
APL'.B5500:

THE LANGUAGE AND ITS IMPLEMENTATION

by

Gary A. Kildall

Technical Report No. 70-09-04, Computer Science Group

University of Washington
Seattle, Washington 98105

Septemher 1970

ii

ABSTRACT

APL'B5500 is a mUltiple-user interpretive system for a conversational

programming language implemented on the Burroughs B5500 computer at the

University of Washington. The language is patterned after APL\360 which is

an implementation of IlIverson Notation." This paper describes the differ­

ences between the APL\360 and APL\B5500 languages. In addition, the algo­

rithms and data structures used in the implementation of APL\B5500 are given.

iii

ACKNOWLEDGEMENTS

The APL\B5500 programming system was developed by members of the Computer

Science Group at the University of Washington. The system was implemented bv

Leroy Smith, Sally Swedine, Mary Zosel, and the author, under the guidance

of Dr. Hellmut Golde. The author is grateful to Dr. Golde and the co-imple­

mentors of APL\B5500 for numerous helpful suggestions regarding the prepara­

tion of this manuscript.

TABLE OF CONTENTS

Introduction . . • . .

Hardware Configuration Required for APL\B5500

Software Environment Required by APL\B5500 .

APL\B5500 Language Description

APL\B5500 Implementation

APL Resource Management

The Terminal Input/Output Handler
APL Virtual Memory Management

The APL Function Editor

The APL r1onitor Command Handler
Storage and Representation of APL Data Structures

Active and Passive Symbol Tables

The APL Statement Compiler .

The APL "Machine"

Conclusion

References

Appendix A

Appendix B

iv

PAGE

1

6

6

7

17

18

22

28

34

38

48

52

56

63

79

82

LIST OF FIGURES

FIGURE

1. Sample APL\B5500 Terminal Session.

2. APL\B5500 Software Components

3a. User State Register

3b. User State Table

4. Resource Management State Diagram

5. Station Table with Corresponding Station Element

6. Input/Output Buffers and Queues •.

7. Terminal Input/Output Handler Logic.

8. Conceptual Structure of Virtual Memory

9. User Codes and User Phrases

10. Storage Units for Names and Data

11. Function Storage Units

12. Function Label Unit Structure .

13. User State Register Entries for the Function Editor

14. Function Editor State Diagram

15. The Format of a Library

16. User/User Communication .

17. Data and Function Descriptors.

18. Scratch Pad Data Representation

19. Passive Symbol Table

20. Active Symbol Table Format

21. Function Label Table Structure

22. Code String Format

23. Pseudo-code Word Format .

24. Lexical Pass State Diagram

25. Code Generation Pass

26. Transformation of an APL Statement

27. Evaluation of Reverse Inverted Polish

v

PAGE

5

· · · 18

20

20

22

25

27

28

31

33

35

37

. · · · 38

40

41

45

47

50

51

53

. · · · 55

56

58

60

62

64

66

69

FIGURE

28. Data Structure Resulting from Statement Compilation

29. Execution Stack and Control Index. . •..

30. Interpretation of APL Code Strings

31. Control Word Format ••.....

32a. Initial Execution Stack Contents

32b. Execution Stack After Interruption

33. Stack Organization for Function Execution.

34. APL Machine Logic .

vi

PAGE

70

72

73

74

76

76

78

80

LIST OF TABLES

TABLE

APL\360 to APL\B5500 Transliteration

2. APL\B5500 Monitor Commands

3. APL\B5500 Function Editor Commands

4. Priviledged Monitor Commands .

5. Infix to Reverse Inverted Polish Transformations

vii

PAGE

9

11

15

42

63

INTRODUCTION

APL\B5500 is a multiple-user interpretive

programming language implemented on the

for a conversational

B5500 computer at the

University of Washington. The language is patterned after APL\360[1] which

is an implementation of t'Iverson Notation tl [2]. The APL\B5500 provides

line-by-line evaluation of APL statements as input by a programmer at a re­

mote teletype station. The system provides both an "immediate execution

mode" and a "stored program facility.1! The basic data elements of APL are

numeric and character constants. Identifiers, however, can be used to name

numeric and character data for later reference. In addition, the data ele­

ments are in the form of scalars, vectors, and arrays. A large number of

special-purpose operators operate on the data elements allowing concise ex­

pression of mathematical or manipulative constructs.

A comprehensive set of commands allows communication with the APL system

monitor providing a number of facilities useful in a conversational program­

ming environment.

The conciseness of APL statement expression along with APL monitor func­

tions makes APL\B5500 an excellent interactive programming system.

A full discussion of the capabilities of APL\B5500 are given elsewhere[3];

the purpose here is to provide a reasonably complete discussion of the inter­

nal structure of the system. It is useful, however, to provide an introduction

to the language as well as to point out major differences between the APL\360

and APL\B5500 languages.

The structure of APL statements is most easily shown with a simple ex-

ample. Consider the following ALGOL 60 program

begin integer n; real t;
read (rd; --
-- begin real array a[l:n] ; integer i;

for i:=l step I until n do
begi~ad (aU]);t: =t+aCi]
end

t:=t';-n
end;

wri te---rt)
end---'

which calculates the average value from a set of values stored in a dynami­
1cally allocated array A. With input data

6, 5, 5 4, 4, 8, 16,

the ALGOL program produces the output

7.

An APL statement pair which performs the same computat

X := 5 5 4 4 8 16
(+/X) % RHO X

is as follows:

Dynamic storage allocation occurs on the first line where a vector

is assigned to the variable X. The second line

tation and causes the numeric scalar result to

the

The second APL statement three

nation: the (%), the

operator. The reduction operator left

to the vector to its

the vector. Thus, s

by flplacing" the operator between each element

X = 5 5 4 4 8 16

then

(+!X)

is equivalent to

5 + 5 + 4 + 4 + 8 + 16.

In this case, the divide ODerator divides the scalar to its left the

scalar value occurring on its right. The divide operator, as used here,

said to be "dyadic" since it occurs between two oDerands (Le., it

on two operands, resulting in a s

"monadic fl in this example since it

operand). The RHO

on onlv one operand (the one

which occurs on its right). The RHO operator is used here to extract the

"dimensionali ty" of the vector X. RHO results in the scalar value 6 since

lThis ALGOL example includes the use of "read and "write"
calls which produce the obvious effect. Clearly the ion could be
performed without the array A; it is included here in order that the c
storage allocation can be compared.

reduces

) %

should

statement; the oI"der

reduces to

Note that

the scalar

differ, of course due to

There are

5500. Most these

ing upon the context in

As

stored programs "functions.

tering "function

at the followed

all APL programs
that the program return a value

APL defined for the purpose the average

4

set

[1]
[]

x=[]
() RHO X

The line numbers enclosed in brackets Ie out

APL\B5500 when the user is

dition to automatic line numbering,

for defined functions,

lines.

let

The above function is invoked

!\VERAGE

at the The function

encounters the [J ("quad").

for with the prefix

[J :

at line one

cause

continue execution,

5 5 4 4 8 16

and the result

7

/\PL programmer

is at the te

As mentioned aLove, APL\B5500

monitor communication commands. commands allow

execution

sign onto the APL system, interrogate APL

area, maintain separate work areas. and

he contents

his programs.

All APL monitor commands are pre a)" the user

them from other APL statement t the 500

correspond exactly to APL\360 commandsLlJ.

monitor commands is found in a later sect

more

the sample terminal lon given

in figure 1, hOlrJever, includes a number of monitor command

IUSllluunnuuuut.
D. NIXON LOGGED IN WEDNESDAY 10-21-70 10:42

X: =5 5 4 4 8 16"
X"

5 5 4 4 8 16

$AVERAGE[[])$"

AVERAGE
[IJ X:=(]
[2J (+/X)%RHO X

AVERAGE"
[J :

5 5 4 4 8 16"
7

)VARS'"
AVERAGECF) X Y

>FNS"
AVERAGE

>DIGITS"
9

)DIGITS 3"
t % 3"

0.333
)DIGITS 5-­
t 7. 3'"

0.33333
>WI DTH'"

72
>LOGGED'"

(1) IS D. NIXON
(2) IS P. NIXON

>ORIGIN'"

) FUZZ ..
1 @- t 1

) SEED'"
59823125

>CLEAR'"
>VARS'"

NULL.
)OFF"
END OF RUN

FIGURE 1

SAMPLE APL\B5500 TERMINAL SESSION

5

HARDWARE CONFIGURATION FOR APL\B5500

6

APL\B5500 is implemented on a Burroughs B5500 computer system. The

machine used in the implementation is a single processor system with 32,768

words of 48-bit central memory. Messages to and from remote teletypes are

buffered in a single Burroughs B487 Data Transmission Terminal Unit (DTTU).

The B487 DTTU is interfaced with model 33 or model 35 teletypes through line

adaptors and Western Electric l03A2 (dial-up) data sets. The equipment re­

quired for remote operation of APL\B5500 is a model 33 or model 35 teletype

with attached acoustic coupler or data set. The remote teletypes must oper­

ate in half-duplex mode. In addition, teletypes may be directly connected

to the B487 DTTU through line adaptors.

The virtual memory of the APL system requires access to at least one

B475 Disk File Storage Module (9.6 million character capacity).

No line printers, tape drives, or card readers are required for normal

APL operation.

A complete description of the B5500 hardware components lS given in the

B5500 hardware reference manual[4].

SOFTWARE ENVIRONMENT REQUIRED BY APL\B5500

APL\B5500 is designed to ODerate concurrently with other batch and con­

versational programs under control of the B5500 multiprogramming Master Con­

trol Program (MCP). APL is coded entirely in B5500 Extended Algol, except

for a few statements which allow APL to directly communicate with the Mep.

For the most part, APL runs under the same conditions as any B5500 user pro­

gram and thus enjoys the protection and facilities (e.g., dynamic storage al­

location, automatic overlay, and disk-file input/output facilities) provided

by the MCP.

A primary design objective in the organization of APL was that the re­

sulting system operation interfere as little as possible with normal B5500

user program processing. In light of this objective, APL central memory re­

quirements are approximately 3000 words of resident (non-overlayable) storage

with an additional 7000 words of transient (overlayable) storage. I\esident

and transient requirements can be altered at APL system compilation time with

a trade-off response ime.

