HONEYWELL

MULTICS APL
USER’S GUIDE

SOFTWARE

MULTICS APL
USER’S GUIDE

SUBJECT
Description of the Multics Implementation of APL

SPECIAL INSTRUCTIONS

This edition of the APL manual supersedes the previous edition of the manual,
Order Number AK95-01, dated March 1979 and its associated addendum,
AK95-01A, dated May 1980. This edition does not contain marginal change indi-
cators.

Section 7 (Syste

vvvvvv stem Functions),

.
unctions), Section 8 (System Variables), Section 9

(Stream I/0), Section 10 (External Functions), and Section 11 (APL Sample Pro-
grams) are new. See the Preface for a complete description of all changes to the
document.

SOFTWARE SUPPORTED
Multics Software Release 11.0

ORDER NUMBER
AK95-02 December 1985

Honeywell

Preface

This manual describes the Multics implementation of APL (A Programming
Language). The document assumes no prior knowledge of APL.

The manual does not attempt to provide the reader with extensive information
on the Multics system. The reader is referred to the Multics Programmer’s Refer-
ence Manual (Order No.: AG91) or the Introduction to Programming on Multics
(Order No.: AG90) for details on programming in the Multics environment.

Section 1 briefly describes the characteristics of APL and the nature of the
Multics implementation.

Section 2 describes Multics APL processing conventions.

Section 3 is a description of the APL language.

Section 4 lists APL functions that can be created and modified by the APL
function editor.

Section 5 provides information on the system commands that can be used to
adjust or control the operation of APL.

Section 6 describes the Multics APL file system.

Honeywell disclaims the implied warranties of merchantability and fitness for a particular
purpose and makes no express warranties except as may be stated in its written agreement
with and for its customer. In no event is Honeywell liable to anyone for any indirect, special
or consequential damages.

The information and specifications in this document are subject to change without notice.
Consult your Honeywell Marketing Representative for product or service availability.

©Honeywell Information Systems Inc., 1986 File No.: 1113

AK95-02

Section 7,8,9, and 10 describe, respectively, Multics APL systenm
functions, system variables, stream 1/0, and external functions.

Section 11 contains APL sample programs.
A glossary of terms is provided in Appendix A.
Appendix B lists the Multics commands that relate to APL.

Significant Changes in AK95-02

The character representations assigned to octal codes 044 and
045 were changed. See Table 2-1 on page 2-3.

The description of "Escape Processing" on page 2-13 was changed
to add information describing the proper procedure for removing an
escape sequence and also to indicate that, if the character
immediately following the escape character does not follow the stated
rules, then that character (and the escape character) will not appear
in the input line.

On page 3-4, the Note attached to the description of "Small
Number s" was changed.

On page 3-5, there are newexamples accompanying the description
of "Large Numbers."

On page 3-54, the example illustrating use of "Inner Product" is
new.

iii AK95-02

The description of "Mixed Output™ on page 3-61 was changed to
indicate that a pair of semicolons are the only characters that can be
used as delimiters.

The descriptionof "Character Input".on page 3-T4 was changed to
indicate that a strong interrupt can be generated if it is entered
before any characters are typed.

There are new APL language elements in new Sections 7, 8, 9, and
10.

A new Section 11 describes APL sample programs.

iv AK95-02

CONTENTS

Introduction &
History of APL
Characteristics of APL .

The APL Character Set
Multices APL« .

Section 1

Section 2
Calling APL

APL-only Users . .

Input Prompt

APL Character Set . .

Internal Codes . .

Terminal I/0 Convention
Overstrikes &
Tabulating
EBCDIC Terminals . .
Ascii Terminals . . .
Input Line Processing
Canonicalization .

(j) s o e

Communicating With Multics APL

e o . e o o

o 9 . ¢« o o

Erase, Kill, and ATTN Proce351ng

Kill
Erase
ATTN . . « . &
Escape Processing
Using APL . . « .+ « « &
Section 3 The APL Language . . .
Values . .
Type . . .
Rank . . .
Shape .

. .

Qutput of Values .
Shape Operato
Elements . .

Scalars . « « «
Scientific Netat
Small Numbers
l.arge Numbers
Vectors« .
Character
Numeric
Matrices and Arrays .

e o o o o . 0

r

. .

et
O e o

¢ o . o o . .

e o o o

e o e o

.

o 9o o e o . e e o

.

* e o o

e o » e o .

e o o e

Page

P N)
[|
NN ==

NN NN N
| |

NN N NN N N
—_— __\.l_a.._.l_..l_._n|
WWN = == . OO0V WOOOMNDNIN — - -

bt (I I L I I
ONOVITUIVD &= i WWWN N2 — =

WWwWw WwWwwwwwwwwwwwuww
1

AK95-02

CONTENTS (cont)

Matrices
Arrays . .
Character
Input of Values
Numeric .
Character . . .
Numeric . . .
Operators
Matrices and Arrays
Scalar Operators
Extension to Noen-Scalar
Arguments
Monadie
Dyadic

> e o o
.
.
- * * L] -
L] . . L] .
* L] - L) *

* & o & e o,
. .
. .
.
.
3

o e 3 e e o .
. . e e . 3
3 . * o o .
. e . e o o .

General Properties of Scalar

Operators
General Properties of
Scalar Operators . .
General Properties of
Scalar Operators . .
Add, Subtract, Multiply,
e S
Plus, Negative + - |
Signum x , . o .
Reciprocal = .« .
Power, Logarithm * e
Residue |
Magnitude |
Factorial &
Binomial Coefficients !
Maximum and Minimum [L
Ceiling and Floor T L
Rell 2 . . + ¢« ¢« o + &
Comparison Operators <
Generating Algorithm

°
. L] . .

. e o 0
. e o @

..
*
<

Logical Operators ~ A v & «

Circular o . . ,
PI Times o . .
Mixed Operators .
Shape p . . .
Reshape p .
Ravel , , « .
Catenate , , . ;
General Rules for Catenate
Laminate 4,[{71B
General Rules For Laminate
Index Generator v ., , .
Index of +
Take, Drop * + . « .« . .

. . . .

e o ® o e e

. . . L] 3

vi

Monadic
Dyadic
Divide

we ° e e . e o ®
N e 3 ¢ o o

. e o o
v © e o e .

Ve ® o

. .

* o o o e e @
2 6 e e e o o

e & e o o o o o
e o o e o o e o o

0
(W8] o]
1 o
o

I LWwbwwwww
|
= O O0OWOOL~IOVD

[I T A R N B I |
LWWWWWLWMNDMNPLIMNMNDMNPNDNDNDND 2L

LWWWWWLW WWWLLWWWWWWWLWWWWWWWWWW
1
WO~ UN=00WWMN N = =000 OO~ ~0O0N VO

AK95-02

CONTENTS (cont)

Grade Up, Grade Do wn

Reverse ¢ o .
Rotate ¢ © , .
Transpose & .
Compress / # .
Expand \ % .
Member ship e .
Encode T . . .
Decode 1 . . .
Deal 2
Matrix Inverse
Matrix Divide H
I-Beam r . . .
Format » . . .

Compesite Operations

Reduction ©/ of
Scan o\ oY% .

Quter Product °.®
Inner Product ©.o

Expressions . . .
Right-to-Left Rule
Subexpressions .

3

.

Implicit Subexpressions
Expllclt Expre551on Dellmlter

\I’LJ”.V. . . -

Explicit Subexpressions
Parenthesized Expressions

Subexpressions .
Lists . . « . . .
Indexing
Mixed Output . .
Argument lLists .
Comments
Labels
Statements . . .
Closed Expressieons

Objects
Diamond lines . .
Names
Syntax of Names .
Identifiers .o .

L3
Variable Name
o A W A N LY CALM

e

Function Nam
Group Names . . .
Variables

S
S .

Functions .
Groups

The Assignment Pseudo-Operator

Indexed Assignment

vii

°

.

®
.
.

. . * o .

e o . *
e v * & e

and

. s

¢ o . o . . ¢ e

. e o o * e

RN
~ =3

OWOOO~N3~-1TMNO O NUITUTEWWWN -\ 00 00

wwwwwwwwwwwa.‘uwwwwwwwwww w W
~NONON AN OO NN OYOYOY YUY UT W) Ul U

AK95-02

Section 4

CONTENTS (cont)

Results . . + . .

The I/0 Pseudo-Variables Dm

Output of Explicit Results

Evaluated Input 0O
Character Input M
Output 00 . . .

The Execute Pseudo- Operator P
Dependence Upon

Pornography:

Undefined Evaluation
Workspaces
Example 1
Example 2

)

Order

.

The Active Workspace

Functions . . e s
Functions
Arguments .
Results . . .
Local Identlflers
Local Objects . .
Global Identifiers
Global Objects .

LI)

Immediately Local Identl

Objects

The Function Header

Syntax Definition

.

Argument Identifiers

Result Identifier

Local Identifier List

The Function Body
Line Numbers ., .
Execution Flow .

The Branch Pseudo-Oper

Function Return .
Labels
Recursion . .

Implicit Results
Scalar Functions

Trace Pseudo-Variables TAname

Locked Functions
The State Indicator

.

Execution Termination

Attn; Weak & Strong Interrupt

Weak Interrupt

Strong Interrupt

Error Handling
Suspension

*

s

oc..Oc.loo . . o o"")on . * e e e o

a

.
.

.

.

e o & e o . e o (D e o . e o ¢ o o

. e = e

0
p

Syntax and Context Errors

viii

e o o 8 o) e o
3
Q.

S

e o o e e . . »

n

EEFEFEEEEEIE
[N D R T N R N |

[I N N I B S — g gt i g g g
[N O |
OO III~1TOALEWNHN =001 OoWN <K & EWWN = =

g O . N . g
I
—_.)\._._I___l-—_é-—l—i.—l—_l_l—ll

AK95-02

Section 5

CONTENTS (cont)

Stop Pseudo-Variables
Saname of fn
Implicit Results . .
Locked Functions
Halted Function Calls .

Suspended Function Calls

Pendent Function Calls
The)SI System Command .
The)SIV System Command
Exploring the 3T
The [OSI System Function
I27, 126 and 0OLC
The Escape +~
Clearing the ST

Restarting a Suspended Function

Call o ¢ v v ¢ v o o« o o &
SI Damage « o ¢« o & o o o
Effects . .
Editing Halted Functlons
Editing A Function . . .
Editing A Line

System Commands . . . « « & « + &
Environment Parameters
Workspace Parameters . . .
Session Parameters . .
The)ORIGIN System Command
The)WIDTH System Command .
The)DIGITS System Command
The)ERRS System Command .
The)TABS System Command .
The)CHECK System Command .
The)HUH System Command . .
The)VARS System Command .
Symbol Table « . .
The)FNS System Command . .
The)YGROUP System Command .
The)GRP System Command . .
The)GRPS System Command .
The)YERASE System Command .
The)SYMBOLS System Command
The)SI System Command . .
The)SIV System Command . .
Workspace Management
Workspace Identification .
Passwords
The)CLEAR System Command .

The)LIB,)LIBD System Command

The)SAVE System Command .

ix

e o o o

1
NN —=O OWO-31<1-1OATTIITUIUT U &= W N N — -

L o Tut Ul ol Ul ot ol Ulot ol oy ot ol Ul
— 3 =]

WU‘I\{IU‘IU‘I\H

AK95-02

CONTENTS (cont)

The)SAVE System Command
The)LOAD System Command
The)COPY System Command
The)PCOPY System Command
The)CONTINUE System Command . . .
The)WSID System Command
The)DROP System Command
Version 1 APL Workspaces
Communicating With Multics
The)@,)QUIT,)OFF System Commands
The)PORTS System Command . . .
The)EXEC,]E System Commands .
The)HELP System Command . . .
The)MSG System Command
The)DFN,)YMFN,)ZFN System
Commands . v v « + o o o o s o o @
External Functions « . « . « .
Definition Syntax « « .« .
Definition Errors . . . « + « +« « .
External Functions Cannot Be Edited
External Function Calling Sequence
Status Codes for Use by External
Functions « .+ « + + « «
Conventions for Using the Value
Stack & . v v s s e e e e e e e
External Function Include Segment .
apl_push_stack « . . o ..
USAEE v v o« & « & o s o« s o o & o

. e o
. e e o

Section 6 File System . . . e« s s o
The Multics APL Flle System .
Organizatien of APL Files .

Use of APL Files
File Manipulation Functlons

Access Control
File Sharing

Section 7 System Functions e
The Multics APL System Functlons . . e

Active Function+ ¢« « « « « &

Accounting Information

=

Canonical Representation

Character Set . .

Delay . + + « o« o « o« &

Execute Command

. . .

Expunge

.
.

e o @ e e .
.
.

e o o e o .
.
.

a~]
Y]
o
(]

UL
N = -
[Ve BVe] WO~ OOE =N

U'lk:"U'lU'lU'IUW UWU"C\H&[HU’IU'IUTUIU"U‘IU’I\.HU‘IW
NN
- OO

[200)]
U]

n

O

| D I L R B |
O OOMNN —

NN [, Yo, Ne Ne NorNe)Ne))
I
U N = OW OONUTW— =

—vq]qsrq
N S |

AK95-02

Section 8§

Section 9

Section 10

Section 11

Appendix A

CONTENTS (cont)

Name Count
Name List . . .
Time Stamp . .
Terminal Type .
User Ioad
Workspace Available
Workspace Used . .

. . 3
o o .

System Variables .

The Multics APL System
Comparison Tolerance
Index Origin . . .
Integer Tolerance .
Latent Expression .
Printing Precision
Page Width
Random Link

Stream I/0
The Multics APL Stream

CREATE . .
EOF . . .
NUMS . . .
POSITION .
READ . .+ .« .
REWIND « « .
TIE + « «
UNTIE . . « . .
WRITE « o o +

. . .
. .
. .
3 .
.

e o o o« o o

External Functions . . .
The Multics APL Externa
apl erf . .

apl pleup float b1n_2
apl ioa e s s = s

apl get list _nums_
apl read segment .

APL SAMPLE PROGRAMS . . .
APL Sample Programs .

APLL Programming Style
Executing a Sample Program

Sample Programs .
Card Dealer .
Graph Plotting
Get Month . .

. e o o

Glossary . « « « « o o« &

xi

“ . . * o

o . o e .

&ariableé

.
.
.
.
.

.

.
.|
4

1/0
The Stream I/0 Functions

.
3

. o« o e

°

.
.
L)
.

¢ o . e . . e o

File System

e o . e o

Page

T7-16
7-18
7-20
T-21
7-22
7-23

3
o
=

[
OO £EZEWN ——

1
WWWW N MNP NN — -

— e —
OO0 O O \O WO O WO\O WO WO\ WO Qo0 00 0o Co OO 0O GO o o
U

AK95-02

CONTENTS (cont)

Page

Appendix B Commands

e e e e e e e e e e e e e B-1

apl, v2apl . . 4 vt 6 s 4 e e e e e . B-2
USAQZe v ¢ v v o« o o o ¢ o o o s o B-3
Note & ¢ v ¢ ¢« o ¢ ¢ e ¢« o s e e B-4
apl end . . . 4 4 e e 4 e e e e e e B-4
USAZe v v v v v v e e e e e e e e B-4
NGEES & v v v v v v a e e e e e e B-5
apl start B-5
USAZ€ v v v ¢« ¢ o o o s o o o s o B-5
Notes « ¢ v v ¢ v v 4 v o 4 e e e B-5
convert tsoapl workspace, ctw . . . B-7
USGEE v« v v v o o o o o o o o o o & B-7
display tsoapl workspace, dtw B-8
USAZE@ v v v v v o o o o o o o o o B-8
read_tsoapl tape, rtt B-9
USAZe o « ¢ ¢ o o o o o o o o o o« &« B-9
Notes . . . ¢ v v ¢ ¢ v v 0 e e . B-9

xii AK95-02

SECTION 1

INTRODUCTION

HISTORY OF APL

A Programming Language (APL) originated as a mathematical
notation for the discussion of the theory of algorithms. It was
invented by Dr. Kenneth E. 1Iverson and was described by him in his
book, A Programming Language.* The value of the notation as a
practical means for expressing an algorithm to a computer was soon
noticed. An interpreter which realized a subset of the notation was
developed by IBM for its 7090 computer. The success of this pilot
interpreter led to a second and more power ful implementation, known as
APL\360, on the IBM System 360 series.

CHARACTERISTICS OF APL

The success of APL can be attributed to some characteristics
which distinguish it from more conventional programming languages.
First, it is interactive by design rather than by decree -- it is fast,
succinct, forgiving, informative, and even fun to use. Next, it is at
once both simple and powerful -- it is transparent and easy to learn;
yet it attacks abstruse problems with ease.

APL can be characterized as a line-at-a-time desk calculator
with many sophisticated operators and a stored-program capability.
The user needs little or no prior acquaintance with digital computers
to use it., After invoking APL, the user types an expression (or
statement, or line) to be evaluated. The APL interpreter performs the
calculations, prints the results -- if any, and awaits a new input
line. :

%¥John Wiley and Sons, 1962

1-1 AK95-02

The result of an expression evaluation can also be assigned to a
variable and remembered from line to line. 1In addition, there is a
capability for storing, by an assigned name, an ordered sequence of
unevaluated APL lines. A later mention of the name causes the
statements to berecalled and interpreted -- 2almost as if they had been
entered from the terminal at the time,

Finally, there 1is the ability to save the entire current
environment -- complete with all variable values and stored programs
-- s0 that the user may continue at a subsequent APL session.

The APL Character Set

The APL language uses its own specially designed character set,
in which each operator isrepresented by a single character. Themost
convenient access to APL is via a terminal with a complete APL
character set. Among these are:

a) IBM 2741 -- and other Selectric-based terminals -- with an
appropriate type sphere mounted: 1IBM part number 1167988
for BCD machines, or IBM 1167987 for correspondence
terminals.

b) Selecterm System 75 -- and other terminals based on the
Diablo HyType I or HyType II printers -~ with an APL print
wheel mounted: Diablo part number 38150.

c) Anderson Jacobson 630A -- and other terminals based on
dot-matrix printers -- equipped with an APL ROM and some
facility for switching to and from the APL character set
(from and to the ASCII character set).

MULTICS APL

Multics APL behaves much like the other major commercially
available APL systems (i.e.: Scientific Time Sharing's APL¥PLUS, and
IBM's APLSV). This minimizes the learning effort required of those
already familiar with other APL's, and promotes compatibility at the
source language level.

The Multics APL processor consists of three main components:
the interpreter for the mathematical expressions of the APL language;
a system command processor, which provides bookkeeping aids and
maintains an environment within which the language runs; and an editor
that is used to create and modify stored APL programs.

1-2 AK95-02

Multics APL fully supports all of the above listed terminals, and
is usable from any other ASCII terminal as well, although the user must
be aware of the typing conventions used to represent some of the APL
characters within the framework of the available ASCII graphics.

1-3 AK95-02

SECTION 2

COMMUNICATING WITH MULTICS APL

CALLING APL

Normal Multics users must call Multics APL as a command:
apl {path} {-control args}

Implemented arguments, their use, and their effects are
documented in Appendix B of this manual, and in the Multics Commands
and Active Functions manual (Order No.: AG92).

f

a
[a]
T
ct
.—I:
@]
Y
}_J

APL-only Users

Some users are registered as APL-only users: after login, they
are automatically encapsulated in the APL subsystem environment.
Therefore, they need not and cannot issue any Multics command line
that calls APL.

(Note: Thisdistinction isnot trivial. An APL-onlyuser has a
process overseer which, among other things, calls a special APL entry
point as a subroutine. He is not permitted any direct access to the
Multics command environment or storage system. Furthermore, upon
leaving APL, he is logged out automatically.)

2-1 AK95-02

INPUT PROMPT

After invocation, APLresponds by typing six spaces and awaiting
input from the user. This not only indicates APL is waiting for
information from the user, but alsoc improves the readability of the
terminal listing: most of the user-typed lines appear indented by six
positions, while most of the APL-generated responses begin at the left
margin.

Before typing any input, however, it must be determined how the
APL character set is represented on the user's terminal. Since the
APL character set differs significantly from the Multics standard
character set, normal Multics typing conventions do not apply to
communication with APL.

APL CHARACTER SET

In contrast to the 94 graphics of the Multics standard character
set, the Multics APL character set has more than 150 graphics.
Multics APL graphics are shown in Table 2-1, together with their
internal codes, names, and printed representation on both APL and
non-APL terminals.

Internal Codes

The internal code assigned to each character is not normally of
significance to the APL user. There is no mechanism within the formal
APL language to discover or make use of the internal representationof
a character, However, there are occasions on which the Multics APL
user may need to know the internal code assignments:

1) while in APL, the user may enter any APL character (graphic
or nongraphic) with an escape sequence using a 3-digit
octal code; for example, the new page (014) control code may
be entered and used as character data;

2) in unusual cases, it may be desired that data and/or
programs created within APL be used as data by programs
external to APL. (This does not apply to APL-only users.)

To simplify code mapping, and to minimize learning effort, the
Multics APL code assignments agree with the Multics ASCII code
assignments wherever any correspondence of graphics between the two
character sets can be found.

2-2 AK95-02

Table 2-1. APL Character Set

Printed
Representation Octal
non-APL APL _Code Graphic Name
(none) (none) 007 (none) bell
(none) (none) 010 (none) backspace
(rone) (none) 011 (rnone) tabulate
(none) (rone) 012 (rone) new line
(none) (none) 014 (none) new page
(rone) (rone) 015 (rone) carriage return
(none) (rone) 040 (none) space
! LR o4 ! exclamation point
"oyu2 “ou2 ouz2 (none) double quote
o043 043 (none) number sign
$ S| o045 $ dollar sign
"L “ouu 044 (none) amper sand
% “ou6 o0u46 (rnone) per cent
' ' 047 ' quote (apostrophe)
((050 (open parenthesis
)) 051) close parenthesis
¥ * 052 * star (asterisk)
+ + 053 + plus
’ . o054 . comma
- - 055 - hyphen (minus, bar)
. . 056 . dot (period)
/ / 057 / slash
0 0 060 0 zero
1 1 061 1 one

2-3 AK95-02

Printed

Representation Octal
non-APL APL _Code Graphic
2 2 062 2
3 3 063 3
y 4 064 4
5 5 065 5
6 6 066 6
7 7 067 7
8 8 070 8
9 9 071 9
: 072 :
; H 073 H
< < 074 <
= = 075 =
> > 076 >
? ? 077 ?
e “100 100 (none)
A A_ 101 4
Z_ Z_ 132 Z
(L 133 L
\ \ 134 \
]] 135]
"136 136 136 {none)
_ _ 137 _
2-4

Name

two

three

four

five

six

seven

eight

nine

colon
semi-colon
less than
equals
greater than
question mark
commercial-at
capital A

capital Z
open bracket
backslash |
close bracket
circumflex

under score

AK95-02

Printed

Representation Octal
rnon-APL APL Code Graphic Name
* 140 140 (none) accent grave
A .| i41 4 - A
z z 172 z JA
{ { or [o 173 { open brace
H | 174 I vertical bar (stile)
} } or Jo 175 } close brace
- ~ 176 ~ tilde
(none) (rone) 177 (none) pad
<_ < 200 < less or equal
>_ > 201 2 greater or equal
=/ z 202 z not equal
\' v 203 v or
& A 204 A and
‘- 3 205 $ divide
e € 206 € epsilon
o 4 207 4 up arrow
v + 210 ¥ down arrow
o o 211 o cirecle
e r 212 r upstile
f L 213 L downstile
d A 214 A delta
o ° 215 ° null

ny
[
(8]

AK95-02

Printed

Representation Octal

non-APL APL _Code Graphic Name
q 0 216 g quad
n n 217 n : cap
i 1 220 1 base
t T 221 T top
(_ c 222 c open shoe
)_ > 223 > close shoe
u U 224] cup
v~ \ 225 » nor
&~ A~ 226 # ‘nand
0- o- 227 e circle-hyphen
/- /- 230 # slash-hyphen
g~ v~ 231 5 del-tilde
%0 *0 232 e star-circle
ol o] 233 1)) circle-vertical bar
o\ o\ 234 & circle—baékslash
o/ o/ 235 @ circle-slash
gl vi 236 ¥y del-vertical bar
d| Al 237 A delta-vertical bar
n. ne 240 n lamp
'q 'g 241 i} quote-quad
b 1T 242 I I-beam
\- \- 243 X backslash-hyphen
m O+ 24y B demino
n " 245 b dieresis
W w 246 w omega

2-6 AK95-02

Printed

Representation Octal
non-APL APL _Code Graphic Name
i 1 2u7 ! iota
P P 250 o . rho
X x 251 X times
a a 252 a . alpha.
- - 253 | - overscore
g v 254 v del
{- - 255 <« left arrow
>- - 256 > right arrow
<> O or <> 257 o3 diamond
0_ 0_ 260 0 zero-underscore
9 9 271 9 nine-underscore
d_ A_ 272 A delta-undersccre
(none) (none) 273 (none) mark error
e_ Lo 274 [hydrant
f_ To 275 v thron
(- +or (- 276 - left tack
)- 4or)- 277 - right tack
{(none) (none) 300 {(none) line feed
(none) (none) 301 (none) conditional newline
c| <l 302 ¢ cent sign
e = 303 s comma-hyphen

2-7 AK95-02

TERMINAL I/0 CONVENTIONS

Overstrikes

Most APL graphics can be typed in one keystroke, regardless of
terminal. However, many graphics are formed by overstriking two
graphics. (Overstriking more than two different graphics is never
either required or allowed.) In columnsone and two of Table 2-1, this
is indicated by an entry showing its two component graphics.

To simplify operations on character values, APL considers a
graphic formed by an overstrike sequence to be a single character
internally. Since each internal character must be assigned a unique
octal code, and since Multics character operations are limited to
characters with 3-digit octal codes, then there is a fixed limit of 512
possible characters. (So far, Multics APL has assigned meaning to 168
of them.) Therefore, theremust be an even smaller 1imit on the number
of valid overstruck characters. (Many codes must be assigned to
nonoverstruck characters and to terminal-control and carriage-motion
characters,) Since there are 4371 possible combinations of the 94
nonoverstruck graphics (taken two at a time) (2!94 in APL; see Section
3), most of these possible overstrikes cannot bevalid. 1In fact, only
those overstrikes explicitly defined in Table 2-1 are valid: typing
any undefined overstrikeresults in a CHAR ERRORreport, and automatic
deletion of all input involved in, and to the right of, the invalid
overstrike; the input to the left of the invalid overstrike is
"replayed" back to the user, allowing completion of the input line.

The "visual fidelity rule" states, in effect, that "you get what
you see." This implies that the temporal order of typing input is
irrelevant; only the wvisual order is significant (see
"Canonicalization" below). It further implies the following two
conventions:

1) Redundant overstriking is allowed, but the redundancy is
discarded. For example, overstriking the following 10
graphics results in a single domino character:
O:::00:0¢%. (This is not in conflict with the two-graphic
overstrike rule stated above, since only two graphics are
involved.)

2) Invisible overstriking is allowed for terminals that
produce APL graphics; the apparent character is used by
APL. For example, due to the consistent graphic design of
the APL lower case alphabetic characters, overstriking the
L and the F produces a graphic which looks exactly like the
E. APL replaces this overstrike with the letter E.

2-8 AK95-02

There aremany overstrikes of this sort; the following are groups
of alphabetics related in this way:

BPR CG EFL IT 04

Varicus nonalphabetic groups also exist:

eoti ti-. 4= [l -

£ f:v, B-. ELT 2.

Note: Not all possible overstrikes of components of the above
grcups are necessarily meaningful: overstriking Band R
is meaningless and is therefore invalid.

Tabulating

Multies APL initially assumes that terminal tab stops are set at
intervalsof 10spaces (i.e.: columns 11, 21, 31,...). APL uses tabs
to speed up output, and accepts tabs as input. However, all input tabs
are immediately translated into the appropriate number ¢f spaces:
only "escaped-in" tabs are not translated (see ESCAPE PROCESSING
below). If some other tab interval setting is used, APL must be
informed via the)TABS system cocmmand, (see Sections IVand VI). Use
of tabs for input and cutput may be suppressed via:)T4ABS 00R []HT «
0.

EBCDIC Terminals

EBCDIC terminals are Selectric-based, and therefore have
interchangeable typing elements. Multics APL assumes that these
terminals have an appropriate APL typesphere mcunted: the second -
column of Table 2-1 should be used in determining how characters are
represented on these terminals.

Note that five graphics in column two give a choice of
representation: 173 (cpen brace), “175 {(close brace), 7257
(diamond), “276 (left tack), and “277 (right tack). On EBCDIC
terminals, these graphics are represented in the overstruck form: B 4
¥ € 3. On APL/ASCII terminals (see below), they are represented as:
{13~ This anomoly is due to the lack of room on Selectric
typespheres for these new graphics.

2-9 AK95-02

Multics APL supports both BCD and Correspondence terminals,
determining from Multics which type is being used. Note, however,
that BCD and Correspondence terminals use different APL typespheres:
unreadable I/0 results from use of the wrong typesphere (BCD uses
typesphere #988; Correspondence uses #987).

Ascii Terminals

ASCII terminals with interchangeable graphics have the
potential capability of producing APL graphics, such as del v, quad 0,
and upstile [. However, to realize this potential, the terminal must
be properly equipped. Specifically, terminals based on the Diablo
HyType I printer must have the APL print wheel mounted (Diablo part
#38150); terminals based on dot matrix printers must be equipped with
an APL ROM and some mechanism for switching to and from APL (this
includes CRT based terminals).

ASCII terminals with interchangeable graphics, equipped to
produce APL graphics are called APL/ASCII terminals., All other ASCII
terminals are called non-APL/ASCII, or simply ASCII.

APL/ASCII terminals can produce the full APL character set,
including the five new graphics {}0r-, and therefore the second column
of Table 2-1 should be used in determining how characters are
represented.

Non-APL/ASCII terminals cannot produce most of the graphics of
the APL character set, but reasonable and consistent mappings have
been established for Multics APL, and are shown in column one of Table
2"'1 .

Multics APL assumes that every ASCII terminal is anon-APL/ASCII
terminal, unless the -ttp or -terminal_ type control argument is given
when APL is called; see Appendix B, (For APL-only users, the process
overseer makes the decision, supplying an appropriate terminal type
identifier.)

Input Line Processing

2-10 AK95-02

CANONICALIZATION

As soon as backspaces are allowed in any typed line, it becomes
evident that there aremany different ways to type agiven line. That
is, there are many different sequences of keystrokes that produce
visually identical results. To reduce confusion and allow greater
freedom to the typist, APL canonicalizes each input line as it isread.
This means that the characters typed by-the user are sorted into their
visual order on the page, independently of the temporal order in which
they were typed. Hence, the user need not bother to type overstrikes
in any specified order.

ERASE, KILL, AND ATTN PROCESSING

Typing errors in Multics APL may be corrected through either the
Multies mechanism of erase and kill characters, or by backspacing and
pressing the ATTN or BREAK key (as in other APLs). The Multics APL
kill character is the alpha @, and the corresponding erase character
is the omega o,

When using ASCII graphics, the Multics erase and kill characters
may be used (# and @ respectively), or the ASCII mapped equivalents to
the Multics APL erase and kill characters may be used (lowercase wand
lowercase a respectively).

Kill

The kill character removes the entire line preceding it. That
is, the kill character deletes itself, anything coverstruck with it,
and all characters to the left. Characters to the right of a kill
character are not deleted.

Erase

The definition of erase is a little more complicated. If the
erase character is overstruck with anything, then everything in that
one print position is removed. If the erase character appears alone
in a print position, then it and the character in the preceding print
position are removed. If there is no character in the preceding
position (i.e., it is white space), then the entire white space
preceding the erase character is deleted.

Since erase and kill are performed after canonicalization, the
spatial positicons of the characters on the line determine which

characters areremoved: the order in which the characters were typed
is not significant.

5-11 AK95-02

By convention, kill characters are processed before erase
characters, but with one important exception: a kill overstruck with
an eraseresults in the kill being erased. Therefore, the only way to

erase akill is to overstrike the kill and erase characters. ATTNmay
always be used to eliminate a kill character; see ATTN, below.

Note further that erase characters are processed one at a time,
working from left to right. Therefore, several erases in succession
do not erase each other; rather, they erase successive characters to
their left. Furthermore, a nonoverstruck erase character may be
effectively nullified by overstriking it with some printing graphic.
However, an already overstruck erase character ¢an never be erased or
nullified.

ATTN

Pressing the ATTN key removes everything in and to the right of
the current column. That 1is, 1t removes 1itself, anything
"overstruck" with it, and everything to its right. Characters to the
left are not affected.

When ATTN is pressed, APL sends (to the terminal) four characters
which flag the use of ATTN: 1linefeed, "or"™ v, backspace, and
linefeed. This sequence leaves the printer in the same column it was
in when ATTN was pressed, except two lines lower, and with the v
marking the effectively redirected flow of input.

The effects of using ATTN to edit the input 1line occur
immediately: both the four-character response and the erasure of
appropriate characters occur immediately after the ATTN key is
pressed. Therefore, it is impossible to erase or nuilify an ATTN
after it is used.

Since the input line is canonicalized before each ATTN is
processed, the spatial positions of the characters on the 1line
determine which characters are removed. And since the remaining
characters (after ATTN processing) replace the original line in the
input line buffer, they are available for further editing, including
the use of erase, kill, ATTN, and overstrikes, or simply appending
further input.

