloading has received increased attention, but in each case for
different reasons.

2.1 Overloading in SETL

In SETL, some operators can take arguments of different types and perform
type dependent operations. The simple expression

a+b

will yield an integer, real, string, tuple, or set, depending on the run-time
types of a and b. Since SETL is weakly typed these run-time types may well
change over the course of a program execution or over different executions.
This kind of overloading, in which “different” code, dependent on the run-
time type of the arguments, is executed, has usually not been considered a
form of polymorphism We will argue that, instead, it should be considered
a form of polymorphism. Consequently, we will refer to SETL’s overloading
as polymorphic (or dynamic) overloading.

2.2 Overloading in Ada

Ada does not only have a basic set of overloaded operators, like +, but its
visibility rules also provide a mechanism for the user to overload opera-
tor symbols and subprogram names even further. Every occurrence of an
operator symbol or function name is considered to designate exactly one
out of several possible functions. The syntactic context, precisely defined
in [Uni83], is used to disambiguate which one of the candidate functions
an operator symbol or function name actually stands for. This process is
called overload resolution. We will call Ada’s kind of overloading syntactic
(or classical or static) overloading since the true identity of an operator, re-
spectively subprogram, can be determined from its syntactic context alone;
specifically, no dynamic context — as in the case of SETL — is necessary.

This difference is not merely cosmetic, but leads to profound differences,
as exemplified a little bit later.

2.3 Overloading and ML

The type information of the arguments (signature) is used in Ada to resolve
operator /subprogram overloading. This is possible since all arguments have
to be declared with a type. In contrast, in a largely declaration free lan-
guage like ML the signature of an operator is used to infer the types of the
arguments. It is clear that overloading makes type inference harder, and the
need for type inference interferes with overload resolution. This is probably
the reason why ML stays away from overloading as far as it can. It also
adopts the syntactic (classical) overloading model in order not to have to
integrate polymorphic overloading into its type model and type inference
algorithm.
For example, the function declaration

fun add (x,y) = x + y;

is not accepted in ML, since the + cannot be disambiguated within the given
context (it stands for both integer addition and real addition). Note that
this problem cannot occur in Ada, because the (monomorphic) types of x
and y would have to be available for the function to be a legal program unit.
Note also that the equivalent declaration in SETL

proc add(x,y);
return x + y;
end proc;
is perfectly legal.

3 Enlarging the context does not resolve polymor-
phic overloading

It might seem like the main problem for
fun add (x,y) = x + y;

to be illegal in ML, but for

proc add(x,y);
return x + y;
end proc;

to be legal in SETL, is the limited syntactic context in ML that is taken into
account for resolving overloading. In particular, applications of a function f
are not taken into account to resolve overload ambiguities inside the body of
f (of course they are used to resolve which of possibly many f’s is actually
denoted at a particular call site).

For example, if we had

fun add (x,y) = x + y;
val sum = add(5,8);

we could conclude that add must have type integer x integer — integer.
Since ML is an interactive language it cannot take the right context (‘right’
as opposed to ‘left’ and not ‘wrong’) into account, and so this approach
is not feasible for ML (function applications are in the right context of the
corresponding function declarations). But is this a possible approach to type
inference and overload resolution for SETL, which is noninteractive? The
answer is no, and as we think the reason for this provides some justification
for calling SETL’s overloading polymorphic.
Consider the following legal SETL program.

program addtest;

print (add(‘hel’, ‘lo’));
print (add (5, 8));

proc add(x,y);
return x + y;
end proc;

end program;

If we treated overloading classically as suggested above, that is, if we had
to find out what the “single, true meaning” of the occurrence of + above is
(exactly one of integer or real addition, string or tuple concatenation, or set
union), we would end up with a type error. After the first two lines + would
already unambiguously stand for string concatenation, but the third line

contradicts this interpretation. Note however, that addtest is a perfectly
legal SETL program that prints ‘hello’ and 13.