The current version of 500 also

priviledged program called the "remote

the services of a

The remote handler interro-

gates the B487 DTTU and Dasses messages between the 8487 and APL. APL has

been coded in such a way as to allow the remote handler to be removed and its

functions taken over APL with a small amount of

In many ways, APL\B5500 can be considered a time-sharing submonitor and

language processor under the ESSOO Mep since it:

for APL work areas, and

for user control of

orocess

functions,

tor tasks for execution,

provides an APL-oriented command

APL monitor functions.

maintains

handles its own virtual memory,

handles its ovm terminal

supervises execution of APL

schedules APL user tasks and

(1)

(2)

(3)

(4)

()

(6)

00, the terminal is un-After initial connection of a user terminal to the

del' control of 0

A he 5

Description of the 5500 lv1aster Control

in the Narrative

APL\85500 LANGUAGE DESCRIPTION

The APL\B5500 statement and monitor syntax for the most

structurally to APL\360, wi

character set. The correspondence

a transliteration of the APL\360

the two languages is maintained as

much as possible in order that an APL programmer can easily make the transition

from one language to the other. In add ion to the usual APL\360 operators,

the proposed monadic epsilon operator ("execute string") is implemented In

APL\B5500, as shown in Table L The monadic epsilon operator operates on a

vector character containing an APL statement. The result of the opera-

the APL statement contained in thetion is the result of the evaluation

character string. Thus,

EPS "2+3"

results in the scalar 5. If the APL statement lS invalid, an appropriate error

8

message is printed.

L\35500 monitor commands are summarized in Table 2. The command struc-

ture imilar to that of APL'360 except for the "SYN," "NOSYN,fl "STORE,II

\lABORT,1I "Line Edit" commands.

The Line Edit command is particularly useful when only a slight error has

made in a line typed the user. The form of the Line Edit is:

)"<search string>"<insert string>"<search string>1I

search "<insert

either case, the last message tvped the APL user is edited to

Line Edit is as follows: the first <search string> is located

of

APL in

is

APL. The

the user; when it is found the <inserttyped

the Line Edit command and resubmitted for processing

line, and all characters un to the occurrence of the second <search

are deleted. If the first <search string> is not found no

are made. If the second <search string> is not found then all characters after

<insert string> are deleted. Finally, if the second <search is

not specified then no charact~rs are deleted. The null s

in all cases. Thus, if the user first types:

lS found imme-

he will receive an error message (unbalanced parenthesis: fl~':2/11 should have

been as ";':2)"). The line can be altered

) 2)"°6"

tyP

will respond with:

« X-AVE)*2) N-I}~.5.

statement is then resubmitted for execution. s command is

useful when a long expression has been typed which needs simple alteration.

command is available in function definition mode allowing alteration

all or part of a function definition.

APL\B5500 also differs from APL\360 in the method of handling global

variables when execut functions. functions vl1,ic11 contain errors (syntactic

or semantic) are "suspended" at the VIhere the error occurs. Suspended

functions may have upon global variables to produce neVI values for

TABLE 1

APL\360 TO APL\B5500 TRANSLITERATION

or
nand
nor

minimumfloor
absolute value

or rUN
ABS or RE;SD

ravel

execute
take

base value

catenation

value

\

DROP

\
PllI

SORTUP
rotation

L\360

return

[... ; ... ; ...]

TABLE 1 (CON'T)

APL\B5500

+

[]

-. or GO

c••• ; ••• ; ••• ; .•.]

or L

USAGE

end of message signal

input or display

character input

transfer control

s

minus s

Do'V;er of ten

function definit

10

" s

11

TABLE 2

APL\B5500 MONITOR COMMMiDS

HONITOR COMMAND MONITOR FUNCTION
<name> All variables and functions in the

active work area are stored in a disk
file library. The library is labeled
with the user's B5500 <job number>
and the specified by

<name> LOCK

LOAD <name>

the same
that all other APL

from accessing the

The library labeled < ob number> and
<name> is activated for the user. All
library variables and functions are

This command removes the referenced
librarv from the disk.

This command allows access to
libraries of other APL users
library was originally saved without
the lock ion. The <job number>

to the user who

This causes
functions in the active work area to
erased.
This command selecti
or functions named <name> from the
active work area.

This command has the same
as the copy command
another APL user's
erenced.

adds the
<function> to the act

for the user from the
b >

>, <function>

<name>

<name>

ob number>,
<name>

This command provides the user with a
list of all defined functions in the

HONITOR COl1HAND
)VARS

)SI

)STORE

)ORIGIN <

TABLE 2 (CON'T)

HOlFTOR FUN ON
This command lists all variable and
function names in the active work
area. Functions are identified a

"
This command lists the names of all
suspended functions in the active

lists the names of local
functions as

we
This command terminates all suspended
functions.
This command stores variables into
the active work area which are global
to suspended functions and which have
been altered during function execu­
tion. If the ABORT command is issued

rays is assumed to be that
<

command changes the
the output line to <integer> char-

12

<integer>

SYN
random number
Th command
each line

of
point

the

TABLE 2 (CONIT)

13

) LOGGED

MSG <integer>
'ITleEISclge>

MONITOR FUNCTION
This command lists the terminal number
and user identification of each active

The MSG command allows
users to communicate. The <integer>
is the terminal number of the station
which is to receive the character

NOTE: If the <integer> in any of the commands ORIGIN, WIDTH,
DIGITS, or SEED is omitted then the current value assumed APL is

14

the global variables. The altered values are not permanently entered into

the active work area until the function has successfully completed or until

the user has issued the STORE command while the function is suspended. This

feature allows re-execution of the corrected function without re-initializa­

tion of the global data.

The APL\B5500 function editor differs somewhat from the APL\360 editor.

The APL editor is invoked whenever the APL user types a $ ("del") followed

a function "header" while in calculator mode. The simplest form of a

function header is an APL identifier. Hence, if the user types:

APL will enter function definition mode and (assuming F lS a new function)

will respond with

[1]

and await the first line of the function F by opening the teletype for input.

As subsequent lines of text are entered, the line counter is incremented by

one. Thus the user could enter the three lines:

[lJ A
[2J B
[3J c

with the line numbers to the left supplied automatically by APL. Although

APL will "prompt" the user for the fourth line, it is possible to insert lines

elsewhere in the function. The user could, for example, insert a line be­

tween lines one and two by replying to the prompt with:

[4] [1.1JD

overriding the line prompt. APL will then take the increment last used bv

the APL programmer and prompt with:

[1. 2].

The smallest increment possible is .0001 between lines. The largest line

number possible is 9999.9999.

In general, any line prefixed by a "[" while in function definition

mode is taken to be an editor command. Table 3 provides a complete listing

of APL\B5500 editor commands.

The <line reference> is a basic constituent in almost all editor commands.

In the simplest case, the <line reference> is an integer value corresDonding

15

TABLE 3

APL\B5500 FUNCTION EDITOR COMMANDS

APL EDITOR COMMAND Cm,It'lAND FUNCTION

[[J] This command causes the currently
active function to be displayed at
the terminal.

[<line reference>[]] This command causes the lIri-e specified
by the <line reference> to be display­
ed at the terminal.

[<line reference>[]
<line reference>]

reference>]<state-

[<line reference>] [<line This command deletes _1 1 :8 from
reference>] the first through the second <line

reference>.

I
L
I [<line

ment>

This command causes all llnes trom
the first through the second <line
reference> to be displayed at the I
terminal. ememj'
This command lnserts the APL staTemen
specified by <statement> in the
current function at the line denoted I
by <line reference>. The current
line and the increment are changed in

tc<line --ref_-_er_ence>r-------J--- r~!: ~~;;;~~:~~~~~e~ot~~~~~n~~~~~_
. ence>.

[IOTA] This command causes the current
function to be completely renumbered
starting at one with an increment of
one.

[[II]J<line edit> This command causes the APL editor to
alter all lines of the current function I
according to the rule given in the I'

I <line edit>. The <line edit> is the

I

same as the edit described under APL II

monitor commands.
+-1'--C-<-l-l-'n-e--r-e-f-e-r'-e-n'-c-e->-[~n----- - Th is command l s-s'-i-:--m-l-:-'-l-a-r-t-o-t-ch-e--'a-'b-'-o-v--e---l

<line edit>] edit command except that only the I'

j--- . ' i~~:l~:~:~_:ed to bv <line reference> I
[<line reference>C"] This command applies the <line edit>
<line reference>]<line from the line specified by the first
edit> <line reference> through the line

soeclfled by the second <llne ref­
erence>.

[4JD
E: F+G
Ll:L2:H+I

16

to a line of a function. Thus (referring to the delete command of Table 3),

the user could delete the first three lines of the above function by typing

(after the APL prompt):

[1.2J [lJ[2J.

APL deletes the lines and returns the prompt:

[1.2J

the terminal for input. Note that the function f now contains:

[3J c.
Another type of <line reference> is an APL statement label. Statements

are labeled by placing identifiers separated by colons before the APL state­

ment. Thus, the APL user may continue definition of F by typing (with prompt-

by APL):

[1.. 2]
[5J
[6J
[7]

where fiE," "Ll," and "L2" are all statement labels. Although statement labels

are used primarily for transfer of control at function execution time, they

can be used as <line reference>s when in function definition mode. The line

with <line reference> 5 can be deleted by typing either of the followinr: com­

mands:

[5J
[EJ.

A <line reference> may also involve a numeric offset on either side of

the statement label. Line 5 can be displayed by typing:

[LI-I[J]

and APL will respond:

[5 J E: F+G.

further, an entire set of lines around statement five may be displayed

ing:

[E-l[JE+lJ,

resulting in the response from APL:

[4J D
[5J E: F+G
[6J Ll:L2:H+I.

17

APL allows statement labels to be edited as well. The statement at line

six can be edited by typing:

[L2["]]:L"3" .

APL searches the line labeled L2 for an occurrence of !!:L," inserts a "3" im­

mediately after the occurrence, and deletes characters up to the following !!:.ll

Hence, the command:

[L2[JJ

results in an error message (the label L2 no longer exists), but the command:

[L3[JJ

results in the display:

[6] Ll:L3:H+I.

A last point which should be made is that labels within functions are

treated as local variables, but are initialized to their respective line num­

bers. The line number value of a label may be altered during function execu­

tion. Further examples of function definition are given in the discussion of

the APL\B5500 function editor implementation.

Appendix A shows a sample APL\B5500 terminal session including examples

of APL operators, APL monitor commands, and APL function editor usage.

A formal definition of the syntax of APL\B5500 is included in Appendix B.

APL\B5500 IMPLEMENTATION

The internal data structures and program organization of APL\B5500 are

given in the following sections. The time-sharing facilities of APL are ex­

along with a description of monitor command execution and APL llMachine ll

organization. APL\B5500 functions are logically divided into component parts

as shown in Figure 2:

1. Resource Management. Central memory and central processor resources

are allocated by the Resource Management component of APL\B5500.

2. Terminal Input/Output Handler. Terminal message bufferring and dis­

patching, along with primitive input/output facilities, are provided by

the Terminal Input/Output Handler.

3. Virtual Memory Management. The Virtual Memory Management section pro­

vides an APL controlled extension of the B5500 central memory resources.

TERMINAL

INPUT/OUTPUT

HANDLER

APL

l MEMORY

MANAGEMENT
--l

I
I

APL

RESOURCE

APL

FUNCTION

EDITOR

18

I
L

APL

"MACHINE"

MANAGCMENT

APL

STATr:"1ENT

COMPILER

"40NITOR

COMMAND

HANDLER

FIGURE 2

APL~B5500 SOFTWARE COMPONENTS

19

4. APL Function Editor. Terminal messages issued while the user in

function definition mode are processed by the APL Function Editor.