-12 AK95-02

N

An input line is not considered complete -- and therefore is not
passed on for erase, kill, or escape processing -- until a carriage
return (or a newline, for ASCII or APL/ASCII terminals) is received
which is not part of a character constant (i.e., inside a quoted
string). (Note that all such embedded carriage returns are
translated to newlines. Furthermore, carriagereturn (or newline) --
embedded or not -- renders the input line up to that point unavailable
for further ATTN processing.) Therefore, all ATTN processing occurs
before any erase, kill, or escape processing. Furthermore, anyor all
erase, kKill, or escape sequence charactersmay be removed using ATTN.

ESCAPE PROCESSING

An escape mechanism is provided in order to allow any arbitrary
character or sequence of characters to be entered in spite of
canonicalization, erase, kill, and ATTN. The escape character is the
dieresis “ (represented as a double quote " on non-APL terminals).

The escape character 1is followed by: (1) another escape
character, whichrepresents exactlyone dieresis as data in the input
line, without further escape processing; or, (2) a one-, two-, or
three-digit octal number, which represents a single APL character of
precisely that internal code; or, (3) a carriage return, which
represents exactly nothing -- the two characters are deleted from the
input line; or, (4) an erase(or kill) character, resulting in neither
character appearing in the input line.

If the character immediately following the escape character does
not fit into one of the above rules, then it and the escape character do
not appear in the input line.

It is not possible to delete individual characters of an escape
sequence: 1in order to erase a complete escape sequence, the last
digit of the three digit octal sequence should be overstruck by the
erase character or the ATTN Kkey.

USING APL

When APL has been invoked and awaits input, the user may enter one
of three types of input: an expression to be evaluated immediately, a
system command, or an invocation of the function editor.

An expression to be evaluated immediately is the most common
response. This entry initiates computations. Thisclassof input is
discussed in Section 3.

2-13 AK95-02

A system command interrogates or adjusts the environment in
which computations are performed. Most system commands are attendant
to bookkeeping functions: 1listing names of variables and functions,
erasing variables, or leaving APL and returning to Multics (for

APL-only users, logging out). System commands are discussed in
Section 5.

Finally, the function editor is used to create, modify, or

replace stored sequences of unevaluated APL lines -- known as
functions -- for later execution. The function editor is discussed in

Section 4.

2-14 AK95-02

SECTION 3

THE APL LANGUAGE

VALUES

In APL, a value is returned by evaluating any variable or
expressicn., Values are therefore the fundamental entity of APL.

A value is a rectangular array of elements, each of which is a
single character or a single number. A value can have any integral
number of dimensions, from zero up, and the extent of each dimension
can be any integer from zero up. '

The number of elements in the value is equal to the product of its
dimension extents. Character and numeric elements cannot be mixed
within the same value.

Three important characteristics of every APL value are its type,
its rank, and its shape.

Type

The type of a value is either character or numeric, depending
upon whether its elements are characters or numbers.

APL further classifies numeric values into three subtypes:
boolean, integer, and floating-point. These subtypes can be mixed
within the same APL value; however, APL classifies the entire value
according to the most general subtype present in the value.

For example, a value containing booleans and integers is
classified as an integer value, since integers are a superset of -- and
therefore are more general than -- booleans., Similarly, a value
containing both integers and flocating-point numbers is classified as
a fleating-point value.

3-1 AK95-02

Type and subtype distinctions are very important, since most APL
operations have type and/or subtype restrictions on arguments.

A value with no elements at all (a so-called empty value) is
acceptable to most APL operations. Usually, its type is ignored,
since its lackof elements makes it compatible with both character and
numeric operations.

Rank

The rank of a value is the number of dimensions it has. A scalar
has rank zero, and consists of a single element. A vector has rank
one, and consists of a set of linearly ordered elements.

A matrix has rank two, and consists of a set of elements arranged
in two orthogonal (perpendicular) dimensions. It has well defined,
linearly ordered rows and columns. All rows have the same number of
elements; the same applies to columns.

An array has rank three or greater, and consists of a set of
elements arranged in three or more orthogonal dimensions. It has well
defined, linearly ordered rows, columns, planes, hyperplanes, and so
forth., All rows have the same number of elements, the same applies to
columns. All planes have the same dimension extents; the same applies
to hyperplanes.

Rank is of great practical importance, since many APL operations
have constraints on the ranks of their arguments.

Shape

The shape of avalue is its set of dimension extents, expressed as
an integer vector called the shape vector; it is itself an APL value.
A scalar -- having no dimensions -- has an empty shape vector: a
vector with no elements.,

A vector has a one-element shape vector: an integer indicating
the number of elements in the vector value. The shape of a vector is
usually referred to as its length.

A matrix has a shape vector with exactly two elements. 1In
general, the rank of any given value equals the length of its shape
vector,

3-2 AK95-02

SHAPE OPERATOR

The APL shape operator, monadic p, returns the shape vector of its
argument value. It is theonlypractical meansof finding the shape of
a value, and therefore is a very important and heavily used operator.

If 4is a5 by 2by 4 character array (three dimensional: 5 planes,
2 rows, and 4 columns), then p4d is an integer vector of three elements
with value 5 2 4.

The shape of the shape is also an APLvalue: it is the rankof the
original value. Thus, ppd would be 3 in the current example.
Similarly, for any APL value B, pppB is a one-element integer vector
with value 1.

Elements

Each element of any APL value is equivalent to a scalar: an
element cannot be 'null' or empty; an element cannot be equivalent to a
vector, matrix, or array. Of course, a value can have no elements, in
which case the value is empty. An empty value can have any shape or
rank, except that at least one of its dimension extents must be zero,

OUTPUT OF VALUES

Two environment parameters directly affect the output of values.
They are the page width and the number of digits of printing precision.

: The page width is the maximum number of character positions per

line that APL fills when typing ocutput. It effectively acts asaright
margin beyond which APL does not type. It can be set using the JWIDTH
system command, orx) the [OPW system variable.

The number of digits of printing precision is the number of
decimal digits that are printed when numeric values are displayed.
Numbers are rounded to this precision before printing. The default is
10 decimal digits, but this can be changed using the)DIGITS system
command, or the [PP system variable.

This precision does not affect the accuracy with which internal
calculations are carried out; it affects only the final printing of
answers.

3-3 AKS5-02

Scalars

A character scalar is output simply as the single character which
it is; it is not placed within quotes or otherwise altered.

A numeric scalar 1is output in the simplest representation
possible in the decimal notation. Positive signs are omitted,
negative signs are printed as the overbar ~. Magnitudes are displayed
rounded to conform to the current digits setting.

SCIENTIFIC NOTATION

If itsmagnitude isvery largeor very small, APLmay display the
number in scientific notation; this consists of a digit string, the
letter E (for "exponent"), and an integer which is the power of ten by
which to multiply the digit string to obtain the true number being
represented.

For example, Boltzmang'sconstant-- in joules per dqgreeKelvin
—— is about 1.38 times 10°3. APL prints this as 1.38E 23.

In general, the mantissa (1.38 here) will be between 1 and
9.9999... inclusive inmagnitude. The exponent canrange from -38 to
38 inclusive.

Small Numbers

For a number near zero, APL uses scientific notation if and only
if the number isrepresented internally as being less than or equal to
0.0001 (or 1E74) in magnitude. This threshold is independent of the
JDIGITS setting: 0.000097 is printed as 9,7E 5 while in)DIGITS 20r
more, and as 1E 4 in)DIGITS 1.

(Note: The number 1E3 is never printed as suchj; rather, it
appears as 0.001. The printing of 1E 3 indicates that
the)DIGITS setting has caused anumber that is less than
1E~3 to be rounded up to it for printing.)

Large Numbers

For a large number, the)DIGITS setting defines the threshold
that determines the printing format. If the)DIGITS setting is
referred to as n, then in general, APL uses scientific notation for

large numbers if and only if the number is represented internally as
being greater in magnitude than 10 to the n power,

3-4 AK95-02

For example, in)DIGITS 3, 999.9999 1s printed as 1000, whereas
1000.00001 is rounded down and printed as 1E3.

In general, the degree of precision for anyvalue Nis 10 to the -N
power. Examples: :

YDIGITS setting numeric value printed value

1 34. 456 3E1
72.67584 TE1
19. 1234E31 2E32
22.23423E-10 2E-9

3 34,456 34,456
72.67854 72.679
19. 1234E 31 1.91E32
22.23423E-10 2.22E-9

5 34.456 34, 456
72.67854 72.67854
19.1234E31 1.9123E32
22.23423E-10 2.2342E-10

Note that values printed in scientific notation are printed to
the N - 1 degree of decimal precision (where Nis the JDIGITS setting)
while those values whose magnitude is less than or equal to N are
printed to the Nth degree of decimal precision.

Vectors

For both character and numeric vectors, an empty vector prints as
a single blank line.

CHARACTER

A character vector is output as a character string, with no added
spaces or other separators intervening between its elements. Of
course, the elements themselves can be special characters: space,
backspace, carriage-return, newline, ete. In fact, every character
in Table 2-1 is valid as an element of an APL character value.

If the character vector is longer than the page width, then as
many elements as possible are printed on the first line; then, the
excess elements overfiow to the following line or 1ines, as necessary;
each overflow line is indented six spaces.

3-5 AK95-02

NUMERIC

In the printing of a numeric vector, each element is set off from
the preceding one by a single space. The printing format 1is
determined for each element individually; for example, the following
is a correct output while in)DIGITS 3: 237 4.6E 17 0.198 3.839E3 6. 4.

As with character vectors, if one line is insufficient in width
to accommodate all the elements, the excess elements are placed on a

succeeding line or lines, each indented by six spaces. However, the
character string that is the printed representation of a single

numeric element is never split between lines.

Matrices and Arrays

Matrices and arrays are printed in a succession of rectangular
planes, pairs of which are separated by one or more blank lines. As
many planes as necessary are printed to output the entire value. Each
rowof a plane is printed starting on a newprint line; within a plane,
no blank lines appear.

To ensure that the output of each matrix or array begins on a
fresh print line, APL always sends a conditional newline -- 301 --
immediately before starting to print any matrix or array.

As with vectors, if the page width is insufficient to hold the
output of an entire row, then the excess elements from each row are
printed on the immediately following line or lines, as necessary;
these inserted overflow lines are each indented six spaces,

MATRICES

A matrix is printed in one plane, with no leading, imbedded, or
trailing blank lines; assuming sufficient page width, it occupies
exactly as many print lines as the matrix has rows,

ARRAYS

A 3-dimensional array is printed in as many planes as the array
has. Each pair of planes is separated by exactly one blank line. For

example, a 5 by 3 by 7 character array is printed in 5 planes, each of
which has 3 lines and 7 columns; each plane -- except the first one --
is preceded by a blank line.

3-5 AK95-02

Blank lines are inserted only when printing values of rank
greater than two -- arrays. They serve merely as a visual aid: they
indicate the boundary between adjacent planes, hyperplanes, and so
forth. (Since paper 1is inherently two-dimensional, matrices,
vectors, and scalars can be represented without any intervening
separators or boundary indicators.)

- Inorder to understand the insertion of blank lines in the output
of arrays, it is useful to visualize N-dimensional values as an
ordered sequence of identical shape (N-1)-dimensional values. Each
(N-1)-dimensional value is itself an ordered sequence of identical
shape (N-2)-dimensional values, and so forth.

For example, a 3-dimensional array can be thought of as an
ordered sequence of identical shape matrices -- planes of the 3-d
array; eachmatrix is an ordered sequence of identical length vectors;
each vector is an ordered sequence of scalars.

With this concept in mind, the general printing format 1is
recursively defined for any N-dimensional value as follows:

If N<2, print the matrix, vector, or scalar as described
above and below,

otherwise,

print the value as an ordered sequenceof (N-1)-dimensional
values, inserting N-2 blank lines between adjacent values,

For example, a 5-dimensional value 4, such that 2 54 6 3 =p4, is
printed as two U-dimensional values, separated by three blank lines,
Each of these 4-dimensional values is printed as five 3-dimensional
values, with adjacent 3-dimensional values separated by two blank
lines. Each 3-dimensional value is printed as four 6-by-3 matrices
(planes), with adjacent matrices separated by one blank line.

CHARACTER

As with character vectors, the output of character matrices and
character arrays contains no extra spaces or other separators

intervening between the elements of each line of output.

3-7 AK95-02

Furthermore, APL keeps trackof the cursor position -~ the column

position of the typing element -~ even when printing imbedded
carriage-motion characters -- space, backspace, tabulate,
carriage-return, linefeed, or newline -- and when printing escape

sequences in lieu of undefined characters. Therefore, output is
consistent with the JWIDTH setting. (The onlyexceptionoccurs when a
tabulate character is output while the physical or electronic tab
stops are set at intervals other than the current)T4ABS setting.)

NUMERIC

The output of numeric matrices and arrays is more complicated.

A consequence of this output format is that -- for many cases --
it is impossible to correctly determine the rank or shape of a value

merely by examining its printed display. When the shape of a value
must be known precisely, the shape operator P should be used to
explicitly extract its shape.

Examples of the output of values follow the discussion of value
input below.

INPUT OF VALUES

Character

A scalar or vector character value is input by typing the desired
character(s) between a pair of quote characters. If it isdesired to
represent a quote character itself, the quote must be typed as two
quotes. Thus, the input of a scalar character value representing a
quote consists of four quotes: two to delimit the value, and two to
represent the single quote being entered.

Newline, space, and any other APL character -- including those
constructed from overstrikes or escape sequences -- can be entered
between quotes. Note that the only carriage-motion characters that
can be input directly are newline and space. Due to the "visual
fidelity" rule, tabulate, carriage-return, backspace, and linefeed
must be input via an appropriate escape sequence.

A character produced by an overstrike or escape sequence is
considered a single element internally.

3-8 AK95-02

Numeric

A scalar or vector numeric value is input by typing the desired
numeric elements(s), separated by one or more spaces or tabs. Numeric
values do not require any explicit delimiting character, as do
character values., 1Instead, the delimiting is implicit: anything
that cannot be interpreted as a numeric element -~ according to the
prescribed rules -- is considered to delimit the numeric value.

The rules for forming a valid numeric element for input are as
follows:

- Elements are delimited by "white space" -- one or more
spaces and/or horizontal tabs -- and by anything which
delimits a numeric value. Therefore, "white space™ cannot
be part of a numeric element.

- Only the following characters are valid:
0123456789 . E

- A digit string is defined as acontiguous string composed of
the decimal digits:

0123458672839

- The first character of the numeric element must not be the
letter E,

- The element must be of the form, -ds1.ds25-ds3, where:
o] The first (leftmost) overbar ~ is optional, and is
punctuation -~ not an operator -- indicating that the
element is negative.
o ds1, ds2, and ds3 are digit strings.

o) ds1 and ds2 can be of any length -- including =zero.

ds1 and ds2 cannot both be of zero length.
g

O

o] The dot . 1is optional, and is punctuation -- not an
operator -- indicating the position of the decimal
point.

o The construct £ ds3is optional, and is punctuation --
not an operator -- indicating the use of a decimal

exponential multiplier. Within this construct: ds3
and £ are required; ds3 must have either 1 or 2 digits;
the overbar 1is optional, and is punctuation -- not an

3-9 AK95-02

operator -- indicating that the decimal exponent is
negative.

The way in which a number is typed does not matter; for example,
all the following inputs result in theé very same internal value:

7 0067.00 .0

~3
(@)
(]
@]
(5]
w
~1
L]
~J
[
L]
(]
5]
}_.\
~1
Gy
(o0
.

Matrices and Arrays

A value of rank higher than one cannot be input directly. Sucha
value must be constructed by entering its elements as a vector, and
then using the reshape operator -- dyadic p -- to reshape it to the
desired dimensions, filling in the supplied elements in row-major
order.

For example, the input 23p 123 4 56 1is an expression whose value

is a 2 by 3 matrix of integers from one to six; the first row is 1 2 3;
the second row is 4 5 6,

OPERATORS .

Every APL operator has the following properties:

- It is graphically represented by exactly one printable,
fixed -- not user-definable, nonalphanumeric symbol.

- Its action 1is fixed: users cannot "customize" APL
operators,

- Exactly one of the following cases is true:

a) It takes exactly one argument -- an APL value.

b) It takes exactly two arguments.

- It returns exactly one explicit result -~ an APL value --
unless an error is detected.

- The result is passed out of the operator and made available
for use as an argument to the next operator,
pseudo-operator, function, system function, or composite
operation.

A~ 3
nw inm

plic sult is produced (e.g.: a change in the
wor kspace envir

s

3-10 AK95-02

- If an error is detected, all execution terminates, no
result is produced, and all arguments and intermediate
values are discarded.

An operator taking one argument is said to be monadic and is
always written before -~ to the left of -~ its argument. An operator
taking two arguments is said to be dyadic and is always written between
its left and right arguments.

Scalar Operators

A scalar operator is one which is defined in terms of its action
when given scalar arguments.

With certain broad restrictions, scalar operators can take
nonscalar arguments. However, the scalar operation isstill defined
only in terms of its action on individual elements of its arguments:
the elements are effectively taken one at a time, independently of
each other.,

In other words, a scalar operator applied to nonscalar arguments
merely extends its action to each individual element of its arguments.

This is in contrast to a mixed operator, which effectively
accepts entire values as its arguments, and which per forms some action
on whole values at once: an action in which the individual elementsof
its arguments cannot be considered independently of one another.

Examples of scalar operations include: addition, subtraction,
logical AND, and logical OR (dyadic); also: absolute value,
reciprocal, and factorial (monadic).

Examples of mixed operations include: reshaping and
concatenation (dyadic); also: matrix transposition, matrix
inversion, and sorting (monadic).

EXTENSION TO NON-SCALAR ARGUMENTS

Monadie

If a monadic scalar operator 1is applied to a nonscalar, the
result is a value of identical rank and shape, and each element of the
result 1is computed by applying the scalar operator to the
corresponding element of the argument.

3-11 AK95-02

For example, if gis anumeric vector of six elements, then ;gis a
numeric vector of six elements, each element being the reciprocal of
the corresponding element of the argument vector.

Dyadic

If a dyadic scalar operator 1is applied to two arguments of
identical rank and shape, then the result is a value of the same rank
and shape, and each element of the result is computed by applying the
operator to the two corresponding elements of the two arguments.

For example, two identical 1length vectors can be added,
element-by-element: 16 "2 137 29+1 14 194 “egives theresult 1712
"6 11 23.

If a dyadic scalar operator is applied to two arguments that fail
to match in rank and shape, but exactly one of the arguments consists
of just one element, then that single element is considered to be
replicated (extended) to the rank and shape of the other argument, and
the operator proceeds element-by-element as above,

In other words, the single element participates with each
element of the other argument in turn, producing aresult identical in
rank and shape to the other argument.

For example, if Ais a2 by 3 matrix of integers, then 6+41is a 2 by
3 matrix of integers, each of which is six greater than 1its
corresponding element in A: the single element 6 is applied
independently to each of the elements of A.

If both arguments consist of just one element -- any dimension
extents must equal unity, then the rank of the result is arbitrarily
taken as the larger of the two arguments' ranks.

For example, if 41is a 1 by 1 numeric matrix (rank 2) and B is a
one-element numeric vector (rank 1), then 4+B is a 1 by 1 numeric
matrix containing the appropriate sum.

If the two arguments do not match in rank and shape, and if
neither argument consists of just one element, then the operation is
in error: clearly, no general, unambiguous correspondence of the
type described above can be established between the elements of the
two arguments.

3-12 AK95-02

As a result, APL will suspend execution and issue a diagnostic
message: RANKERROR if the two arguments do not match in rank; LENGTH
ERROR if theymatch in rank but some corresponding pair of dimension
extents do not match.

General error reporting and possible recovery actions are
discussed in detail later in this section.

GENERAL PROPERTIES OF SCALAR OPERATORS
In addition to the above outlined properties that every APL
operator has, every scalar operator has the following properties:
- Exactly one of the following is true:
a) Its arguments must be numeric.

b) Its arguments can be of any type; the operator is
either = or #, both of which are dyadic.

- It ignores the type of empty arguments,
- Its result is numeric.

- Its result has exactly the same rank and shape as at least
one of its arguments; the rank and shape of the result is
completely determined by that of its arguments and thus is

independent of the individual data elements contained
within its arguments.

- It is a function, in the mathematical sense -- as opposed to
a relation: each element of its (possibly extended)
arguments maps onto exactly one element of its result.

General Properties of Monadic Scalar Operators

In addition to the above outlined properties that every scalar
operator has, every monadic scalar operator has the following
properties:

- Tt

takes exactly cne ar

N
gument.

- Its graphic symbol must be the first printable character to
the left of its argument.

- Its argument can have any rank and shape.

- Its argument must be numeric.

3-13 AK95-02

- It detects only DOMAIN ERRORS.

- Its result has exactly the same rank and shape as its
argument.

- Each element of its result is computed by applying the
operator to the corresponding element of its argument,

ﬂannnaT Dr A
ARy e iLs W

18t ertie

e Af Nuadin Sno'l ~rr f'\newai-nna
LT 0 Vi Ly A\ L~ aL at vpet vV o

In addition to the above outlined properties that every scalar

operator has, every dyadic scalar operator has the following
properties:

- It takes exactly two arguments.

- Its graphic symbol must be the only printable character
between its two arguments.

- Its two arguments must be scalar conformable, which is
defined as follows:

0 Exactly oneof its two arguments can have any rank and
shape.
o] Exactly one case from the following exhaustive set of

mutually exclusive cases must be satisfied:

1 Neither argument has exactly one element; the
arguments must have identical rank and shape.

2) Exactly one argument has exactly one element;
that argument can have any rank, and the other
argument can have any rank and shape.

3) Each argument has exactly one element; each
argument can have any rank.

- It detects only the following errors, in the order given:
RANK, LENGTH, DOMAIN, and COMPATIBILITY.

- The rank and shape of its result are determined by whichone
of the above scalar conformability cases is satisfied:

1 Its result has exactly the same rank and shape as its
arguments.

2) Its result has exactly the same rank and shape as the
nonsingle-element argument,

3-14 AK95-02

3) Its result has exactly the same rank and shape as the
argument with the higher rank.

- The individual elements of its result are computed using a
method determined by which one of the above scalar
conformability cases is satisfied:

1) . Itsresult iscomputed element-by-element by applying
the operator in a scalar fashion to the pair of
elements that occupy the corresponding position in
the arguments.

2) Itsresult iscomputed by first considering the single
element to be replicated to the rank and shape of the
nonsingle-element argument, and then using rule (1)
above by substituting the now extended argument for
the single-element argument.

3) Its result is computed by treating the two arguments
as scalars.

- Its result is scalar conformable to both of its arguments.

ADD, SUBTRACT, MULTIPLY, DIVIDE + - x ¢

When used dyadically, + - x and % represent the arithmetic
operations of addition, subtraction, multiplication, and division.

Unlike some programming languages that truncate quotients of
integers to an integer, APL retains the fractional part of a quotient
as accurately as the hardware permits -- approximately 19 decimal
digits.

A DOMAIN ERROER occurs when dividing by zero, except for 030,
which isdefined to equal 1. A NONCE ERRORoccurs when theresultofan
operation exceeds the capacityof the hardware to represent numbers --
the largest magnitude representable is 1.70141183L534692317F38.
Nonce errors are due to limitations of the implementation, not to some
misuse of the APL language itself.

The divide operator uses integer fuzz to determine whether or not
its left and/or right arguments are "effectively" -- that is, "fuzz
equal to" -- zero.

PLUS, NEGATIVE + -

Monadic +leaves its numeric argument unchanged. A DOMAIN ERROR
occurs if a character argument is given.

3-15 AK95-02

Monadic - represents negation; that is, algebraic change of sign
of its argument.

SIGNUM x
Monadic xrepresents the mathematical signum operation; that is,

it returns a 11if its argument is greater than zero, O0if its argument
is zero, and 1 if its argument is less than zero.

Signum uses integer fuzz (value of UCT) to determine whether or
not its argument elements are "fuzz equal to" =zero.

RECIPROCAL *
Monadic #returns thereciprocal of its argument. A DOMAIN ERROR

occurs if an element of its argument is within the integer toleranceof
zZero.

POWER, LOGARITHM * @

is expressed in APL B*N. 1is expressed as BeN, Note that the base is
the left argument for both operators.

If the base is omitted (monadic usage), then the base of the

natural logarithm -- e = 2.7182818}?8459045... -- is used., Thus, *1
is e itself; *X is the same as e”; and ®X is the same as 1ln x.

There is no square-root or cube-root operator in APL; the power
operator is used to perform these operations. For example, the square
root of A can be expressed as A4*0.5,

Since APL does not handle complex numbers, any attempt to extract
an even root of a negative number results in a DOMAIN ERROR.

The indeterminate case 00 defined to equal 1.

RESIDUE |

Dyadic | represents themodulo operation: BN isread "Nmodulo
B" or "the Bresidue of N." It isdefined as the remainder left after B
is divided the maximal integral number of times into N, (Note the
order of the arguments: the left argument is the divisor and theright
argument is the dividend.)

3-16 AK95-02

More precisely, if ¥ is not 0, then an integer quotient @ is
chosen so that the remainder #~¥-(gxB) 1s the smallest possible
nonnegative remainder -- that is, greater than or equal to 0, but
strictly less than the absolute value of B; this remainder is the value
of BIN. '

If B is 0, then § itself is the value of B|WN.

MAGNITUDE |

Monadic | represents the absolute value of its right argument:
the algebraic sign of each element is changed to positive if it was
negative. Thus, the result is effectively the unsigned magnitude of
its argument.

Monadic ! represents the factorial function. For positive,
integer arguments !N is defined as the product of all positive
integers up to ¥, where ¥ is no greater than 33.82635 . For negative,
integer arguments the factorial function is singular and results in a
DOMAIN ERROR. For zero arguments, the result is defined to be 1. For
non-integer arguments, !4 represents the gamma function of 4-1.

The gamma function is computed over the range 0 to 1, to an
accuracy of 20 decimal places. Results for arguments outside this
range are computed using a recurrence relation.

Note that the factorial function is written before its argument,
not after it as in conventional mathematical notation. All APL
monadic functions precede their argument.

Dyadic ! represents the binomial coefficients function. For
non-negative, integer arguments K!¥ represents the number of ways
that KX different elements can be chosen from acollection of ¥objects.
For negative, or non-negative arguments is defined in terms of the
Gamma function, and generalized as before.

The cases of the binomial coefficents relation toc binomial
coefficients by the following identity:

BETA (A,B) <+ Bx<«A-1+!14+1

3-17 AK95-02

The mathematical notation for the binomial ccefficients
function is related to the APL notation as follows.

K
> KN
N

Table 3-1. Binomial Coefficients Function Special Cases

A B B-A A!B

0 0 0 (!B):(!4)!B-4

0 0 1 0

0 1 0 DOMAIN ERROR

0 1 1 (T1x4)=414-B+1

1 0 0 0

1 0 1 IMPOSSIBLE CASE

1 1 0 (T1%BxA)=(|B+1)! |4+1
1 1 1 0

In this table, a 1 indicates that the value of 4, B, or B-41is a
negative integer, and a 0 indicates that it is not.

The right-most column gives the expression that is used to
compute the result. The result of K!¥ is also equivalent to the Kkth
coefficient in the binomial expansion of (X+1)xN.

MAXIMUM AND MINIMUM T L

Dyadic [and | represent the maximum and minimum operations,

respectively. They are defined only for numeric arguments:
characters have no collating sequence in APL.

CEILING AND FLOOR T L

Monadic [and L represent the ceiling and floor operations,
respectively. Ceiling is defined as the algebraically smallest
integer greater than or equal to its argument; floor is defined as the
algebraically largest integer less than or equal to its argument.

3-18 AK95-02

‘ A number is considered equal to an integer if it is within a
certain tolerance of that integer. This tolerance is called integer
fuzz. Fuzz is discussed later in this section.

ROLL ?
- While dyadic ? is a mixed operator -- deal, monadic ?is a scalar
operator -- the random number generator -- named roll.
Its argument -- 4 -- must be a positive integer; itsresult is an

integer chosen randomly and uniformly from the set of integers 14.

(As explained later, the set 14 is a vector of 4 integers --
either 123... 4,0orelse012... A-1--depending upon whether the
index origin is set to 1or 0, respectively. (The index origin can be
changed with the)ORIGIN system command or the OI0 system variable.))

Generating Algorithm

The random number algorithm used by Multiecs APL 1is a
multiplicative congruential generator with period 34359738368. 1In
this algorithm, the seed used to produce each random number is a
function of the seed used to produce the preciocus one. In a clear
workspace, the starting seed is derived from the calendar clock, so
that the sequences of random numbers generated are unpredictable from
session to session.

If it is desirable to work with areproducible sequence of random
numbers, the user should explicitly initialize the seed with the ORL

system variable. The seed can be set to any integral value from 1 to
34359738367. The seed is properly remembered and restored by the
YSAVE and)LOAD system commands.

COMPARISON OPERATORS < < = z 2 >

The APL comparison operators are < < = # 2 and >. They
represent the mathematical relations of less-than,
less-than-or-equal-to, equal-to, not-equal-to,

greater-than-or-equal-to, and greater-than, respectively. The
comparison operators are all dyadic, and they all return the boclean
value 1 to signify "true", or the boolean value 0 to signify "false".

Arguments of < < > and > must be numeric -- otherwise, a DOMAIN
ERROR occurs.

3-19 AK95-02

Arguments of = and # can be numeric or character or both. A
number is considered not equal to a character; hence, in amixed-type
comparison, = always returns 0 and # always returns 1,

Two numbers are considered equal if they are within a certain
tolerance of each other., This tolerance is called fuzz. Fuzz is
discussed later in this section.

LOGICAL OPERATORS ~ A V A& ¥

~A vaand ¥ represent the logical operations NOT, AND, OR, NAND,
and NOR respectively. The NOT operator ~ is monadic; the other four
are dyadic. Both the arguments and the results of the logical

operators are restricted to the two boolean values 1 and 0, which
signify "true" and "false" respectively.

~4 is 1 if and only if 4 is 0.

AAB is 1 if and only if both 4 and B are 1.
AvB is 0 if and only if both 4 and B are 0,
AxB 1is 0 if and only if both 4 and B are 1.

if and only if both 4 and B are 0.

S

A¥B 1is

By virtue of their actions on arguments of 0 and 1, the six
comparison operators introduced above can also be used as dyadic
logical operators, with =representing EQUIVALENCE, #EXCLUSIVE OR, <

IMPLIES, and 2 IS IMPLIED BY. This gives APL the complete set of all
ten nontrivial dyadic logical operations.

A=B is 1 if and only if 4 and B are both 0 or both 1.
A<B is 1 unless A is 1 and B is 0,
#A>B is 0 unless 4 is 1 and B is 0.

A>B 1s 1 unless 4 is 0 and B is 1.

3-20 AK95-02

A<B 1is 0 unless 4 is 0 and B is 1.

CIRCULAR o

Dyadic circle 0 is used to generate the common trigonometric and
hyperbolic functions of its right argument. The left argument
determines which function is generated.

Angular values are expressed in radians.

704

< > arctanh 4

“604 <« + arccosh 4
“504 <« -+ arcsinh 4
“HOA « > (T1+4xA)*0.5
T304 <« » arctan 4
“204 <« =+ arccos 4
“104 <« + arcsin 4

004 « + (1-4x4)*0.5

104 <« » sin g

204 <« + C€OS 4

304 “« > tan A

4oA <« + (1+4AxA4A)*0.5

504 <« =+ sinh 4

604 <« + cosh 2

704 <« + tanh A

Any other left argument of O is a DOMAIN ERROR.

PI TIMES o

Monadic circle omultiplies its argument by (an approximation
of) the transcendental number i, For example, 04 is

Ax3, §1159265358979. .. The value of pi used by APL is accurate to 1 part
in 2

Mixed Operators

A mixed operator is one that must consider an argument as a whole,
rather than acting independently on its constituent elements. Each
mixed operator has its own rules about the rank and shape of arguments
it accepts. Like the scalar operators, some mixed operator symbols
can be used either monadically or dyadically, with some change in
meaning of the operation performed.

3-21 AK95-02

A few of the operator descriptions in this section make use of
subscript notation before it is formally introduced. That is, y[r]is
used to refer to the 7th element of the vector v, and M[I;J] is used to
refer to the I,Jth element of the matrix M. The subscripting
capabilityof APL is actually far more power ful than these simple uses
suggest, and is discussed at length under Lists later in this section.

SHAPE »

Monadic rho p is an operator whose return value is the dimension
vector, or shape of its argument. The type and element values of the
argument are ignored. The result of the shape operator is always an
integer vector.

The shape of a scalar (which has no dimensions) is an empty vector
(avector with length 0; i.e., containing no elements). The shape of a
vector is avector of length 1 (because the argument has one dimension)
whose element indicates the length of the argument. The shape of a
matrix (2 dimensions) is a vector of length 2, whose elements are the
extents of the two dimensions of the argument matrix. In general, the
shape of any value is avector of length equal to the rank, or number of
dimensions, of the value.

The shape operator can be applied to its own result to produce the
shape of the shape. Since the length of the shape is the rank of the
original argument, this is a way of obtaining the rank of any value.

RESHAPE »p

Dyadic rho p is the reshape operator., It forms a sequence of
elements into a specified shape. The left argument of reshape must be
a shape vector (a vector of nonregative integers). The elements of
the right argument are used to fill up avalue of the shape specified by
the left argument. The shape of the right argument is ignored.

If the result requires fewer elements than the right argument
provides, the excess elements are simply not used. If the result
requires more elements than the right argument provides, then the
elements of the right argument are repeated over and over, as many
times as are necessary to fill up the result.