The crucial difference between syntactic overloading and SETL’s over-
loading is that in syntactic overloading there is one single type for every
operator/function occurrence while in SETL every such occurrence can have
several such types simultaneously. The types of the actual arguments are
checked to see if they are legal instances of the general simultaneous types
(that is, one of possibly many simultaneous types), and the result type is
determined by the instances.

4 SETL’s overloading doesn’t fit the polymorphic
britches

SETL’s overloading is obviously a form of polymorphism, but it doesn’t fit
any of the “established” categories of polymorphism as they are presented in
[CW85]. Cardelli and Wegner describe two forms of ad-hoc polymorphism,
overloading (of the syntactic sort) and coercion, and two forms of univer-
sal polymorphism, parametric polymorphism and inclusion polymorphism.
But, as we pointed out in the previous section, SETL overloading is dis-
tinct from syntactic overloading, it is not as general and regular in its legal
type instances as parametric polymorphism, and certainly it is not a form
of coercion or inclusion polymorphism.

Ad-hoc polymorphism and universal polymorphism are distinguished, in
one of two ways, in terms of their implementation. A “universally polymor-
phic function will execute the same code for arguments of any admissible
type, while an ad-hoc polymorphic function may execute different code for
each type of argument” (see [CW85, top of page 6]).

Parenthetical remark:

Surely this is not a very robust criterion. Even the prototypical polymorphic
function length in ML

fun length nil = 0 |
x::y = 1 + length(y);

would have to be provided type information if lists were implemented by lin-
ear array structures (it would need to know the size of the element type). We
think that certain implementation techniques (mostly linked structures with
pointers) should not serve as main guidelines for the taxonomy of abstract
concepts (universal vs. ad-hoc polymorphism).

The same code is executed for an overloaded SETL operator, but the
code makes critical usage of the types of the arguments, mostly in the form
of a case statement, where the separate branches correspond to the different
pieces of code characteristic for ad-hoc polymorphism. In this curious way,
SETL’s overloading combines features from universal and ad-hoc polymor-
phism. Since, furthermore, overloading in SETL cannot be handled sepa-
rately (in a preprocessing step) from type inference, but instead is part of
type inference and the type model, we feel justified in calling SETL’s over-
loading “truely” polymorphic, not just ad-hoc polymorphic. This is not just
a matter of nomenclature, but also of technical importance (see forthcom-
ing newsletter on the type model of SETL that incorporates polymorphic
overloading).

In summary, SETL overloading can best be described as combining fea-
tures from syntactic overloading and parametric polymorphism; hence the
name polymorphic overloading.

5 Typefinding and overloading in SETL

It is interesting to see how overloading in SETL has been dealt with in
previous work on type finding!'. There are essentially two approaches in this
area: Tenenbaum’s and Weiss’s theses on typefinding [Ten74, Wei85], and
the initial work done by the SED group in Europe [DGDFJ87].

5.1 Overloading in Tenenbaum’s and Weiss’s work

In the work by Tenenbaum and Weiss typefinding is performed globally for
a complete program. Procedure calls are modelled by simple assignments
of the actual parameters at a particular call site to the formal parameters
of the procedure called. This approach works well for type finding for all
practical purposes (see, e.g., [Wei85, section 1.3]), but not for type checking,
since it does not take the polymorphic character of procedures into account.
We will demonstrate this deficiency only for polymorphic overloading here
and not for universal polymorphism, although it applies there just as well.
Consider the previous example again.

program addtest;

!Type finding is the descriptive counterpart to the prescreptive discipline of type infer-
ence and type checking.

print (add(‘hel’, ‘lo’));
print (add (5, 8));

proc add(x,y);
return x + y;
end proc;

end program;

In the Tenenbaum/Weiss approach the procedure calls to add are mod-
elled by two assignments to x and two assignments to y:

x := ‘hel’;

y = ‘lo’;
and

x := b;

y = 8;

The type of both x and y would be integer|string, i.e. a union type.
The presence of a union type would normally indicate that x can take on
integer and string values possibly flipping back and forth between the two
types. Note, however, that both x and y in any single incarnation are either
integer valued or string valued, but never change their (monomorphic) type.
Modelling this classically polymorphic phenomenon by union types, how-
ever, leads to loss of information and failure to detect possible type errors.
For example, in the above program the result returned by the procedure add,
and thus the arguments of both print statements, have type integer|string,
although the type of add(‘hel’, ‘1o’) should be bf string and the type of
add(5,8) should be integer. Furthermore, if we had an additional print
statement

print (add(‘hel’, 8));

the type error in it would go undetected at compile time.