5. Monitor Command Handler. All terminal input messages are pre­

fixed with a ")" (i.e., APL monitor commands) are processed by the Moni­

tor Command Handler.

6. APL Statement Compiler. The APL Statement Compiler checks the

of APL statements submitted for execution by the user. In most cases,

"pseudo-code" is generated corresponding to the APL statement.

7. APt "Machine. The APL "Machine" is a software simulation of a com­

machine oriented toward execution of APL statements.

APL RESOURCE MANAGEMENT

APL Resource Management is responsible for allocation of work to the other

components of the APL system. In addition, the needs of the various

users are monitored constantly.

The current "state" of each active APL user is in a table call-

ed the User State Table, shown in Figure 3. Each element of the User State

Table, called a User State Register, corresponds to exactly one APL user. The

field width of each element in the User State Register varies to the

data size.

APL schedules tasks for execution based on a s

rithm[6], with tasks which have not required a full time-slice in a (

~~T_nI1T) queue for process A queue tasks

which require central processor resources and which have used at least one

Users without a task in the immediate queue or queue

are considered to be in an Ilidle ll queue.

The llcurrent mode ll field of the User State Register the

status of the corresponding user's APL run. The current mode of a

user can be:

1. Calculator Mode. The user is in an idle state and not us the

APL Function Editor. Further, the user is not executing APL statements.

APL is awaiting input from the user's terminal.

2. Execution Mode. The user is in the process of executing an APL

statement. The APL statement mayor may not have invoked functions.

20

FIGURE 3A

USER STATE REGISTER

iUSERCUR:RHIT --JIo-!---------------------j

---------------------1
USER STATE REGISTER n

FIGURE 3B

USER STATE TABLE

21

22

and user

APL

terminal.

into

immediate

are

lation,

Handler

times.

s

also this

Information is

The scanner

lexical elements from the

current user,

a

message

the

message queue and table maintenance

maintains the status of each terminal

with the

Handler

terminal

of a in

the Table in order

the station is

connection),

terminal has an

essed APL (read

has been

has

user

at the terminal

denression bi

system has

been , has taken the

the break ion bit be reset (

the of messages from the

essed APL (queue size) ,

10. the number of messages

to the terminal because the station is not

STATION
TABLE

~r;
p:.

...:l •
«: •
z 1/

H
~
~
W
E-<

I

INPUT

IT

OUTPUT

INPUT

BIT

FINISH WAIT

READ READY BIT

PHYSICAL CONNECTION BIT

FIGURE

STATION TABLE WITH CORRESPONDING

(

queue or in

queue size exceeded

the

to the API,s

maximum number of messages in the

been reached (or

500 been

bit), and

user has success

maintained back with

front of

7 shows the of

routines APL

message scanner

APL The terminal

that of the current user, as

The scanner translation from external

and converts positive and

Handler. The

the scanner.are

numbers in

function and command

6

to the

The scratch

the MCP while the

detail

structure of

here in

wi

, a number

hold

altered

the

structure

are related

unit,

routines.

ORDERED
STORAGE

UNIT

FIGURE 8

OF

units

APL

to

number of data el.eITlerlts

APL

34

c. The mode of a particular unit can be determined (i.e., whether

the unit has been designated as an ordered or a sequential storage

uni t).

The work area of an APL user may consist of several ordered and sequen-

tial s units. At sign-on time, the user is assigned an ordered storage

unit, called "names," and a sequential storage unit, called "data." The

"names" unit contains variable and function names, along with additional in­

formation about the names. The "data" storage unit holds numeric and charac­

ter array results computed during the APL run. As shown in Figure 10, the

data" storage unit also contains a "recent" copy of the user's User State

This recent copy of the User State Register allows a user to re­

start an APL session with very little loss of work in the case of a hardware

or software failure.

The important concept here is that at any point in the APL run, a portion

of the user's work area, consisting of ordered and sequential storage units,

is located in central memory page frames while the remainder is located on

back-up storage. The portion in central memory is based entirely on data ac­

cess activity. This, of course, is a fundamental concept in any implementa­

tion of demand paging. The scheme does, however, allow the storage units to

become much larger than would be possible if all tables and data were to re­

main in central memory.

It will become evident in later sections that the ordered and sequential

s units, along with the virtual memory access routines are well-suited

to the needs of the APL system.

As a final note, the APL Virtual Memory Manager, like other APL compo­

nents, maintains functional concurrency. When the virtual memorv manager has

storage maintenance to perform, it does so in small increments each

time it is called. Thus, control returns to the Resource Manager as soon as

possible.

TH[APL FUNCTION EDITOR

The APL Function Editor component of the APL'\B5500 system provides func­

tion definition and editing capabilities for APL users. The Function Editor

"NAMES"
(ORDERED STORAGE UNIT)

35

AAA

AB
"DATA"

(SEQUENTIAL STORAGE UNIT)

• USER STATE REGISTER
• (RECENT COpy)
•

N U M E R I C-

A N DZZZ

C H A R A ,.., T E R\.,

A R R A Y S

USER STATE REGISTER

'-----...,~~"'---:-INAM_ESI DATA 1_-+--7_------J

t 'l:UNIT NUMBER OF "DATA" SEQUENTIAL
STORAGE UNIT

UNIT NUMBER OF "NAMES" ORDERED
STORAGE UNIT

FIGURE 10

STORAGE UNITS FOR NAMES AND DATA

36

handles the syntax of the function header and creates internal data struc­

tures from the header to pass to the other APL components. The Editor relies

upon the virtual memory access routines in implementing the editing functions.

Every function defined by the APL user causes two units of storage to be

allocated: an ordered storage unit called a "function label unit," and a

sequential storage unit called a "function text unit." The function label

unit contains entries corresponding to the line numbers of the function along

with addresses of lines of function text in the corresponding function text

unit.

Figure 11 shows the interconnection of the function label unit and the

function text unit. The left-most field of each entry of the function label

uni t contains the line numbers in full character form (wi thout a decimal point).

The right-most field contains the address of the corresponding line in the

function text unit. Note that the function header is assumed to be line zero

of the function.

Addition and deletion of text and line numbers is accomplished by using

the corresponding virtual memory access routines.

The Function Editor also keeps track of local variables and la~els in

functions. As shown in Figure 12, a number of cases occur:

1. the local variables are all marked with a riQht-most field in the

function label unit which is less than or equal to zero:

a. the local variable Hhich contains the value to be returned at

the end of function execution is marked with a ne~ative one.

b. the arguments (formal parameters) are marked with a minus two

and minus three,

c. all other local variables are marked with zeroes~

2. labels are marked with the full character representation of their

corresponding line numbers.

Case (2) above allows access to lines of text through the line labels.

Like all other APL system components, the Function Editor must maintain

functional concurrency. Clearly, there are many situations where functional

concurrency becomes a problem (e.g., displaying lines of text). Thus, the

Function Editor maintains a number of variables in the User State Register,

FUNCTION DEFINITION

$STDEV

[1] AVE := (+!X)% N :=RHO X

[2] (+!(X-AVE)*2)%N-l)*.5

[31 5

STORAGC UNIT STRUCTURC

FUNCTIOH LABEL UNIT
(ORDERF:D)

00000000

00010000

00020000

FU~JCTION EXT UNIT
(SEQUF:NTIAL)

4- STDF:V IIAvr: . - (+/X)%

N : =RHO X II ((+/(X-AV

E):~2)05N-l):': .5 II

FIGURF: 11

FUNCTION STORAGF: UNITS

37

SUBROUTI
HEADER

NILADIC
ION

HEADER

t·10NADIC
FUNCTION

HEADER

DYADIC
FUNCTIOt'

HEADER

38

$F;I;J $7:=[;I;J $7:[Y;I;J

--=-------= " /7FUNCTION DEFINITION

[lJ L: X:=IOTA 3
[2J Z:=X RHO 1
[2.1J M: N: 2+5$

FUNCTION LABEL UNITS
(ORDFRED STORAGE)

$Z:=X F Y·I;J

SUBROUTINE
STRf, TURf:

;-JILP. I'~ FUNCTION
STFlJrTURr:

I
,j

L

oooooonQ
00000000
00010000
00021000
00021000

I
J
r
u

N

nooooooo
00010000
000?l000
00021000

00000000 D-r­
~O;..:;O;..:;O:..;:l;..:;O;..:;O;...O;..:;O+-__--i.,;n 2-
1--"0:.;;;O~0,-,=2-.:;O:.;;;O:.e;O:.;;;O+- 1??_

,---"O"",O-"O,-,-/;.:::l;..:;O:..;;;O:..;;;0...L ..;,;;n 4-

DYADIC fUNCTION
STRfl~T!1R[

'7

00000000
00010000
Goo/coon

00021000

V():JADTC

-1

rr1lTf""TT
: l);~ '.....- ... J

I 00000000 STFUCTtiRf
J
IJ

N
x
y

00000000
00010')00
00021000
00021000

-3
-2

I

y

00000000
00000000

000/1000
600?loOO

-2
Z -1

1--,0;..;.0....;;0;..;.<'-,,'C'....;;O;.,.::O;..;.O+-__---:..1"1-
1--°_0_°...;;1;...:('_)O...:O...:0-t-p, 2 -
I.....;O;...O;,..;O;,..;/;...lJ;,..;C';,..;JO;,..;0-i' -<,;.1"3-

L.-.:0;...:O;...:0,;,.,:2;;,.;1:;.;O;,..;'0,;.;0:..1-__"-:';1" 4-

'7
i.,1

n0000 n OO
-1

NOTE: r is the function name, I and J are local variables, X and Y
are formal narametprs. and 7, denotps the value rpturned r The> values
:1' v/' D 3, ~II rerresPD: the addressps of the correspondinrr lines (If text
ln the functlon text unlt.

FTGURr: 12

FUij('TION LABEL UNIT STRUrTURE

39

as shown in 13. The Function Editor fields are only defined when the

user is in function definition mode when they contain:

1. the number of the ordered storage unit assigned as the function

label unit,

2. the number of the sequential storage unit assigned as the function

text unit,

3. the name of the function being edited,

4. the current line of the function being defined,

5. the current line increment for this user,

6. the editinp: "submode" (i.e., deleting text , editing, or displaying

lines of text),

7. the edjting submode boundaries (e.g., the starting and ending line

numbers for the display command).

A corresponding entry is made in the "names" ordered storage unit for

this user as soon as the function definition is closed. The entry for a func­

tion consists of the name of the function in the left-most field and the numbers

corresponding to the function label unit and the function text unit in the

right-most field.

Note also that the Function Editor examines the nosvntax bit of the user

mask whenever a new line is inserted or an old line is edited in a function.

If the nosvntax bit is reset then the Editor passes the APL statement to the

APL Statement Compiler for a syntax check. The user is notified if errors

are detected.