The elements are extracted and packed in row-major order., That
is, the first elements treated are those 6f the first rowof the first
plane, followed by the second row of the first plane, and so on,
through the last row of the last plane.

3-22 AK95-02

If the result is to have any elements at all, then the right
argument of reshape must have at least one element; otherwise, a
LENGTH ERROR occurs,

RAVEL ,

Monadic comma , is the ravel operator. Ravel returns its
argument as avector by retaining all of its elements but ignoring its
rank and shape.

CATENATE , ,

The operation implied by the form A,[I1B is dependent upon the
subtype of the value of I: if I is an integer, then the operator is
catenate; if I is a noninteger, it is laminate.

Catenate joins two APL values along an existing coordinate: 1its
two arguments are combined to form itsresult by placing them "next to"
each other, along a coordinate specified by the origin-dependent
coordinate index I -- if given, or along the last dimension of the
higher-ranked argument -- if the form 4,B is used.

The conformability requirements of catenate are quite complex,
yet are as unrestrictive as is reasonably possible, and are in
practice more easily mastered than those of some other, seemingly
simpler mixed operators.

Since catenate is the only APL operator that performs the vital

operation of joining values along an existing coordinate, it is a
heavily wused operator in almost any application, and its

conformability requirements must therefore be thoroughly mastered.

Although these conformability requirements are discussed in
general later in this description, it is also useful -- for greater
clarity -- to present them in amore detailed, case-by-case framework,
as follows.

In the following discussions, it is assumed that the coordinate
index for the operation is available in the variable I, 1If the form
A,[I]1Bis used, Iis explicitly stated. If the form A,Bisused, then I
is taken to be (ppd)[ppB in YORIGIN 1 (" 1+(ppA)[ppB in)ORIGIN 0). If
the form A4, 1is used, I is taken to be 1.

3-23 AK95-02

Case 1: Two multielement arguments.

If both 4 and B aremultielement values, then the conformability
requirements are:

DOMAIN A and B must be of the same type;

INDEX I if s

LENGTH If 4 and B have the same rank, then their shapes must
match, except that their Ith dimension extents need
not be equal;

LENGTH If 4 and B have ranks that differ by exactlyone, then
their shapes must match, exceptthattheIthdlmen51on
extent of the higher-rank argument is disregarded
(for the purposes of this comparison);

RANK If 4 and Bhave ranks that differ bymore than 1, then a
RANK ERROR is repaorted,

The rank of the result equals that of the higher-rank argument.

If Aand Bhave the same rank, then the shape of the result matches
that of each argument, except that its Ithdimension extent is the sum
of the Ith dimension extents of the arguments.

If 4 and B have ranks that differ by 1, then the shape of the

result matches that of the higher-rank argument except that its Ith
dimension extent is 1 greater than that of the hlgher rank argument.

Case 2: One multielement argument; one single-element argument.

If one argument is a single-element value, while the other
argument is a multielement value, then the conformability
requirements are:

DOMAIN A and B must be of the same type;

INDEX I .- if specified explicitly -- must be in the set
1opMULTI_ELEMENT ARG;

The rankof the result equals that of the multielement argument .

W
|
no
=
Lo
>
)
w
1
]
t\D

The shape of the result matches that of the multielement
argument, except that its rth dimension extent is 1 greater than that
of the multielement argument.

Case 3: Two single-element arguments.

If both A4 and B are single-element values, then the
conformability requirements are:
DOMAIN 4 and B must be of the same type;

INDEX I -- if specified explicitly -- must be in the set
1(ppA)TppB.

The rank of the result equals that of the higher-rank argument.,

The shape of the result is such that all dimension extents equal
1, except the Ith, which equals 2.

Case 4: One single-element argument; one empty argument.

If one argument is a single-element value, while the other is an
empty value, then the conformability requirements are:

INDEX I -- is specified explicitly -- must be in the set
\ppEMPTY ARGUMENT.

The rank of the result equals that of the empty argument.

The shape of the result equals that of the empty argument, except
that the rthdimension extent of the result is one greater than that of
the empty argument.

The type of the result depends upon the number of elements in the
result, and may depend upon the argument order:

if the result is nonempty, then the type of the result matches
that of the single-element argument;

if the result is empty, then the type of the result matches that
of the right argument.

3-25 AK95-02

Case 5: One multielement argument, one empty argument.

If one argument is a multielement value, while the other is an
empty value,; then the conformability requirements are:

INDEX I -- if specified explicitly -- must be in the set:
1(ppA)TppB;

LENGTH If A and B have the same rank, then their shapes must
match, except that their Ith dimension extents need
not -- and will not -- be equal; or the empty argument
must be a zero-extent value.

LENGTH If the multielement argument has rank exactly one
greater than that of the empty argument, then the
empty argument must be a zero-extent value;

LENGTH If the empty argument has rank exactly one greater
than that of the multielement argument, then their
shapes must match, except that the Ith dimension
extent of the empty argument is disregarded (skipped
over); or, the empty argument must be a zero-extent
value.

RANK If Aand Bhaveranks that differ bymore than one, then
a RANK ERROR is reported.

The rank of the result equals (pp4d)[ppB.

If (ppd)=ppB, then the shape of the result equals that of the
multielement argument.

If,of the two arguments, the empty argument has the higher rank,
then the shape of the result is:
((I-1)+pMULTI_ELEMENT_ARG),1,(I-1)+pMULTI_ELEMENT_ARG.

If, of the two arguments, the multielement argument has the
higher rank, then the shape of the result equals that of the
multielement argument, except that the Ith dimension extent of the
result is 1 greater than that of the multielement argument. (This has
the effect of "creating data:" theresult has more elements than do the
two arguments. The extra elements reflect the type of the result:
they are zeros if numeric, or spaces if character.)

3-26 AK95-02

Case 6: Two empty arguments.

If 4 and B are nouh empty values, then the conformability
requirements are:

INDEX

LENGTH

LENGTH

RANK

I -- if specified explicitly -- must be in the set:
1(ppa)TppB

If Aand B have the same rank, then their shapes must
match, except that their Ith dimension extents need
not be equal; or, at least one argument must be a
zero-extent value

If Aand Bhave ranks that differ by exactlyone, then
their shapes must match, except that the Ith«dlmen51on
extent of the higher- rank argument 1is dlsregarded-
or, at least one argument must be a zero-extent value.

If Aand Bhaveranks that differ by more than one, then
a RANK ERROR is reported.

The type of the result matches that of the right argument.

The rank of the result equals (ppAd)lppB.

The shape of the result depends upon the type of conformability

achieved:

If 4 and B have the same rank, then

If the shapes of 4 and B -- excluding their Ith dimension
extents -- match, then the shape of the result matches that
of each argument except that the Ith dimension extent of
the result is the sum of the Ith dimension extents of the
arguments.

If at least one of the arguments is a zero-extent value,
then the shape of the result matches that of the other
argument -- which may or may not also be a zero-extent
value.

3-27 AK95-02

If 4 and B have ranks that differ by exactly one, then

If the shapes of 4 and B -- excluding the rth dimension
extent of the higher-rank argument -- match, then the shape
of the result matches that of the higher-rank argument,
except that the Ith dimension extent of the result is one
greater than that of the higher-rank argument.

If at least one of the arguments is a zero-extent value,

then:

if the higher-rank argument is a zero-extent value,
then the shape of the result matches that of the
lower-rank argument, except that a dimension extent
of 1 is inserted into the Ith position:

(pRESULT)=((I-1)4pLOWER_RANK_ARG) ,1,(I-1)+¥pLOWER_RANK_ARG).

if the higher-rank argument is not a zero-extent value
(but the other argument is), then the shape of the
result matches that of the higher-rank argument,
except that the Ith dimension extent of the result is
one greater than that of the higher-rank argument.
(Note that this may cause the result to be nonempty.)

General Rules for Catenate

TYPE:

Conformability:

Result:

RANK:

Conformability:

If both arguments are nonempty, then theymust be
of the same type.

If at least one argument is empty, then type is
ignored in determining conformability.

If both arguments are empty, or if the result is
empty, then the type of the result matches the
type of the right argument.

If at least one argument is nonempty, and if the
result is nonempty, then the type of the result
matches the type of the nonempty argument.

If neither argument is a single-element value,
then their ranks may differ by either 0 or 1.

If at least one argument is a single-element

value, +then rank 1s not <considered in
conformability.

3-28 AK95-02

Result:

SHAPE:

Conformability:

Result:

If neither argument is a single-element value,
or if both arguments are single-element values,
then the rank of the result matches that of the
higher-rank argument. (ppR)=(ppd)[(ppB)

If exactly one argument is a single-element
value, then the rank of the result matches that
of the nonsingle-element argument.

After meeting type and rank requirements -- if
any, two arguments are catenate conformable:

if at least one argument is a
single-element value; or

if at least one argument is a zero-extent
value; or

if their ranks match, then if their shapes
-- excluding their Ithdimension extents --
match; or

if their ranks differ by 1, then if their

shapes -- excluding the Ith dimension
extent of the higher-rank argument --
match.

If the argument ranks match, then the Ith
dimension extent of the result equals the sum of
the Ith dimension extents of the arguments.

If the argument ranks differ by 1, or if at least
ocne argument is a one-element value, then the Ith
dimension extent of the result is exactly one
greater than that of the higher-rank argument.

The other (non-IEE) dimension extents of the
result "match" those of at least one of the
arguments:

if the argument ranks match, then the
non-Ith dimension extents of the result
match the non-7th dimension of at least one
of the arguments;

3-29 AK95-02

if the argument ranks differ by 1, then the
non-Ith dimension extents of the result
match the non-IEE'dimension extents of the
higher-rank argument, and/or match all
dimension extents of the lower-rank
argument;

if the argument ranks differ bymore than 1,
then at least one argument is a
single-element value, and therefore:

if exactly one argument 1is a
single-element value, then the
non-Ith dimension extents of the
result match the non-Ith dimension
extents of the nonsingle-elements
argument;

if both arguments are single-element
values, then the non-Ith dimension
extents of the result all equal 1, and
therefore match the non-Ith dimension
extents of the higher-rank argument.

The following rules define which argument(s)
determine, supply, and therefore have dimension
extents that "match" the non-Ith dimension
extents of the result:

if at least one argument is a multielement
value, then each multielement argument
does;

if exactlyone argument is a single-element
value, then the other -- nonsingle-element
-- argument does;

if both arguments are single-element

values, then the higher-rank argument

does,

if both arguments are empty values, then:
if at 1least one argument 1is a
nonzero-extent value, then each
nonzero-extent argument does,

if both arguments are zero-extent
values, then both arguments do.

3-30 AKS5-02

(These rules define a hierarchy of precedence as
follows:

multieiement
. nonzero-extent values
empty
zero-extent value
single element

Notes:

With one exception, catenate does not discard data -- the result
usually has all of the elements contained in both arguments.

The exception: one single-element argument, one empty
argument; if (pEMPTY ARG)[I1#0or if the empty argument has more
than 1 dimension extent of zero (that is, (+/0pEMPTY ARG)>1),
then the result is empty. However, if (pEMPTY ARG)[IJ=0 and if
1=+/0=pEMPTY ARG, then the result is not empty, and is composed
soclely of the element supplied by the single-element argument.

With one exception, catenate does not create data -- the result
usually has no elements that are not found in the arguments,

The exception: argument rank difference of 1, lower-rank
argument is a zero-extent value; the Ith dimension extent of the
result is 1 greater than that of the higher-rank argument (All
other dimension extents match those of higher-rank argument.);
if this change causes the result to have more elements than has
the higher-rank argument, then additional elements are needed.
(In general, this is true unless the higher-rank argument is
empty and has a zero dimension extent that is not its Ith one.)
The additional elements are zeros if the type of the result is
numeric, or spaces if character.

LAMINATE A,[I]B

If 7is a noninteger, numeric, one-element value, then A,[I]B
represents laminate.

Laminate joins two APL values along a new coordinate: ifts two
arguments are combined to form its result by placing them parallel to
each other, creating a new coordinate whose dimension extent is 2.

3-31 AKS5-02

The placement of the new coordinate -- relative to the original
coordinates -- is specified by the origin-dependent coordinate index
I..ifgiven, (If Iisnot given, then the operator is laminate if and
only if both arguments are scalars, in which case I is taken to equal
.5; otherwise, the operator is catenate (above).)

However, since I is not an integer, it does not refer to an
existing coordinate. Rather, it specifies the coordinate(s) next to
which -- or between which -- the new coordinate will be placed.

For example (origin 1), for 4,[1.51B, the new coordinate is the
2nd coordinate of the result: [I. 1If 4 and B are equal length
vectors, then the result is a P4 by 2 matrix. If 4 and B are
identically shaped matrices, then the new coordinate is placed
between the 1st and 2nd (LI and [I) coordinates of the arguments; the
result is a Tp4)[11 Dy 2 by (p4)[2] array.

The conformability requirements of laminate are much less
complex than those of catenate, but are still about as general and
unrestrictive as is reasonably possible.

Like catenate, laminate is the only APL operator that performs
the vital operation of joining values along a new coordinate. Thus,
it is a commonly used operator whose conformability requirements
should be learned thoroughly.

Case 1: Two multielement arguments.

If Dboth arguments are multielement values, then the
conformability requirements are:

DOMAIN A and B must have the same type;
RANK A and B must have the same rank;
INDEX Imust be less than 1+ppA (ORIGIN 1) or ppA (ORIGIN 0);
INDEX I must be greater than 0 (ORIGIN 1) or ~1 (ORIGIN 0);
LENGTH A and B must have the same shape.

The rank of the result is 1 greater than that of each argument,

3-32 AK95-02

The shape of the result matches that of each argument, except
that a dimension extent of 2 is inserted, becoming the [7th dimension
extent of the result.

Case 2: One multielement argument; ohe single-element argument.

If one argument is a single-element value, while the other
argument 1is a multielement value, then the conformability
requirements are:

DOMAIN A and B must have the same type;

INDEX I must be less than 1+ppMULTI_ELEMENT_ARG (ORIGIN 1)
Or ppMULTI_ELEMENT_ARG (ORIGIN 0);

INDEX I --1if specified explicitly -- must be greater than 0
(ORIGIN 1) or "1 (ORIGIN 0).

The rank of theresult is 1 greater than that of themultielement
argument.

The shape of the result matches that of the multielement
argument, except that a dimension extent of 2 is inserted, becoming

the [Ith dimensi
Case 3: Two single-element arguments,

If both arguments are single-element values, then the
conformability requirements are:
DOMAIN A and B must have the same type;
INDEX I —- if specified explicitly -- must be less than
1+ppHIGHER _RANK ARG (ORIGIN 1) Or ppHIGHER _RANK_ARG
(ORIGIN 0);
INDEX I -- if specified explic

(ORIGIN 1) or i (ORIG

The rank of the result is 1 greater than that of the higher-rank
argument.

3-33 AK95-02

The shape of the result is such that all dimension extents equal
1, except the [Ith, which equals 2.

Case 4: One single-element argument; one empty argument.

If one argument is a single-element value, while the other
argument is an emptyvalue, then the conformability requirements are:

INDEX I must be less than 1+ppEMPTY ARG (ORIGIN 1) or
PPEMPTY ARG (ORIGIN 0);

INDEX I must be greater than 0 (ORIGIN 1) or ~1 (ORIGIN 0).
The type of the result matches that of the right argument.

The result is empty.

The rank of the result is 1 greater than that of the empty
argument.

The shape of the result matches that of the empty argument,
except that a dimension extent of 2 is inserted, becoming the f;EE
dimension extent of the result.

Case 5: One multielement argument; one empty argument.

RANK A and B must have the same rank;

INDEX Imust be less than 1+ppA (ORIGIN 1) or ppA (ORIGIN 0);
INDEX I must be greater than 0 (ORIGIN 1) or ~1 (ORIGIN 0);
LENGTH The empty argument must be a zero-extent value.

The rankof the result is 1 greater than that of themultielement
argument.

s
1 L1

The shape of the result matches that of the multielement
argument, except that a dimension extent of 2 is inserted, becoming
the FIEE dimension extent of the result.

3-34 AK95-02

Case 6: Two empty arguments.

If both arguments are empty values, then the conformability
re

requirements are: ‘
RANK A and B must have the same rank;
INDEX Imust be less than 1+ppd (ORIGIN 1) or ppA (ORIGIN 0);
INDEX I must be greater than 0 (0RIGIN 1) ©or ~1 (ORIGIN 0);
LENGTH A and B must have the same shape, or at least one must

be a zero-extent value.
The rank of the'result is 1 greater than that of each argument.
The type of the result matches that of the right argument.
The result is empty.

If at least one argument is a nonzero-extent value, then the
shape of the result matches that of each nonzero-extent argument,
except that a dimension extent of 2 is inserted, becoming the [Ith

1 3 £ +ha Acinnl
dimensicn extent of the result.

If both arguments are zerc-extent values, then the shape of the
result matches that of each argument, except that a dimension extent
of 2 is inserted, becoming the [Ith dimension extent of the result.

General Rules For Laminate

TYPE:

Conformability If both arguments are nonempty, then they must
have the same type.
If at least one argument is empty, then type is
ignored in determining conformability.

Result: If both arguments are empty, or if the result is

empty, then the type of the result matches that
of the right argument.

3-35 AK95-02

RANK:

Conformability:

Result:

SHAPE:

Conformability:

Result:

If at least one argument is nonempty, and if the
result is nonempty, then the type of the result
matches that of the nonempty argument.

If neither argument is a single-element value,
then their ranks must be equal.

If at least one argument is a single-element
value, then rank 1is not considered in
determining conformability.

If neither argument is a single-element value,
then therankof theresult is 1 greater than that
of each argument.

If both arguments are single-element values,
then therankof theresult is 1 greater than that
of the higher-rank argument.

If exactly one argument is a single-element
value, then the rank of the result is 1 greater
than that of the nonsingle-element argument.

After meeting type and rank requirements, -- if
any, two arguments are laminate conformable:

if at least one argument is a
single-element value; or

if at least one argument is a zero-extent
value; or

if their ranks match, then if their shapes
match.

The [Tthdimension extent of the result equals 2.
The other {(non-TIth dimension extents of the
result match those of at least one of the

arguments.

if at least one argument is a multielement
value, then each multielement argument;

if exactlyone argument is a single-element

value, then the other -- nonsingle-eliement
-- argument;

3-36 AK95-02

if Dboth arguments are single-element
values, then the higher-rank argument;

if both arguments are empty values, then:
if at .least one argument 1is a
nonzero-extent value, then each

nonzerc-extent argument;

if both arguments are zero-extent
values, then both arguments.

(These rules define a hierarchy of precedence:)

multielement nonzero-extent
empty
single element zero-extent
Notes:
With one exception, laminate dces not discard data -- the result

usually has all of the elements contained in both arguments.

The exception: one single-element argument, one empty
argument; the result will be empty, and therefore does not
contain the element from the single-element argument.

With one exception, laminate doces not create data -- the result
usually has no elements that are not found in the arguments.

The exception: one multielement argument, one empty
(zero-extent) argument; the result has exactly twice the number
of elements that the twoc arguments have, and therefore
additional, arbitrarily chosen elements are needed; these
elements are consistent with the result type: zeros if numeric,
spaces if character.

INDEX GENERATOR 1

Monadic iota 1 is the index generator operator. 1Its argument
must be aone-element nonnegative integer value. Theresultof 14isa
vector of integers of length 4, the first element of which is the index
origin (either 0 or 1), and succeeding elements of which are each one
greater than the preceding element.

The index origin can be changed with the)ORIGIN system command

5 =

or the [0 system variable.

3-37 AK95-02

INDEX OF

Dyadic iota 41Brepresents the index of the first occurrenceof B
in the vector A. The left argument of index of must be a vector, or a
RANK ERROR occurs. Theright argument can be avalue of any shape; its
elements are considered independently of one another. The shape of
the result is the same as that of the right argument.

As each element 1is selected from B, it is compared to the
successive elements of 4, starting with the first and proceeding until
a matchis found. If amatch is found, then the answer is the index of
the element that matched. If no match is found, then an index one
greater than the last (highest) index of 4 is returned.

The indices returned by index of follow the index origin. 1If the
index origin is 0, then the first element of 4 has the index 0, then
next is indexed 1, and soon. 1If the index origin is 1, then the first
element of A is indexed 1, the next 2, and so on.

Two numeric elements are considered equal if they are within a
certain tolerance of each other. This tolerance is called the
comparison tolerance, and is discussed later in this section.

If more than one element of 4 matches the element of B being
considered, the index of the earliest is returned.

If no element of A matches, then an index one greater than the
last index of A is returned; e.g., if Ahas seven elements, then 7 is
returned in origin 0 (because the elements of 4 are numbered from Q to
6), but 8 is returned in origin 1 (because the elements are then
numbered from 1 to 7).

TAKE, DROP + +

Take + and drop + are both dyadic operators that accept a vector
of integers V as left argument and any value 4 as right argument. oV
must equal ppd (except that a scalar Vis automaticallyreplicated to
the rank of 4).

The result of take V+4is to take, for eachdimension Iin the rank
of 4, the first (if V[I1>0), or the last (if V[IJ<0) |V[I]elementsof
that dimension, discarding the other elements.

3-38 AK95-02

The result of drop v+4 is to drop or discard the first (if
v{rl>o0) or last (if V[IJ<o0) |V[I] element of each coordinate 7T,
retaining the others.

For both take and drop, [V[I] need not be less than (p4)[I].

For take, if (|V[I])>(p4)[I] for some I, then either zeros or
spaces -- depending upon the type of the right argument -- are used to
fill out the result to the required dimensions.

For drop, if (|V[I])2(pAa)[1]for some 1, then all elements along
the 1th coordinate are dropped. (It is meaningless to speak of
dropplng more elements than actually exist.) That is, what is
actually performed is: ((xV)x(|V)Lp4)+4A. This makes the extent of
the Ith dimension of the result equal zeroc, and therefore the result is
empty.

For take, the result always has shape (pp4)plVv, which, for
non-scalar v (0zppV), is simply |v.

For drop, the result always has shape (p4)-(|V)Lp4, which, for
(v<pA)av20 (that is, nonnegative and within the dimension extents of
4), is simply (p4a)-v.

GRADE UP, GRADE DOWN J V¥

Grade up bA and grade down ¥ are the APL sorting operators. They
are both monadic, and accept any numeric array as argument (characters
have no collating sequence in APL -- hence they cannot be sorted.).

The result of h or ¥ is a permutation array (a value whose
elements are indices), identical in shape to 4, that orders the
elements of 4 to be monotonically nondecreasing or nonincreasing
along the last dimension of 4. This is, when the result of the grade
operator is used to subscript its argument, the result is found to be
sorted along the last dimension.

The sort preserves the original order of equal elements
r ade up nor grade down uses the comparison tolerance wh

ga
ng elements.

"‘50

en

"S(D

If 4 is a vector, then A[AA] is the elements of 4 sorted into
increasing order. If 4 is amatrix, then b4 is a permutation matrix

3-39 AK95-02

each row of which orders each row of 4 into ascending order, so
ALI;(bA)LI;]] is the Ith row of A4 sorted.

If a one-element nonnegative integer value in brackets follows
the grade operator, as MIJ4, then the value I is taken as the
coordinate index upon which to sort (instead of the last coordinate).
The coordinate index and the indices returned by the grade operators
follow the index origin. Thus, in 0-origin indexing, if Ais amatrix,
then A[1]4 is the same as M, while A[0]4 is the permutation matrix
which orders the columns of 4 into increasing order.

REVERSE ¢ e

Monadic dreverses the elements along the last dimension of its
argument, while monadic © reverses along the first dimension of its
argument. Like the grade operators, reverse accepts a bracketed
coordinate index; ¢[I]4and e[IlAreverses the elements of 4 along the
Ith dimension; where I is a one-element nonnegative integer value.
The coordinate index follows the setting of the index origin.

ROTATE ¢ e

Dyadic ¢ and e represent the rotate operators: ¢ rotates the
elements of its right argument along the last dimension while ©
rotates along the first dimension. ¢[I1and e[I]rotates along the
Ith dimension (coordinate index follows the index origin).

The left argument of ¢ and © specifies the amount of rotation as
follows: in A¢[I]Bor Ae[I]1B, Amust be an integer value withrankone
lower than that of B, or a 1-element integer value of any rank; each
integer specifies the number of positions to the "left"™ that the
elements of each corresponding "vector" of B along the Ith dimension
are to be rotated. T

Elements rotated off the end of a value re-enter it on the other
end.

Zero is a valid rotation (which results in no change), as are
negative numbers (whichresult in rotation to the "right"), as well as
verylarge numbers (whichmay have the effect of rotating the "vector"
through its starting position several times -- the interpreter avoids
performing the superfluous complete cycles).

If a one-element integer value is given for 4, then it is
replicated to the required shape; i.e., all "vectors™ of B along the
Ith coordinate are rotated by the same scalar amount,

3-40 AK95-02

"Left" and "right" here are used figuratively: theyrefer to the
direction of rotaticn when rotating along the last coordinate. For
example, if Bis amatrix, then 1B causes all rows of Bto berotated to
the left 1 position, whereas 18B causes all columns of Bto berotated
up 1 position. Thus, positive rotation is always in the directionof
Tower indices for that coordinate; that is, positive rotation moves

elements towards the first elements of that dimension (towards an
axis).

Similarly, "vector" is used locsely above to refer merely to a
set of linearly ordered elements, not to a complete and separate
value,

Conformability requirements are as follows: 1=X/p4 or

A) For A¢B: (pA)="1+4pB;
B) For AeB: (pA)=1+pB;

C) For A¢[I1Bor Ae[I1B: (pA)=((I-1)4pA),I+pB assuming that
ITerppB.

That is for any B, Acan be a single-element value; otherwise, p4A
must the same as pB, except that pA4 does not include the dimension
extent of the coordinate of B along which the rotation takes place.
Note that if A and B are rotate conformable; then they are also
catenate conformable.

TRANSPOSE &

Monadic @ is the ordinary transpcse operator. It reverses the
coordinate numbering of all coordinates of its argument: (p®4)=Qp4A,

Clearly, ®A4 has no effect if the rank of 4 is less than 2.

In dyadic transpose V®4, V must be a nonnegative integer vector
of length equal to the rank of 4, so that V[IJ corresponds to the Ith
dimension of 4. Then, dimension I of 4 becomes dimension VII] of the
result.

The dimension indices in V follow the index crigin.

3-41 AK95-02

It is not necessary that the integers in y be different: if two
or more integers of V are equal, then that dimension of the result is
composed of elements taken from the major diagonal crossing the
dimensions of 4 that map into it (If the involved dimensions of 4 are
not identical in extent, then the diagonal ends at the edge of the
shortest dimension.). For example, 1 184 is the ordinary major
diagonal of the matrix A4.

It is required, however, that all dimensions that will finally
appear in the result be specified somewhere in the vector V. That is,
the vector Vmust consist of the numbers from the index origin (which
is the number of the first dimension) through the highest element of V,
with some possibly repeated, but none missing. Or, stated in APL,
every member of 1[/V must be present at least once in V. (Or:
(WT/7)ev.))

Note that: (pV®R4)LVI1=pA4, and (pVRA)=(p4)[AV] if there are no
repetitions in Vv, otherwise, (pV®4)IVI1<pAa.

Monadic transpose is related to dyadic by: (84)=(di1ppa)QA.

COMPRESS / #

Compress is adyadic operator. In V/A, Vmust be a boolean vector
of length equal to the extent of the 1last dimension of 4. Theresultis
obtained by selecting (retaining) those elements along the last
dimension of 4 that correspond to a 1 in the vector V, and omitting
those elements that correspond to a 0,

That is, elements are retained whose last index matches the
index of a 1 in V; all other elements are "compressed out."

Thus, the result has the same rank as 4, and has the same
dimension extents except for the last, along which it has been
compressed.

In V#4, the operation is applied along the first coordinate:
elements areretained whose first index matches the index of a 1in V;
other elements are compressed out.

A bracketed coordinate index can be used to explicitly specify
the coordinate along which compression takes place: V#[IJ4 and
V/[I14 are equivalent. The coordinate index follows the index
origin.

3-U2 AK95-02

¥ can be a one-element boolean value of anyrank: if that element
is 1, then 4 is retained in its entirety; if it is 0, then the
appropriate coordinate of 4 is completely compressed cut, and the
result is an empty value. (All dimension extents remain unchanged,
except that of the coordinate along which the compression took place,
which becomes zero.)

EXPAND \ X

Like compress, expand is a dyadic operator requiring a boolean
vector as left argument. However, for expand, the number of 1's in the
left argument must equal that dimension extent of the right argument
that corresponds to the coordinate along which expand is applied.

The result of V\A4 (or Vx4 or Vx[IrlAaor V\[I]4) is obtained by
inserting in 4 either =zeros (if A is numeric) or spaces (if 4 is
character) in positions defined by V. 1'sin Vcorrespond to elements
of 4; 0's in V correspond to inserted elements.

The insertion 1is applied along the explicitly or implicitly
specified coordinate; the coordinate index follows the index origin.

As with compress, the result has the same rank as 4, and has the
same dimension extents, except for that of the coordinate that was
expanded.

Note that compress is the inverse of expand: A=V/V\A.

MEMBERSHIP €

The result of A4eBis a boolean value identical in shape to 4, with
1's corresponding to those elements of 4 that are found to occur
somewhere (anywhere) within B, and 0's for those elements of Athat are
not found in B. The shape of Bis irrelevant: Bmerelyrepresents a
collection of elements, and € determines which elements of 4 are
members of the collection and which are not.

A and Bcan be of any type, rank, and shape, and can differ in any
or all of these properties. Of course, if 4and Bare not of the same
type, the result will be all 0's: (pA)pO=A4eB.

Note that no errors are detected by membership.

3-43 AK95-02

ENCODE 7

ATB encodes each element of Binto its positional representation
in any one or more number systems, the radices being specified by the
numeric value 4. Eachelement of Arepresents theradix applicable to
the corresponding position in the representation being generated. If
therankof Ais 2or greater, then eachrowof Ais interpreted as a set
of radices for a single number system; each element of B is encoded
into all of the number systems represented by 4: all combinationsof
numbers and number systems are used.

The result is a value whose shape is the catenationof those of 4
and B,

DECODE 1

A1B is the inverse of encode. It accepts a numeric value 4
defining the radices of the positions in one or more number systems,
and a value B containing digits representing one or more numbers in
those systems. The result has rank 2 less than the sum of those of 4
and B: (ppAiB)="2+(ppA)+(ppB).

The shape of Amust equal the first dimension extent of B, unless
A is a one-element value, in which case A is reshaped to the
appropriate length.

To be meaningful, B must be of the form produced by encode.

DEAL 2

Though monadic ? is a scalar operator, dyadic A?B is a mixed
operator. 4 and B must be one-element integer values such that:
(0<4)A4<B. The result is avector of delements selected randomly and
without replacement from the set 1B, The effect is that of shuffling a
deck of B cards, and then dealing 4 of them.

The set 1Bconsistsof either the integers from 0to B-1, or from 1
to B, depending upon whether the index origin is set to Oor to 1
respectively.

Details of the random number generation algorithm used by the
deal operator can be found under "Roll", earlier in this section.

3-44 AK95-02

MATRIX INVERSE #

Monadic B is matrix inverse. In B4 the argument 4 must be a
numeric matrix or one-element value. If a matrix, it must have at
least as many rows as columns; otherwise a LENGTH ERROR results.

If Ais aone-element value, then (B4)=:4; that is, the result is
the ordinary reciprocal of A.

However, if 4 is a multielement value, then the result has the
shape (pHA4)=90p4; that is, the result has the same shape as the
transpose of 4. The elements of B4 are chosen to least-squares
best-fit the ordinarymatrix product of Aand HAto the identitymatrix
of order 14pA4 (the number of rows in 4). That is, if Xis the result of
B4, then the elements of X are chosen to minimize +/,((4-.xX)-I)*2
where I is the identity matrix.

If A is a squarematrix, then BAis the ordinarymatrix inverse of
A. If Aisover-square (more rows than columns), then Aisnot exactly
invertible, and BE4 is the least-squares best inverse. If 4 is
under-square, then @A results in a LENGTH ERROR.

If Ais a singular square matrix, then B4 yields a DOMAIN ERROR.

MATRIX DIVIDE H©
Dyadic @ is matrix divide. The result X of AEB is chosen to

least-square best-fit the matrix product of B and X to A, More
precisely, the elements of X are chssen to minimize +/,((V+.xX)-4)*2,

4 and B must be numeric values.

The shape and conformability requirements of matrix divide are
as follows:

1) If Bis a one-element value, then: Bcan have any rank; 4
can have anyrank and shape; the result has the same rank and
shape as 4; the result elements are computed using
division, AsB.
or

2) If B is a multielement value, then:

3-45 AK95-02

a) B must be a matrix, 2=ppB;

b) 4 must be a matrix or a vector, (ppd)el 2;

c) The first dimension extent of A and B must be equal,
(14pA4A)=14pB;

d? B must have at least as many rows as columns,
(14pB)21+pB; '

e) Violation of (a) or (b) yields a RANK ERROR;

f) Violation of (c¢) or (d) yields a LENGTH ERROR;

g) The result has the shape (pABB)=(1+4pB),1+p4;

h) the result is the x/1+p4 sets of least-squares best
solutions in 1+pB unknowns to the x/1+4p4 sets of 1+4pB
linear equations in 1+pB unknowns.

I-BEAM 1

I-beam r is a monadic operator that accepts as argument a
one-element integer value whose element is chosen from a small set.
The result is the value of some system dependent parameter, which
particular one being selected by the argument.