Note also that the type information obtained in the Tenenbaum/Weiss
approach is not invariant with respect to a simple program transformation
like inline expansion or partial inline expansion of procedures: Expansion
always results in more specific type information. If we expand the definition
of add in the calls of the example program above we obtain the following
program.

program addtest;

print(‘hel’ + ‘lo’);
print(5 + 8);

end program;

Here the typefinder correctly determines the arguments of the print state-
ments to be of type string and integer, respectively. It also catches the
type error in the expanded additional print statement

print(‘hel’ + 8);

The reason for this is that the single occurrence of + in the original
programs is replaced by two, respectively three, occurrences of + thus per-
mitting the typefinder to find different types for each one of them, whereas
it has to determine one single type for + in the original program. This in-
sight motivated Hyun and Doberkat [HD85] to advocate macro expansion
(i.e. inline expansion of what one might otherwise write as a procedure) as
a remedy for limited typefinding on a procedural basis.

We can conclude that the nonpolymorphic, simple assignment approach
is inappropriate for a strong typing discipline.

5.2 Overloading in the work of the SED group

Donzeau-Gouge et al. present a proposal for a programming environment
for SETL, in which they outline their approach to typefinding based on the
logic programming language Typol [Des84, CDD*85]. Although it is not
completely clear from their report [DGDFJ87], it can be expected that due
to the extensive use of unification in Typol the SED approach to type finding
will correctly deal with universally polymorphic procedures such as

proc cons(x,1);
return [x,1];
end proc;

Specifically, it can be expected that cons will be determined to have type
a x f — [a, (] (although [...], called sequence in [Wei85], is not amongst
the enumerated type constructors on page 8 of [DGDFJ87]), where o and
[are uninstantiated logical (type) variables. Different applications of cons
will result in different instantiations of cons. The type of a and b in

prograrn nonsense;

a := cons(5,[8]);
b := cons([5.0],[[8.0]]1);

proc cons(x,1);
return [x,1];
end proc;

end program;

will correctly be determined as [integer, [integer|] and [[real], [[real]]], re-
spectively. Note that, in contrast, the type of both a and b would be
[integer, [integer]]|[[real], [[real]]] in the Tenenbaum/Weiss approach.

The SED approach is still bound to fall short of dealing correctly with
polymorphic overloading if the method exemplified on pp. 9-11 in [DGDFJ87]
is employed without special attention to SETL’s dynamic overloading, since
it implicitly adopts static overloading as its overload resolution model.

The SED approach can be roughly described in operational terms as
follows. In step one every leaf in the abstract syntax tree is assigned a
unique logical (type) variable. There is a Typol rule that indicates how the
type information of subtrees can be combined to determine the type at a
(sub)tree root. This might necessitate unification. The environment keeps
track of any variable substitutions that occur in such a unification step. If
the operator at the root is overloaded (such as +), the root is assigned a new
type variable and a type constraint (e.g., plus(T1,T2,T)) is added to the
type environment. In step two all the type constraints accumulated in step
one are resolved by checking them against the possible “ground” constraints
for the overloaded operators.

Parenthetical remark:

To really understand what sounds so confusing in the paragraph above the
reader is kindly advised to consult [DGDFJ87]. Since the distribution of
that report is very limited, a copy of it can be requested from the author of
this paper.