The state diagram of Figure 14 shows the basic logic of the Function

Editor.

THE APL MONITOR COMMAND HANDLER

After a termjnal user has initially signed-on to the APL~B550n system, the

Resource Manager Dasses all messages which begin with a ")" to the >loni tor

Command Handler for f'rocess in?,. The Monitor Commancl I:andler nrocesses the

monitor commands shown in Table 7, along with the system supervisor commands

listed in Table 4. The entire set of monitor commands can be cate~ori~erl as:

40

USER STATE REGISTER

FUNCTION FUNCTION
LABEL TEXT

UNIT UNIT

FUNCTION
NAME

CURRENT
LINE

EDITING EDITING
SUBMODE BOUNDS

"--v--------)

tEDITING SUB­
MODE VALUES

~LINE OF FUNCTION CUR­
RENTLY BEING DEFINED

~FULL CHARACTER REPRESENTA­
TION OF FUNCTION NAME

~ SEQUENTIAL STORAGE UNIT NUMBER COR­
RESPONDING TO FUNCTION TEXT UNIT

~ORDERED STORAGE UNIT CORRESPONDING TO FUNCTION
LABEL UNIT

~USER MUST BE IN FUNCTION DEFINITION MODE

FIGURE 13

USER STATE REGISTER ENTRIES FOR THE FUNCTION EDITOR

FUNCTION-DEFINITION-MODE

FIGURE 14

fUNCTION EDITOR STATE DIAGRAf~

41

TABLE 4

PRIVILEDGED MONITOR COMMANDS

42

MONITOR COMMAND t"UNCTION

)ASSIGN <user code> <user Th1.s command aSS1.gns a new user
phrase> code to be recognized by APL.

The <user code> goes into the user
code ordered storage unit. The
<user phrase> goes into the user
phrase sequential storage unit, and
serves to identify the user to
other APL users.

)DELETE <user code> This command removes a user code
and associated user phrase from
the APL svstem.

CODES This command provides a listing
at the system supervisors terminal
of all assi~ned user codes.

)LIST USERS This command provides a complete
listing of all assigned user codes
and user phrases.

)DEBUG MEMORY <integer> This command specifies that a trace of
APL virtual memory activity be
given. The <integer> specifies trace
ootions.

)DEBUG POLISH This command causes the APL state-
ment compiler to print a trace of the
code produced for each APL state-
ment executed by the system super-
V1~Qr

1. System Maintenance Commands. The system maintenance commands allow

the APL system supervisor to add, delete, and alter user codes and user

phrases. In addition, the supervisor can set system diagnostic flags.

These commands are recognized only when the master mode bit is set

in the user's User State Register.

2. Work Area Maintenance Commands. Work area maintenance commands al­

low the APL user to add or delete items from his associated work area.

The user may also save the work area in a separate file, and later re­

activate the work area.

3. APL Run Parameter Specification. Variables which affect the APL

run for a user can be displayed and altered through APL monitor com­

mands (e.g., "WIDTH" and "ORIGIN").

4. Line Edit Command. The last line entered by each user can be alter­

ed and re-submitted, as discussed previously using the Line Edit com­

mand.

5. Function Suspension Commands. The function suspension commands allow

the user to control function execution when functions have been suspended

due to errors.

6. Run Termination Commands. The APL user may terminate the APL run

using a number of different options.

The implementation of most of the monitor communication algorithms is

straightforward. It is useful, however, to examine the data structures in­

volved in these operations.

If the monitor command to be executed is a system maintenance command,

the master mode bit of the User State Register for the current user is examin­

ed. If this bit is reset then the user is issued an error message. Otherwise

the Monitor Command Handler uses the virtual memory access routines to examine,

add to, or delete from the user code ordered storage unit and the user phrase

sequential storage unit.

The work area maintenance commands access the "names" ordered storage

unit. The variables and functions can be listed and deleted by application

of the appropriate virtual memory access routines. In addition, the total

content of the work area may be copied to an external library for later use.

dictionary entry for the function addresses the head of this chain.

Library load and copy operations reference the directory of a particu-

library to obtain addresses and data lengths in the library. The load

44

This operation involves accessing and copying all ordered and sequential

storage units allocated for the user's work area. The "names lf ordered stor­

age unit provides an entry point for referencing all variables and functions.

The library is constructed by first constructing a dictionary, as shown in

Figure 15. All non-scalar data is copied into the library from the "data"

sequential storage unit, with appropriate addresses in the library dictionary.

Whenever functions are encountered in the "names" unit, the corresponding

function label unit and function text unit are accessed through the unit num­

bers in the right-most field of the function entry. The line label, along

with the function text for each line, is forward-chained for each function.

The

lar

and copy operations occur in just the opposite order from the save operation.

The situation arises, however, when copying functions into an active work

area, where the function name being copied is identical to a variable name

occurring in the "names" unit. In this case, the variable, along with the

corresponding data, is removed from the work area before copying the function.

All of the above operations make use of the virtual memory access rou­

tines in searching and altering storage units.

The APL run parameter specification commands are easily implemented.

Display is accomplished by referencing the corresponding field of the User

State Register (e.g., the "digits" field). Similarly, the fields may be al­

tered directly on command by the user. Thus, if the command is "DIGITS,"

the its" field is retrieved from the User State register and displayed.

If the message typed by the user is "DIGITS 3" then a new value of three is

inserted in the user's User State Register.

The Line Edit command is implemented by retaining a copy of the last

message typed by the user in calculator mode (initially the null message).

The Line Edit is processed according to the rules given earlier, and a llsimu­

lated" teletype input is performed with the new edited line. The simulated

input, however, goes to the beginning of the input queue for the user. The

Line Edit command does not replace the last message typed by the user; hence,

45

,

USER STATE REGISTER

INAMES I DATA 1r----9+----f
;

(+/X)%

"DATA"

E);': 2)%N -1);': , 5

STDEV

FUNCTIOt TEXT UNIT
(SEQUENTIAL)

"NAMES"
(ORDERED)

00020000

AAA SCALAR (SEQUENTIAL)
l.-I--'

BBB 1234
1STDEV I USER STATE REGISTER

ZZZ I NUMERIC VECTOR I

. CHARACTER VECTOR 1
..

FUNCTION LABEL
UNIT

(ORDERED)
L...-+- 1

RESULTING DISK LIBRARY
1'----------.

LIBRARY DESCRIPTIVE INFORMATION
AAA 1L:l I. I BBB I 1234
STDEV I I ZZZ IL I _I-

~ NUMERIC VECTOR CORRESPONDING fo
AAA. WITH LENGTH L1 n 100000000
STDEV /I 10001000OlWE: = (+!x)%
N :=RHO X II I00020000((+!(X-AV
E)*2)%N-l)*.5 II A ICHARACTER VEe ~
TOR CORRESPONDING TO ZZZ. WITH
LENGTH L

2
_.u-II ...J

FIGURE 15

THE FORMAT OF A LIBRARY

46

it is possible to edit the same line several times.

User to user communication is made possible with two monitor commands:

the "LOGGED" command and the "MSG" command. The first command displays the

user phrases corresponding to each active APL user, along with the user's

station number. The Monitor Command Handler refers to the user phrase stor­

age unit to obtain this information.

The users may communicate as shown in Figure 16. The user specifies the

station number with the "MSG" command of the user which is to receive the

message. The message is extracted from the originator's input and placed

(with the proper prefix) at the beginning of the output queue of the station

receiving the message.

The last command to consider is the "OFF" command. This command informs

the APL system that the user wishes to discontinue the APL session. Two op­

tions are available:

1. "OFF," and

2. "OFF DISCARD. If

In case (1), APL assumes the user wishes to be physically disconnected from

the system with the active work area saved under the library name "CONTINUE."

The appropriate bits are reset in the station table entry for the port, and

the library is constructed. A termination message is then printed, followed

by deallocation of data areas (storage units, buffers, and registers).

Case (2) is similar to the first except that a library is not constructed.

In either case, APL assumes that some user wishes to sign-on again after a

short period. The terminal is not physically disconnected, and the buffers

are retained for this port until a fixed time has elapsed without a sign-on

at the terminal.

The monitor command handler is distinct from the other APL components,

but provides a command language and command facilities which are useful in

the APL environment.

In conclusion, it can be easily seen that the Monitor Command Handler

makes use of the virtual memory access routines in the implementation of

nearly all the commands.

3

rROM (2): ARE YOU GOING TO BE WORKING LATE TONIGHT•••
)MSG 2 I THINK I WILL QUIT ABOUT MIDNIGHT-
x-

47

rACT X*2­
362880

LOG 473"
6 .. 1591

FROM (2): HAVE yOU FINISHED THENUMERICAL ANALYSIS ASSIGNMENT ••.
)MSG 2 I ALMOST.HAVE THE BIG ANSWER-
L0G 414"

SYNTAX ERROR AT 474
LOG 474"

d 6121
(LOG 3)+(LOG 4)"
2.48491
LO G 12"

2 .. 48491
rROM (2): DO YOU HAVE A SAVED COPY THAT I CAN COMPARE WITH.
)MSG 2 YES I SAVED ONE ABOUT 1 HOUR AGO"
LOG 362880"

12.80183
FROM (2): IS IT UNLOCKED... WHAT IS THE NAME OF THE LIBkAHY ••
)MSG 2 IT IS INTERPOLLY ••• READY TO GO ..
) VARS"

INTERP (F) STRING X Y
STRING"

A VERY FAT CAT

INTERP"
ROM <2): OK I AM GOING TO LOAD IT

INTERPOLATION PROBLEM Cl

NPUT X VALUES

[] :
V'- 2 4 6 8 10 12 15 20-.-

INPUT Y VALUES

(J
LOG V"

NPUT VALUE TO INTERPOLATE

[] :
13"

INTERPOLATED VALUE IS 2 .. 56564

LOG 13"
2 .. 56495

>OrF"
END OF RUN

FIGURE 16

USER/USER COMMUNICATION

48

STORAGE AND REPRESENTATION OF APL DATA STRUCTURES

The methods used in data storage and representation are fundamental in

the understanding of the two APL components remaining to be discussed: the

APL Statement Compiler, and the APL "Machine."

The fast-access data area mentioned earlier, called the scratch pad,

contains data which is "active." Further, each data item residing in the

scratch pad has an associated "descriptor" which gives the characteristics

of the data. The organization of the scratch pad, data layout, and descrip­

tor formats are the subjects of this section.

The scratch pad may be considered the memory of the simulated APL ma­

chine. The scratch pad is, in fact, an array which increases and decreases

in size as the requirements for working storage increase and decrease.

is allocated within the scratch pad using a variation of simple seg­

menting[9J.