All times are in sixtieths of a second; all results are scalars,
integers, except X27. The results are defined as follows:

19 The real time since this instance of APL was invoked.

¥20 The time of day.

I21 The CPU time used since this instance of APL was invoked.

I22 The amount of workspace remaining available to be used, in units
of 9-bit bytes (i.e., four times the number of words).

This number reflects the fact that a Multics APL workspace can
be many segments in size. However, since any single APL value
must fit wholly within one segment, it is possible for some APL
expressions to cause errors even when I-beam 22 is returning
large values. For example, it is impossible to create a
2,000,000 character item, even in a workspace with millions of
characters of space available.

I23 The number of Multics users currently logged in.

I24 The time of day that this instance of APL was invoked.

125 The date, as a 6-digit integer, MMDDYY.

126 The first element of I-beam 27 (or 0 of I-beam 27 is empty).

r27 The vector of statement numbers in the state indicator, most
recent first. An element of 0 corresponds to pending evaluated
input () entries in the state.

3-46 AK95-02

FORMAT ¥

Monadic format v converts numeric arguments to character form,
and returns character arguments unchanged. The result has the same
appearance, when displayed, as that of the argument. The result is
formatted using the same rules as numeric output, but this result is
explicitly available, instead of being printed,

The rank of the result is a vector if the argument is a scalar.
Otherwise, the result has the same rank as the argument. The lengthof
each dimension of the result, except the last, is the same as the
corresponding dimension of the argument. The length of the last
dimension 1is equal to the number of columns in the printed
represenation. Each element of the argument generally takes several
columns to print.

The result never has a trailing column of blanks. If theresult
is avector, it will not have any leading blanks, either. Eachcolumn
of numbers is formatted independently, so that each column in the
result occupies as few characters as possible., The width of each
column is chosen so that only one blank separates adjacent columns.,

The value of OPP is used to determine the number of digits
printed. The printing width, 0OPW, is considered to be infinite.

O
v

of APL to another, so u
format.

.
(
T
S
b
<

el

Dyadic format P converts numeric arguments to character form
under the control of the left argument, and does not accept character
arguments. In the general case, the left argument contains one pair
of values ("format pair") for each column in the right argument. Each
format pair controls the spacing, type, and precision of one columnof
the result.

The right argument to format is the numeric value to be
converted. It may have any rank and shape. A scalar is considered to
have one column, a vector has asmany columns as elements, and an array
has as many columns as the length of its last dimension. The left
argument to format can be a scalar integer, a pair of integers, or as
many pairs of integers as columns in the right argument.

3-47 AK95-02

The rank of the result is a vector if the argument is a scalar.
Otherwise, the result has the same rank as the argument. The lengthof
each dimension of the result, except the last is the same as the
corresponding dimension of the argument. The length of the last
dimension depends on the values specified by the format pair.

Each format pair controls the conversion of one column of values
from the right argument into one field of successive columns of
characters in the result. If only one format pair is specified, it
applies to all columns.

The first element of the format pair specifies the field width.
This is the total number of characters each value occupies. All
values areright-aligned in their fields. 1If a field widthof zero is
specified, a default width is chosen such that exactly one blank
separates the longest number from the neighboring column.

If onlyone format pair is specified, a field width of zero causes
the default width to be the same for all columns, otherwise the default
width is computed only for the specific column.

The field width can be from 0 to 255, inclusive.

The second element of a format pair specifies the type and
precision of the formatted value. The sign of the second element
specifies the type (negative for exponential, or scientific, form;
zero for integral form; positive for fixed decimal form). The
absolute value of the second element specifies the precision. This is
the number of significant digits in scientific form and the number of
decimal places in fixed decimal form. If a single element is
specified as the left argument to format, it is taken as the precision,
and a default field width is used.

The precision canrange from 1 to 19 for scientific form, and from
1 to 57 for fixed decimal form. A O indicates integral form.

There is no requirement that ablank be 1left between fields if the
field width is specified explicitly -- thus boolean values may be
tightly packed, for example. If a formatted value will not fit in the
specified field width, a domain error occurs.

3-48 AK95-02

Notes

Values are formatted by converting from binary to decimal,
rounding the decimal value to either the specified number of digits,
to an integer, or to the specified number of decimal places, and then
converting the decimal value to character form. Decimal values are
precise to 19 digits before rounding. Since small negative numbers
can round to zero, the sign of the original value can be lost.

Bothmonadic and dyadic format reserve three character positions
in exponential form for the sign of the exponent and two digits, even
though only one of them may be needed. Trailing blanks are added, as
necessary, so that columns ofvalues are aligned by the decimal point.
No decimal point is produced if only one significant digit 1is
requested in exponential form.

Format produces a leading zero in fixed decimal form if the
absolute value of the decimal value is less than one. Monadic format
suppresses trailing zeros, and any trailing decimal point, in fixed
decimal form. Dyadic format never suppresses trailing zeros.

COMPOSITE OPERATIONS

Composite operations use scalar operators to perform very
frequently used operations that would otherwise require a host of
complex and time-consuming user-supplied functions. In a few
Keystrokes, they define operations that would require 100 to 1000
keystrokes to define otherwise. And, they can perform these
operations 100 times faster than an equivalent APL function.

APL has four composite operations: reduction, scan, outer
product, and inner product. Syntactically, they all behave like
operators, reduction and scan being monadic, and outer and inner
product being dyadic. Furthermore, they all use scalar operators in
both their definition and printed representation. However, they do
not behave like scalar operators; they behave like mixed operators.

For all composite operations, the following are true:

- It is syntactically equivalent to an operator.
- It is defined only with scalar operators.

- One or two scalar operators are present in its printed
representation; the same number are used in its definition.

3-49 AK95-02

- Its elemental domain 1is determined by those of the scalar
operators used in its definition.

- Its rank, shape, and conformability requirements are
determined by the operation (reduction, outer product, inner
product), not by the operators.

REDUCTION ©/ o#f

Reduction is a composite operation consisting of a slash /
preceded by the symbol of any standard APL dyadic scalar operator.
For example, plus-reduction is +/ and maximum reduction is [/.
(Scalar operators are described under "Scalar Operators", earlier in
this section.)

When it is necessary to discuss reduction in general, it will be
shown as ©/ with the understanding that the ® symbol, which has no APL
meaning, stands for the symbol of any dyadic scalar operator.

Reduction behaves like a monadic mixed operator: it accepts a
single argument, aright argument. The argument can have any rank and
shape.

When applied to a vector argument, the result of ©/Vis the same
as placing the scalar operator © between each adjacent pair of
elements of V. For example, if Vis a four-element numeric vector,
then +/Vis the same as V[1]1+V+[2]+v[3]+vV[u4]. (The subscripts are in
1-origin indexing.) Thus, the plus-reducing of V is the sum of the
elements of V, returned as a scalar.

If the argument of reduction is an empty vector, theresult is the
identity element for the scalar operator involved, if it has one;
otherwise, it is a DOMAIN ERROR. 1ldentity elements for the dyadic
scalar operators are shown in Table 3-2.

3-50 AK95-02

Table 3-2. 1Identity Elements for Dyadic Scalar Operators

Operator Identity
Name Symbol _®/720
add + 0
subtract - 0 (right)
multiply x 1
divide 3 1 (right)
power * 1 (right)
logarithm @ none
maximum r T1.701411834604692317E38
minimum L 1.701411834604692317F38
residue | 0 (left)
combinations ! 1 (left)
circular o none
and A 1
or v 0
nand & none
nor v none
less < 0 (left,boolean)
less-equal < 1 (left,boolean)
equals = 1 (boolean)
not-equal z 0 (boolean)
greater-equal 2 1 (right,boolean)
greater > 0

(right ,boolean)

If the argument of reduction is a scalar,; it is treated as a
one-element vector. The result of reducing a one-element vector is
always simply the single element itself, returned as a scalar, if in
the domain of the reducing scalar operator. (+/'X' yields a DOMAIN
ERROR.)

If the argument of reduction is a matrix or array, then the
reduction is along the "vectors' that form the last dimension of the
value. The result has rank one less than the argument, and has the
same shape as the argument, except for the disappearance of the
reduced-over last dimension.

Reduction can be performed along coordinates other than the
last: o#f4 signifies e reduction along the first cocordinate of 4,
©/[I]A and ©#[I]A4 signify reduction along the Ith coordinate of A4,
where I is a cne-element value whose element is among the set 1ppA.
(Coordinate index follows the index origin.)

In general, the result has rank one less than that of the
argument, and has the same shape, except for the disappearance of the
reduced-over dimension.

3-51 AK95-02

The exact order in which the repeated scalar operations of a
reduction are performed is sometimes of consequence -- it is not in the
case of plus-reduction -- but is in the case of minus-reduction.

For example, if V is a four-element vector, ~-/V gives
Vi11-(v[2]-(v[3]1-vI[ul)) which is different in value from
((vL1l1-vi21)-vI31)-vLul.

The rule is that the operations are performed in right-to-left
order; i.e., the first operation performed is the rightmost one, and
the result of that operation becomes the right argument of the next
operation to the left, and so on. As discussed under "Right-to-Left
Rule", later in this section, this is the same interpretation given to
V[{1]1-v[2]1-v[3]1-v[u] if it were typed directly,

SCAN o\ oX

Scan is a composite operator consisting of a backslash \preceded
by the symbol of any standard APL dyadic scalar operator. For
example, plus-scan is +\ and maximum-scan is [\,

As with reduction, the form ®\indicates that the discussion can
be generalized to any dyadic scalar operator scan.

Like reduction, scan behaves like a monadic mixed operator,
accepting a single, right argument. Also 1like reduction, the
argument can have any rank and shape. Unlike reduction, scan
preserves the structure of its argument; that Is, the resultof a scan
has the same rank and shape as its argument, without exception.

When applied to a vector argument V, the result R of ©\V is
defined as follows (origin 1): RI[IJ=0/ItV for each IeipV. That is,
RC11=v[1]1, R[2]=0/24V, R[3]=0/34V, ..., and R[pV]=e/V. For example,
1 36 10 15 21 28 = +\17. Thus the plus-scan of ¥V is the vector of
cumulative sums of the elements of V.

Unlike reduction, if the argument of scan is an empty vector, the
result is an empty vector; no identity elements are involved,

Like reduction, if the argument of scan is a scalar, it is treated
as a one element vector, except that the result is a scalar, not a
one-element vector,

3-52 AKS5-02

Like reduction, if the argument of scan is amatrix or array, then
the scan is along the "vectors"™ that form the last dimension of the
value. Theresult always has the same rank and shape as the argument.

Like reduction, scan can be performed along coordinates other
than the last: ©XA4A signifies ® scan along the first coordinate of 4;
o\[I]4 and oX[I]4 signify scan along the Ith coordinate of 4, where I
is a one-element value whose element is among the set 1ppA.

Note the following relationships (4 is boolean):

(~<\~4)=<\4 (~<\~4)=<\4
(~A\~4)=V\4 (~v\~4)=A\A
(x\4)=A\4 (L\4)=A\4
(M\4)=v\4 (I\N4)=<\4

All scan relationships hold for reduction.

OUTER PRODUCT »eo.®

Quter product is acomposite operation consisting of the symbols
o and . followed by the symbol of any standard APL dyadic scalar
operator. When outer product is discussed in general, it is shown as
0.@.

Outer product behaves like a dyadic mixed operator, accepting
two arguments, right and left. Each argument may have any rank and
shape.

The elemental domain of ocuter product (i.e. valid type and
element values) depends upon the particular scalar operator in use.

The result of outer product always has rank equal to the sum of
the ranks of its arguments, and has shape equal to the catenation of
the shapes of its arguments. That is, A¢.@®Bhas rank (pp4d)+ppB, and
shape (p4),pB.

-1
T

The elements of the result of 40,5 are computed by applying the
operator ©to every ABpairwise combination of the individual elements
of 4 and B, taken in row-major order.

3-53 AK95-02

Inner product is a composite operation built up out of any
standard APL dyadic scalar operator, followed by a dot ., followed by
another dyadic scalar operator. When inner product 1is being
discussed, in general, it is shown as eo.e,

Inner product behaves like a dyadic mixed operator, accepting
two arguments, right and left. In 4®.eB, the last dimension extent of
A must equal the first dimension extent of B.

If 4 and B are both vectors, then the result of Ae.eB is a scalar
whose value is ©/4eB. This is, the elements of 4 and B are passed as
arguments to the ® dyadic scalar operator, and the result vector is
reduced with the © operator to form a scalar result.

More generally, if 4and Bare of higher rank, then each "vector"
forming the last dimension of 4 (there may be many of them, as
determined by the preceding dimensions of 4) is paired with each
"yector" forming the first dimension of B (again, there may be manyof
them, as determined by the succeeding dimensions of B) to form a single
element of the result, just as in the vector-vector case. (The two
vectors are passed as arguments to the @ operator, and the result
reduced with the © operator.)

Every possible 4B pairwise combination of the "vectors" of 4 and
B is formed in this way, and yields one element of the final result.

Note that the elemental domain is determined only by that of the @
operator. However, the range of the @ operator must be in the domain
of the ®© operator. For example, '"ABCD'=,='AACC' works, but
YABCD'+.='4ACC"' yields a DOMAIN ERROR.

The result of Ae.8B has shape equal to the catenation of the
shapes of its arguments, except that the last dimension extent of 4,
and the first dimension extent of B, are missing (these two dimensions
are lost in the reduction process).

EXPRESSIONS

An expression is any valid combination of APL symbols which, when
executed, produces exactly one explicit result: an APL value.

Expressions may be of any length, and may produce any number of
implicit results.

3-54 AK95-02

Right-to-Left Rule

In every APL expression, each operation (operator, composite
operation, function, system function, and pseudo-operator) takes --

for 1its right argument -- the value produced by the entire
subexpression to its right, and takes for its left argument -- if it
requires one -- the value immediately to its left.

Thus, in every APL expression, the first operation to be
performed is the right-mocst one; theresult of that operation becomes
the right argument for the next operation to the left; its result is
passed to the next operation to the left, and so on.

Operation precedence 1is therefore positional, rather than
attributive (as in algebra, and most other programming languages).
This may seem unusual at first, but the large number of APL operators
would render almost any attributive precedence scheme unworkable.
Thus, positional precedence is a natural choice. The selection of
right-to-left ordering is due to monadic operations taking of right
arguments rather than left arguments. (Left-to-right ordering could
have been chosen as well, so long as all monadic operations were
defined to take only left arguments.)

Subexpressions

A subexpression is an expression that is part of a larger
expression.

Note that a subexpression need not preserve the meaning of its
containing expression, and therefore need not be delimited.

3-55 AK95-02

For example, the expression 1+2,3pu+12 contains the following
subexpressions,

2,3
1+2
3pk
1+2,3
2,3pl

and more, all of which are inconsistent with the intent and meaning of
their containing expression, since they vioclate its syntax. For
example, 3pu4 violates the syntax of the original expression because
the 4 is the left argument of the rightmost add + in the original
expression, yet is used as the right argument of reshape p in this
subexpression; the intended right argument to reshape p is UuU+12,
Similarly, 1+2 has the 2 as right argument to add +, whereas the 2 is
the left argument to catenate , in the containing expression; the
intended right argument to this add + is the implicit subexpression
2,3pu4+1 2.

Implicit Subexpressiocns

An implicit subexpression is a subexpression that is delimited
implicitly -- that is, due to APL syntax -- rather than explicitly --
such as with parentheses -- and therefore preserves the meaning of its
containing expression.

Every APL expression consisting of at 1least one operation
contains at least one implicit subexpression.

For example, the expression 1+2,3pu4+12 contains only the
following implicit subexpressions, in order of increasing length:

2

12

L+12
3p4+12
2,3p4+12

The following are not implicit subexpressions of this
expression, since their argument associations are inconsistent with
those defined by the syntax of the original expression:

3pk

2,3

1+2
1+2,3
1+2,3pk4

3-56 AK95-02

Explicit Expression Delimiters ():[1m:¢

Eight characters explicitly delimit APL expressions when
outside of character constants:)l e . Each has one or more
special meanings associated with it, which are explained below.

Two "characters"™ implicitly delimit APL expressions: bol
("beginning of line") and eol ("end of line").

Explicit Subexpressions

An explicit subexpression is a subexpression that isexplicitly
delimited byone of the following eleven pairsof explicit expression
delimiters;

% we we we M we we 7SI
D Ldee ~ree ve LN

<&

or by one of the two pairs bol ; or ;eol, where "bol" denotes "beginning
of line" and "eol" denctes "end of line."

Every explicit subexpression preserves the meaning of its
containing expression. (This is because anydelimited subexpression
preserves the meaning of its containing expression.)

3-57 AK95-02

Note that the following nine pairs of expression delimiters --
none of which are in the above list -- can delimit a valid APL
expression, but not a subexpression:

]
: 0
:e0l
)
o0
Qeol
boln
bol o
bol
eol

No other pairwise permutation of expressiondelimiterscan delimit an
expression or subexpression.

Parenthesized Expressions and Subexpressions

Any APL expression or implicit subexpression can be enclosed in
parentheses nested toc any depth. However, the parentheses will have
no effect whatever. (If the reason for this is not immediately
obvious, review the definitions of expressions, the right-to-left
rule, and implicit subexpressions.)

Parentheses have operational significance only when theydefine
(delimit) subexpressions that do not qualify as implicit
subexpressions. Subexpressions delimited by parentheses are
explicit subexpressions called parenthesized subexpressions.

Each parenthesized subexpression is evaluated separately, and
its result replaces it in the evaluation of the remainder of the
expression., A given parenthesized subexpression is evaluated just
before the execution of the operation that takes the result of that
parenthesized subexpression as an argument, and no sooner.

Lists

A list is a sequence of any number (including zero) of APL
expressions, separated by semicolons. Lists have three uses in APL:
indexing, mixed output, and multi-value argument passing to external
functions and system functions.

3-58 AK95-02

Indexing

Indexing is an operation that allows the detailed selectionof an
arbitrary number of elements, or blocks of elements from any
non-scalar APL value. In algebra and most other programming
languages, this is called subscripting. However, since there is no
means for entering a subscript on most terminals, and since the
element selection is made by specifying element indices, indexing is
an appropriate term for this operation.

To index a given value, the value 1s immediately followed by a
bracketed 1list of expressions that produce nonnegative integer values
as results. The number of expressions in the 1ist must equal the rank
of the indexed value. Therefore, the number of semicolons in the list
must be one less than the rank of the indexed value.

Clearly, indexing a vector requires a list with only one
expression, and no semicolons; that is, a vector is indexed by a
bracketed expression. Indexing amatrix, however,requiresa list of
two expressions, with exactly one semicolon.

The elements of the result value of each expression of the index
list are interpreted as indices for the coordinate of the indexed
value that corresponds to that expression, of elements of the indexed
value., This is, the elements of the result of the first expression
specify first coordinate indices of elements of the indexed value; the
elements of the second expression result specify second coordinate
indices; and so forth.

For example, if 4 is a 6 by 10 matrix, then A[1 3 4;2 7] selects
elements of 4 that have a first coordinate index of 1 or 3 or 4, and a
second coordinate index of 2 or 7. That is, selected elements must be
in the first or third or fourth rows, and must be in the second or
seventh columns. Clearly, there are six such elements.

3-59 AK95-02

Note that in the example, the numbers of elements in the two
expression results are not equal. Furthermore, the selection
effectivelyuses all possible pairings of one element from each of the
two expressions. This is true in general. Therefore, the number of
selected elements is the product of the numbers of elements of the
selecting expressionresults. (This is not theonly possible scheme.
For example, if it were required that all expression results have the
same number of elements, then these elements could be paired (in the
matrix case) sequentially to enable the sparse selection of elements.
For example, A[1 3 432 4% 7] would -- in this system -- select three
elements: A[1;2]1, A[3;4], and A[u4:7]. However, although this type
of indexing can be useful, it is not nearly as useful as the scheme
selected for use in APL.)

The shape of the result of indexing is determined by the shapesof
the results of the expressions in the index 1ist, not by the shape of
the indexed value: the shape of the result is the catenation of the
shapes of the resultsof the indexing expressions. Clearly, therank
of the result is the sum of the ranks of the results of the indexing
expressions,

For example, if all indexing expressions produce scalars, then
the result is a scalar. However, if all indexing expressions produce
one-element vectors, then the result is a one-element value withrank
equal to that of the indexed value. (Ignoring therank of one-element
results of indexing expressions is 1likely to produce erroneous later
results: RANK ERRORS due to superflucus dimensions of unity extent.
Use of ''p on one-element indexing expression results will yield the
usually desired scalar.)

All indices used in indexing follow the index origin.

All indices must be among the set 1(pA)[I], where I specifies the
coordinate being indexed and 4 is the indexed value. Any index not in
this set is invalid: use of invalid indices yields an INDEX ERROR,

3-60 AK95-02

A special feature of APL indexing that doesnot fit into the rules
above is the elided expression: any expression in the index list can
be omitted. The default expression, used in place of elided
expressions, is effectively 1(pA)[I], where Ais the indexed value and
I is the coordinate index of the coordinate being indexed by that
expression. This has the effect of selecting all indices along the
coordinate of the elided expression. For example, if A4isthe 6 by 10
matrix used above, then A[1;]1selects the first rowof 4, returning it
as a 10-element vector; A[;3]selects the third columnof 4, returning
it as a 6-element vector; A[2 S5;])selects the second and fifth rows of
A, returning them as a 2 by 10 matrix; and A[3]selects all elementsof
A, returning them as a 6 by 10 matrix identical to A.

Note that for the above example, A[Llyields a RANK ERROR, since A
is amatrix, and the index list is suitable only for a vector. Thus,
when eliding index list expressions, do not elide any semicolons,

Mixed Output

A list of implicitly defined expressions delimited by pairs of
semicolons produces mixed output when evaluated:

s153'" IS A VECTOR CONSISTING OF ' 3 5 3 ' ELEMENTS ';
produces the following output:

1 23 4 5 IS5 A VECTOR CONSISTING OF S ELEMENTS

Mixed output is the output (printing) of the explicit result of
each expression in turn, one after another, withno additional spaces
or newlines inserted between them. All spaces and newlines that are
part of the normal printed representation of eachvalue are printed as
usual. Since someof the expressionsmay produce character values and
others numeric values, mixed output is one way to form output with
mixed type in one line,.

The explicit results of the list expressions are printed
starting with that of the left-most expression in the list, and
proceeding to the right. This may at first seem inconsistent with
APL's usual right-to-left ordering, but note that the order in which
the expressions are evaluated is explicitly undefined in APL: only
the left-to-right order in which the explicit results of those
expressions are printed is defined. Furthermore, left-to-right is
the way terminal printers print, and is therefore appropriate for
mixed output.

3-61 AK95-02

Any mixed output list entry that produces no explicit result --
and is therefore not an expression -- 1is an error, as mixed output
requires a value from each expression in the 1ist. Evaluation of such
a mixed output 1list yields a VALUE ERROR.

However, elided list entries arevalid: they are equivalent to a
list expressionof 0. That is, elided entries are completely ignored
and do not affect the printed output.

Note that for the purposes of defining mixed output, a mixed
output list must contain at least two expressions: a one-expression
"list" delimited by one of the above pairs is not a list, it is an
expression.

Argument Lists

A list that is delimited by parentheses -~ a parenthesized list
-- can be used as an argument to two sSpecial types of functions
discussed in more detail later in this manual: external functions,
and system functions.

An external function is a user-defined executable entitywritten
in PL/I, compiled, and made available in APL via the)pFN,)MFN, OT
)ZFN system commands (See Section 5.). It can have any syntax that an
APL function or coperator can have; its syntax can also be dependent
upon how it is called: it can therefore have both amonadic and dyadie
definition; either of its arguments can be a parenthesized list.

A system function is an executable entity similar to an external
function, but with two differences: it is a permanent part of APL
(Users cannot create one; they are always available to the user, just
as operators are.); its "name" begins with a quad [J.

A<[iCS
or

A«'I3' OFMT (112310+1123100+1123;1000+112).

3-62 AK95-02

Comments

Comments can be appended to any complete line of APL by using the
lamp a as the left-most character of the comment. APL ignores
everything to the rlght of any lamp @ that is not imbedded in a
character constant.

If outside of any character constant, the lamp @ is equivalent to
an eol: it can serve as aright delimiter of implicit subexpression,
expression, mixed output list, statement, function line, and any
diamond line.

Labels

A label is apart of a function line that effectively "names" the
line. Anyreference to the label produces as an explicit result the
line number of the line on which the label is defined. A label is
defined by placing its name, followed by a colon, immediately to the
left of the definition of the function line to be "labeled".

This is the only valid use of the colon in APL syntax.

If outside any character constant, and if to its left is a valid
APL name (discussed later), the colon 1s equivalent to a bol, except
that it has the side-effect of defining a label: acolon can serve as a
left delimiter of an expression, mixed ocutput list, statement, or
diamond 1line.

Labels are discussed in more detail later in this section.

Statements

A statement is any valid sequence of APL operations that is
delimited by one of the following nine pairs of delimiters:

3]
: O

teol

on

OO

Ceol
boln
bold
bol eol

3-63 AK95-02

An operation is anything that can take one or more arguments,
Operations include: operators, pseudo~-operators, composite
operations, indexing, mixed output, functions, system functions, and
external functions.

An operation need not produce an explicit result.

A statement is a syntactically closed construct: it isentirely
self-contained, and therefore cannot act as an argument to any
construct, nor can it take an argument from any construct.

A statement's delimiters are not part of the statement.

A statement need not produce an explicit result: 1if its lowest
precedence operation -- that is, the one that is executed last -- does
not produce an explicit result, then the statement itself does not
produce an explicit result.

Only the lowest precedence operation is eligible to not produce
an explicit result: if an operation with higher precedence fails to
produce an explicit result then a VALUE ERROR, SYNTAX ERROR, CONTEXT
ERROR, or USAGE ERROR occurs, depending upon the cause.

The statement is the most general APL construct that contains
only operations.

The delimiter pairs listed above imply that a statement cannot be
a portion of a "larger" statement. This is in contrast to an
expression, which can be a portion of a larger expression.

Closed Expressions

A closed expression is an expression which is a statement: its
explicit result 1s not taken as an argument of any operation.

3-64 AK95-02

Diamond Lines

A diamond line is a sequence of any number (including zero) of
statements separated by diamonds ¢.

Adiamond line is evaluated by the sequential evaluation of its
constituent statements, working from left-to-right. The statements
are treated completely separately and independently: neither
arguments nor results are shared or passed amongst the statements;
each statement must have valid APL syntax.

This is the only valid use of the diamond in APL syntax.

If outside any character constant, the diamond in many ways can
act similarly to both eol and bol: it can serve as aright delimiter of
an implicit subexpression, an expression, any mixed output 1ist, and
any statement, and simultaneously can serve as a left delimiter of an
expression, mixed output list, or any statement. Anydiamond whichis
inside a character constant is merely a character, not a syntactic
entity.

With respect to labels, all statements of a diamond line are
considered to be part of the same function line.

Since a statement need not produce an explicit result, any
statement of a diamond line can be "vacuous", containing only white
Space.

A one-statement diamond line is generally called a line.

OBJECTS

An object is a variable, a function, or a group.

Names

A name is used to establish a reference to an object: every
object has exactly one name; every name refers to exactlyoneobject.

Aname consists of an alphabetic character followed by any number
-- including zero -- of alphabetic or numeric characters. For the
purposes of this rule, the alphabetic characters are defined as:

AABCDEFGHIJKLMNOPQRSTUVWXYZ and
AABCDEFGHIJKLMNOPQRSTUVWXYZ >

3-65 AK95-02

and the numeric characters are defined as:

0123456789 0123456789 .

Note that the underscore _ cannot be the first character of a
name.

ame are significant. Names can be of any

-
[
[¢]
i
m
5
o)
Q
ch
()
3
w
Q
]
\\)
it

A
length.

Syntax of Names

At least one nonalpha-numeric character must appear between each
pair of adjacent -- yet distinct -- names, numbers, or names and
numbers, in order to unambiguously separate them. This separator
character can be a space or tabulate, or the symbol of a dyadic APL
operator, or an explicit expression or value delimiter, or a
punctuation character.

A1l of these separators -- except space and tabulate -- have
special meanings in APL, and therefore cannot be used
indiscriminately. However, since space and tabulate serve only as
separators, they can be inserted whenever necessary or convenient.

Except for the abovementioned special cases, and the additional
special case of distinquished names (discussed later), the inclusion
of spaces and tabulates -- "white space" -- in APL expressions is
completely optional,

Identifiers

An identifier is a name that refers to -- or is intended to refer
to -- a variable or a function that either currently exists or can
exist in the current environment. That is, an identifier is anyname
that is not currently in use as the name of a defined group.

Variable Names

A variable name is an identifier that refersto -~ or is intended
to refer to -- avariable that either currently existsor can exist in
the current environment. That is, a variable name is an identifier
that is not currently in use as the name of a defined (existing)
function,

3-66 AK95-02

Function Names

A function name is an identifier that refersto --or is intended
to refer to -- a function that either currently exists or can exist in
the current environment. That is, a function name is an identifier
that is not currently in-use as the name of an existing function.

Group Names

A group name is a name that refers to -~ or is intended to refer to
-- a group that either currently exists or can exist in the current
environment. That is, a group name is a name that is not currentlyin
use as the name of an existing variable nor a defined (existing)
function. -

Variables

A variable is an identifier that currently references exactly
one value. That is, a variable is an identifier to which some one
value is currently assigned. In order to qualify as a variable, a
binding between identifier and value must currently exist.

More simply, a variable is an APL value that has a name. Unlike
most programming languages, APL requires no declarationsof names: a
variable is created by merely assigning a value to an identifier
(discussed later).

Variables have no type, subtype, rank, or shape restrictions:
any identifier can be assigned any APL value; when a new value 1is
assigned to an existing variable, its previous value is discarded.

The importance of a variable lies in the fact that it is the only
mechanism by which a value can be indefinitely and conveniently
stored: unless stored in avariable -- or in a less versatile and more
cumbersome file, every value produced in the evaluation of an APL
expression is discarded by the time its evaluation completes.

A value cannoct be assigned tc the name of an existing group or
function: onlyexisting variablescan beredefined in this way; this
protection hinders accidental erasure of functions and accidental
~dispersal of groups.

Syntactically, variables behave as do constants and
parenthesized expressions: in evaluation, the 1identifier 1is
effectively replaced by the value to which it refers.

3-67 AK95-02

" Any "by-value" reference to an identifier not yet assigned a

value -- nor defined as a niladic function returning an explicit
result (discussed below) -- yields a VALUE ERROR.
Functions

A function is an identifier that currently references exactly
one previously defined function definition: a sequence of function
lines -- called the function body -- and its associated header
(discussed later). 1In order to qualify as a function, a binding
between identifier and function definition must currently exist.

More simply, a function is a stored APL program that has a name.
It consists of any integral number (not including =zero) of
unevaluated, sequentially ordered function lines (discussed later),
plus a header that defines the function's syntax and specifies the
identifiers to be wused temporarily and internally during its
execution.

A function can be manually created and altered using the APL
function editor (discussed in Section 4); or, it can be created and
altered by another function -- with the help of APL system functions,

Syntactically, functions can behave in many different ways,
depending upon the specification in the header: functions can mimic
operators, or variables, or neither. In evaluation, a monadic or
dyadic function -- defined to produce an explicit result -- takes one
or two arguments respectively, and produces exactly one explicit
result, thereby mimicking monadic and dyadic operators,

respectively; similarly, a niladic function -- defined to return an
explicit result -- takes no arguments, and simplyreturns an explicit

result that effectively replaces the identifier in the expression
thereby mimicking variables; finally, functions can behave unlike
operators or variables: a niladic, monadic, or dyadic function --
defined mot to return an explicit result takes zero, one, or two
arguments respectively, and produces no explicit result (If such a
function is to be useful as more than just a cpu-time consumer and/or
"bit bucket", then it should produce either an implicit result -- such
as a change in environment, or a printed output.).

Groups
A group is a named collection of objects. Grouping the objects

allows them to be copied and erased as a unit, without repetitively
typing their individual names.

3-68 AK95-02

Agroup can contain any integral number (except zero) of any type
of object, including other groups. An object can be in more than one
group at a time, since grouping is only a "bookkeeping™ convenience,
and has no effect whatever on the values of grouped variablesor on the
definition or execution of grouped functions.

Groups have no significance other than in the)COPY,)ERASE,
YPCOPY,)GROUP,)GRPS, and)GRP system commands.

Groups have no syntax, since a group name can never be a valid
part of any APL expression.

Groups -- and their associated system commands -- are discussed
more fully in Section 5.

Note that by the above definitions, a "variable name"™ isnot the
same as a "name of a variable": the "Name of avariable" isliterally
the name of an existing variable, whereas a "variable name” is a name
which either is, or can be, the name of a variable, given the current
environment. This distinction applies in an analogous manner to
"function name" versus "name of a function™ and to "group name" versus
"name of a group."

THE ASSIGNMENT PSEUDO-OPERATOR <«

Left arrow <« is the symbol for the dyadic assignment
pseudo-operator. A variable name or an indexed name of a variable
must appear as its left argument: this argument 1is evaluated
by-reference, not by-value. A value must be its right argument.

The assignment pseudo-operator creates a binding between its
left and right arguments.

For the example VAR_NAME<VALUE, if 'VAR_NAME'is not the nameof
an existing variable, then APL creates a variable named 'VAR_NAME®,
assigning to it the value VALUE; if VAR_NAMEis the name of an existing
7ariable, then APL discards its 0ld value and assigns to it the new
value VALUE.