Since there is only one type constraint generated for every occurrence of
an overloaded operator and since these constraints are resolved globally for
a whole program, this method — implicitly — adopts overload resolution
for syntactic overloading, which is imprecise or even incorrect in view of

SETL’s polymorphic overloading. This can be exemplified in our running
example

program addtest;

print (add(‘hel’, ‘lo’));
print (add (5, 8));

proc add(x,y);
return x + y;
end proc;

end program;

The first step would proceed as follows. Processing add first, which is
necessary to deal with universal polymorphism conveniently, the types of x
and y would be the variables T1 and T2, respectively, and x + y would have
as its type the new type variable T. Since + is overloaded, the type constraint
plus(T1,T2,T) would be generated. The procedure add would be assigned
type T1 x T2 — T. Finally, both add(‘hel’, ‘lo’) and add(5,8) would
have type T.

In the second step the generated type constraint plus(T1,T2,T)
would be resolved against the “operator overloading database”. Since
plus(T1,T2,T) matches all of

plus(integer,integer,integer) .

plus(real,real,real) .

plus(string,string,string) .

plus(set(X) ,set(Y),set(Z2)) :=
union(X,Y,Z).

plus (tuple(X) ,tuple(Y) ,tuple(Z)) :=
union(X,Y,Z).

T would have a set of possible substitutions (with additional constraints!).
Even if we could form a single substitution from this, such as integer|-
real|string|set(a)|tuple(a) (with additional union constraints generated),
we could never find the correct types of the arguments in the two print
statements, since step one already mandates that they have the same type
T no matter what T may eventually be substituted with in step two. Note

10

however that, if SETL had syntactic instead of polymorphic overloading, the
SED approach would work well: The fact that T has no unique substitution
in the overload resolution step (step two) would indicate that the overloaded
occurrence of + cannot be resolved, and an appropriate error message could
be generated.

6 Conclusion and outlook

We have demonstrated that the kind of operator overloading employed in
SETL is distinctly different from overloading in Ada or ML; in fact, we
consider it a form of “true” polymorphism (as opposed to ad-hoc polymor-
phism), which is reflected in the term we propose for it: polymorphic over-
loading.

We show that the approaches to typefinding in SETL have ignored this
aspect of overloading resulting in loss of precision in type determination and
type errors going undetected at compile time.

A type model we have developed that incorporates SETL’s polymorphic
overloading will be described in a forthcoming newsletter.

References

[CDD*85] D. Clement, J. Despeyroux, T. Despeyroux, L. Hascoet, and
G. Kahn. Natural semantics on the computer. Technical Report
RR 416, INRIA, June 1985.

[CW85] L. Cardelli and P. Wegner. On understanding types, data
abstraction and polymorphism. ACM Computing Surveys,
17(4):471-522, December 1985.

[Des84] T. Despeyroux. Executable specification of static semantics.
Technical Report RR 295, INRIA, June 1984.

[DGDFJ87] V. Donzeau-Gouge, C. Dubois, P. Facon, and F. Jean. Devel-
opment of a programming environment for SETL. SED Project
Report, 1987.

[Har86] R. Harper. Introduction to Standard ML (preliminary draft).
Technical report, University of Edinburgh, February 1986.

11

[HDS5]

[SDDS86]

[TenT74]

[Uni83]

[Weig5]

K. Hyun and E. Doberkat. Inline expansion of Setl procedures.
SIGPLAN Notices, 20(12):33-38, December 1985.

J. Schwartz, R. Dewar, E. Dubinsky, and E. Schonberg. Pro-
gramming with Sets: An Introduction to SETL. Springer-
Verlag, 1986.

A. Tenenbaum. Type determination for very high level lan-
guages. Technical Report NSO-3, Courant Institute of Mathe-
matical Sciences, New York University, 1974.

United States Department of Defense. Reference Manual for
the ADA Programming Language. Springer-Verlag, 1983.

Gerald Weiss. Recursive data types in SETL: Automatic deter-
mination, data language description, and effiicient implemen-
tation. Ph.D. Thesis 201, Courant Institute of Mathematical
Sciences, New York University, October 1985.

12