All APL data in a particular user's work area can be considered "active"

or "passive." Data can be active for a user only when the user is executing

an APL statement or function, and the data has been referenced during the exe­

cution. Passive data is that data which can be ,referenced through the "names"

ordered storage unit assigned to the user. References to passive data may

occur when the user is executing an APL statement. In this case, a copy of

the passive data is brought into the scratch pad during the computation. Ac­

tive data in the scratch pad may replace passive data in the user's work area

at the end of execution <i.e., the user returns to calculator mode from exe­

cution mode). In addition, new results may have been computed during execu­

tion causing additions to the "names" and "data" storage units.

At any point in the execution of several userS' APL programs, the scratch

contains active data for all of these users. The passive data, however,

is kept distinct in the individual "names" and "data" storage units referenced

through the corresponding User State Registers.

Data which is active in the scratch pad is identified through the use

of "descriptors." The descriptors, shown in Figure 17, identify data by pro­

viding the following information:

49

1. Descriptor Identification Bit. The descriptor identification bit

is set if the descriptor refers to APL data.

2. Data Presence Bit. The data presence bit is set when data corres­

ponding to the descriptor is present in scratch pad memory.

3. Named Bit. The named bit is set in a descriptor when the data

associated with a descriptor is not a temporary result.

4. Scalar Bit. The scalar bit is set in descriptors which reference

scalar data.

5. Character Bit. The character bit is set in a descriptor when the

descriptor refers to a character array rather than numeric data.

6. Back Pointer Field. The back pointer field is primarily used to

identify the origin of the descriptor in scratch pad memory.

7. Rank Field. The rank field of a descriptor contains the number of

dimensions in the data associated with the descriptor.

8. Scratch Pad Field. The scratch pad field holds the actual scratch

pad address of the data associated with the descriptor.

The size of each field depends upon the maximum value that can be assumed in

each case.

Data in array form is stored in row-major order with the dimensionality

of the array in the first few locations, as shown in Figure 18.

The use of descriptors allows execution-time determination of the com­

plete meaning of a particular operator. Thus, the meaning of the statement

x+y

cannot be exactly determined at compile-time since the "+" could represent a

scalar-scalar, scalar-array, or array-array operation. The exact operation

determined at execution time by examining the data descriptors involved

in the operation.

The use of descriptors is also extended to APL functions. Referring again

to Figure 17, function descriptors contain the following information:

1. Descriptor Identification Bit. The descriptor identification bit

is reset for function descriptors.

2. Argument Field. The argument field contains the number of arguments

(parameters) required for function execution.

50

DATA
DESCRIPTOR

,..-----J)
SCRATCH PAD

FIELD

FUNCTION
DESCRIPTOR

RANK
FIELD

BIT

BACK POINTER
FIELD

DATA PRESENCE BIT

DATA/FUNCTION DESCRIPTOR

NAMED BIT

I \
~

[DIIJ

1LRACTER

SCALAR BIT

ARGUMENT FIELD

FUNCTION PRESENCE BIT

DESCRIPTOR IDENTIFICATION BIT (RESET)

FIGURE 17

DATA AND FUNCTION DESCRIPTORS

APL STATEMENT

2 3 RHO IOTA 6

SCRATCH PAD REPRESENTATION

DATA DESCRIPTOR 2

FOR VECTOR (2 3) 2
3

hhhlnW////l11 -

DATA DESCRIPTOR 2

RESULTING FROM 3

EXECUTION 1
:;>

l,hlMrJ 'l'/// I 21 - 1 3
4
5

DATA DESCRIPTOR 6

FOR CONSTANT 6

DATA DESCRIPTOR
FOR IOTA 6

11111~~rJ /////1 11 - 6
1
2
3
4
5
6

FIGURE 18

SCRATCH PAD DATA REPRESENTATION

51

52

3. Return Value Bit. The return value bit is set for function descrip­

tors corresponding to functions which return a value from execution.

The presence bit, back pointer field, and scratch pad field are used in the

same manner as in the data descriptor.

Descriptor access is accomplished through the symbol tables described in

the following section.

ACTIVE AND PASSIVE SYMBOL TABLES

Corresponding to active and passive data and functions in APL'B5500

there are active and passive symbol tables. The passive symbol table is

just the "names" ordered storage unit shown in Figure 10. The details of the

passive symbol table entries are shown in Figure 19. The contents of the

right-most field of a passive symbol table entry depends upon the type of

entry. In particular, a non-present (presence bit reset) data or function

descriptor may appear with the name, or simply a scalar value will appear if

the name represents a scalar.

Each passive symbol table entry is identified by the entry identification

field. The entry identification field may take on one of the following

values:

1. Scalar. The name corresponding to the entry is a scalar. The scalar

value is contained in the right-most field of the passive symbol table

entry.

2. Array. The entry corresponds to an array variable. The right-most

field contains a non-present data descriptor. The scratch pad field con­

tains an address in the "data" sequential storage unit where the corres­

ponding data can be found. The data is loaded into the scratch pad when

the variable becomes active and is accessed.

3. Function. The entry represents a defined function. The right-most

field contains a non-present descriptor. The back pointer field, however,

contains the unit number of the function label unit, and the scratch pad

field contains the number of the function text unit corresponding to the

function.

The passive symbol table is always searched using the virtual memory access

routines.

PASSIVE SYMBOL
TABLE

53

"DATA" SEQUENTIAL
STORAGE UNIT

("NAMES" ORDERED
STORAGE UNIT)

.... VECTOR DATA I

~
FUNCTION
LABEL UNIT

(ORDERED STORAGE)

,......... :
!

~ - -...;:

FUNCTION
TEXT UNIT

(SEQUENTIAL
STORAGE)

I I
FUNCTION ENTRY VARIABLE ENTRY

\.---....,v
FUNCTION

NAME
FIELD

D]
I "--..r'''------v---J
ENTRY FUNCTION

IDENTIFICA- DESCRIP-
TION FIELD TOR

'c
l, =:;:V;:===-:::::::=:J,Q~

VARIABLE ENTRY DATA
NAME IDENTIFICA- DESCRIP-
FIELD TION FIELD TOR OR

SCALAR

FIGURE 19

PASSIVE SYMBOL TABLE

FIGURE 20

SYMBOL

FUNCTION LABEL TABLE

alltable for a user.

function labels and

table and function

the

of data and the number

the

it

referenced.

the

(because of

that

is,

submitted for

the current user

mode or in

code is

the returns a

vector in the scratch

data descriptor

statement, as shown in

the code in

PRESENT DATA
DESCRIPTOR

PR1=-'<:::,'M'i' DATA' ~
DESCRIPTOR I" I

N WORDS

FIGURE 22

CODE STRING FORMAT

M

execution. In any case, the APL Statement Compiler is called

functional

, are

during execution of the statement. The

one statement at a time, thus

words, shownAPL

lated APL

code word indicates whether the code word represents an

fetch or an APL operation or defined function call. If the

or

sents an or constant then the fields are defined as follows

The operator type not used for ooer'ands

stants.

The type field

or a constant.

whether the

ofthe

Field. The location field contains the

the data descriptor corresponding to the code word (i. .
the operand or constant) •

Rank Field. The rank field is not used.4.

5. Address Field. The address field

or constant within the APL statement.

error execution.

then the

the

a function or

or function.

The type field indicates whether the

function orsents

the code word

3. Location Field. If the code word an APL

the field contains an number

If the code word describes a function then the location

the address of the descriptor for this function in the

table.

4. Rank Field. The rank field contains an

the explanation of the "[" operator) if the code word

sents an operator. If the code word represents a function then

field indicates whether or not the function returns a value.

The final code string for an APL statement is generated in two

PSEUDO-CODE WORDS

LOCATION FIELD

TYPE FIELD

OPERATOR TYPE FIELD

60

OPERATOR TYPE FIELD
NILADIC
MONADIC
DYADIC
TRIADIC

RANK FIELD

TYPE FIELD
OPERAND
CONSTANT
OPERATOR
FUNCTION

ADDRESS FIELD

LOCATION FIELD
DESCRIPTOR

ADDRESS
OPERATOR

CODE

VALUE RETURNED
OR NOT RETURNED

OPERATOR
SUBSCRIPT

LOCATION OF LEXICAL
ITEM WHICH GENERATED
THE CODE WORD (USED
FOR ERROR REPORTING)

FIGURE 23

PSEUDO-CODE WORD FORMAT

61

a forward pass, called the lexical pass, and a backward pass, called the code

generation pass. The two pass approach is taken in order to arrange the code

words in the proper order for a right-to-Ieft execution of the statement.

The lexical pass involves the identification of each lexical item in

the infix expression (operators, constants, variables, and functions). Dur­

ing this pass, shown in Figure 24, a push-down stack, called Infix, is load­

ed with code words corresponding to the lexical items. All table look-ups

in the function label table, active symbol table, and passive symbol table

occur during the lexical pass. In addition, all scalars, along with numeric

and character vftctor constants, are placed into the scratch pad.

During the code generation pass, the Infix stack is examined and a form

of suffix notation is generated by rearrangement of the code words. This

form will be termed "reverse inverted polish" since it involves not only suf­

fix form, but also a rearrangement of the operands (this form can also be

thought of as direct polish written backwards). The reverse inverted polish

form is suitable for execution by the simulated APL machine and is sufficient

for the proper right-to-Ieft execution. The fundamental transformations from

infix to reverse inverted polish form are shown in Table 5. Note the "sub­

script computation" operator in Table 5, denoted by "[." This operator is
n

"subscripted" by n; that is, the number of operands involved in the subscript

computation is denoted by n.

One might think that the usual reverse polish form would be sufficient

for proper APL statement execution. However, statements such as:

A + A:=5

where the variable "A" initially has a value other than five is evaluated in­

correctly if reverse polish form is used.

The logic of the code generation pass is shown in Figure 25 in simplified

form. There are a number of special cases not covered by the diagram in

Figure 25 such as the occurrence of the quad or quote quad; however, the dia­

gram does cover most cases. Error conditions are not shown in the state dia­

gram for the code generator, but may be detected in a number of ways, including:

1. attempting to mark an operator or function as dyadic when it is de­

fined as a monadic operator or function, or vice-versa;

D

INVERTED

NOTE: The Operators stack is marked if the stack
empty, or if the top element is If]" or ")."

FIGURE 25

CODE GENERATION PASS

65

2. the absence of an anticipated code word on the operators stack

.g. ,)" from the top of the operators stack

the occurrence of the It)");

3. examination of the operators stack for extraneous symbols at the

end of the transformation.

26 shows the steps occurring in the transformation of an

statement into reverse inverted polish form. For purposes of

the equivalent of each code word in the stack used, rath-

code word Note also that the stacks extend

Operators in the final code wh have been

monadic are marked with a prime (').

27 shows the evaluation of the resulting reverse inverted

26. Circles enclose operands and which

constants created during the lexical pass are attached to the

the data descriptor returned the statement

28. Thus, the data returned the statement

access to the constants associated with the APL

statement itself, and the pseudo-code words

statement.

connection between the APL statement compiler and the s

is in the following

"1>1ACHINE"

APL component of APL,B5500 is a software simulat

processor. The architecture of this "machine" is sim

of the BSSOO in that it is a stack-oriented, descriptor-based

simulated • however, executes an order-code which is

statement execution. Thus, the simulated machine does not

500 hardware stack mechanism. The Machine is capable of

statements when expressed in reverse inverted polish form. In

the Machine provides control functions including transfer-of-control within

APL functions, and execution interruption fac necessary for

concurrency within the component.