3-69 AK95-02

Indexed Assignment

For the example NAME OF VAR[index_list]«VALUE, NAME OF VAR
must be the name of an existing variable, 1ndex list must be a valid
index list for the variable NAME OF VAR(that 1s consistent with the
rank and shape of NAME OF VAR, and VALUE must elther be a one-element
value of any rank, or must have the same rank and shape as
NAME_QF_VAR[index_list], with the exception that unity dimension
extents are ignored when making the rank and shape tests.

The elements of NAME OF VAR selected by the indices given in
index_list are replaced by the corresponding elements of VALUE (If
VALUE is a one- element value, then that element replaces all selected
elements of NAME OF VAR.).

Elements of NAME OF VAR not selected by the indices of
index_list are unchanged.

The type of NAME OF VAR must match that of VALUE: mixed-type
values are not permitted’,

Neither the rank nor the shape of the variable NAME _OF VAR can be
changed using indexed assignment: this operation merelychanges the
value of existing elements.

The order in which the selected elements of NAME OF VAR are
replaced is explicitly undefined: 1if some particular element is
selected several times and successively replaced by unequal elements
of VALUE, the final value of that element is undefined and may differ
among APL implementations.

Results

Like operators, the assignhnment pseudo-operator produces an
explicit result: its right argument is passed to the left to be used
as an argument to successive operations.

Therefore, except for the very important implicit result of
either creatlng avariable or changing the value of an existing one,
assignment has no effect on the evaluation of its contalnlng
expression.

3-70 AK95-02

Qutput of Explicit Results

APL prints every value that is not taken as an argument to some
operation, For example, if 4 and Barevariables, then the expression
A causes the value of 4 to be left unclaimed by any operation whatever:
thus, it is printed; similarly, A4+B produces an unclaimed explicit
result, which is therefore printed.

Assignment is the one exception to this rule: its explicit

result is not printed, even when no operation takes it up as an
argument. -

Mixed output is the one exception to the rule that the explicit
result of every expression in amixed output list is printed, without
exception,

Assignment is called a pseudo-operator because it violates the
defined properties of operators; specifically, it violates them in
the following respects:

o one argument must be a reference, not a value

o} it produces an implicit result

THE I/0 PSEUDO-VARIABLES M

Quad [0 and quote-quad M are syntactically equivalent to
variables, with the single exception of indexed assignments -- an
operation not allowed with 0O M.

Operationally, 0O and [behave as do variables, except that
instead of a value being stored in, or fetched from, the
semi-permanent "memory" of a variable, the value is output to, or
input from, the user's terminal.

In all other respects, any Oor [appearing in an expression --
cutside of any character constants -- behaves exactly as does a
variable,

3-T1 AKS5-02

Evaluated Input [

When not the left argument of assignment, a quad O indicates a
request for evaluated input. When an evaluated input request 1is
encountered during execution of an expression, APL temporarily sets
aside evaluation of the remainder of the expression, leaving the
execution environment unchanged; APL then prints on the user's
terminal the evaluated input prompt O:, followed by a newline and six
spaces; APL waits for the user's input, which can be any expression;
APL then evaluates this expression in the current execution
environment; the explicit resultof this input expression effectively
replaces the quad Oin the original (source) expression; finally, with
the requested input value successfully obtained, APL resumes
execution of the original expression at the point of temporary
interruption.

If what is input in response to the evaluated input prompt is a

statement that produces no explicit result -- if the response given to
it is not an expression, then APL prints a VALUE ERROR message, then
reprompts -- again awaiting input of an expression: APL cannot

proceed until the request has been satisfied.

If the input is a statement that yields an error message while in
execution at the level of that statement, then APL reprompts -- again
awaiting input of a (hopefully) error-free expression.

If the input 1s a system command other than)OFF,)QUIT,
JCONTINUE,)CLEAR,)LOAD,)COPY, or)EXEC, then the command is
per formed, and APL reprompts for evaluated input.

If the input is one of the above system commands, but not)COPYor
JEXEC, then the command is per formed; however, due to the action of the
command, APL obviously cannot possibly reprompt.

" If the input is either)COPY or)EXEC, then the command is
per formed; however, due to the potential action of the command, APL
may not be able to reprompt.

If the input is an invocation of the function editor, then
editing can be performed normally; after exit from the function
editor, APL reprompts for evaluated input. :

Execution of an expression containing a request for evaluated
input never resumes until the requested input value has been obtained.

3-72 AK95-02

Other than the rather drastic use of the above five system
commands, there are two mechanisms for escaping from a request for
evaluated input: the potentially drastic and destructive escape -,
and the generally much safer strong interrupt.

Typing aright arrow alone as the response to an evaluated input
request causes APL to unwind its execution stack back to the last point
of suspension; that is, execution of the current expression, its
container (usually a function), that container's caller, that
caller'scaller, itscaller, etc., backto the point at which there are
no further callers, is abandoned, with all direct evidence and results
of this execution sequence being discarded. (For full Multics users,
the escape is essentially equivalent to the Multics release command
with no argument. The)RESET system command is comparable to the
Multics command, release -all.)

The strong interrupt is input by pressing the ATTN key twice in a
row. While in evaluated input mode, any strong interrupt causes APL
to permanently interrupt execution at the point of the request for
evaluated input. Furthermore, APL discards the temporary results
obtained from the partial evaluation of the expression. Execution
cannot be restarted at the point of interruption, as these results are
needed and no longer available. Thus, any resumption of execution
must reevaluate at least the entire expression. However, the
container of the expression, and all of its callers, are unaffected:
the execution stack is unchanged by strong interrupt.

Escapes and interrupts are discussed in detail later in this
section,

3-73 AK95-02

Character Input 0

When not the 1left argument of assignment, a quote-quad [
indicates a request for character input. When such a request is
encountered during expression evaluation, APL temporarily sets aside
evaluation of the remainder of the expression; APL then waits for the
user's input, which can be any string of characters -- APL does not
prompt for character input; APL interprets the input as an arbitrary
character vector -- no evaluation or modification is performed; this
character vector is the value which effectively replaces the
quote-quad Min the original expression; finally, with the requested
input character vector successfully obtained, APL resumes execution
of the original expression at the point of temporary interruption.

No error can directly result from the use of character input
since no evaluation takes place.

Once a character has typed, there is only one mechanism for
escaping for acharacter input request, and its action is identical to
that of a strong interrupt issued in evaluated input mode (Interrupts
cannot be issued while in character input mode -- all ATTN's are
interpreted as editing the input.): type the three letters 0 UTall
overstruck, as 0.

The newline character that terminates the input line is not
included in the character vector value of quote-quad input.

Therefore, if no input is given -- only the terminating newline
is input, an empty character vector -- equivalent to '' -- 1is its
value.

Any input produces avector, even if it is a single character: a
single character is not returned as a scalar.

Qutput 0O O

Quad Oor quote-quad M, when the left argument of the assignment
pseudo-operator, output the value to the user's terminal, rather than
to a variable.

Values are printed completely normally, except that the newline
which normally terminates the output of values is not printed if

quote-quad output is used. (This is the only difference between 0
output and [output.)

3-74 AK95-02

THE EXECUTE PSEUDO-OPERATOR ¢

The execute pseudo-operator takes one argument: a character
scalar, vector or single-element array. The argument must be a single
diamond line (Note that this precludes labels but not comments). The
effect of execute is to .evaluate the diamond line in the current
environment, performing all 1implicit and explicit operations
specified. Execute can have one explicit result: the explicit
result of therightmost statement. The onlycase in which execute has
no explicit result is when its argument is null or blank.

Execute is useful in several ways. It can be used to convert
characters to numbers. It can be used to build APL statements under
program control, and then have them evaluated.

Execute is a pseudo-operator because it can have no explicit
result.

Execute can be used in a subexpression like any other operator;
if it does not return an explicit result a value error occurs.

There is no practical limit to the length of the argument to
execute, nor to the depth of recursion of its use.

All SYNTAX ERRORsS are detected before evaluation of the
argument. All other errors are detected during evaluation, as is
normal in Multics APL. The verbosity of messages printed when an
error is detected during evaluation of execute can be controlled by
the)ERRS system command.

The explicit result of execute may not be meaningful or useful.
If execute is the left-most operation in a statement this result is
unclaimed, and hence is printed. To suppress this printing, the
result of execute can be assigned to a variable name or to a system
variable that ignores assignment ([0AI, for example).

Execute should be used to perform actions than cannot be
performed without it, or arevery difficult without it; not to perform
actions that can just as easily be done another way. This is because
the argument to execute must be converted to an internal form each time
execute is evaluated, rather than just once, (per)LOADor)COPY) as is
the case for functions. There is a small, but nontrivial, cost
associated with this conversion that can add up if execute is used
excessively or unwisely.

3-75 AK95-02

PORNOGRAPHY: DEPENDENCE UPON UNDEFINED EVALUATION ORDER

In APL, pornography isdefined informally as the dependence upon
undefined evaluation order for the successful or correct evaluation
of an APL statement.

Two evaluation orderings are explicitly undefined in APL:

- that of the various complete expressions of a list; and

- that of the arguments of any operation,.

Any APL function or statement that depends upon assumptions in
either of these undefined cases for its correct or error-free
evaluation is incorrect APL: any such incorrect APL code cannot be
expected to operate consistently when evaluated by different
implementations of APL, or even when evaluated by future versions of
any given implementation; as these cases are explicitly undefined, an
implementation may choose any evaluation order it desires, and is free
to change it at any time.

The various complete expressions that form the entries of alist
are always evaluated separately and independently: no portion of any
expression participates as an argument of any operation in the
expression of any other entry in that 1list.

The semicolons of a list effectively act as "barriers" to the
scope of the right-to-left rule, which holds only within single
expressions and single explicit and implicit subexpressions.

3-76 AK95-02

Therefore, the order in which the separate and independent list
entry expressions are evaluated is explicitly undefined.

D«A[I+33I<I+1]

'THIRTY

THIRTY =

O«'ONE* ;0«'TWO '

?
?

ONETWO

30

tsN<3;N<«0

Two 1list expressions reference a variable
whose value 1is changed in one of those
expressions. The value I+3 is undefined, as
it mayreference the old or the newvalue of I.

The wvalue of § after evaluaticn of this
statement
is undefined.

This statement yields three lines of output,
the third

definitely being the string ONETWO, that being
the mixed

output "result." Whether the other two lines
are printed

in the order ONE TW0O or Two ONE is undefined.

The right-to-left rule defines precisely the order in which
operations are performed in an expression, but it leaves undefined the
which the arguments and ccordinate index of a single
argument-taking entity are evaluated.

order in

(I«2)$[I«113 4p1I«12

9 10 11

12314
5678

(A<«3)x4

AxA+«3

12

The explicitresult isdefinitely 26[11]3
4?1129 but
the value of I after evaluation is
undefined.

Clearly, A<«3 is evaluated before axw.
However, the value of w is undefined: it
may reference either the old or new 4.

This expression is well defined: 3x3,
However, this type of code is obscure and
is therefore not recommended.

Two separate requests for evaluated
input occur.

However, which acts as which argument of
atw 1s undefined.

O:

3-77 AK95-02

F/0''pI«(1+11),22 7 3p10]1r The coordinate index is well-defined:
it is 1+ index origin. However, the
value being reduced -- 4 in [/[aJw -- iS
undefined: it may reference either the
old or new I.

r/['vp1<-]1(i+1 1),?2 7 3p10 This expression is well-defined (except
for the randomness of). However, it is
obscure. I+(1+11),227 301007 /0'prlr
is well-defined and transparent.

In summary, dependence upon undefined evaluation order occurs
only in statements containing assignments to variables referenced
elsewhere in that same statement. For the purposes of this statement,
anyreferenice to the I1/0 pseudo-variables must be considered a formof
assignment, as must calls te functions that perform relatively global
assignments or that reference the I/0 pseudo-variables.

Not every statement containing such assignments and references
is necessarily undefined, but such statements -- if at all complex -~
tend to be quite obscure: such code should be avoided whenever
reasonable by splitting the offending statement into several
statements.

Obviously, however, it is unnecessary to split 4«4+1 into
T«A+10A«T, but even such seemingly simple statements as 4Ax4+«3 should
be split into 4+«304xA.

The following two expressions are taken from a suite of functions
recently published in an APL newsletter. Both are well-defined, yet
unnecessarily obscure. Both cases are then repeated after being
split into well-defined, transparent expressions.

3-78 AK95-02

Example 1

E<pD« 14(C,0)-0,C«(+/~C)¥AC+(~2\'"'1!' =BYAA =B«,B,A

when 4 and B are previously defined.

This monstrosity should be split into the following sequence of
expressions:

B«,B,A

C+(~z\' e '=B)AA=B
C«(+/~C)¥AC
D«"1+4(¢,0)-0,C
E<+pD

Example 2

ZIB«(CAXeD)/1pX3]+(2 4p' Y9 X9 *)[(C+(~2\"""'2X)AA<pD)/A«(D+'wa')1X;]

where z and y are previously defined.

Similarly, this eyesore should be split into the following
expressions:

D«'wa'!

A<D\ X

C«(~2\"1 ' 1'=X)AA<pD
B«(CAXeD)/1pX

Z[B3J«(2 u4p' Y9 X9 ")[C/4;]

Split up, these examples are relatively easy to follow, unlike
their source expressions. Unfortunately, expressions such as these
examples are easy to dredge up from APL publications -- including many
APL user's manuals, and have therefore contributed to the
undeservedly negative reputation which APL has in some circles.

WORKSPACES

A workspace is a portion of computer memory in which APL stores

everything it needs to remember during a session, and in which the user
stores an arbitrary -- but usually logically related —- collecticonof

objects. The workspace is the largest logical entity in APL: it is

the most general self-contained entity that can be referenced and used
as a unit.

3-79 AK95-02

Every APL workspace contains: (1) the symbol table, 1listing the
name and storage location of each variable, function, and group; (2)
the value of eachvariable, and the definition of each function and of
each group; (3) the state indicator; (4) the value stack, in which
temporary and intermediate values are stored by APL; (5) an assortment
of dynamic, user-modifiable workspace parameters and (6) an
assortment of‘ static, non-user-modifiable workspace attributes.

The Active Workspace

All computing in APL takes place in a special workspace, called
the active workspace.

When APL is first entered, The active workspace is clear: the
symbol table has no entries; there are no values, nor function or group
definitions; the state indicator is empty; the value stack is empty;
the workspace parameters are set to default values; the workspace
attributes are undefined or set to dummy values.

APL has a system command that saves a copy of the contentsof the
active workspace. Another command loads acopy of a previously saved
workspace into the active workspace. This permits an APL session to
be interrupted and saved, and then resumed at a later date withno loss
of information., This also permits a user to maintain any number of
saved workspaces, each applicable to some separate task, and to take
them up in turn as desired.

The active workspace is implemented by Multics APL as at least
four separate segments. Every saved Multics APL workspace is stored
as either a single segment, or a multisegment file, as necessary.

3-80 AK95-02

SECTION 4

FUNCTIONS

FUNCTIONS

Functions are stored APL programs. They are generally created
and modified by the APL function editor -- described later in this
section -- although other mechanisms are also available.

More formally, a function is a stored ordered sequence of
unevaluated function lines -- called the function body -- preceded by
a special line called the header, which defines the syntax, name, and
local identifiers of the function.

A function line is a diamond line which may be preceded by a
label.

Arguments

Every APL function takes a fixed number of arguments -- either
zero, one, or two. Functions are thus characterized as niladic,
monadic, or dyadic, respectively.

Results

Every APL function has another fixed property: the ability --or
lack thereof -- to return an explicit result.

A function defined to be unable to return an explicit result
cannot -- and will not -- ever return an explicit result., A function
defined to be able to return an explicit result may or may not return
one, depending upon the arguments given and/or the code in the
function body.

4-1 AK95-02

As discussed earlier under "Names", a niladic function that
returns an explicit result syntactically behaves exactly as does a
variable: it takes no arguments, and returns an explicit value.
Furthermore, a niladic function defined to be able to return an
explicit result syntactically behaves almost exactly as does a
variable name: it takes no arguments, and may or may not return an
explicit result value; the difference is that a call to a niladic
function that returns no explicit result can stand alone in an APL
statement without error, whereas a similar reference to a variable
name always yields a VALUE ERROR,

Similarly, a monadic or dyadic function that returns an explicit
result syntactically behaves exactly as does a monadic or dyadic
operator, respectively: it takes one or two arguments, respectively,
and returns an explicit result.

Regardless of its definition, upon returning to its caller, a
function call that has not produced an explicit result yields a VALUE
ERROR if the context of the function call demands an explicit result.

Operationally and environmentally, functions do not behave as do
variables, variable names, or operators: a function may produce

implicit results that affect the environment or are printed; a
function may execute for an infinite period of time without returning;

a function may reference files and variables other than its arguments;
a function may call itself or other functions; etec.

Local Identifiers

A local identifier is an identifier that is currently localized
by a function call and that masks -- but does not alter or destroy --
any object which that name may refer to in the environment external to
this function call.

An identifier is localized by a call to a function that includes
the identifier in its header in any position except that of the
function name.

A local identifier masks the existence of any object in the
environment external to this function call whose name matches the
local identifier,.

Masking is a change in the execution environment: masked
objects can no longer be referenced.

4-2 AKS5-02

Masking is an immediate consequence of the localization process:
it occurs at the time of the function call, before any function lines
are executed; it occurs if and only if an identifier to be localized
matches the name of an existing object.

Neither identifier localization nor masking causes anyobject in
any environment to be created, modified, or destroyed: only
name-object referencing rules are affected, and only for local
identifiers and masked objects.

The execution environment reverts to its original state upon
return from the localizing function call: masking is removed, and
local identifiers and their referents -- local objects created by the
localizing function or its callees -- are discarded.

Local identifiers are truly intended "for internal use only:"
local objects with any names -~ except that of the localizing function
-- can be safely and freely created, modified, and erased without
alteration or destruction of any nonlocal object of the same name;
masked objects are therefore completely safe, as they are isolated and
unavailable by any mechanism.

Local QObjects

A local object is an object whose name is currently a local
identifier,

Only variables and functions can be 1local: groups are
ineligible.

Local objects behave -- in normal execution -- exactly as do
their global counterparts: all definitions and rules of APL
expression and function evaluation apply as well to local objects.
However, some system commands and system functions treat local
objects differently than global objects.

Global Identifiers

A global identifier is an identifier that is not currently
localized by any function call. That is, the current execution
environment is in such a state that the identifier is not localized.

This does not preclude the possibility that a future function
call may localize this identifier: it merely indicates that no
function call is currently doing so.

4-3 AK95-02

Global Objects

A global object is an object whose name is not currently a local
identifier.

Any object can be a global object: variables, functions, and
groups are equally eligible.

Global objects are the basis for the comparison of the behavior
of other objects., Therefore, by definition, they always behave
"normally." ‘

Immediately Local Identifiers and Objects

An immediately local identifier 1is an identifier that is
localized by the function call that is on the top of the execution
stack; that is, it is local to the most recent function call,

An immediately 1local object is an object whose name is an
immediately local identifier,

The Function Header

The function header, or simply header, defines the syntax, name,
and local identifiers of the function.

Headers have two parts: the syntax definition, and the local
identifier list.

Syntax Definition

The syntax definition is essentially in the form of a prototype
call on the function: it defines the name of the function, the number
of arguments it takes, and its ability -- or lack therefore -- to
return an explicit result; furthermore, it specifies the local
identifiers to be used to copy its arguments into the function, and its
result (if any) out of the function.

Clearly, there are six possible forms for the syntax definition
-- they are listed below:

FN_NAME (niladic, no result)
FN_NAME R (monadic, no result)
L FN_NAME R (dyadic, no result)

-l AK95-02

ER<FN Namg (niladic, possible result)
ER<«FN NAME R (monadic, possible result)
ER<L FN_NAME R (dyadic, possible result)

In these examples, FN_NAME is the function name, r is the local
identifier to which the right argument is automatically assigned when
the function is called, L is the analogous local identifier for the
left argument, and ER is the local identifier which is assumed to refer
to the value that is returned as the explicit result when the function
returns.

ER, L, FN_NAME, and Rmust all be distinct: any attempt to define
a function whose header's identifiers are not all distinct will fail,
yielding a DEFN ERROR.

ER, L, and R are local identifiers. However, they are treated
specially, as 1indicated briefly above. Their treatment and
significance is explained below.

Argument Identifiers

L and R are called the argument identifiers. When a function is

called, its arguments -- having been successfully evaluated in the
calling expression -- must be made available to it. In APL, this
mechanism 1is quite simple: the function's arguments are

automatically assigned to their corresponding argument identifiers.

Thus, before any function line is executed, zero, one, or two
local variables are automatically created by APL, corresponding to
niladic, monadic, and dyadic functions, respectively.

4-5 AK95-02

Result Identifier

ER is the result identifier. When a function returns, if its
result identifier refers to an APL value, then that value is returned
as the function's explicit result. Otherwise -- and if the function
has no result identifier, no explicit result is returned.

Local Identifier List

The local identifier list is an optional list of additional
identifiers to be localized when the function is called: each list
entry is a single identifier to be localized.

Not all local identifiers will necessarilybe found in the local
identifier 1ist: result and argument identifiers -~ if any, must not
be placed in this list; and any labels -- which are implemented as
local functions, must also not be placed in this 1list. Any attempt to
violate this rule will fail, yielding a DEFN ERROR,

The local identifier list -- if it has any entries at all -- is
placed to the right of -~ and separated by a semicolon from, the syntax
definition.

If the local identifier list has no entries, then no semicolon is
placed to the right of the syntax definition.

Elided list entries are not permitted: an identifier separates
each pair of adjacent semicolons; the header must not end with a
semicolon,

R+<NM LOCATE ADDR;R NM;I;T;CI This header specifies a dyadic
function named LOCATE, whose argument
identifiers are NM and ADDR, whose
result identifier is R, and which
additionally 1localizes R_NM, I, T,
and CI. Reference to any other
identifiers will refer to objects
that are not local to this function.

PRINT X;R:;RR This header specifies a monadic
function named PRINT, which cannot
return an explicit result, whose
argument identifier is X, and which
additionally localizes R and RR,

ER<«L XRHO R This header specifie
function named XRHO, who

=

s a dyadie
se argument

4-6 AKS5-02

identifiers are [and p, whose result
identifier is ER, and which does not
localize any additional identifiers.

The Function Body

A function body is a sequence of any integral number -- except
zero -- of function lines.

A function body must have at least one function line: otherwise,
the function can do nothing but consume arguments.

Line Numbers

A line number is the positive integer that is associated with a
single function line of a given function.

Every function line has a single corresponding, unique positive
integer line number.

Line numbers -- and their corresponding function lines -- are
sorted in ascending order in the function body.

The first function line in the function body has the line number

1. FEach successive function line has a line number exactly one
greater than its predecessor,

The largest line number of the function equals the number of
function lines in the function body.

Execution Flow

Unless otherwise directed by a successful branch (see below),
APL executes the function lines in the function body in succession
according to their line numbers: the function line whose line number
equals 1 is executed first followed by the function line numbered 2,
followed by line 3, then line 4, then 5, etc. until no more function
lines remain to be executed -- that is, the next line number exceeds
the largest one in this function; then, the function returns.

H

This execution flow is realized by the use of the statement
counter: each statement in a function is asscociated witha unique,

positive integer statement number -- the first statement of the first
function line is statement number 1, the second statement of the first

47 AK95-02

line is statement 2, ..., and the last statement of the last function
line is statement n, where n is the total number of statements in the
function; the statement counter contains the statement number of the
next statement to be executed.

After completing a statement, APL fetches a copy of the next
statement to be executed, as given by the statement counter. Then,
APL increments the statement counter by 1. Finally, APL executes the
new statement.

Thus, if nothing meddles with the value of the statement counter,
execution proceeds "straight through" the function, as described
above.

However, the sole purpose of the branch pseudo-operator is to
change -- under user control -- the value of the statement counter.

The Branch Pseudo-Operator -

The branch pseudo-operator allows the dynamic or static
specification of an arbitrary function line execution sequence,.

Ostensibly, branch is equivalent to the familiar "go to" of many
other programming languages. However, its implementation allows
much more sophistication than this implies.

Branch is a monadic pseudo-operator. It produces no explicit
result. It must therefore be the left-most graphic of its containing
statement.

The argument of branch must be an integer vector or scalar --
otherwise, a RANK or DOMAIN ERROR occurs,

The implicit result -- if any -- is to change the value of the
statement counter to the statement number of the first statement of
the function line whose line number is specified in the argument:

- If the argument is an empty vector, then the statement counter
is not changed -- the branch is unsuccessful, and execution
flow proceeds normally;

- If the argument is a scalar or non-empty vector, then the
statement counter 1is changed to the statement number of the
first statement of the function line whose line number is the

4-8 AKD5-02

first element of the argument -- the branch is successful, and
execution flow is redirected.

If the first element of the argument is an integer, but is not a
valid line number for this function, the branch sets the statement
counter to zero.

Just before attempting to fetch the next statement, APL checks
the validity of the statement counter: if it is zero, or is greater
than the number of statements in this function, then APL terminates
execution of this function by initiating function return.

Note that for the purposes of branching and general execution
flow, APL need not keep track of the line number of the function line
from which the currently executing statement comes. However, various
user interfaces use this line number; so for the convenience of these
interfaces, APL does maintain this information. (The implementation
of this execution flow system requires only the following: function
lines must be broken down into separate statements; an internal vector
containing -- for each function line -- the number of its first
statement (This vector is indexed by the target line number of
successful branches to give the needed target statement number); the
total number of statements in this function.)

Note that if the argument of branch is a multielement vector,
only its first element has significance: all other elements are
ignored and discarded.

Since the argument of the jump pseudo-cperator can be the
explicit result of an arbitrary APL expression, the target 1ine number
can be calculated -- as opposed to being a constant. Furthermore,
this enables branching to be conditional as well as unconditional.

Thus, the branch pseudo-cperator can be used to perform four
types of branching:

unconditional-constant -+3;

unconditional-computed +3+5xppARG;
conditional-constant +((K<pARG)AKz0)p1k;
conditional-computed +(N<ppTEMP)p7 11 15 19[1+ppTEMP]

APL does not have any construct directly analogous to the DO or
FOR-NEXT constructs of other programming languages -- its array
handling capabilities vastly reduce the need for such constructs.
However, highly efficient looping algorithms are easily coded in APL,

4-9 AK95-02

and often are far more efficient than their brute force,
storage-heavy, non-looping, "elegant™ counterparts. (As in most
fields, beauty -- in this case, "elegance" -- is in the eye of the
beholder.) Dramatic examples of some proper -- and improper -- uses
of branching are given later.

The target function line of any successful branch is always
within the function containing the branch: there is no mechanism for
branching from one function into another.

Function Return

APL initiates function return whenever it discovers that its
statement counter contains an invalid statement number for the
function currently in execution.

Function return is the process by which APL returns from an
executing function: first, APL checks to see if the result identifier
-- if any -- refers to a value; if so, it copies this value into its
execution stack -- to make it available to the calling expression;
then, APL restores the local execution environment to its state just
before this function call -- that is, APL reverses the localizationof
its local identifiers -- unmasking any masked objects, and discards
all local functions and values; finally, APL -- having copied in any
explicit result -- resumes evaluation of the calling expression,

4-10 AK95-02

Labels

It should be obvious by now that the use of a line number --
computed or constant -- as the argument of a branch is at best of
dubious value, and can easily result in erroneous code. (Consider the
problem of inserting or deleting function lines in an existing
function definition: associations between line numbers and function
lines automatically change. Therefore, care must be taken to modify
any line number constants and computations that are affected by these
changes, Failure to correctly perform thesemodifications results in
erroneous code.)

To satisfy the need for a simpler and less error-prone mechanism
for referencing and branching to specific function lines -- rather
than whatever function line happens to be associated with a given line
number , APL provides the capability of defining function line labels.

A label or function line label is a local identifier that refers
to a local niladic function which returns an explicit result: the
scalar integer equal to the line number of the function line on which
the label is defined in this invocation of the function.

A label is defined by placing its name to the left of -- and
separated by a colon from -- a diamond line of function definition.

A label is automatically created by APL when its localizing
function is first entered: the label name is localized, and an
appropriate function definition is generated and placed in the local

environment.

Every label in a function must have a different name --
otherwise, its result would be undefined. 1In fact, each local
identifier of a given function must be distinct from all other local
identifiers and from the name of the localizing function.

Label names must not be included anywhere in the header -- they
can only be defined by their presence to the left of a diamond line.

(Recall that a function line is merely a diamond line which may or
may not -- that is, is syntactically permitted to -- have a label

ay
defined on it.)

Since labels are implemented as niladic local functions which
always return an explicit result, they behave Jjust as do local
variables, except that their name cannot be the left argument of an

4-11 AK95-02

assignment -- that is, their result value cannot be changed via an
assignment.

In fact, the value returned by a 1abel function cannot be changed
by any mechanism, since its function definition is locked, and
therefore cannot be edited or otherwise modified by the user.

Recursion
Since each call to a functionrelocalizes its local identifiers,
APL functions can be fully recursive.

It is generally best if recursive functions do not produce
implicit results -- implicit results are not localizable, and are
therefore difficult to control correctly in recursive functions.

Implicit Results

An implicit result is any change made to the workspace or
execution environment that remains in effect after completion of
execution of its change-producing construct.

For example, the assignment and branch pseudo-operators produce
implicit results: assignment produces a variable or a change in the

value of a variable -- changes in the execution environment that
remain in effect after assignment is complete; branch may change the
statement counter -~ a change in the execution environment that

remains in effect after this pseudo-operator has completed.

Similarly, a function produces an implicit result if it creates
or modifies a global variable or function, as these objects and/or
changes remain in effect after the function returns.

Any APL function can be defined to produce any number of implicit
results. 1In fact, any expression can do the same,

However, it is usually undesirable for functions to produce
implicit results, as their hidden nature obscures the fact of their
existence or occurrence, The semi-permanent change of some workspace
or execution environment parameter by a mechanism that obscures this

change is usually of little utility, and may easily cause substantial
and potentially irreparable destruction of data or other information,

y-12 AK95-02

It is recommended that functions -- whenever possible -- produce
only explicit results. Any temporarily needed variables or functions
should be created locally -- not globally: as local objects, they
mask existing objects, and are discarded during function return -- as
global objects, they would destroy existing like-named objects, and
would remain in the workspace independently of function return --
often cluttering and confusing the workspace and its symbol table with
forgotten and useless objects.

Similarly, functions generally should not globally modify
workspace parameters, such as the index origin and digits -- these may
be locally changed by appropriate use of localized system variables.

Some functions may be required to produce implicit results, as
this may be the only mechanism available to perform the desired
action,

For example, a function that edits or creates functions must
produce one implicit result: the creationor replacement of aglobal
function.

Similarly, a function that selectively erases local or global
objects must obviously produce implicit results.

However, except when necessitated by APL's inability to preduce
the desired results explicitly, functions should not produce implicit

results.

Scalar Functions

A scalar function is a function that behaves exactly as do scalar
operators, except with respect to argument and result types and to
symbolic representation.

A function is a scalar function if: it is monadic or dyadiec, and
capable of returning an explicit result; it references all arguments
but only its arguments and result identifier; it uses only scalar
operators and the assignment pseudo-operator; every statement is an
expression ending in an assignment to the result identifier; every
constant is a scalar; assignments are made only to the result
identifier; at least one statement references all arguments by value;
every statement references by value either all arguments, or the
result value and at least one argument.

Scalar functions that do not conform to the above rules can be
written, but verifying their scalar behavior is necessarily more
difficult.

Scalar functions can be very powerful in appropriate
applications -- such as those that are purely mathematical -- as they
generalize (extend) to n-dimensional values in the same convenient
and natural way as do scalar operators.,

Trace Pseudo-Variables TAname of fn

A trace pseudo-variable is a pseudo-variable whose name is
composed of the string TA immediately followed by the name of a
function, and that can be used -- with certain restrictions -- just as
can any normal variable, except that its proper use produces a side
effect -- an implicit result for which this construct was designed --
tracing the execution of its namesake function,

A trace pseudo-variable name can be the left argument of the
assignment pseudo-operator -- its right argument can be any APL value.

- 3imilarly, a trace pseudo-variable can be referenced by value --
returning the value most recently assigned to it.

Unlike variables, trace pseudo-variables cannot be listed using
any system command, and similarly cannot directly be erased using any
system command.

Furthermore, a trace pseudo-variable cannot be created unless
the character string following the 74 in its name is the name of an
existing function.

Analogously, the trace pseudo-variable is automatically erased
when its namesake function is erased.

A trace pseudo-variable name is localized just as are normal
identifiers, with two exceptions: a trace pseudo-variable name must
not appear anywhere in a header syntax definition; a trace
pseudo-variable name must not be used as a label name. However, any
number of trace pseudo-variable names may appear in the header local
identifier 1list.

4-14 AK95-02

Localizing a trace pseudo-variable name masks any existing
identically-named trace pseudo-variable., However, its namesake
function is not masked.

Localizing an identifier may mask a function; if so, the masked
function's trace pseudo-variable is also masked -- but its name is not
localized.

Regardless of any 1localizations and masking, a trace
pseudo-variable name cannot be referenced in any context unless its
namesake function name refers -- in the current environment -- to an
existing function.

A trace pseudo-variable is used to trace the execution of its
namesake function.

The execution of a function is traced by printing -- for each
traced function line -- the function name, immediately followed by the
bracketed line number of that function line, followed by the explicit
result -- if any -- of each statement in that function line; the
outputs for the various statements are separated by a string of seven
characters: newline, ?, and five spaces -- which is printed between
the execution of each adjacent pair of statements, regardless of
whether or not any given statement produces an explicit result.

A statement ending in a branch does not produce an explicit
result. However, for the purposes of tracing execution flow, a
successful branch is denoted in the trace output for that statement as
“n, wheren is the target line number. Similarly, an escape is denoted
by .

The function lines to be traced are specified by line number in
the trace pseudo-variable for that function. Before executing each
function line, APL uses the membership operator to find out if that
function line is to be traced: ne€Tname of function, where n is the
line number of the function line about to be executed, and
Tiname of function is the appropriate trace pseudo-variable.

nao o~
119 Wil

Since the membership operator is u
n
~

rank, shape, type, or subtype res

pseudo-variable need be imposed.

sed for this determination, no
tio n va of & ce

E=
tr lue of a t

3
[

For example, if MAX _RANK is a seven-line function, and
TAMAX_RANK+2 4p~3 92.617 0 15 4 2.9 1 42, then its function lines
numbered 1 and 4 are traced when MAX RANK is executed.

4-15 AKS5-02

Thus, tracing of a given function can be "turned off" by setting
its trace pseudo-variable appropriately: assigning i0or "1 or o to
the trace pseudo-variable works equally well.

Tracing 1is wused almost exclusively for exploring and/or
diagnosing complex or allegedly errant functions. It haslittle --if
any -- practical use outside of these contexts.

Alocked function cannot be traced: an attempt to create a trace
pseudo-variable for a locked function yields a USAGE ERROR; an
existing trace pseudo-variable of an unlocked function is erased when
that function is locked.

Locked Functions

A locked function is a function whose definition cannot be
displayed or mcdified -~ and whose execution cannot be traced -- by any
APL user, including the writer or owner of that function.

When first created, most functions are unlocked. However, any
function can be locked at any time -- even at the time of its creation
-- using the APL function editor. Furthermore, any function can be
locked using the OLOCK system function or the)LOCK system command.

Locking a function does not affect its execution.

A locked function cannot be edited or displayed in any way,
whether through the APL function editor, or through a system functicn:
its function definition is totally unavailable to any and all APL
users through any mechanism available in APL.

THE STATE INDICATOR

The state indicator -- or SI -- is the APL execution stack: it
contains all information needed to control and facilitate execution
flow.

The SI is composed of a push down stack of stack frames, each of
which is associated with a single call to a funcetion, or to the execute
pseudo-operator e, or to evaluated input 0O.

The information that APL records in each stack frame is that
which would be needed by APL to correctly resume eXxecutlion upon return

4-16 AK95-02

from a further call to a function, to execute g, or to evaluated input
Do

For example, if a function FO00 has a statement 4«(2+B)xDEC 3,ARG
withvariables Band ARG, and a call to the function DEC, then APL needs
to remember the statement number -~ and point within that statement --
at which the call to DEC occurs. Otherwise, upon returning from DEC,
APL would not know at what point to resume execution of FO0O.

Stack frames associated with function calls also contain the
information needed to "undo" any localization and masking caused by
that function call. Clearly, this type of information does not exist
for calls to execute 2 or to requests for evaluated input 0.

Execution Termination

ATTN; WEAK & STRONG INTERRUPTS

The user can interrupt APL execution by pressing the ATTN -- or
BREAK -- key. (Note that this use of ATTN is entirely different from
its use inediting input lines: this use of ATTN causes APL to discard
pending output, to stop evaluation of statements, and finally to read
input from the terminal.)

However, APL has two different types of interrupt: the weak

interrupt, and the strong interrupt.

Weak Interrupt

The weak interrupt is signalled when APL receives a single ATTN.
A weak interrupt causes APL to immediately discard all pending output,
but to continue evaluation to the end of the current statement, at
which point execution stops.

APL does not send any message to acknowledge its receipt of a weak
interrupt.

Strong Interrupt

The strong interrupt is signalled when APL receives two distinct
ATTNs in a row =-- with no input between them. A strong interrupt
causes APL to immediately discard all pending output, and to abort
evaluation abruptly -- without regard to how clean or restartable the
break is.

b-17 AK95-02

APL then types I¥T7ERRUPT to acknowledge the receipt of the strong
interrupt; finally, APL prints out the interrupted source line,
placing the error marker Aunder the point of interruption. Thus, the
execution history of the interrupted line is fully documented.

Of course, a strong interrupt canonly be signalled after having
signalled a weak interrupt. That is, when APL receives the first
ATTN, it discards pending output but continues execution of the
current statement. When the second ATTN is received, the weak

®interrupt becomes a strong interrupt: pending output is again
discarded; execution halts immediately; and the INTERRUPT message and
flagged source line are output to the terminal.

ERROR HANDLING

When an error is detected during the execution of a statement,
APL aborts further evaluation, types a message naming the error, and
prints a copy of the source line containing the error, placing the
error marker -- the caret A -- under a character appropriate to the
error.

If the offending line is a line read from the terminal -- as
either desk calculator or evaluated input -- then no change is made to
the SI or any other internal APL construct: APL merely discards the
line and reprompts for the appropriate input.

Suspension

However, if the line in error is a line from the body of a
function, then execution of this function call is temporarily
suspended: lines for evaluation cease to be drawn from the function
body; instead, APL reverts to reading lines from the terminal.

Following a suspension, arbitrary APL lines can be input; they
execute completely normally, except that they now execute in the
environment prevailing at the instant of suspension. Therefore, all
objects -- both local and global -- that were available to the
now-suspended function just prior to its suspension are now equally
available to the user -- to be displayed and/or changed. Since the
full power of APL is available for manipulating these objects, APL is
truly its own debugging language.

4-18 AK95-02

Implicit Results

Of course, any implicit results produced by evaluation of APL
code prior to the error cannot and will not be undone by APL. Note that
such implicit results include -- but are not limited to -- TI/0
activity, assignments to variables, pseudo-variables, and system
variables, and erasure and creation of objects via system functions.

Syntax and Context Errors

Unlike many other APL implementations, Multics APL detects and
reports all true syntax errors before beginning evaluation of a
terminal input line., Furthermore, Multics APL also detects and
reports all such errors occurring anywhere in a function just before
beginning execution of the function.

Therefore, any error whose report is SYNTAX ERRORhas been found
before any evaluation of its containing entity has taken place.

However, since function definitions are subject to dynamic
change -- under program control, APL cannot know in advance if the
syntax of a function call is correct -- that is, consistent with the
function syntax definition. Therefore, errors of this sort -- which
are named CONTEXT ERRORs in Multics APL -- can onlybe detected at the
time of the functioncall: the line containing the functiocon call must
be partially evaluated before a CONTEXT ERROR can be found and
reported. (Context errors are so named because whether or not a
statement contains such an error is dependent upon the context of the
function call at the time of the function call -- it is dependent
solely upon the syntax definition of the called function ascurrently
defined at the instant of the functioncall. Therefore, such an error
isnot a true syntax error -- as it isnot intrinsically an error -- but
rather is a context-dependent error, or simply a context error.)

Note that SYNTAX ERRORs are the only runtime errors in Multics
APL that are detected and reported before evaluation begins.

STOP PSEUDO-VARIABLES Siname of fn

A stop pseudo-variable is a pseudo-variable whose name 1is
composed of the string oSA immediately followed by the name of a
function, and which can be used -- withcertain restrictions -- just as
can any normal variable, except that its proper use produces a side

4-19 AK95-02

effect -- an implicit result for which this construct was designed --
which stops the execution of its namesake function.

With the sole and crucial exceptionof this implicit result, the
properties,; behavior, and rules governing the wuse of stop
pseudo-variables exactly match those of trace pseudo-variables.

Execution of the namesake function of a stop pseudo-variable is
stopped just before APL begins to execute any line of that function
whose line number is found in that stop pseudo-variable. Before
executing each function line, APL uses the membership operator to find
out if that function line number is specified in the appropriate stop
pseudo-variable: neSaname of fn, where n is the line number of the
function 1line about to De “executed, and SaAname of fn is the
appropriate stop pseudo-variable., If this test yieldsa 1 -- "true"
-- then the function execution 1is suspended, and APL prints:
name of fn[n]. Otherwise, execution proceeds normally.

Like trace, stop pseudo-variables are used almost exclusively
for exploring and/or diagnosing complex or allegedly errant
functions. They have little -- if any -- practical use outside of
these contexts.

Trace and stop pseudo-variables can be used singly, or in any
combination, as appropriate. They do not in any way interact or
interfere with each other.

LOCKED FUNCTIONS

When APL detects an error in a locked function, it reports the
error just as it does those in unlocked functions, with an important
exception: the offending source line is not printed. However, the
error name, the name of the errant function, and the line number of the
offending 1line are all printed as wusual. Suspension proceeds
completely normally.

ATTN may be used -- Jjust as with unlocked functions -- to
interrupt execution of any locked function. The function call is
suspended completely normally. However, as with error reporting, APL
does not print the source line of any locked function whose execution
is interrupted in mid-line by a strong interrupt.

Stop and trace pseudo-variables cannot be used with locked
functions: any attempt to create one yields an error.

4-20 AK925-02

Apart from the restrictions and exceptions previously
mentioned, locked functions behave exactly as do unlocked functions.

HALTED FUNCTION CALLS

A halted function call is any function call that has stopped
executing due to any of the above causes -- an interrupt, error, or
stop pseudo-variable, A functioncall is not halted if it has stopped
executing due to normal function return, nor if it is waiting return
from one of the following, which is in execution: a function call, [
or MM input or execute e. However, if the function call is awaiting
return from something which is itself halted -- a function call, 0O
input, or p -- then the function call is halted.

Suspended Function Calls

A suspended function call is a halted function call that is not
awaiting return from anything.

The execution environment is unchanged by a suspension. That
is, the values of local and global variables, of system functions and
local and global system variables, of trace and stop
pseudo-variables, and of labels, and the definitions of local and
global functions, and of groups, are completely unaffected by the fact
that the function call that was in execution at the current level has
become suspended. 1In fact, the only change is that instead of reading
diamond lines to be executed from the function definition, APLreverts
to reading them from the user's terminal. Thus, the user "sees" the
same execution environment that the now suspended function call
executed in just before suspension.

Pendent Function Calls

A pendent function call is a function call that is awaiting
return from one of the following: a function call, O input, or 2, A
pendent function call may or may not be halted: the execution status
of its "callee" is irrelevant.

A pendent function call is not "in execution",

A given function call always falls into exactly one of the three
mutually exclusive categories: in execution, suspended, or pendent.

A pendent function call has a special property: it contains a
partially evaluated pendent statement containing the call which
rendered that function call pendent.

4-21 AK95-02

Exploring the SI

APL has several facilities for listing the contents of the SI.
The most commonly used are the two system commands)SI and)SIV and the
system function OSI. Less useful -- except in special applications --
are the I-beam functions I27 and I26, and the system function OLC,

THE)SI SYSTEM COMMAND

The)SI system command causes APL to print out a listing -- with
one line per stack frame -- of the names of the entities in whose behalf
the stack frames exist, together with -- in the case of function calls
-- a bracketed line number that indicates: for pendent function
calls, the function line on which the pendency exists; or, for
suspended function calls that were interrupted between function
lines, the function line that was to be executed next; or, for
suspended function calls that were interrupted in mid-line via a
strong interrupt, the function line that was interrupted and only
partially evaluated.

So, for a stack frame created by a function call, the J)SI 1list
entry appears as: name of fn[n]. Similarly, the)SI entry of a

request for evaluated input™is simply a quad U, and that of a call to
execute is a hydrant &,

To help distinguish between pendent and non-pendent -- that is,
suspended or in execution -- function calls, APL flagsevery)SI entry
of anon-pendent function call with a star *, (Note that since execute
® and evaluated input requests U cannot be suspended -- they can be
either in execution or pendent -- no ambiguity can exist as to what

state a given such call is in. Therefore, no flagging of)SI entries
for such calls is necessary.)

THE)SIV SYSTEM COMMAND

The)SIV system command produces the same 1listing that)SIV does,
except that each function call entry is followed -~ on the same line --
by a list of all local identifiers localized by that function call.

THE OSI SYSTEM FUNCTION
The [0OSI system function returns -- as an explicit result -- a

character matrix representation of that which)SI would print. That

is, the result of 0OSI -- if disglayed immediately -- would match the
printed output produced by)SI,

h-22 AK95-02

I27, I26 AND Qr¢

I27 and Q¢ are identical, each returning an integer vector
explicit result whose elements correspond one-to-one with)SI entries
as follows: if the entry is 2or [, then the corresponding element in
the result of I27 and [OLC is a zero; if the entry is a function call,
then the corresponding element in the result of I27and [OLC is the line
number that is bracketed in the)SI entry.

I26 returns an integer scalar explicit result that is the first
element of I27 and 0OLC, or zero if they are empty.

Clearing the SI

It is wusually undesirable to leave suspensions -- and any
associated pendencies -- in the SI any longer than is necessary to
explore and/or diagnose problems in the functions involved in the
suspension. Suspensions may require large amounts of storage,
especially if local objects are large, or if pendent function or
execute calls are nested very deeply; furthermore, unneeded)SI
entries clutter and confuse the)SI listing.

Eliminating, or clearing unneeded suspensions is accomplished
by the escape - mechanism.

THE ESCAPE -

The escape » -- a branch symbol with no argument -- causes APL to
unwind exactly one suspension: the most recently created one. It
clears the SIback to the point of the previous suspension, undoing all
localization and masking caused by the most recently suspended
function call, and by all of its pendent function calls.

The)RESET system command on other system can be mimicked by
entering -- one at a time -- as many escapes as there are suspensions.

Restarting a Suspended Function Call

Following the suspension of a function c¢all, the branch
pseudo-operator can be used to restart function executionon any line
of the most recently suspended function.

Of course, if execution termination was caused by an error, then
this is generally useful only after suitable remedies have been
effected to prevent recurrence of the error. Such action might

4-23 AK95-02

include manual entry and execution of appropriate APL statements,
and/or corrective editing of the suspended function itself.

The user must also be careful to restart on the correct line --
whether the line before, during, or after which the interruption
occurred needs to be executed depends upon the intricacies of the
function and upon precisely how, why, and where the interruption
occurred.

Function line labels of the suspended function call are defined

and accessible, so they can be used -- if convenient -- in restarting
that function call.

As always in APL, it is possible to branch only to a line of the
topmost function call in the SI -- that is, of the most recently
invoked function call.

SI Damage

SI damage occurs when the environment is changed in such a way
that it becomes inconsistent with the SI.

For example, the SI is damaged if a function is erased that has
pendent or suspended function calls in the 3I. Similarly, SI damage
occurs if the header of a function with a suspended call is changed via
the function editor.

SI damage cannot be caused by any APL function or system
function. SI damage can only be caused by: improper editing -- via
the APL function editor -- of functions with suspended function calls
in the SI; or, erasure -~ via the APL JERASEor)COPY system commands --
of global functions with suspended or pendent function calls in the
SI;or, errant or malicious external functions, although APL cannot --
and will not -- detect or report such damage.

APLnotifies the user that SI damage has occurred by printing the
message: SI DAMAGE,

SI damage is irreversible. However, although sometimes quite
complex, it is always possible to recover from SI damage, resuming and

successfully completing the original -- or even modified --
computations and funection call sequence.

4-24 AK95-02

EFFECTS

SI damage does not cause APL to make any further change to the
environment. All local and global objects -- except the erased or
improperly modified function -- and all localizations and masking,
remain unchanged in any respect, regardless of the cause of the SI
damage. (Significantly, APL correctly remembers which is the result
identifier -- if any -- and this returns completelynormally any value
assigned to it, when and if the function call returns.)

However, APL prevents further execution in the damaged function
call: any attempt to restart a damaged function call, whether by
means of a branch into a damaged suspended function call - via N,
where N>0 -- or by a return to a damaged pendent functioncall, fails,
yielding an SI ERROR.

Note that a functionreturn -- via +N, where N<0 -- or an escape -,
is completely acceptable, and proceeds normally.

SI damage is recorded in the)SI and)SIV listings, and in the
explicit result of [SI in the following way: the name of fn[n]
portion of each damaged function call entry is replaced with six
spaces. Any stars =* that flag non-pendent function calls remain
unchanged, and local identifier 1lists produced by J)SIV remain
unchanged.

Note that ST damage extends to all previous calls to the erased or
destructively modified function T every existing suspended and
pendent function call to that function is damaged, not merely that
most recent such cali. T

EDITING HALTED FUNCTIONS

Functions that have pendent function calls cannot be edited,
because at least one of its 1lines is only partially evaluated, and is
therefore saved in the SI. No meaningful association could be
established between this saved information and an edited function
definition: APL could not know where or how to resume execution of
these partially evaluated lines.

Consequently, if it is necessary to edit a function with pendent
these pendencies must first be cleared from the SI using

4-25 AKS5-02

However, functions that have only suspended function calls can
be edited and restarted successfully, with the following
restrictions:

- The header cannot be changed in any way.
- Label names cannot be changed.

- Labels cannot be added or deleted.

Any failure to observe these rules elicits a warning from APL
when the user attempts to leave the editor. A second request to leave
the editor is honored, but the violation of the above rules causes 3SI
damage to all calls to the just modified function.

If the above restrictions are observed, no warning or SI damage
occurs when 1leaving the editor. Furthermore, the new function
definition takes effect immediately, for both future and suspended
function calls.

Labels are automatically redefined -- if necessary -- just
before leaving the function editor. This is necessary if the line
number of the line on which the label appears differs between the old
and the new function definitions. (Note, however, that non-branching
references to labels made prior to editing cannot and will not be
corrected by APL, and may therefore be invalid. For example:
L2:A«3+5xL2; after editing, L2is redefined correctly, but Arefiects
the old L2definition, and therefore causes incorrect operationof the
function.)

EDITING A FUNCTION

APL provides a function editing capability. Adding, deleting,
or retyping lines can be performed on complete lines. Detailed
editing of individual 1lines, such as deleting, inserting, and
changing individual characters on a line, can also be performed. APL
must be in definition mode to perform function editing.

The various function editing techniques are described below.
Assume the following function has already been defined as:

VX+AVG
(1] SUM<(+/NUM)
21 v

4-26 AK95-02

This function may be edited as follows:

1.

To add a new line, type VFUNCTION_NAME

VAVG
[2] ‘

Notice that APL is now in definition mode, waiting for you
to enter line 2, the next available line in the function.
Type in the line and terminate definition mode:

[2] X<SUM:pNUM
[3] v

or
[2] X<«:pNUMV
To 1list a function and return to immediate mode, type:
VAVGLOv
To list a function and remain in definition mode, type:

vavelOo]d
VX<AVG

(1] SUM«(+/NUM)
(2] X<«SUM:pNUM

v
£31

To list a function when the interpreter is already in
definition mode type:

(3] [O1]
VX<AVG
[1] SUM<(+/NUM)
[2] X<«SUM:pNUM
v
[3]

To list a single line, type:
(3] [20]

[2] X«SUM:pNUM
[21]

To list all of the lines from line K on, type [0OK]. For
example:

(2] [01]
(1] SUM«(+/NUM)

4-27 AK95-02

[2] X«SUM:pNUM
[3]

3. To delete a line, type, in square brackets, a delta (4),
followed by the line number that is to be deleted.

£31 [a2]
3]

4, To replace a complete 1ine, type, in square brackets, the
number of the line that is to bereplaced. When prompted by
the appropriate line number, type in the new line.

(2] [11]
(1] X«(+/NUM))2p
(2]

A line can also be replaced by typing the line number to be
replaced in brackets, followed immediately by the new text.

5. To insert a line between the other lines, use fractional
line numbers., For example, to insert a line between the
header (considered to be line 0) and line 1, type some
fraction between 0 and 1 (say 0.5) in brackets. When APL
prints the line number [0.5], type in the new line.

£27 [0.5]
[0.5] "AVERAGE"
[0.6] V

Lines may also be inserted by typing the fractional
line number in brackets, followed immediately by the text
for that line.

When a function 1is closed, APL automatically
resequences the function 1line numbers. The edited
function now looks like this:

AAVGLOdv
VX<«AVG

[1] "AVERAGE®
[2] X<«(+/NUM):p
VeV

EDITING A LINE
Characters within a function line (including line 0, the header
line) can be replaced, deleted, and inserted by typing [MON]; where M

is the line number to be edited, and ¥ is the approximate position in
the line for editing to begin. After [MON] is typed, the line to be

4-28 AK95-02

edited is displayed, the carriage is returned, and §y positions are
spaced over. Editing of the line may then be performed.

1.

To delete any number of characters, type in a / beneath the
characters to be deleted:

(3] [20151
[2] X«(+/NUM))+sp

/
(2] X«(+/NUM)+p

NM
(3] [201
(2] X«<(+/NUM) spNM
(21

This line is nowdisplayed again, and the carriage waits at
the end of the line so that additional characters may be
added to the 1line.

To insert a character or characters between two adjacent
characters j and k, type a digit below k to indicate the
number of characters which are to be inserted to the left of
ks

(31 {3081
(2] X«(+/NUM) :pNM
1
The line isdisplayed with the appropriate number of blanks
inserted. The carriage then waits at the leftmost blank

for insertion:

[2] X«(+/NUM):pN M
U

The letters A through Z can be used in place of the digit to
insert 5 blanks for an 4, 10 blanks for a B, etc.

To replace a character with another character or
characters, combine the two above methods and type /W,
where N is a digit or letter to indicate the number of
characters to replace the character:

[3] (10131
[1] 'AVERAGE!
/4

(1] "AVERAG '
E =

4-29 AKS5-02

J=

To add to the end of a line, the editing command [MO0lcan be
used. Line M will be printed, and new material may be
added. This isconvenient for adding comments to the end of
a line,

(2] [oOo1
X<AVG
NUM
(1] [100]
{11 "AVERAGE ="

RCOMMENT
The edited function now looks like:

C1] CO]
VX<AVG NUM
[1] "AVERAGE = 'RCOMMENT
[2] X<(+/NUM)spNUM
v
[3] vV

4-30 AK95-02

SECTION 5

SYSTEM COMMANDS

System commands are special lines typed by the user to adjust or
control the operation of APL. They are distinguished from
expressions by always beginning with a right parenthesis -- no
expression could ever begin that way.

The right parenthesis is followed by the name of the particular
system command, which is then followed by arguments, separated by
spaces. The arguments required by each command vary, and are
discussed under the individual command descriptions below.

System commands can be issued whenever APL is awaiting desk
calculator or evaluated input. They cannot be issued from a function
call, nor are they recognized while APL is awaiting character input.

Most system commands are innocuous enough to be accepted while in
the function editor. However, certain system commands are explicitly

disallowed while in the editor -- any attempt to issue these commands
is rejected:

YCLEAR,)CONTINUE,)COPY,)ERASE,)LOAD,
)OFF,)QUIT,)SAVE, and)vicopry.

A system command is performed as soon as it is issued; then APL
requests again the input it was awaiting before encountering the
command -- unless the action of the command is such that the input is no
longer needed.

ENVIRONMENT PARAMETERS

APL is partially controlled by a set of environment parameters.

These 1include the workspace parameters, and a set of session
parameters.

5-1 AK95-02

APL offers system commands and/or system variables to set each
parameter, or to find out its current setting.

For system commands, a parameter is set by issuing the command
name, followed by the desired setting, as an argument. The command

name alone causes APL to print the current setting, without change.

For system variables -~ discussed more in a later section -- a

parameter is set by assigning the de51red setting to 1t just aswith a
regular variable.

Workspace Parameters

Every workspace contains a set of dynamic, user-definable
workspace parameters, used for specific, fixed purposes by APL.
These are: the index origin, the number of digits of printing
precision, the comparison tolerance, the integer tolerance, the
latent expression, the workspace identification, and the random
number seed. Most of these workspace parameters have associated with
them a system command and a system variable to set and/or find its
value.

The workspace parameters are also affected by the JCLEAR and
)LOAD system commands. The)CLEAR command resets all parameters to

their default values, while the)LOAD command sets them to the values
recorded in the saved workspace,.

Session Parameters

Every APL session has an associated set of dynamic,
user-definable session parameters, each of which is used by APL for
specific, fixed purposes. The session parameters are: the page
width, the horizontal tab setting, the error mode, and the
compatibility mode.

Each of these session parameters has a system command to set or
inquire about its value.

None of these parameters are affected by changing or clearing the
active workspace.

5-2 AK95-02

The)YorIGIN System Commands

The)ORIGIN system command takes as its argument either the
constant g or the constant 1. The command establishes its argument as
the new value of the index origin and types out the old value.

The index origin of a clear workspace is 1 by default.

The index origin of a workspace is saved and restored by the)SAVE
and)LOAD system commands.

The index origin determines whether numbers from 0 to #-1 or from
1 to ¥ are used to number coordinates and elements for various
operators:

AlA;4;...34] interpretation of subscripts;
15 V14 result of index operators;

M YA result of grade operators;

24 528 result of roll and deal;
A[S]4 VARRY: interpretation of coordinate
o[5S]14 veLslA numbers.,

v/[s]A VALS1A

o/[5]A

The)wWIDTH System Command

The)WIDTH system command takes as its argument an integer
constant from 30 to 130. The integer supplied is established as the
new page width to be observed by the APL output routines, and the
previous value of the page width is typed out.

The page width of a workspace determines the maximum number of
characters that the APL output routines place on a line before
deciding the line is full and overflowing to the next line.

Page width is a session parameter whose default is taken to be the
line length in use when APL is entered.

5-3 AK95-02

The J)DIGITS System Command

The J)DIGITS system command takes as its argument an integer
constant from 1 to 19, The integer supplied is established as the new
number of digits of printing precision; the old value is typed out.

The digits setting of a clear workspace is 10,

The digits setting is saved and restored by the)SAVE and)LOAD
system commands.

The digits setting determines only how values are formatted for
printing. It does not affect the stored values themselves, nor does
it affect their calculation. All values in Multics APL are calculated
to 63 bits of precision (approximately 19 decimal digits). As avalue
is printed, it is rounded to the desired number of significant digits
when it is converted to printable characters,.

The)ERRS System Command

The)ERRS system command establishes whether APL error messages

are printed in their long or brief form. The 1long form gives
additional information on the cause of the error, while the brief form
is very short, giving only the error name.

The argument is the mode that the errors are to be printed in:
that is, LONG or BRIEF. The error mode is a session parameter.

5-4 AK95-02

The YTABS System Command

The)pgaps system command takes as its argument an integer
constant from o to 130. The argument is established as the new tab
setting to be used to speed up output. For properly formatted output,

the physical or electronic tab stops must be set at uniform intervals
that match the)T4BS setting. ‘

)TABS 0 disables use of tabs in output.

The tabs setting is a session parameter.

The)CHECK System Command
The)CHECK system command accepts one argument; ONor OFF. This
command establishes whether or not APL checks and reports usage of APL

constructs whose definitions have been changed incompatibly. APL

reports such usage as a COMPATIBILITY ERROR only when the
compatibility mode is turned on via)CHECK ON.

YCHECK OFF disables this checking.
The compatibility mode is a session parameter.
The)HUH System Command
The YHUH system command is used to print the long form of the most

recent error message. It is used toobtainmore information about the
problem when running in)ERRORS BRIEF mode.

SYMBOL TABLE

The symbol table is an area of the workspace set aside for
remembering names and the objects to which they refer. A number of
system commands exist for inspecting and manipulating the symbol
table.

The)VARS System Command

The)VARS system command is used to print out alist of the names
of all currently accessible -- non-masked -- variables in the
workspace, both local and global. The list is produced in alphabetic

order, and is printed in as many columns across the page as the page
width allows.

5-5 AK95-02

The)VARS system command can be issued without any arguments, in
whichcase it 1ists all variables. It can also be issued with aname as
its argument, in which case it lists only names that match or follow
the argument name in alphabetic order.

The name supplied as the argument need not name an object in the
workspace: it is used only in an alphabetic comparison to decide
which names to print.

The)FNS System Command

The)FNS system command is used to print alist of the namesof all

currently accessible -~ non-masked -- global and local functions
defined in the active workspace. Like)JVARS, the)FNS command prints
its 1list in alphabetic order, and a valid APL name -- possible

representing a nonexistent object -- 1is accepted as an optional
argument indicating where to begin the list.

The)GROUP System Command

The)GROUP system command is used to gather objects into agroup,
to append more objects to a group, or to disband a group.

The first argument of the)GROUP command must be the name of the
group upon which the command is to operate. If the purpose of the
JGROUP command is to create the group, then the group need not yet
exist at the time the command is issued; otherwise, it is an error if
the first argument is not the name of an existing group.

5-6 AK95-02

If no further arguments beyond the group name are supplied, then
YGrRoyp disbands the group. Disbanding a group has no effect upon its
members; the only consequence is that they are no longer considered to
be in a group. This should be carefully contrasted with erasing a
group, which also erases its members.

If some names of objects follow the group name argument, then
YJGROUP establishes a group of the designated name having the indicated
members. Any object can be a member of a group: a variable, a
function, or a group.

Only one object cannot be made a member of a group: the group
itself. The inclusion of the group's own name in the 1list of members
has a special meaning to the)GROUPcommand: all the previous members
of the group are to be retained in the new group, along with the new
members. This appends new members to an existing group.

The)GRP System Command

The)GRP system command lists the names of the membersof a group.
It takes as its argument the name of a group.

The)GRPS System Command

The)GRPS system command lists the names of all groups defined in
the active workspace. Like the)VARS and)FNS commands, the)GRPS
command prints its 1ist in alphabetic order, and accepts a starting
name as an optional argument.

The)ERASE System Command

The)ERASE command is used to delete objects from the active
workspace, Its arguments are any number of names of objects to be
deleted. The objects can be global variables, function, or groups.

When an object is erased, it is completely removed from the
workspace and discarded. No record of its previous existence
remains., Its name and the storage it occupied become available for
other uses.

Local objects cannot be erased by the)ERASE command. However,
they are automatically erased when the function to which they are
local returns. Also [EX erases local objects.

5-7 AK95-02

If an argument to)ERASE is the name of a group, then the group is
disbanded, and all members of that group are erased. However, groups
that are members of the erased group are disbanded, but their members
in turn are not affected. Thus, erasure of groups containing groups
isnot fullyrecursive; only the direct members of the erased group are
erased.

The)SYMBOLS System Command

The Multics APL)SYMBOLS command does not accept arguments, and
causes no change to the workspace environment. It simply reports the
total number of symbol table entries currently used.

The)SI System Command

The)SI system command is used to inspect the state indicator of
the APL processor. The state indicator is an areaof the workspace set
aside to record the state of functions currently invoked.

The meaning and workings of the state indicator are fully
explained in Section 4, but, briefly, the state indicator acts as a
stack. As one APL statement invokes another (either as a function or
as evaluated input), the information pertaining to the partially
evaluated invoking line is stacked in the state indicator. The APL
processor 1is then free to evaluate the invoked lines, knowing that
when it finishes it can return to complete the evaluation of the
invoking line by restoring the saved state of evaluation from the
state indicator stack. Since the invoked statements can further
invoke other statements, many partial evaluations may need to stack
successively in the state indicator. As their respective evaluations
complete, the stack is popped back in parallel.

A statement whose execution is stopped temporarily because the
processor must execute another statement (that it invokes) is said to
be pendent. Thus, the use of the state indicator discussed so far is
to remember all pendent statements.

Another item of information remembered in the state indicator is
function suspensions. When the execution of a function produces an
error report, statements cease to be drawn from the function
definition and are instead read from the user's terminal until the
function is explicitlyrestarted. During this interval, the function
is said to be suspended. An entry in the state indicator for a
suspension differs from that for a pendent statement in that no
partially evaluated statement is remembered, and also in that a
suspension marks a place where the user obtained control and was able
to type new statements.

5-8 AK95-02

In the listing printed by the)gr command there is one line per
entry on the state indicator stack. The stack is printed in the order
of most recent item first to least recent last; thus, the first line
printed corresponds to the most recent entry made into the state
indicator. Each line shows the name of the function in execution (or
the symbol [0 if the entry refers to an evaluated input line), the
statement number upon which execution resumes (the pendent statement
itself for pendent entries; the statement following the error for
suspended entries), and finally an asterisk if the entry represents a
suspension (lines without an asterisk correspond to pendent entries).

The)SIV System Command

The)SIV system command performs the same function as the)SI
system command, except that each line of the display shows, in
addition to everything shown for the)SI command, all identifiers
local to the particular invocaticn.

Since a reference to an identifier is satisfied by the most
recently created object of that name, the referent of any given
identifier is easily found by scanning the J)SIV 1ist downward. The
first instance of the sought identifier is the satisfying referent.
If the identifier is not found anywhere in the)SIV 1ist, then the
reference is satisfied by a global object. Local and global
identifier referencing is treated more fully in Section 4.

5-9 AK95-02

WORKSPACE MANAGEMENT

One of the most important features of APL is its ability to save
the complete contents of a workspace and then take it up again later.
Work can then be continued as if there had been no interruption. On
Multics, workspaces are saved as segments -- or, if necessary, as
multisegment files -- anywhere in the storage system hierarchy.
Normal Multics quota and access conventions govern the storage of
saved workspaces.

When a workspace is saved, everything necessary to resume the
session in progress is remembered. The values of all variables, both
local and global, the definitions of all functions and groups,
everything in the state indicator, and the settings of all workspace
parameters are saved.

When a workspace is to be taken up again, the user has achoiceof
how much of the saved workspace to recall. He can copy individual
global variables or functions or groups via the)COPY system command
with specific objects named; or he can copy all global objects but not
the state of execution or workspace parameter via the)COPY command
with no objects named; or he can recall the entire workspace via the
YLOAD command.