APL EXPRESSION
(D IS A DYADIC FUNCTION, M IS A MONADIC FUNCTION)

A[ABS B+3;C[3J-B:=M 5;(3 D 4)-8J

(1) I A[ABS B+3;C[3J-B:=M 5;(3 D 4)-8]
n 0 1J" T

C---*

66

n
1

n
1

(4)
n
1

)

n
1

n

(7)

n
1

(8)

n
1

(9)

n

(10)

n
2

I A[ABS B+3;C[3J-B:=M 5;(3 D 4)- 8
0 1] JC 8'"

T A[ABS B+3;C[3]-B:=M 5;(3 D 4) -.L

0 1] - ... T
C 8

I A[ABS B+3;C[3]-B:=M 5;(3 D 4)
0 1) of T

C 8

I A[ABS B+3;C[3]-B:=M 5; (3 D 4
0 1]-) TC 8 4 .,

T A B+3;C[3J-B:=M 5; (3 D.L

0 1) n", T

C B 4

I B+3;C[3J-B:=M 5;(3
0 1) ,Dr;;:J JC 8 4

I B+3;C[3J-B:=M 5; (

0 1] - 1-1-=-:J
f' 8 4 3 D -'"'

I A[ABS B+3;C[3]-B:=M 5 ..2-
0 1]
c 8 4 3 D -

I A[ABS B+3;C[3]-B:=M 5
0 1J JC 8 4 3 D - 5""

FIGURE 26

TRANSFORMATION OF AN APL STATEMENT

(ll)
n
2

(12)
n
2

I
o
C

I
o
C

A[ABS B+3;C[3J-B:= M
IJ M.. =r
8 4 3 D - 5

A[ABS B+3;C[3J-B :=~

IJ MI • •_.........,J
8 4 3 D - 5 M'

67

(13)
n
2

I
o
C

A[ABS B+3;C[3J­
IJ .-
8 4 3 D - 5 M'

B

h
B .-.-

(14)
n
2

(15)
n
1

(16)
n
1

n

(18)
n
2

I
o
C

I
o
C

I
o
c

I
o
c

I
a
c

A[ABS B+3;C[3J
IJ -... =r
8 4 3 D - 5 M' B .-

A[ABS B+3;C[3 J
IJ- 2 J'" T
8 4 3 D - 5 M' B .-

A[ABS B+ 3;C[3 t-----,
1J-2[t
8 4 3 D - 5 M' B := 3

A[ABS B+3;C [I~

1]- 2 J [...t--J
8 4 3 D - 5 ~~ B := 3

A[ABS B+3; C11----t=1
1J -1-[1 i •
8 4 3 D - 5 M' B.- C 1

(19)

n
3

I
a
C

A[ABS B+3 ..2...

1]
8 4 3 D - 5 M' B .- 3 C [-

1

(20)

n
3

n
3

I
o
c

I
o
C

A[ABS B+ 3 t-I---------,

~]4 3 D - 5 M' B .- 3 C [1 - 1
A[ABS B +
1] +~
8 4 3 D - 5 M' B .-

FIGURE 26

(CONTINUED)

68

(22) I A[ABS BI hn 0 1] +1
3 C 8 4 3 D - 5 M' B .- 3 C [1 - 3 B +

(23) I A[AB~
n 0 1) ABS
3 C 8 4- 3 D - 5 M' B .- 3 C [1 - 3 B +

(24) I A [3'"
n 0 1) [3 ABSI t

C 8 4 3 D - 5 M' B .- 3 C [1 - 3 B + ABS'

(25) I AI l---y0 [31
C 8 4 3 D - 5 M' B := 3 C [1 - 3 B + ABS' A [3

RESULTING REVERSE INVERTED POLISH

8 4 3 D - 5 M' B := 3 C [- 3 B + ABS' A [31

NOTE: "I" represents the Infix stack (in symbolic form), "0"
represents the operators stack, and "C" represents the code string.
Each step shows the effects of one circuit through the diagram of
Figure 25.

69

+

a:l

::r:('f) (f)
H
...:l
0
p..

0
r...:l
E-<.-l ~

'--' r...:l
:>

r- Z
U ('.I H

~
r...:l('f) (f)

::l ~
C.!J r...:l
H :>

II lJ..,
~
lJ..,

a:l 0

Z
0
H
E-<
<C
::l
...:l
<C
:>
r...:l

0

CQ

.:::t

CONSTANT
CHAIN

PRESENT DATA
DESCRIPTOR

2 3 RHO IOTA 6

't
RHO

PRESENT DATA
DESCRIPTOR

70

2

2

3

FIGURE 28

DATA STRUCTURE RESULTING FROM STATEMENT COMPILATION

71

Each APL user in execution mode is provided with an execution stack

located in the scratch pad and addressed through the stack base field of the

User State Register. The execution stack, shown in Figure 29, has the top­

of-stack index as its first element. The remaining elements of the execution

stack consist of either descriptors or execution control words (described be­

low) •

In addition to the execution stack, a control index (CI) is maintained

which points to the current pseudo-code word being processed for the user.

As the CI moves through a code string, code words representing operands cause

the corresponding descriptor to be loaded onto the execution stack. Code

words which represent operators or user-defined functions, however, cause the

corresponding operation or function to be applied to the top descriptors.

The resulting from the operation or function call replaces those

involved in the operation or function call. Data descriptors with

a reset named bit (temporary data) cause the corresponding data to be removed

from the scratch pad when "unstacked." Figure 30 shows the steps involved in

the execution of the simple APL statement of 28. This method of APL

statement interpretation is, of course, both natural and straightforward.

Control words mark various positions in the execution stack. The control

words appear in a number of forms, as shown in Figure 31. The control words

have the following functions:

1. Interrupt Mark Stack Control Word (IMS). The interrupt mark stack

control word is placed at the top of the execution stack at the end of

the user's execution period. Information in this control word allows

later recovery of additional information for restarting execution.

2. Program Mark Stack Control Word (PMS). The program mark stack con­

trol word contains information leading to the code string in execution

directly above the control word in the stack.

3. Function Mark Stack Control Word (FMS). The function mark stack

control word is inserted into the execution stack whenever defined func­

tions are invoked during execution.

4. Quad Input and Quote Quad Input Mark Stack Control Words (QMS and

QQMS). The quad input and quote quad input mark stack control words are

EXECUTION
STACK

72

----- ~
.......

~ DESCRIPTORS
AND

..... >- CONTROL

<- WORDS-
PSEUDO-CODE WORDS

r I 'I I I I 1 I--lIo... STACK TOP .-

+CI
(CONTROL INDEX)

I; STACK 'IBASE
I f

USER STATE P~GISTER

FIGURE 29

EXECUTION STACK AND CONTROL INDEX

73

0) 6 IOTA 2 3 RHO 6 IOTA 2 3 RHO

CI
I I

CI

EXECUTION,.. 2
~TACK 2-

r-'" -r 111-
3

I--

I III 6
1
2

~ 3

-> 4
l,.../ 5

6

EXECUTION
STACK--. ---

... I \ 01 I
6 I

~
~

~

(2) 6 IOTA 2 3 RHO (4) 6 IOTA 2 3 RHO
I

CI CI

EXECUTION EXECUTION
STACK STACK

r--._ --
r+ I 111 6

1
2.--- 3--- 4
5
6

i""+ I 12\ .
2
3
1

-7 2
~ 3

.....
4
5
6

fIGURE 30

INTERPRETATION OF APL CODE STRINGS

I I
L.-...y---Jl

CONTROL WORD

I I I
,..--_-J''--- --1\.. ---. ".--__--',

'Y --y- V

t
MEMORY ADDRESS FIELD

INDEX FIELD

LAST CONTROL WORD FIELD

74

CONTROL WORD IDENTIFICATION FIELD

INTERRUPT MARK STACK

PROGRAM MARK STACK

FUNCTION MARK STACK

QUAD INPUT MARK STACK

QUOTE QUAD INPUT MARK STACK

FIGURE 31

CONTROL WORD FORMAT

75

inserted into the execution stack whenever the user's APL program re­

quests quad or quote quad input from the terminal.

All control words are linked together in the execution stack through the

"last control word" field of each control word. The use of the "index" field

and the llmemory address II field depends on the type of control word.

The execution stack is initialized with a program mark stack upon entry

to execution mode from calculator mode. The program mark stack addresses the

data descriptor corresponding to the compiled calculator mode statement, as

shown in Figure 32a.

An interrupt mark stack control word is inserted at the top of the execu­

tion stack whenever time-slice interruption of execution occurs, as shown in

32b. At the time of the interruption, the control index (CI) is placed

into the index field of the program mark stack.

A number of actions take place in the case that a calculator mode state­

ment invokes a function, or a function invokes another function. The argu­

ments to a function are at the top of the execution stack at the time of the

call because of the form of the reverse inverted polish. The function descrip­

tor is examined in the active symbol table (addressed directly by the pseudo­

code word) and, if not present, the function label table is constructed as

shown in Figure 21. The function mark stack control word is inserted into the

execution stack, followed by the descriptors for each argument and local var­

iable. In order to obtain call-by-value parameters, all data described by

data descriptors with a set named bit cause a copy operation on the data items

before passing the new descriptor to the function.

descriptors corresponding to local variables, including labels, are

in the stack area above the function mark stack. Local variables which

do not correspond to formal parameters are initially set to "null" by plac-

a null vector (rank field zero) data descriptor into the stack. Labels

are treated as any other local variable except that the descriptor in the

stack is initially a present scalar data descriptor addressing a numeric sca­

lar corresponding to the line on which the lahel appears.

The simulated APL Machine also keeps track of the current line heing

executed by a user when the user is executing a function. The current line

76

EXECUTION
STACK

DATA DESCRIPTOR

PSEUDO-CODE WORDS

FIGURE 32A

INITIAL EXECUTION STACK CONTENTS

DE WORDS

CI

EXECUTION
STACK...- ----

~ Msf.1 II

>- DESCRIPTORS
PSEUDO-CO

I I I I
-'

PMS IIt leI I ~.....
I

FIGURE 32B

EXECUTION STACK AFTER INTERRUPTION

77

is called the line index (LI), and is essentially an index into the corres­

ponding function label table. A program mark stack control word is inserted

into the execution stack after the parameters and local variables in order to

start the function, as shown in Figure 33.

Two points should be made about function execution. First, because of

the index field in each of the control words, functions may be invoked at any

in the execution of a function. The CI is saved in the previous program

mark stack, and the LI is saved in the previous function mark stack (if it

exists). Upon return from the function execution, the CI and LI can be re­

covered, and control is returned to the pseudo-code word which follows the

function call. Secondly, since the descriptors for parameters, local vari­

ables, and labels are maintained in the execution stack, and since the pseudo­

code strings are "pure" (i.e., they are not self-modifying), recursive func­

tion invocation is permitted.