Objects can be moved from workspace to workspace or duplicated in
several workspaces.

Workspace Identification

Each workspace has assocliated with it a workspace
identification, which is the absolute or relative pathname of the
workspace.

The active workspace also has a workspace identification: that
of the workspace most recently loaded. If no workspace has yet been
loaded, the active workspace has the identification CLEAR WS, Note
that a workspace id of CLEAR WSdoes not mean that the active workspace
is clear; it only means that it started out as a clear workspace.

When a)LOAD command is issued, APL locates the saved workspace
in the Multics hierarchy, loads acopy of its contents into the active
workspace -- discarding the old contents of the active workspace --
then replaces the current wsid -- workspace identification -~ with the
pathname given to)LOAD, and finally prints a message indicating the
date and time at which the workspace was last)SAVED,

5-10 AK95-02

When a)ggyp command is issued with no pathname as argument, the
active workspace is stored according to its current wsid. If a
pathname argument is given, then the wsid is replaced by the new
pathname, and the active workspace is saved at the new place in the
Multics hierarchy.

It is an error to issue a)SAVE command with no pathname given
when the workspace identification is CLEAR WS.

The wsid can also be inspected or changed at any time with the
JWSID system command. No commands other than)CLEAR,)SAVE,)LOAD,
and)WSID affect or concern themselves with the active wsid.

The user is cautioned that changing the working directory when
the workspace identification is only a relative pathname can change
the meaning of that pathname -- and a succeeding)SAVE command with no
argument may not necessarily refer to the previously 1loaded
workspace.

Passwords

It is possible to associate a password with a saved workspace,
When a workspace has been saved with a password, APL prevents a load or
copy from it unless the password can be supplied. The password is also
required to delete a saved workspace.

Cautious users should note, however, that nothing prevents
another user from supplying a program of his own construction to
search for interesting things in your saved workspaces.

The mechanics of supplying passwords are as follows. Passwords
are accepted by the)SAVE,)LOAD,)COPY,)PCOPY and)DROP system
commands. To indicate that a password is to supplied, a colon follows
the last character of the pathname constituting the workspace
identification in the command 1ine. Then, the user has the choiceof
supplying the password in one of two ways: he can enter it into the
command line, immediately following the colon; or, he can enter -- in
its place -- a quote quad [, indicate that APL should use the
get _password subroutine to ensure that the password is not visible to
other users.” Entering a [in place of the password results in the
prompt PASSWORD: and an opportunity to enter the password with either

the printer turned off, or on top of a pre-printed mask of random

characters, depending upon the terminal.

The password may be from zero to eight characters in length, with
zero characters indicating that no password is to be used.

5-11 AK25-02

The remainder of the command line is typed normally. After
receiving the correct password, APL proceeds normally.

If a workspace saved with a password is addressed by a)L0AD,
)COPY,)PCOPY, or)DROP command without a password or with an
incorrect password, then the command is ignored.

If a)SAVE command is used without a colon, then the workspace is
saved with its current password -- if any. To remove or change the
password of a workspace, the)SAVE command must be issued with a colon.
A password of zero characters is considered the same as no password.

A clear workspace has no password.

The)CLEAR System Command

The)CLEAR system command is used to clear the active workspace,
When the)CLEAR command is issued, the APL processor types CLEAR'WS,
erases all objects, discards the state indicator and all local
variables; resets the index origin, digits, fuzz, password, latent
expression, and workspace identification to their default values, and
reads the calendar clock to obtain a new seed for the random number
generator.

The)LIB,)LIBD System Command
The)LIB and)LIBD commands each print a 1ist of the pathname of

all saved APL workspaces in the user's hierarchy.)LIB prints a
horizontal list while)LIBD prints a vertical list.

YLIBD additionally lists -- for each such workspace -- the
date-time saved and date-time used data.

The)SAVE System Command
)SAVE is used to save a copy of the active workspace. Everything

in the workspace is saved. Workspaces become Multics segments or
multisegment files.

)SAVE can be issued in three forms: the command alone,
)SAVE

or with a workspace identification (i.e., pathname),

5-12 AK95-02

)SAVE wsid

or with a workspace identification and a ceolon,

YSAVE wsid :

In the first form -- the command alone, the workspace is saved
under its current identification and with its current password. See
the preceding two sections for a description of workspace
identifications and passwords. This formof)SAVE is invalid when the
workspace identification is set to CLEAR WS.

The response to this command is the current date and time,
followed by the workspace identification as a reminder.

In the second form, the active workspace is saved under the new
identification (i.e., at anewplace in the storage system hierarchy),
but with the current password if any. The current workspace
identification is replaced by the wsid argument to J)SAVE. The
response to this form of the command is the current date and time.

In the final form of)SAVE, APL requires a password. Then the
active workspace is saved under the new identification with the new
password. An empty password is the same as no password. The current
workspace identification and password are both changed to those given
in the command line. Again, the response to this command is the date
and time.,

The)SAVE command does not alter the current workspace in any
way, except that its wsid and password may change. Following the
)SAVE, computations can resume in the current workspace.

If any Multics errors occur in performing the save, such as
record quota or access violations, they are reported and the current
workspace remains unchanged.

5-13 AK95-02

The)LOAD System Command

The)LOAD system command takes as its argument a workspace
identification, (i.e., pathname), optionally followed by a colon. If
the colon is supplied, APL requires a password. If the password
supplied does not match that of the saved workspace whose
identification is given in the J)LOAD command, then the error is
reported and the current workspace remains unchanged. Otherwise, the
current active workspace contents are discarded and replaced by a copy
of the saved workspace.

The response to the)LOAD system command is saved followed by the
date and time that the workspace was saved.

The saved workspace itself is not altered by the)L0AD command.

The)COPY System Command

The)COPY system command copies functions, groups, and global

variables from a saved workspace into the active workspace. The
active workspace remains unchanged except for the addition of the new
object or objects.

5-14 AK95-02

The)Ycopy system command can be issued to two forms. The first
is:

)CoPY wsid

where wsid is the pathname of a saved workspace. If the workspace was
saved with a password, then it must be given. This form of the command
places copies of all global functions, groups, and variables
contained in the saved workspace into the active workspace. If any
object of the same name as an object to be copied already exists in the
active workspace, it is erased and replaced by the new object. All
other objects in the active workspace remain unchanged, as do the
workspace parameters and the state indicator -- unless SI DAMAGE
occurs,

In the second form of the)COPY command, a list of specific
objects is mentioned, as:

JCOPY wsid object object...

where, as before, wsid is the pathname of a saved workspace, and each
'object' is the name of a global function, group, or variable in the
saved workspace.

The function of this form of the)COPY command is to copy only the
objects mentioned from the saved workspace into the active workspace.
If any object is a group, however, all of its members are copied as
well,

As in the other form of)COPY, naming conflicts between copied
objects and existing objects are resolved by erasing the existing
objects.

If a specified object does not exist in the saved workspace, an
error report gives the message that it was not copied.

0 the saved workspace. The

In any case, there is no change e
date and time the donor workspace

response to the)COPYcommand is the
was saved.

T
e

t

5-15 AK95-02

The)PCOPY System Command

The)PCOPY (protected copy) system command behaves exactly like
the)COPY system command with the exceptionof its treatment of naming
conflicts. With the protected copy command, when an object to be
copied has the same name as an existing object, the existing object
remains unchanged, and the saved object is simply not copied. The
names of any objects not copied are reported.

Like the)COPY command, the J)PCOPY command can copy either
specified objects or all global objects out of a saved workspace. The
normal response to the command is the date and time the workspace was
saved. There is no change made to the saved workspace.

The J)CONTINUE System Command

The)CONTINUE system command provides no new capability to the

APL system, but is simply a convenient way to terminate an APL session

that must be resumed again later., The)CONTINUE command behaves
identically to the sequence

)SAVE CONTINUE
)OFF

of commands. That is, the current workspace is saved under the name
CONTINUE, and the APL session is terminated. Later, the command:

JLOAD CONTINUE

can be used to pick up the work again as if there had been no
interruption.

The)WSID System Command

The)WSID system command is used to inspect or change the current
workspace identification. If)WSID is typed with no arguments, as:

)WSID
then the current workspace identification is printed out.

JWSID can also set the current workspace identification. 1In
this case, the user types:

JWSID wsid

5.16 AK95-02

where "wsid" 1is any absolute or relative pathname. The former
identification is typed in reply.

The purpose of setting the workspace identification isto allowa
later)SAVE command given without an identification to save the
workspace in the desired place. Beyond)JWSID, the only commands that
affect or concern themselves with the workspace identification are
JCLEAR,)SAVE, and)LOAD.

The)DROP System Command

The)DROP system command is used to delete the saved copy of a
workspace. The form of the command is:

)DROP wsid
where "wsid" is the pathname of the saved workspace to be deleted. A

password is not required to delete a saved workspace.

JDROP has no effect on the active workspace.

Version 1 APL Workspaces

In addition to the system commands for manipulation of
workspaces, analogous commands exist for use with workspaces created
by Multics Version 1 APL. These commands are JVILIB,)ViCOPY,
JViPCOPY, and)ViDROP. Their syntax and actions are identical to
their Version 2 APL counterparts. Thus in order to convert a
workspace from Version 1 APL to Version 2, just copy it into the
current workspace using)V1COPY, then save it using the regular)SAVE
system command. The Version 1 workspace is not deleted or replaced.
To delete it, use the)V1DROP system command.

COMMUNICATING WITH MULTICS

In addition to the commands relating to the saving and reloading
of workspaces, a number of other commands involve communication
between APL and Multics. The)@,)QUIT, and)OFF system commands are
used to exit from APL. The)PORTS system command prints the names of
other users currently logged in to Multics. The)R system command
returns the users Multics command line while the ? system command
lists all the system commands. Finally, the J)E system command
provides a means of executing Multics commands without exiting from
APL.

The)@,)QUIT,)OFF System Commands

5-17 AK95-02

The)Q, YQUIT, and)OFF system commands are all identical. They
cause the APL processor toreturn to its caller, If APL was invoked as
a Multics command, this amounts to a return to Multics command level.

Following areturn to Multics, the current workspace is no longer
accessible. 1If the user wishes to save theresults of an APL session,

a)SAVE command must be issued before returning, or else the JCONTINUE
command should be used to exit instead of)&,)QUIT, or)OFF,

The)PORTS System Command

The)PORTS system command prints a list of the Multics users
currently logged in. It is implemented as acall on the Multics "who"
command. Any arguments typed after the)PORTS command are simply
passed on to the "who" command, so a certain amount of selectivity is
possible. Refer to the description of the "who" command in the
Multics Commands and Active Functions manual (Order No.: AG92), for
further information.

The)EXEC,)E System Commands

The)JEXEC and)E system commands are identical. They are used to
execute an arbitrary Multics command line from within APL. The entire
remainder of the command line following the)E is passed unchanged to
the Multics command processor for execution.

The user is cautioned that the command line itself has been read
by APL; hence, it has undergone the APL rather than the Multics input
processing. While the APL and the Multics character sets largely
overlap, there are some differences. It is up to the user to
anticipate the translations mentioned in Section 2 and compensate for
them where necessary. For example, if one types

YE SM MGS M WHY ERROR WHEN “123" IS TYPED?

the actual message transmitted, in ASCII, is
Why error when S" is typed?

The)HELP System Command

The JHELP system command provides an interface to the Multics
" help facility. JHELP is used to print out the on-line documentation
available on Multics for both Multics APL and most of the other
facilities available on Multics.

5-18 AK95-02

If the YHrLp command is given no arguments, it prints a summaryof
the info files available on Multics APL. If it is given an argument,
the argument is interpreted as the name of a Multics info file. A full
Multics pathname may be specified.

The)MSG System Command

The)MSG system command provides an interface to the Multics
send_message facility, allowing APL users to send interactive
messages to other Multics users. It takes one or more arguments, the
first of which is the Multics user to send the message to (for example
[MITH.|ULTICS). The remainder of the line is interpreted as the text
of the message, and is sent to the specified user. If there isno text
given on the request line, the message NPUT: is printed, and text
lines are read from the terminal and sent to the specified user as they
are typed. To exit the message sending session, type a line
containing only a period (.).

EXTERNAL FUNCTIONS

The Multics APL ‘interpreter permits APL programs to make
external calls out to object segments that have been created by other
Multics translators, such as PL/I, provided that those object
segments obey a specified interface. To the APL program, such acall
looks like an ordinary reference to a defined function; the function
may accept zero, one, or two arguments, and it mayoptionally return a
result.

The)DFN,)MFN,)ZFN System Commands

The system commands)DFN,)MFN, and)ZFN are used to define
external function names. The command)DFN is used to declare adyadic
function; i.e., one accepting two arguments. The command)MFN is used
to declare a monadic function; i.e., one accepting one argument. And
the command)ZFN is used to declare a zero-adic (niladic) function;
i.e., one accepting no arguments. Whether an external function
produces a result need not be specified at the time its name 1is
defined; in fact, the same function can at times return and at other
times not return a value, as it chooses.

5-19 AK95-02

Definition Syntax

The syntax of an external name definition is:

)DFN aplname pathname
or else:
)DFN pathname

where)DFN can be replaced by)MFN or)ZFN as appropriate to the
function being defined. The first form defines the name "aplname" to
be an externally-coded dyadic function. When an APL program makes a
function reference to "aplname", the APL interpreter performs a call
on the object segment "pathname" with the calling sequence described
below. When "pathname" returns, any returned value is considered as
the result of "aplname", and execution of the APL program resumes.

The "pathname" may be an absolute or relative pathname, or it may
be a reference name, in which case the Multics search rules are used to
obtain its referent. The "pathname" may contain both a segment name
and an entryname separated by adollar sign, as "48B" or it may simply
contain a segment name, as "A", which is considered "484",i.e., acall
to entry point " 4" in segment "A", Note that the dollar sign must be
typed as S backspace / (&) on Selectric-type terminals.

In the second form of definition, where "aplname" is not
specified, it is considered to be the same as the entry point name of
"pathname", (for example, "B" if pathname were "A8B" 6 or "XYZ" if
pathname were simply "XYzm),

Definition Errors

A definition error report can be due to: (1) an invalid
character in the function name; (2) an invalid pathname; (3) inability
to find the specified pathname/reference name; (4) conflict with
existing reference name; (5) a global variable or group already in
existence with the proposed function name.

External Functions Cannot Be Edited

External functions cannot be edited in any way by the APL editor.
An attempt to open one for editing results in a definition error
report. However, external functions can be erased or redefined, and
their definitions can be copied from one workspace to another,.

5-20 v AK95-02

External Function Calling Sequence

A procedure, say "f", that is to be called by APL as an external
function, must conform to the following calling sequence:

f: procedure (operators_argument);

declare 1 operators_argument aligned,
2 operands (2) aligned,
3 value pointer unaligned,
3 on_stack bit (1) aligned,
2 operator aligned,
3 dimension fixed bin,
3 padding bit (18) unaligned,
3 op2 fixed bin (8) unaligned,
3 opl1 fixed bin (8) unaligned,
result pointer unaligned,
error_code fixed bin (35),
where error fixed bin;

[ACINACIV]

Each of the fields in operators argument is described below:

operands(1).value pointer to the left operand's value bead. If
this is null, the operator is monadic.

operands(1).on stack
- equal to "1"b if the operand is on the value

stack. See below for a detailed explanation of
conventions for using the value stack.

operands(2).value pointer to the right operand's value bead.

operands(2).on_stack
Similar to operands(1).on_stack flag.

dimension - the dimension along which the operator should
operate. This is always the last dimension for
external functions.

padding this field is unused.

op2 this field is unused for external functions.
op1 this field is unused for external functions.
result (output) pointer to theresult value bead. This

bead must be on the value stack. Seebelow for a
detailed explanation of conventions for using

the value stack.

5-21 AK95-02

error code

where error

(output) set to a status code in
apl_error_table before the operator signals
apl Operator error . See below for a list of
status codes.

(output) set by error processing in operator to
indicate which operand the error applies to. By
default the error marker is placed under the
external function name. Add one to where_error
to cause the error marker to be placed under the
left operand. Subtract one from where error to
cause the error marker to be placed under the
right operand.

An APL value bead is declared:

declare 1 value bead aligned based (value_ptr),
bead _type unaligned,

2

[ACHACR \G I A V)

[ACHAVI\V)

wWwwwwwww w

operator bit,

symbol bit,

value bit,

function bit,

group bit,

label bit,

shared variable bit,
lexed function bit,

data_type unaligned,

3
3
3

3
3

1list value bit,
character value bit,
numeric value bit,
1ntegral value b1t
boolean value bit,

unused bit (5) unallgned,

bead size bit (13) unaligned,
reference count fixed bin (29),
total data elements

fixed bin (21),

rhorho fixed bin,
data_pointer pointer unaligned,
rho fixed bin (21) dim (n refer

(value bead.rhorho));

declare 1 character_data_structure aligned based (data_ ptr),
2 character datum char (1) unaligned

dim (0:data_ elements - 1)

‘declare 1 numeric_datum float bin (63) aligned

where:

string (bead_type)

dimension (0:data_elements - 1)
based (data_ptr),

is "001000000"h for a value head

5-22 AK95-02

string (data_type)

unused

bead size
reference_count

total _data_elements

rhorho

data_pointer

rho

is"01000"b for a character value, "00100"b for a
numeric value, "00110"b for a integral numeric
value, and "00111"b for a boolean numeric value.

is unused.

is not used or set by an operator or external
function.

is not used or set by an operator or external
function.

is the number of elements in the APL value. This
is 1 for a scalar, pV for a vector V, and p,4 for
an array 4.

is the "rhorho" (number of dimensions) of the APL
value. This is 0 for a scalar, 1 for avector,
and ppA for an array 4.

is a pointer to the array of elements, either
character or numeric. The data array always
immediately follows the value bead in storage.

is the arrayof dimensions of thevalue. Thisis
undefined for a scalar, a single-element array
for avector, and a vector of integers for an APL
array. (pA for an array 4).

Status Codes for Use by External Functions

When an external function reports an error (either in oneof its
operands, or an error arising from a computation) it assigns one of the
following status codes to operators argument.error code and returns,
This activates the APL error mechanism. -

The status codes are:

apl_error_table $rank prints RANK ERROR

apl_error_table $index prints INDEX ERROR

apl_error_table $length prints LENGTH ERROR

apl_error_table $domain prints DOMAIN ERROR

apl_error_table $system error

prints SYSTEM ERROR

5-23 AK95-02

Conventions for Using the Value Stack

The Multics APL interpreter normally passes operands by
reference; results of expressions are passed by value, however., The
difference is important; operands passed by reference may not be
modified in any way, operands passed by value maybe overwritten in the
course of operation, as an optimization to avoid allocating a
temporary work area. The on_stack flag is set by the APL interpreter
to indicate whether an operand has been passed by value or by
reference., If the on stack flag equals "1"b, that operand has been
passed by value, on the "value stack".

The value stack is a segment (or several segments) used solely to
hold results of operations, and intermediate work areas. It 1is
managed with a stack discipline; new storage is allocated at the end,
and the pointer to the end of the stack is advanced. The subroutine
apl_push_stack in the include file apl push_stack fen.incl.pli
should be called to allocate space on the value stack. It takes one
argument, which is the number of words needed.

A typical external function operates as follows:

1. Checks its operands for consistency (make sure both are

numeric, or both are character, make sure ranks are
compatible, etc).

2. Allocates a value bead for the result on the value stack.
3. Per forms the operation.

y, Pops operands that are on the value stack off of it.
Operand 2 (the right operand) is guaranteed to be lower on
the stack than operand 1 (the left operand), if both
operands are on the stack. Therefore, if operand 2 is on
the stack, the result value bead should overlayoperand 2.
If operand 1 is on the stack, the result value bead should
overlay it. If neither operand ison the stack, theresult
value bead must stay where it is. Now copy (if necessary)
the result to its final place on the value stack, resetting
ws_info.value_stack ptr to point to the end of the result.

5. Sets operators_argument.result to point to the result
value_bead.

6. Returns.

5-24 AK95-02

External Function Include Segment

The include segment apl external function.incl.pll may be used
by writers of external functions. It contains declarations for
operators_argument, value bead, character data_ structure,
numeric datum the APL status codes, and the storage management
external entrles. The following external entry is declared in
apl_external function.incl.pl1, and should be used to allocate space
on the value stack.

5-25 AK95-02

apl push stack

This function allocates storage on the current value stack.

Usage
declare apl_push_stack entry (fixed bin (19)) returns (ptr);
data_ptr = apl_push stack (n_words);
where:
1. data_ptr (output)
is the pointer to the storage that has been allocated.

This storage is always aligned on an even word boundary.

2. n_words (input)
is the number of words to be allocated on the value stack.

5-26 AK95-02

SECTION 6

FILE SYSTEM

THE MULTICS APL FILE SYSTEM

The Multics APL file system provides the APL user with the
ability to save the values of APL computations in a file for later
retrieval. Unlike APL workspaces, this saving and loading may be done
under the control of APL programs, allowing complex manipulation of
data and maintenance of special purpose databases. 1In addition, the
APL file system allows several APL users to share data and perform
coordinated simultaneous operations on databases.

Organization of APL Files

An APL file is divided into components, one component for each
value in the file., APL values of any shape or rank, containing

DI
i la
umeric or character data may be stored in a component of a file,

A
n

Each component has associated with it a positive integer
corresponding to its position in the file called its component number.
This component number is used to refer to the component and to the APL
value associated with it. Components in a file are numbered
consecutively, starting with 1 for the first component added to a new
file. Components can be deleted from either end of a file, so the
number of the first component in the file is not always 1. Components
can not be deleted from the middle of the file. Thus there are never
any gaps in the components in a file (e.g. 5 6 7 8 9 is a possible
numbering of all of the components in a file while 5 6 8 9 is not).

APL files differ from workspaces in several respects:

1. More than one file may be active at a time in one APL user's
environment., Each file is referred to by a unique number,
so all active files may be referenced concurrently.

6-1 AK95-02

2. Files may be shared simultaneously by multiple APL users.
Locking mechanisms are provided to ensure file integrity.

3. The files are manipulated by APL system functions, allowing

file operations to be performed from within APL programs as
well as from the keyboard.

Use of APL Files

The first step in using an APL file is to associate the file with a
positive integer called a"file number" . This process iscalled tying
a file. The file number (or tie number) is used to identify the file
for all subsequent file operations. The value of the file number is
chosen by the user and must be different from anyother file number in
use at the time it is selected.

After the file has been tied, the file system functions may be
used to perform operations on it. Each function takes as an argument
the file number of the file to be operated upon. 1In addition, some
files require a component number specifying the particular value in
question. Some of the file system functions return a result, others
do not.

File Manipulation Functions

OFCREATE
Syntax: 'file name' [FCREATE file_ number

The OFCREATE function creates an APL file with the specified name and
ties it to a file number for subsequent use, If no directory is
specified in the file name, the file is created in the working
directory. APL files have the suffix ".cf.apl". The suffix need not
be supplied by the user. If a file with the specified name already
exists, an error occurs., When a file is first created it is empty and
the first and last component numbers are 0.

OFTIE

Syntax: 'file name' [OFTIE file number

6-2 AK95-02

The file function UFTIE ties an APL file for exclusive use. When a
file is exclusively tied, no other APL user may tie the file for the
durationof itsuse. To tie afile for shared use bymultiple APL users
see the DFSTIE function. Unlike UFCREATE, the specified file must

already exist and no other user may have the file tied. The suffix
" cf.apl" need not be supplied.

OFSTIE
Syntax: 'file name' [FSTIE file number

The OFSTIE function ties an APL file for shared use. Anynumber of APL
users may have a file tied for shared use simultaneously. Like UFTIE
the file must already exist. No other user may have the file
exclusively tied. The suffix ".cf.apl" need not be supplied.

OFUNTIE
Syntax: UFUNTIE file number vector

The OFUNTIE function closes and unties APL files. The file numbersof
files that have been untied are no longer associated with those files
and may be reused by subsequent UFTIE or OFCREATE operations. If the

vector of file numbers is empty, no files are untied. If any of the
specified file numbers are not tied to a file an error occurs, but the
remainder of the specified files are untied.

[JFRENAME
Syntax: 'file name' OFRENAME file number

The OFRENAME function changes the name of the file tied to file number
to file name. The file remains otherwise unchanged, with the same
components, ACL, etc. The file must be exclusively tied.

6-3 AK95-02

OFERASE

Syntax: 'file name' [FERASE file_number

The OFERASE function deletes the APL file specified by both the file
name and file number. The file must be exclusively tied. If the
specified file name does not match the name of the file that is tied to
the file number, an error occurs., The suffix ".cf.apl" need not be
supplied.

(OFAPPEND
Syntax: value [OFAPPEND file_number

OFAPPEND adds an APL value to the end of a file, giving it a component
number one greater than that of the last component already in the file.

The value may be the result of a computation, the value of avariable,
or simply a constant.

(FREPLACE
Syntax: value OFREPLACE file number component number

The function OFREPLACE replaces the value in a specified component in
a file with a new value. If the specified component number does not
already exist in the file, an error occurs. The new value may be any
APL value, regardless of the shape or type of the value being replaced.

OFREAD
Syntax: result « OFREAD file number component number

The [FREAD function returns the value stored in the specified
component in the specified file. The value returned may be assigned
to a variable, used in further calculations, or printed out. If there

is no component corresponding to the component number specified, an
error occurs.

6-4 AK95-02

UFDROP
Syntax: [FDROP file number drop_number

The function UFDROPremoves components from either end of an APL file.
If the number of components to be dropped is positive, that many
components are removed (dropped) from the low-numbered end of the
file., 1If the number is negative, the components are dropped from the
high-numbered end of the file, and the number of components removed is
equal to the absolute value of the number given., If there are fewer
components in the file than the number specified, an error occurs. If
all of the components are dropped from a file, the first and last
component numbers are set to 0, i.e., the file looks just 1like a newly
created file.

OrFNUMS
Syntax: result <« [FNUMS

(FNUMS returns a vector with the file numbers of all the files
currently tied in the user's APL environment. If there are no files
tied, the empty vector is returned. The simplest way to untie all of

the files currently tied is to execute the statement OFUNTIE [FNUMS,
passing the vector returned by UFNUMS on to [OFUNTIE,

OFNAMES
Syntax: result <« [OFNAMES

OFNAMES returns a character matrix, each row of which contains the
pathname of the APL file tied to the corresponding file number in the
vector returned by [OFNUMS.

OrLIB

Syntax: result « OFLIB 'library name'

6-5 AKS5-02

The prprrp functions returns a character matrix, each row of which
contains the name of an APL file contained in the directory specified
by library name. The libraryname can be either a library number or a
Multics pathname.

OFLIM
Syntax: result « UFLIM file number

The [OFLIM function returns a two-element numeric vector. The first
element of the vector is the component number of the first component in
the file and the second element is one greater than the component
number of the last component in the file, i.e., the component number
that would be assigned to the next value added to the file by OFAPPEND.

OFSIZE
Syntax: result « UFSIZE file number

The UFSIZE function returns a four-element numeric vector. The first
two elements of this vector are the same as those returned by OFLIM,
the component number of the first component in the file and one greater
than the component number of the last component in the file. The third
element is the amount of storage currently being used by the file, in
bytes. The fourth element is the maximum size to which the file may
grow. This number is not meaningful in Multics APL, since the maximum
sizeof afileis limited only by the quota allocated to the containing
directoryof the file. Therefore, the fourth element isonly included
for the sake of compatability with other APL file systems, and 1is
defined to always be the value of the largest existing number in
Multies APL, 1.T701411835E38.

OrPRDCI

Syntax: result <« [OFRDCI file_number component_number

6-6 AK95-02

OFrpcI returns a three-element numeric vector. The first element of
the vector is the size of the specified component in bytes. The second
element is the user number of the APL user who last wrote avalue into
the component. This number is only meaningful when the APL user who
modified the component is part of a subsystem where user numbers are
assigned, or has invoked APL with the -user number control argument
(see the apl command description). The default user number is 100.
The third element of the vector is the time at which the component was
written. This time is measured in a standard Multics clock reading,
the number of microseconds since midnight January 1, 1901 GMT.

ADFHOLD
Syntax: [OFHOLD file number vector

The OFHOLD function is used to lock a file opened for shared use so that
no other APL user maymodify the file. [OFHOLD first unlocks all of the
files currently locked by the user, then proceeds to lock all of the
files specified in the vector of file numbers. Thus, calling OFHOLD
with an empty vector simplyunlocks all of the currently locked files,
If any of the specified files are already locked by another user,
OFHOLDwaits until the file becomes free, then locks it and continues.
The files are locked in an order that guarantees that no deadlock can
occur between users performing [OFHOLD operations.

OFLISTACL
Syntax: result <« OFLISTACL file number

OFLISTACL returns a character matrix containing the Multics file
system access control list (ACL) for the file. The character matrix
has 36 columns -- 3 for the access modes, 1 blankcolumn, and 32 for the
access id -- and asmany rows as is necessary. For more informationon
Multics access control, see the Multics Programmer's Reference
Manual, (Order No. AG91).

OFSETACL

Syntax: access_matrix OFSETACL file number

6-7 AK95-02

The OFSETACL function takes a character matrix like the one returned
by OFLISTACL and sets the ACL for the specified file to the value of the
matrix., The matrix must be 36 columns wide, and may have any number of
rows. However, if avector is supplied for the left argument, it need
be only as long as is necessary to contain the accessmodes, the blank
column, and the access id (aminimum of 5 characters). The first three
columns of eachrowmust consist of some combination of the characters
r e wor blank; the access modes., The fourth column must be blank.
Columns 5-36 must contain a valid access id of the form used by the
Multics access control commands. For more information about file
system access control, see the section on access control in this
chapter.

OFADDACL
Syntax: access_matrix [FADDACL file_number

The OFADDACL function is similar to OFSETACL, except that instead of
replacing the ACLof the file with the one specified by the matrix, the
entries in the matrix are added to the existing ACL. 1If any of the
entries in the matrix duplicate an existing entryon the file's ACL,
the access modes in the ACL are replaced by those in the matrix entry.

OFDELETEACL
Syntax: access_id matrix OFDELETEACL file_number

The [OFDELETEACL function takes a 32-column-wide character matrix,
each row of which is a Multics storage system access id. Any entries
on the ACL of the filematching any of the access ids in the matrix are
deleted from the ACL. Entries in the matrix that are not on the ACL for
the file are ignored.

Access Control

Many applications involving the use of the APL file system
require the use of one file by several users. To control which users
can access which files, the APL file system provides an interface to
Multics stérage system access control. The following discussion
provides an overview of Multics access control and how the APL file
system interfaces with it. For amore detailed discussion of Multics
access control, see the Multics pProgrammer's Reference Manual (Order
No. AG91).

6-8 AK95-02

Each APL file has associated with it a list of users that can
access the file, and what form of access they have. This 1list is
called the Access Control List, or ACL, of the file.

Each entry in the ACL is composed.of twe parts, the access id and
the access modes. The access id is used to identify a Multics user or
group of users. An access id is composed of three parts, separated by
periods: the person id, the project id, and the instance tag (e.g.
Smith.Student.a). Any of the fields may be replaced by an asterisk
(*), signifying that any string will match that field. Thus the
access id Smith.* ¥ will match the user Smith on any project, and
¥ ,Student.* will match any user on the Student project. The access id
¥ % * matches any user on any project.

Associated with each access id are the access modes for the user,
The access modes specify what access the corresponding user has to the
file. There are two access modes for APL files: read (r) and write
(w) access (a third access mode, execute (e), exists, but is not
meaningful for APL files and may be ignored by users of the APL file
system). A user may have both read and write access to a file, only
read access, or no access at all (null access). The combination of
write access and no read access is equivalent to having null access to
the file.

Several file system functions exist for manipulating the ACLs of
APL files. UFADDACL and [OFDELETEACL add and delete ACL entries
respectively, and [JFSETACL replaces the entire ACL for the file with
one supplied by the user. For more detailed information, see the
individual descriptions of the functions.

File Sharing

The APL file system allows the simultaneous use of an APL file by
several APL users. In any application where a database is shared
among multiple users it is desirable to have a mechanism for ensuring
exclusive use of the file while executing acritical sectionof an APL
program. The OFHOLD function provides this ability.

The [OFHOLD function takes as 1its arguments a vector of file
numbers of files to be locked. After unlocking any files that the user
already has locked, it attempts to lock all of the specified files.

While a user has a file locked, no other user may perform any
operations on the file that would change any of the data in the file
(e.g. OFAPPEND, [FREPLACE). Other users may, however, read
information from the file (i.e. wusing OFREAD, DORDCI etc.).

6-9 AK95-02

When several APL users are sharing code that does file
manipulations, (e.g. interactive updating of a common database), the
locking capability provided by the UFHOLD function can be used to keep
the data in aconsistent state. If the critical code that performs the
actual file reading and writing operations is surrounded by callis to
the OFHOLD function, then the user executing the code is guaranteed to
have exclusive use of the file for the duration of the important
operations. Thus any number of users can read and write the same
database without interfering with one another.

6-10 AK95-02

SECTION 7

SYSTEM FUNCTIONS

THE MULTICS APL SYSTEM FUNCTIONS

System functions are those defined by the APL system itself;

some of which are programming aids while others return information
pertaining to the APL system.

The system functions, 1like system variables, are characterized
by the 0 (quad) character followed by the name of the particular
function, which is then followed by arguments, separated by spaces.

System functions may be called from within an APL program or
from the APL environment.