At the end of function execution, the function mark stack is deleted.

If the function returns a value, the descriptor representing the value is

placed at the top of the execution stack. The LI and CI are then recovered

from the control words which are "lower" in the execution stack.

Note also that the data descriptors in the function label table are

initially marked non-present (refer to figure 21). Any reference to a non­

present data descriptor causes the APL Machine to make the data present

(i. e., in the case of data, the "data" sequential storage unit is referenced

with the corresponding data brought into the scratch pad). In the case of

data descriptors in the function label table, the corresponding APL statement

is retrieved from the function text unit and the APL Statement Compiler is

called to compile the line. The resulting data descriptor replaces the pre­

viously non-present data descriptor in the function label table. The compiled

ferm of the statement then remains in the scratch pad until the user returns

to calculator mode.

This "demand compilation" avoids unnecessary compilation of statements

which are never executed. In addition, functional concurrency is mere easily

attained since the comDilatien is incremental.

When the user returns te calculator mode from execution, the Resource

EXECUTION
STACK

FUNCTION LABEL
TABLE

7'8

-

-,.

... PMsT, I I

} LOCAL LI--Ioo ""VARIABLES,
LABELS, AND
PARAMETERS

'-+ FMSI,ILII

} DATA
DESCRIPTORS

4 PMsl AICII - I--

DATA
DESCRIPTOR

4--1 I I, I
r+f 1

L-+f I II I I I 1 1
CI

COMPILED CODE FOR CALCULATOR
MODE STATEMENT

FIGURE 33

STACK ORGANIZATION FOR FUNCTION EXECUTION

79

Manager calls upon the APL Machine to make active data into passive data. The

active symbol table is examined for variables which have the altered bit set.

Entries are then made into the "names" and "data" storage units for these var­

iables. Thus, the passive data retains its original form until the completion

of execution. Passive data is not altered if an error is encountered during

the execution of the APL program unless the STORE monitor command is issued by

the user.

If an execution error is encountered, the user is notified and the execu­

tion is suspended. During suspension, the user may examine the active symbol

table, the stack locations corresponding to the local variables of the most­

recently executing function, and the local variables of any other suspended

functions. The user may alter these variables and continue function execution,

or abort the execution. If the function is aborted before a STORE command is

issued, then the active symbol table values are destroyed and the passive sym­

bol table values are retained. Thus, the function can be restarted without

re-initialization of glohal quantities.

Additional functions of the simulated APL Machine include:

1. deallocation of all scratch pad memory cells (returning the storage

areas to the B5500 Mep) when no users are in execution mode, and

2. deallocation of areas reserved for a particular user returning to

calculator mode from execution mode.

Although the above discussion is a simplification of the functions of

the simulated APL MaChine, it does provide an outline of the operations and

data structures involved. The state diagram given in Figure 34 shows the

logic of the APL Machine.

A detailed discussion of efficient APL "machine" organization and data

representation, along with an extensive bibliography concerning APL-related

topics, is given by AbramsrlOJ.

CONCLUSION

The APL,B5500 system is a self-contained time-sharing submonitor for the

Burroughs BSSOO computer providing full APL,360 processing capabilities. Al­

though the design of APL,B5S00 was affected by limited computer resources,

NOTr: 0~ the function abel tah e.

FIGURE 34

APL MACHINE LOGIC

80

81

such as central memory, the overall design is thought to be sufficiently

general to be applicable to other APL implementations.

The APL\B5500 system is presently in a stable condition: no major modi­

fications in design are foreseen. It is necessary, however, to measure the

effectiveness of the various APL components in an attempt to make minor modi­

fications and adjustments to tune the system for best performance.

82

REFERENCES

1. Iverson, K. E., and Falkoff, A. D. APL\360: User's Manual. Interna­
tional Business Machines Corporation, 1968.

2. Iverson, K. E. A Programming Language. Wiley, New York, London, 1962.

3. Kildall, G., Smith, L., Swedine, S., and Zose1, M. Preliminary APL\BS500
Manual. University of Washington Computer Center, 1970.

4. B5S0n Information Processing Systems Reference Manual. Burroughs Corpor­
ation, Detroit, Michigan.

5. A Narrative Description of the Burroughs BSSOO Disk File Master Control
Program. Burroughs Corporation, Detroit, Michigan.

6. Stimler, S. Some criteria for time-sharing system performance. Comm.
ACM, 12, 1 (January 1969), 41-53.

7. Kildall, G. Experiments in large scale computer direct access storage
manipulation. Tech. Rep. No. 69-1-01, Computer Science Group, Univer­
sity of Washington, Seattle, WaShington, January 1969.

8. Kuehner, C., and Randell, B. Demand paging in perspective. AFIPS con­
ference Proceedings, 33, Part 2, 1968, 1011-1018.

9. Randell, B. A note on storage fragmentation and program segmentation.
Comm. ACM, 12, 7 (July 1969), 365-372.

10. Abrams, P. An APL machine. SLAC Report No. 114, Stanford Linear Accel­
erator Center, Stanford University, Stanford, Ca., February, 1970.

APPENDIX A - SAMPLE TERMINAL SESSION

z ~l.':lK~~~z.Zaou~x

MARY LOGGED IN THURSDAY 10-22-70 09:27
)VARS"

INTERP (F) NEWTON (F) STRING X X0
) FNS"

INTERP NEI-JTON
) ERASE STRIN G"
) VAf~S"

INTERP (F) NEWTON (F) X X0
2+2'-

4
2-2'-

0
-2'-

-2
#2.-

-2
2 112.-

2 -2

2#2.-
2 -2

2&3+4'-
1 4

(2&3)+4'-
1 0

)")"-"4'-
(2&3)-4

2
3.4 MAX 4.5-

)DIGITS"
3

)DIGITS 9.-
4 & 3 MAX 5.1-

(4 &3) MAX 5. 1'-
1 2

CIRCLE 1­
3·141592654

CIRCLE 1 2.­
3.141592654 6.283185307

1 CI i~CLE 1'­
0 .• 841470985

IOTA 4"
234

CI i<CLE IOTA 2"
3.141592654 6.283185307

SG: =M GCD N-
:IJ G:=M'"
:2J M:=M RESD N"
"3J =:(M NEQ 0)/XIT"
"4J (3("JJ/"CON"T'"
.4J (3(JJ ...

~3J =:(M NEQ 0)/CONT

": 4] N: =G'"

83

[5) [4["]) "CONi:
[5] = : 1'"
[6] [(]] ...

G:=M GCD N
(1] G: =M
[2] M:=M RESD N
[3] =: (M NED 0)/CONT
[4] CONT:N:=G
(5] =: 1

(6] (CONTE]] ...

(4] CONT:N:=G

(6] (2(]4]'"

[2] M:=M RESD N
[3 J =: (M NED 0)/CONT
[4] CONT:N:=G

[6] [CONT-2[]CONT+l]'"

[2] M:=M RESD N
(3 J =:(M NEQ 0)/CONT
[4] CONT:N:=G
[5] =: 1

[6] $...
2 GCD 2 ..

)SI ..
GCD S
) SI V'"
GCD S CONT G 1'1
CONT..

4

G,M .. N'"
0 2 2

=:0.-
$GCD'"

[6 J [3.1]=:0"
(3.2] [[]] ...

N

84

[1 J
[2]

[3]
(3. 1]
[4]

[5]

G:=M GCD N
G:=M
M:=M RESD N
=:(M NED 0)/CONT
=:0
CONT:N:=G
=: 1

(3.2] $..
2 GCD 2"

2
36 GCD 64'"

4
SGCD'"

[6] [3H3ol]'"
(6] [[]] ...

G:=M GCD N
[1] G:=M
[2] M:=M RESD N

(4]- Cu,-.i{:N:=G
(5] =:1

[6] (CONTC"]]N..
[6] [Lj[]] ..

(Lj] NT:N:=G

(6] (Lj[..]]·..·N: ..

(6] (3]=:L& M NEQ 0"
[Lj] (Lj(..)] ..L:
(Lj] (Lj()] ..

(Lj] L:N:=G

(Lj] ((]]$"

G:=M GCD N
(1] G:=M
[2] M:=M RESD N
[3] =:L& M NEQ 0
[4] L:N:=G
(5] =:1

36 GCD 64"
4

$Z:=FIB N"
(1 J =:N+ 2 ~1I N 4"
[2] =:Z:=0"
(3] =:I-Z:=L<l"
(Lj] =:Z:=(FIB N-l)+FIB N-2"
(5] ((] J $..

Z:=FIB N
(lJ =:N+2MIN4
(2] =:Z:=0
[3J =:l-Z:=1
[Lj] =:Z:=(FIB N-l)+FIB N-2

FIB 0"
o

FI B 1"

FIB 2"

85

2

)SI"
FIB
)SIV"
FIB
N"

Z..

S

S N Z

)ABORT"
$FIB(4[..]] Z$..

(5] (4()]"

(4]

(5] (4]=:Z:=(FIB N-l)+FIB N-2"
(5] (4[.. J) Z ..

86
(4) Z:=(FIB N-I)+FIB N-2

[5J $..

FIB 2'"

FI B 4'"
FIB 5'"
)SIV"

NULL.
$FI BU)) $...

Z:=FIB N
(1 J = : N+ 2 i"11 N 4
(2) =:Z:=0
[3] =:l-Z:=l
[4] Z:=(FIB N-l)+FIB N-2

SFIB[l[")]:"(N+2)" M"
(5] (I[)] ..

[13 =:(N+2) MIN 4

[5 J S ..
FIB 2"

FIB 4"
3

FIB 6"
8

FI 8 8'"
2 1

SINTERP[[]]$"

INTERP;X;Y;Z;D;N
[IJ "UJTERPOLATlON PROBLG1 Cl"

] =:(0=&/CIOTA N:=r~HO X)=X IOTA X:=[])/Ui\JIOERR,O RHO []:="INPUT X VA
LUES"
[J =:(N NEO RHO Y:=[])/DH1ERR,O f~HO []:="INPUT Y VALUES"
[3.5] =:(N GEO D:=X IOTA Z:=[])/FOUNDZ,0 RHO []:="INPUT VALUE TO L\!TEF:P
OLATE"
[4] =: 0,0 RHO []:="INTERPOLATED VALUE IS";+/(Y&(&/D)ZD:=l-XL3&/(i\j,1\!-
1)f~HO(OJ*2)f~HO 0,N RHO })/,X CIRCLE. -X

5] FOIH'JDZ: =:0,0 RHO [):="INTERPOLATED VALUE IS";Y[D]
[6J UNIOEf~i~: =:0,0 rmo []:="X VALUES NOT UNIQUE ERROW'
[7J DIMERR: "DIMENSIONS DO NOT MATCH ERROR"

SUHEf~P[IOTA]"
9J [FOUNDZ-l[]FOUNDZ+l]S"

[53 =: 0.d) RHO []:="U'JTEf~POLATED VALUE IS";+/(Y&(&/D)i~D:=Z-X)%&/C\J...\)-
)RHO«N*2)RHO O,N RHO 1)/,X CIRCLE. -x

[6J FOUi\JDZ: =:0,0 RHO []:="INTERPOLATED VALUE IS";Y[D]
[7] UNIOEI\R: =:0,0 RHO []:="X VALUES NOT UNIQUE ERROf<"

INTERP"
INTERPOLATION PROBLEM Cl

I PUT X VALUES

[] :
1 Lj 6 10"

r NPUT Y VALUES

[J :

INPUT VALUE TO INTERPOLATE

[:

5"
INTERPOLATED VALUE IS 9.592592593

$X:=FX NEWTON DFX; ERR..
ABEL ERROR AT X:=FX NEWT

) FNS"
n 8 GCD I NTERP NEioJTON

$NEi'JTONC [J J$"

X:=FX NEWTON DFX;ERR
[1J X:=X0
(23 =:«A8S ERR) GEQ @-6)/2 ... 0 RHO X:=X-ERR:=EPS FX %..... DFX

"«X*2)-2)" NEi-nON .. 2&X
1.Lj14213562

"«X*2-2" NEiHON "2&X""
YNTAX ERROR AT (X*2-2%2&X

N El-}TOI\)
[] SY,\JTAX El~;':WR AT EPS FX ... "7.

) .. -2 ..)

"((X*2-2)" NE!:nON "2&X"
SYNTAX ERROR AT (X*2-2)%2&

NEIHOI\!
[2J SYNTAX ERr~OR AT EPS FX ... "%

87

)SIV"
,\iEI:nON S DFX
NCV}TON S DFX

) ,-;BOFn ..
) 51 v--

NULL.
)"2")'"

=:0
SYNTAX ERROR AT 0

"('JALLA i'JALLA vJASH""
ALLA l-JALLA i-JASH

ERR
ERR

FX
FX

x
X

(" " NEQ Sn~ING)/STRING:=[J"

[] :
WALLA WALLA WASH"

SYNTAX ERROR AT WASH
SYNTAX ERROR

(" " NEQ STRING)/STRING:= [] ..
[J :

"':!t"l,LLA l'lALLA i·lASH .. -­
I'! ALLA ['lALLA 1'!ASH

S T!< : =["]..
A FAT CAT"

ST!<'"
A FAT CAT

STRING[2 10 RHO 6 + IOTA 10]-­
t'J ALLA \'lASH

2 10 RHO 6 DROP STRINGp
\!} ALLA I-lASH
t-} ALLA vlASH

)\!iIDTH 30"
SNEt'!TON [[] J $...

X:=FX NEWTON DFXJERR
[IJ X:=X0
[2] =:CCABS ERR) GEQ @-6)/2;

o RHO X:=X-ERR:=EPS FX; ":Z";
D FX

)DIGITS'"

1%30"
SYNTAX ERROR

1;;30-­
0.033333333

)DIGITS 3 p

17.30"
.033

) t'll DTH 72"
13 RNDM 52'"

49 43 27 14 26 21 44 9 16 29 6 30 32

)JFF
G'J iJ I) F HUN

88

89

APPENDIX B - SYNTAX

<apl program> ::=) <login>+<statement set>+) <logout>+

login> ::= <user code>

<user code> ::= <identifier>

<logout> ::= ~FF<off option>

<off on> ::= DISCARD I<empty>

tatement set> ::= <statement> I<statement set>+<statement>

<statement> ::= <monitor command> I<apl statement> I <empty>

~ll'UULtor command> ::=) <command>

<command> ::= <library maintenance>ICLEARIERASE<identifier list>IFNSI

VARSlsII sIvIAB~RTIST~REI<bufferedit>1 <run parameter>1

L~GGEDI <message>

< maintenance> ::= L~AD<library name>l <copy> I<clear> I<save>

<1 b name> ::= <library prefix><library suffix>

library prefix> ::= <job number>, I<empty>

<job number> ::= {user account number}

<library suffix> ::= <identifier>

<copy> ::= C~PY<library name><copy name>

< name>::= <stored program name>l<variable name>

<8 program name> ::= <identifier>

<variab name> ::= <identifier>

<clear> ::= CLEAR<library suffix>

<save> ::= SAVE<library suffix><lock option>

<lock on> ::= L~CKI<empty>

< fier list> ::= <identifier>1 <identifier list><space><identifier>

<buffer edit> ::= "<line edit>

<line edit> ::= <search string>"<insert string><quote option>

<s string> ::= <proper string>l <empty>

insert string> ::= <proper string>1 <empty>

<quote option> ::= "<search string>/ <empty>

<run parameter> ::= <parameter type><number>lsYNIN~SYNI<parameter type>

<parameter type> ::= ~RIGINIWIDTHIDIGITSISEEDIFUZZ

<message> ..= MSG<station><improper string>

<station> ::= <unsigned integer>

<improper string> ::= <improper string element>1 <improper string>

<improper string element>

90

APPENDIX B (Continued)

<improper string element> ::= <visible string character>I"l <space>

<apl statement> ::= <stored program definition> I<basic statement>

<stored program definition> ::= $<definition entry><stored program

body>$

tion entry> ::= <stored program name> I<header>

<header> ::= <stored program options><local variables>+

<stored program options> ::= <function specifier><parameter options>

<function specifier> ::= <variable name> := I<empty>

<parameter options> ::= <niladic name>1 <monadic name><formal

parameter> I<formal parameter><dvadic name>

<formal parameter>

<niladic name> ::= <niladic subroutine name> I<niladic function name>

<dyadic name> ::= <dyadic subroutine name>! <dyadic function name>

<monadic name> ::= <monadic subroutine name> I<monadic function name>

<niladic subroutine name> ::= <identifier>

<niladic function name> ::= <identifier>

<dyadic subroutine name> ::= <identifier>

<dyadic function name> ::= <identifier>

<monadic subroutine name> ::= <identifier>

<monadic function name> ::= <identifier>

<formal parameter> ::= <identifier>

<local variables> ::= <local set>l <empty>

set> ::=; <identifier>1 <local set>;<identifier>

<stored program body> .. - <stored program statement> I<stored program

body>+<stored program statement>

<stored program statement> ::= <edit>1 <compound statement>l <empty>

< t>::= [<edit command>

<edi t cOIll.'11and> :: = <display> I<insertion>I <change> I<delete>

<display> ::= <line option> []<line option>]

<line option> ::= <line reference> I<empty>

<line reference> ::= <label expression> I<number>

<label expression> ::= <identifier><relative location>

<relative location> ::= <direction><nlli~er>l<empty>

91

APPENDIX B (Continued)

<direction> ::= +1-
<inse ::= <line reference>J<compound statement>

<change> :: = <line option> [" J <line option> J <line edi t>

< ::= <line reference> J <delete option>

< te option> ::= [<line reference>]1 <empty>

<compound statement> ::= <label set><basic statement>

1 1 set> ::= <label> \ <label set><label> I<empty>

<1 ::= <identifier>:

<basic statement> ::= <expression> I<subroutine call>1 <transfer

statement>

< ssion>::= <operand> I<assignment statement>1 <left part>

<expression>

<operand> ::= <constant> I<identifier><subscript option>1

«expression»I [JI ["JI<niladic function name>

<subscript option> ::= [<subscript list>JI <empty>

subscript list> ::= <subscript>! <subscript list>;<subscript>

<subscript> ::= <expression> I<empty>

assignment statement> ::= <assign operand>:=<expression>

< sign operand> ::= <identifier><subscript option>

<left part> ::= <monadic operator> I<operand> <dyadic operator>

< c operator> .. - <monadic f~ction name> I<monadic scalar

operator> I<monadic mixed operator>1

<monadic suboperator>

< c scalar operator> ::= +1-1&1 %1 *IL~GICEILIFLRIABsl FACTIRNDMj

NIOTICIRCLE

< c mixed operator> ::= ,I RHIOIIIOTA!BASVALjTRANS!EPS

<monadic suboperator> ::= <monadic suboperator type><dimension part>

<monadic suboperator type> .. - <reduction type operator>1 PHIl

S~RTUpls~RTDN

<reduction type operator> ::= <dyadic scalar operator>/l<dyadic

scalar operator>\

<dimension part> ::= [<expression>Jl <empty>

dyadic operator> ::= <dyadic function name>l <dyadic scalar operator>1

<dyadic mixed operator> I <dot operator>J <dyadic

subooerat-_or>

92

APPENDIX B (Continued)

adic scalar operator> .. = +1-1&1*IL0G\~ffiX1MINI%IRESDlc0MBI
ANDI0RINANDI NORILSSILEQI=IGEQjGTRj

NEQICIRCLE

c mixed operator> ::= IIEPsIRH0~I0TAIBASVALIREPIRNDMITAKEIDR0pl
<dot operator> ::= <dyadic scalar operator>. <dyadic scalar operator>

< c suboperator> ::= <dyadic suboperator type><dimension part>

<dyadic suboperator type> ::= PHII/I\

<subroutine call> ::= <operand><dyadic subroutine name><expression>1

<monadic subroutine name><expression>/ <niladic

subroutine name>

<transfer statement> ::= =:<expression>

APL SYNTAX - CONSTANTS & IDENTIFIERS

<data element> ::= <identifier> I<constant>

<ide fier>::= <letter>1 <identifier> :lette~>I<identi er> t>

<letter> ::= AIBlcIDIEIFIGIHlrIJIKILIMINI0IpIQ]R1SITlulvlwlxjYlz

< t> ::= 0111213141516171819
<constant> ::= <number>l <string>

<number> ::= <decimal number><exponent part>] <decimal number>!

<exponent part>

decimal number> :: = <integer> <decimal fraction> I <integer> I<decimal

fraction>

<i r> ::= <unsigned integer>1 +<unsigned integer>1 #<unsigned

integer>

<unsigned integer> ::= <digit> I<unsigned integer><digit>

decimal fraction> ::= . <unsigned integer>

<exponent part> ::= <exponent symbol><exponent sign><unsigned

integer>

<exponent symbol> ::= @IE

<exponent sign> ::= #1 -1+1 <empty>

<empty> ::= [the null string of symbols}

<string> :: = II <proper string>"

<proper string> ::= <string element>1 <proper string><string element>

93

APPENDIX B (Continued)

<string element> ::= <string character> I ""
<string character> ::= <visible string character>1 <space>

<visible string character> ::= <lett<;=r>1 <digit> 1<special symbol>

C""-'''''''''al symbol> ::= -I (\)1 ,1&1$1*1+lil :1#1%1=1@1/1\1 [Ill-
s > ::= <single space>! <space><single space>

s space> ::= fa single unit of horizontal spacing which is

blank}