The current APL system functions are:
AF............Active Function
0AI............Accounting Information
cALL..........Call
0CR.e¢eceeese...Canonical Representation
CSeeeveeeseas.Character Set

pL............Delay

7-1 AK95-02

OEC............Execute Command
EX............Expunge
OFX............Fix
0r¢............Line Counter
wc............Name Count
WL............Name List
0rs...ceveeeee..Time Stamp
Orr...vveeee...Terminal Type
QUL............User Load
W4.....c000...Workspace Available

WU...eevvew.. . Workspace Used

7-2 AK95-02

Active Function

Syntax

OAF Multics_active_function_expression

Multics _active function_expression is an APL character vector that
specifies a function expression that returns a value. For example:

A « [JAF 'TIME!

Semantics

The Active Function function executes a Multics active function
expression from within the APL system. This APL function always
returns a vector.

Notes

When this function has completed execution, the user will be
returned to the APL system, unless the function is one that implicitly
specifies,or results in, an exit from the APL system. The 'new_proc’
and 'logout' commands should not be called by this function; use the
OEC system function for these commands.

If the Multics function resulted in an error, or could not be
executed for some reason, the value returned is the error message (in
APL character vector form). The error message can be assigned to an
APL variable if the user desires.

If the value returned is not going to be used as the right
argument to the assignment operator, or not used within the calling
expression, it is printed to the user interface.

If the function specified by the argument does not return a
result, the error message 'PROCEDURE CALLED IMPROPERLY' is returned.

7-3 AK95-02

If the function specified by the argument cannot be located, the
error message 'SEGMENT NOT FOUND' is returned.

If the argument is an empty character vector or one consisting of
whitespace only, the message 'CODE 100.' is returned.

SYNTAX ERROR is a result of zero arguments (one is required).

DOMAIN ERROR is a result of a numeric argument (must be
character), or amatrix or array argument (must be a single vector).

T-4 AK95-02

Accounting Information

Accounting Information

Syntax

Dar

Semantics

The Accounting Information function produces a ¥ element vector
consisting of:

1. User Number

2. Computer time used in this session
3. Connect time since sign on

q, Typing time.

Items 2, 3, and Y4 are measured in milliseconds.
Notes

If the value returned is not going to be used as the right
argument to the assignment operator, or not used within the calling
expression, it is printed to the user interface.

This function always returns a vector.

CONTEXT ERROR is aresult of an attempt to pass an argument to the
function.

7-5 AK95-02

Call

Syntax

Function call: V <« OCALL (entry decl; argl; arg2; ...; argN)
Subroutine call: [OCALL (entry del; argl; arg2; ...; argN)

entry_del is an APL character value containing a PL/I style entry
declaration specifying the routine to be called, the number of
arguments it takes, whether it is a subroutine or function, and the
types of the arguments and function value. (Input) (See "Entry
Declaration™ below for details.) arg1l, arg2, ... argN are the APL
variables and values to be used as the arguments to the routine which
is being called. (Update) If an argument is a simple variable (as
opposed to a constant, an expression or an indexed variable), the
value of that variable is updated to reflect any changes made by the
called routine,

Semantiecs

An APL system function to provide APL users the ability to call a
FORTRAN or PL/I routine. If the routine is a subroutine, no result is

returned to APL. But if the routine is a function, the function's
value is returned as the result.

Entry Declaration

The entry declaration is identical to that of PL/I (except that
the 'entry' keyword is opticnal), with the following restrictions:

(1) The attributes in a parameter declaration must be in the
following order:

dimensions, type, size and alignment.
(2) A lower bound may not be specified for a dimension.
(3) The mode (i.e 'real' or 'complex') may not be specified.

(4) The only types supported are: bit, char, entry, fixed bin, and
float bin.

(5) Neither dimensions nor parameter descriptions (other than
'options (variable)') may be specified for ‘entry' values.

(6) A scale factor may not be specified for 'fixed' values.

(7) 'fixed' and 'float' values may not be unaligned.

T-6 AK95-02

Example
A typical declaration would be:

'get _line length $stream(char(¥), fixed bin(35)) returns(fixed
bin)! :

Notes

If a simple variable is passed as an argument, that variable need
not have been previously assigned a value. 1In such a case, the value
passed to the called routine for that argument has the shape and type
indicated by the entry declaration and is initialized to binary
zeroes,

The value of an argument must agree with the type specified in the
entry declaration. For example, if an argument is to be passed as a
'bit' value, it must be numeric and contain only zeroes and ones.

The shape of an argument must agree with that specified in the
entry declaration. This usuallymeans that an argument has the shape
indicated by the declaration. However, an argument that is to be
passed as a 'bit' or 'char' value is also considered to have the
correct shape if its rank is one greater than in the declaration, its
shape when the last dimension is excluded 1is the same as in the
declaration, and the length of the last dimension is the same as the
size attribute in the declaration. For example a 3xid character matrix
may be passed as: (3, 4) char (1)' or '(3) char (U4)

Either apositive integer or an asterisk maybe used in the entry
declaration to specify the lengthof adimensionor the sizeof a 'bit'
or ‘char' value. An asterisk in a dimension specification means use
the current lengthof the corresponding dimension of the argument. An
asterisk in a size attribute means use the current length of the last
dimension of the argument. Asterisks may not be used when the
corresponding argument is a simple variable that has not yet been
assigned a value. Asterisks may only be used in the 'returns®
attribute if the routine being called was written in PL/I and contains
asterisks in the 'returns' attribute of its header.

ons, any number of arguments may be suppiied. A rank N
ic argument is passed as an N-dimension arrayof 'float bin(63)'
numbers. Arank Ncharacter argument is passed as an (N-1)-dimension

array of ‘'char(M)', where M is the size of the arguments last
dimension.

If ‘'options (variable)' 1is given 1in place of parameter

7-7 AKS5-02

Canonical Representation

Syntax
Ocr function name
function name must be an APL character vector that specifies a

function name local to and residing in the current active APL
workspace.

Semantics

The Canonical Representation function returns the character
representation of a function.

Notes

This function will always return a matrix.

A Oby Omatrix will be returned if the function specified by the
argument could not be found, or if more than one syntacticallycorrect
argument was passed.

If the value returned is not going to be used as the right
argument to the assignment operator, or not used within the calling
expression, it is printed to the user interface,

SYNTAX ERROR isaresult of zero arguments (acharacter vector is
required).

DOMAIN ERROR is a result of a numeric value as the argument,

7-8 AK95-02

Character Set

Syntax

dcs

Semantics
The Character Set function (Atomic Vector on other systems)

returns a vector of 196 characters, each of which is an element in the
APL character set.

Notes
If the value returned is not going to be used as the right

argument to the assignment operator, or not used within the calling
expression, it is printed to the user interface.

CONTEXT ERROR is aresult of an attempt to pass an argument to the
function.

7-9 AK95-02

Delay

Syntax

pr N_seconds
N_seconds is a positive,scalar integer value. It is the number of
seconds of delay.
Semantics

The Delay function delays for N seconds and returns the actual
number of seconds delayed. '
Notes

If N_seconds is <= 0, then 0 is returned.

Asoft interrupt will terminate the delay. The number of seconds
of delay up to the interrupt are returned.

If the value returned is not going to be used as the right
argument to the assignment operator, or not used within the calling
expression, it is printed to the user interface.

SYNTAX ERROR is a result of zero arguments (one integer value is
required) .

DOMAIN ERROR is aresult of an attempt tp pass a character scalar
as an argument, or any multi-element value of any kind as an argument.

7-10 AK93-02

Execute Command

Syntax

Ogc Multics_command
Multics_command is an APL character vector that specifies the Multics
command or executable segment of code to be executed. For example:

Oec 'cp fileone filetwo!

Semantics

The Execute Command function executes a Multics command or
executable segment of code from within the APL system. Avalue isnot
returned by this function.

Notes

When the command has completed execution, the user will be
returned to the APL system, unless the command is one that explicitly
specifies,or implicitlyresults in, an exit from the APL system. The
'new_proc' and 'logout' commands can be executed with this function.

The character vector must be an executable Multics command or a
Multics system error message will be printed to the user interface.

If the command is an active function call (i.e., returns a
value), the result cannot be assigned to an APL (user defined)
variable.

The command can be any Multics command, not just an active

function. See apl.quadAF.info for more information on active
functions.

SYNTAX ERROR is a result of zero arguments (one is required).

DOMAIN ERROR is a result of a numeric argument (must be
character), or a matrix or array argument (must be a single vector).

7-11 AK95-02

Expunge

Syntax

OEX object name

object name is a character vector that specifies the name of an APL
object to be erased, or the name of a character matrix whose rows are
used to specify the name of an object to be erased.

Semantics

The Expunge function erases variables and functions under
program control. The most local instance of the object is used.

1 is returned if:
- the object did not exist within the current workspace.
- a successful operation has taken place.

0 is returned if:
- the object could not be erased (those labels, functions or groups

in the state indicator).

- the object named provided was not a valid APL name. e.g.
123TEST

Notes

If the function is called correctly, UEX always returns avector
of 1's, 0's or a combination of both.

If the value returned is not going to be used as the right
argument to the assignment operator, or not used within the calling
expression, it is printed to the user interface.

All 1labels, values or functions can be deleted using the
following method:
OEx (ONL x)
where [NL is the Name List function and % is 1 , 2 or 3.

SYNTAX ERROR is a result of zero arguments.

DOMAIN ERROR is a result of a numeric argument.,

7-12 AK95-02

Fix

Syntax

OFx matrix

matrix is an APL character matrix whoserows are syntacticallycorrect
APL code and whose format follows the guidelines for APL function
definition. The argument is NOT a character vector specifying the
matrix name, it is the matrix or matrix name itself. For example:

R <« OFX GRAPHICS is correct
R « OFx 'GRAPHICS! is incorrect

where GRAPHICS is a character matrix.

Semantics

The Fix function converts a canonical representation of a
function, in character matrix form, into an APL function. If the
operation 1is successful, a character vector specifying the new
function name is returned.

Notes

If the matrix cannot be converted, for syntactic reasons, an
error message will be printed and the source of the error will be
displayed.

If the value returned is not going to be used as the right
argument to the assignment operator, or not used within the calling
expression, it is printed to the user interface.

See apl.quadCR.info for information on the inverse operation of this
function (i.e., function to canonical representation).

SYNTAX ERROR is aresult of zero arguments (one character matrix
must be passed), or a combination of character (scalars and/or
vectors) and numeric value(s) being supplied as arguments.

CONTEXT ERROR is a result of more than one argument being
supplied. At least one of the arguments must be valid for this error
to occur.

7-13 AK95-02

DOMAIN ERROR is a result of either one or more numeric values
being supplied as arguments, or one or more character scalars and/or
vectors being supplied as arguments.

T-14 AK925-02

Line Counter Syntax

are

Semantics
The Line Counter function returns a numeric vector whose

elements are pending and suspended lines of functions appearing on the
state indicator.

Notes

If the value returned is not going to be used as the right
argument to the assignment operator, or not used within the calling
expression, it is printed to the user interface.

A vector is always returned.

CONTEXT ERROR is the result of an attempt to pass an argument to
the function.

7-15 A¥©5..02

Name Count

Ovc apl_value

apl_value can be acharacter vector or acharacter matrix. The vector
(or row of a character matrix) must specify a valid APL name and/or
identifier. For example:

el) A < SFUNONE'
B + ONC A
B
3
e?2) A<~ 26 p '"FUNONE' 'FUNTWO'
B « ONC A
B
33

Where FUNONE and FUNTWO are functions in the current active workspace.

Semantics

The Name Count function returns an integer value that specifies
the type of the argument:

0 = Name isnot in use at the present level. It may be used todefine
a variable, label, function or group.

1 = The name has been defined as a label,

2 = The name has been defined as a variable.
3 = The name has been defined as a function.
4 = The name is unavailable for use.

(The shape of the result depends on the number of the arguments. The
result could be a scalar or a vector. See Notes 1 and 2 below)

Notes
An integer vector is returned if the argument is a character

matrix. Each row is handled as an independent character vector and
passed to the function as such.

7-16 AK95-02

An infteger scalar is returned if the argument is a character
vector.,

If there are two or more names within the character vector (i.e.,
alphabetic and/or alphanumeric characters separated by whitespace
characters) then thereturned value will beali, This is an indication
that the argument was malformed. For example:

A « ONC 'FUNONE FUNTWO *

A
u

If there are two or more character vectors being passed as
arguments, then the returned value will be 0. This doces not
necessarily mean the names are available for use. For example:

A « (ONC 'FUNONE ‘'FUNTWO'
A
0

If the value returned is not going to be used as the right
argument to the assignment operator, or not used within the calling
expression, it is printed to the user interface.

SYNTAX ERROR is a result of zero arguments.

DOMAIN ERROR is a result of an integer value as an argument.

T-17 AK95-02

Name List Syntax

L NL N

Nis an integer scalar or integer vector whose value(s) must be >= 1 and
<=z 3. The following table shows the integer value that corresponds to
each type(s).

VALUE TYPE(S)

1 Label

2 Value (ie scalar,vector,matrix,array)
3 Function

L is an optional argument that can be a character vector or scalar
where each element is the first letter of an object name. Onlyobjects
whose first letter is an element in the argument (or is the argument in
the case of a scalar) are considered, For example:

'ARQ" ONL 3

lists the functions whose names begin with an A , R and Q.

Semantics

The Name List function lists the names of the APL type specified
by N. Only the names used within the current, active APL workspace are
listed.

Notes

If Nis an integer vector, the list produced by this function may
not be in the correct order. That is, types could get mixed in the
output list.

If the value returned is not going to be used as the right
argument to the assignment operator, or not used within the calling
expression, it is printed to the user interface.

This function will always return a matrix, barring the
occurrence of system errors,.

A 0 by 0 matrix will be returned if the type specified by the
argument could not be found, or if more than one syntacticallycorrect
argument was passed,

SYNTAX ERROR is a result of zero arguments.

7-18 AK95-02

DOMATIN ERROR is aresult of a character value as an argument, or
an integer value that is not within the specified allowable range of
values (1 <= N <= 3).

T7-19 AX95-02

Time Stamp

Syntax
Ors
Semantics
The Time Stamp functionreturns a 7-element vector consisting of

the Year, Month, Day, Hour, Minute, Second, and Millisecond.

Notes

If the value returned is not going to be used as the right
argument to the assignment operator, or not used within the calling
expression, it is printed to the user interface.

CONTEXT ERROR is the result of an attempt to pass an argument to
the function.

]

7-20 AKZS-1

I\

(-

Terminal Type

Syntax

arr

Semantics

The Terminal Type function returns a numeric scalar value
identifying the type of terminal in use. The value returned is >= =11
and <= 5. 1In following list, the possiblevalues are given with their
respective terminal names.

-11...LA36 -7...TN300 -3...ASCIT 1...CORR2741
-10...BITPAIRED -6...ABSENTEE -2...TELETYPE 2...2741
-5...TYPEPAIRED -5...1030 -1...TEK4013 3...1050
-8...ARDS -4, .. TELERAY11 O... - 4,..3270-DAF

5...3270
Notes

If the value returned 1is not going to be used as the right
argument to the assignment operator, or not used within the calling
expression, it is printed to the user interface.

CONTEXT ERROR is aresultof an attempt to pass an argument to the
function.

T7-21 AK95-02

User Load

Syntax

ove

Semantics

The User Load function returns the number of users presently on
the system.
Notes

If the value returned is not going to be used as the right

argument to the assignment operator, or not used within the calling
expression, it is printed to the user interface.

CONTEXT ERROR is the result of an attempt to pass an argument to
the function.

|
<
[

({8}
il

Workspace Available

Syntax
WA
Semantics
The Workspace Available functionreturns the amount of available

storage in the active workspace. The unit of measurement is bytes.

Notes

If the value returned is not going to be used as the right
argument to the assignment operator, or not used within the calling
expression, it is printed to the user interface.

CONTEXT ERROR is the result of an attempt to pass an argument to
the function.

7-23 AK95-02

Workspace Used

Syntax

WU

Semantics

The Workspace Used functionreturns anumeric scalar whose value
specifies the amount of the current workspace already in use.

Notes
If the value returned is not going to be used as the right

argument to the assigrment operator, or not us=2d within the calling
expression, it is printed to the user interface.

CONTEXT ERROR isaresultof an attempt to pass an argument to the
function,

T-24 AK95-02

SECTION 8

SYSTEM VARIABLES

THE MULTICS APL SYSTEM VARIABLES

System variables are variables reserved by the APL system.
Each workspace has a set of parameters local to itself that are set by
assigning a value to the system variables.

A workspace parameter has a limited range of values. An error
message Will be printed if there is an attempt to assign a system
variable a value not within its range of values.

Typing the name of the system variable alone yields its current

setting as an explicit result.

The current APL system variables are:
gcr............Comparison Tolerance
0ro............Index Origin
orre...ceeee...Integer Tolerance
OLx............Latent Expression
0PP...cceev....Printing Precision
OPW..ooeeeeess.Page Width

ORL...ceeeeee..Random Link

8-1 AKS5-02

Comparison Tolerance

Usage
acr « w

where:

1. N

is a numeric scalar >= 0 and <= 1 .

Semantics

UCT is a system variable known on other systems as 'fuzz'. When
comparing two numeric values, OCT is used in conjunction with the
values themselves in determining the allowable margin of difference
that distinguishes one value from the next. Two numbers are
considered equal if:

(14 - B) < |0cT x (4 - B)

8-2 AK95-02

Index Origin

Usage
gro <« n

where:

1. N

is either 0 or 1

Semantics

The IO system variable changes the index origin to 0 or 1. If
set to 0, the first element of a vector is accessed with the value 0 as
its minimum subscript value. e.g. V[0] . 1If set to 1, the first
element 1s accessed with the value 1 as its minimum subscript value.
e.g. VI[1]

8-3 AK95-02

Integer Tolerance

Usage
Orr < w

where:

. W

is >= 0 and <= 1

Semantics

The [IT system variable is used in determining which values are
integers and which are not. Mulitcs APL considers a value to be the
integer LC + 0.5 if:

(lc - Lc + 0.5) < QOIT

Notes

If 0.0001

N\
"

N < 0.5 then OIT is set to 0.
If 0.5 <= N < 1.0 then 0OIT is set to 1.
If N= 1 then C = (€ - (11 C)) + ((1} C) =2 0.5)

If N <= 0.0001" and |(1 | ¢) 2 OIT then ¢ = [C

8-l AK95-02

Latent Expression

Usage
OLX <« apl expression
where:
1. apl_expression
is an APL character vector that specifies an executable APL
expression,
Semantics
The latent expression for any given workspace is one that is
executed immediately after the workspace is loaded. If ULX does not
hold an expression, the keyboard is unlocked and the time and date are
printed. If there is a latent expression value, however, the keyboard

is locked and the expression is executed. The time and date will rot
appear.

Notes

If the expression could not be executed, the following error
messages are printed:

¢ ERROR

e OLX

8-5 AK95-02

Printing Precision

Usage
Opp « N

where:

1. W

is >= 0 and <= 19

Semattics
The value of [JPP indicates the degree of printing precision used

to displaynumeric values. A value is printed to the maximum of 10 ¥ ¥
precision. e.g. if PP « 3 then 5.34567 would be printed as 5.346.

8-6 AK95-02

Page Width

Usage
Opw <« N

where:

1. N
is >= 30 and <= 390

Semantics

The value of JPW indicates the maximum value of the terminal page
width. That is, 0PW is the maximum number of characters that may
appear on one line of terminal output.

Notes

The Opw value is not operational when in audit, although it may
appear to be. Hardcopieswill not reflect the terminal appearance of
the text during the audit.

Any output overflowing the [OPW setting is continued on
succeeding lines and indented the appropriate number of spaces, as
determined by the current)TABS setting.

8-7 AK95-02

Random Link

Usage
ORL « N

where:

1. N

is >= 0 and <= 34359738367

Semantics

This variable is the seed for the random number generator.

AK95-02

SECTION 9

STREAM I/0

THE MULTICS APL STREAM I/0 FILE SYSTEM

The Multics APL stream i/o file system is provided for the
purpose of manipulating Multics segments as stream files from within
the APL system. This facility gives the user the ability to save and
retrieve APL character data from an ascii text segment.

Operations equivalent to the APL standard file handling
routines are provided, plus several which are meaningful only in the
sequential access stream file environment.

To access these functions, you must enter the appropriate
external function definitions, as presented in the following list:
CREATE . oo vun)DFN CREATE APL_CODED_$CREATE

EOF............)MFN EOF APL _CODED $EOF
NUMS...oouunn..)ZFN NUMS APL_CODED_$NUMS
POSITION.......)DFN POSITION APL_CODED $POSITION
READ...........)DFN READ APL_CODED $READ
REWIND.........)MFN REWIND APL _CODED_$REWIND
TIE...v<<ee....)DFN TIE APL_CODED $TIE
UNTIE..........)MFN UNTIE APL_CODED_$UNTIE

WRITE....... ... J)DFN WRITE APL _CODED_$WRITE

9-1 AKS5-02

CREATE

Syntax: 'path name' [CREATE file number

The CREATE subroutine creates a segment named 'path name' and opens it
for stream i/o. File number is analogous to "tie number' in APL
files, but the two systems are independent of each other. Thismeans
you may have a stream file 7 and an APL file 7 tied concurrently. An
attempt to create an existing file will result in an error message and
program termination.

EOF

Syntax: r <« EOF file number_vector

The EOF function returns a boolean vector of 'end of file' status for
each file specified by a number in the file_numEer_vector. EOF
becomes true when the last character in a file has been read.
NUMS

Syntax: R <« NUMS

The NUMS function returns the vector of tied file numbers. An empty

vector is returned if no files are tied,

POSITION
Syntax: type [,skip] POSITION file number
The POSITION function repositions the file, If 'type' is:
-1 : the file is rewound.

0 : 'skip' lines are skipped.

1 : the file is positioned after the last line.

2 : the file is postitioned at the 'skip'th character,

3 : 'skip' characters are skipped,

If 'type! is-1o0or 1, 'skip' is ignored, The defaultvalue of 'skip"' is
1. 'skip' may be a negative value, resulting in a backward skip.

READ

Syntax: R + no_of lines READ file_number

9-2 AK95-02

The READ function returns a character matrix of dimension [I J] where I
is the number of lines actually read (I <= no_of lines ... Endof file
may be reached before the specified number of lines are read). and J
is the length of the longest line read (J <= 512). Lines containing
less than J characters are right padded with blanks,

REWIND

Syntax: REWIND file number_ vector

The REWIND subroutine positions each file specified in the
file number vector such that the next READ operation would read the

first line in the file or the next WRITEiwould truncate and replace the
file contents with new data.

TIE

Syntax: ‘'path name' TIE file number

The TIE subroutine opens a segment named 'path name' for stream i/o.
Pathname may be relative or absolute.

UNTIE

Syntax: UNTIE file number

[1.3 PRV FrmrmrTrooL;..-.t..‘v-,. P N A.AA .l L.- IA.. P Iy TN A Lmin mde v o moan
11€ vl Lpn SULDIVULLNEe ClLud>es dlil ecvacnes a SCRUICN L VUpelicu 1ur oulr cail
i/o.

WRITE

Syntax: ‘'char_vector' WRITE file number

The WRITE subroutine writes the characters of the left argument to the
designated stream file, specified by the right argument. Newline
characters (octal escape 012) must be included explicitly if
desired.

9-3 AKS5-02

SECTION 10

EXTERNAL FUNCTIONS

THE MULTICS APL EXTERNAL FUNCTIONS

The following procedures and functions are available for use by
an APL program when the appropriate definitions are made within the
workspace where the program resides. These external procedures and
functions are written in PL/1 but contain the outward syntactic
properties that define an APL function.

The appropriate function definitions that should be made in the
programs workspace are listed in the Usage section of each individual
function/procedure description.

The following is a list of the current APL external functions:

ERFevevevveeennasasa.apl_erf
PICKUP......vevvses..apl_pickup float_bin_2
I0Ae..eeiiieiiieasnsapl_loa_
GET-LIST-NUMS........apl _get list nums_

READ-SEGMENT.........apl read_segment_

10-1 AK95-02

apl_erf_

A scalar , monadic function that accepts any numeric argument and
applies the pl1 builtin "error function" to each value,
Usage

YMFN ERF APL_ERF_
R <~ ERF value

where:

1. value
is a numeric value of any shape.

2. R
is the result value. It has the same shape as the argument.

10-2 AKE5-02

apl_pickup float bin 2

Read double~precision floating point numbers from a
Multics segment into an APL vector.
Usage

JMFN PICKUP APL_PICKUP_FLOAT_BIN_ 2_
V <« PICKUP 'path_name’

where:

1. 'path name’

is the pathname of a Multics segment containing the floating
point numbers. The pathname can be relative or absolute.

2. V
is the vector of numbers that is returned.

Notes

The bitcount must be set to 72 times the number of elements.

10-3 AK95-02

apl_ioa_

Permits an APL program to do formated or unformated output using
the ica_ subroutine.

Usage

)DFN IOA APL_TOA

)DFN IOA NNL APL_IOA $NNL

)DFN IOA RS APL I0A $RS

YDFN IOATRSNNL AL I0A $RSNNL
'control” string' T IOA” apl value list

'control string' TI0A NNL —apl value list
R <- ‘'control string' I0A RS 7apl_value list
R <- 'control string' IOA RSNNL apl_value_ list

where:

1. ‘'control string'
is an APL character scalar or vector that specifies the ioa

control string. Either the circumflex (~) or APL overbar("253)
character may be used as the ioa_ control character.

2. apl_value list
is either a single APL value (or expression), or a list of APL
values., A list of values has the form (VAL1;VAL2;VAL3 ...)
where each value is separated from the next by a semicolon, and
the entire list is surrocunded by parentheses.

Notes

All character arguments areraveled into PL/I character strings,
no matter what the original APL shape.

All numeric arguments are raveled into a PL/I array of one
dimension, no matter what the original APL shape.

10-4 AK95-02

apl_get_list_nums_

Reads and converts a segment containing PL/1 or FORTRAN numbers
(in character form) into an APL numeric vector.

Usage

JMFN GET_LIST NUMS APL_GET LIST NUMS_
R <~ GET_LIST_NUMS 'path name’

where:

1. 'path_name'
is therelative or absolute pathname of the Multics text segment
to be read.

2. R
is the numeric vector that is returned by the function. The
length of the vector is the number of values that were read.

Notes

The data in the segment must be in a form suitable for reading by
PL/I list directed input. The segment (or multisegment file) is
opened for stream input and read using list directed input until all of
the data has been read. A message is printed giving the (1 origin)
index of any values that cannot be converted, along with the bad value
itself. A zero is substituted in the result vector for these bad
values,

PL/I 1list directed input permits any white space character
(blank, tab, new line, new page) to be used as a delimiter between
values. Also, a comma may be used to separate values. Two adjacent
commas cause a zero to be returned. Any of the forms of PL/I (or
FORTRAN) constants may be used; the value may be signed, may have a
decimal point, may have a (signed) exponent, and may be binary or
decimal, fixed or float. Only the real part of any complex values is
used. Since blanks are a delimiter, no blanks may appear within a
single value.

This function can print non-APL error messages; therefore it is
advisable to run in)ERRS LONG mode.

10-5 AK95-02

apl_read_segment_
Reads a Multics segment into an APL character vector.

JMEN READ_SEGMENT APL_READ_SEGMENT_
R « READ SEGMENT 'path_name’

where:

1. 'path name'
is the pathname of the Multics segment to be read. It can be
relative or absolute.

20 R
is the character vector that is returned by the function.

Notes

The segment is read in as a character vector, containing asmany
elements as there are bytes in the segment. Thus, lines are separated
by new line characters (octal 012), not the usual apl matrix
convention. The output of the €S system function may be subscripted
to obtain a new line character in a program.

While the most useful form is probably to read in text segments,
no restriction is placed on the type of data that may be read; any
segment is ok.

This is the most efficient method for reading data from segments
into apl.

10-6 AK95-02

SECTION 11

APL SAMPLE PROGRAMS

APL SAMPLE PROGRAMS

The programs presented in this section were written with the
intent of providing programmers, 1less familiar with APL, an
opportunity to become more familiar with the language.

Many system variables, system functions, external functions and
standard APL operators are included to demostrate their usefulness
within an APL program.

APL Programming Style

To avoid confusion, the programs are written in an uncondensed
format. Many APL programmers prefer to reduce the length of a program
by condensing the code in each function.

Executing a Sample Program

A list of all the functions used by each program are listed
following the 'Description' section. Many functions are not user
defined. If you wish to tryrunning these programs, youmust make the
appropriate function definitions. Every external function
definition can be found in Section 10 of the manual. All stream i/o
function definitions are found in Section 9 of the manual. You must
enter these definitions before a program will execute correctly.
They need only be entered once if they are saved in the workspace with
the calling program. To make a function definition, enter the
definition while APL is at command level. Make sure the workspace is
saved before leaving the APL system, or the definitions will be lost
and need to be reentered before executing the program the next time.

11-1 AK95-02

Card Dealer

Functigg:

This program deals four hands of thirteen randomly selected
cards. :

Description:

There are two user defined functions in the program. The main
function, DEAL, calls the second function, COMMON, three times
during its execution. This program utilizes the APL stream i/o
facility, writing the four hands to the Multics segment 'deck'.

JFNS
COMMON CREATE DEAL EOF TIE UNTIE WRITE

VDEAL[O]vV

V DEAL 3 H1 3 H2 3 H3 ; Hu;
@ TIE THE FILE AND OPEN FOR STREAM I/O
[1] 'DECK' TIE 1
m CREATE A 'DECK' OF 52 CARDS. COLUMN ONE HOLDS THE RANK OF THE
® CARDS WHILE COLUMN TWO HOLDS THE SUIT.
[2] CARDS « 52 2 p 'AC2C3CuC5C6C7C8CICTCJICQCKCAD2D3D4D5D6DTDS

DIDTDJDQDKDAH2H 3
“CHUHSH6HT7H8HIHTHJHQHKHAS 25 35 45556575859STSISQSKS !
R CREATE A MATRIX OF 1'S. THIS VARIABLE WILL BE USED TO MASK OUT
m PREVIOUSLY CHOOSEN CARDS FROM THE ‘CARDS' MATRIX
£31] CHART +« 1 52 p 1
® RESET SEED FOR RANDOM NUMBER GENERATOR USING TIME AND DATE
[4] ORL « (x20) + (x21) + (X25)
m GENERATE 13 RANDOM NUMBERS, NONE OF WHICH IS LESS THAN 1 OR
& GREATER THAN 52. ASSIGN THE RANDOM NUMBERS TO ‘ROLL'. EACH
@ ELEMENT IN 'ROLL' IS THE ROW INDICE OF 'CARDS'.
[5] H1i « CARDS[(ROLL + 13 ? 52) ;]
@ WRITE THE FIRST HAND TO THE FILE 'DECK"'.
[6] (,(H1L31)) WRITE 1
& WRITE A LINEFEED CHARACTER TO THE FILE 'DECK'.
(7] '
' WRITE 1
& HAND TWO.
[8] H2 « COMMON 1 39
[9] (,(H2031)) WRITE 1
[10] !
' WRITE 1
f HAND THREE
[11] H3 +« COMMON 1 26
(121 (,¢H3[;]1)) WRITE 1
[13]
' WRITE 1

A By

R HAND 4

11=2 AK95-02

(151 (,(Hu[;]1)) WRITE 1
(18] !
' WRITE 1
[17] UNTIE 1
v

VCOMMON[O 1V

Y FINAL < COMMON INC
R EACH ELEMENT IN 'CHART' AT 'ROLL[N]' (WHERE 1 < N < 13) BECOMES
n EQUAL TO 0.
(1] CHART[1;ROLL] « O
m MASK OUT EACH ROW OF 'CARDS' THAT CORRESPONDS TO A 0 ELEMENT IN
8 'CHART'.THE CARDS FROM THE LAST HAND HAVE REMOVED FROM THE DECK.
[2] CARDS <« CHART[1;]1 # CARDS
R CREATE A NEW 'CHART' VECTOR WITH (pCARDS)[1] ELEMENTS.
[3] CHART <« INC p 1
m PRODUCE A NEW HAND
C4] FINAL <« CARDS[ROLL«(CHART[13;ROLL]

v

)Q

11-3 AK95-02

Graph Plotting

Function:

This program produces a graph by reading adata file containing x
y coordinates and plotting them to the scale specified by the

contents of the APL numeric vector DATA.

Description:

There are fifteen functions in this program, eleven of which are
user written. The main function, PLOT, calls all the user
written functions directly, with the exception of STORE and
CONVERT. The valuesreturned byeach function called by PLOT are
used as input to the next function,

The variable DAT4 is a siX element vector containing information
pertaining to the scaling and axis labeling of the graph.

DATA[1]:

DATA[2]:

DATAL3]:

DATATUuU]:

DATA[S5]:

DATA(61]:

Minimum x coordinate in the input file. This value is a
feature to the user, for the purpose of verifying the data.

Minimum y coordinate in the input file. Thisvalue is also
for data verification.

At every DATA[3] space on the x-axis, number the axis at
that point, if space permits.

At every DATA[u4] space on the y-axis, number the axis at
that point.

Every space on the x-axis is an increment of DATA[5]. eg.
DATA[S] <« 0.25 means each space is an increment of 0.25.
Therefore, the value 1would require U spaces. If DATA[S5] <«
0.75 then the value 3 would require Y spaces.

Every space on the y-axis is an increment of DATA[4].

To get the most accurate graph possible, you may need to readjust the
values in DATA. Range restrictions are done automatically, so graph
space is maximized, regardless of DATA values. That 1is, if the
maximum value in the data file is 10 and the minimum is -5, only the
values between -5 and 10 are printed.

11-4 AK95-02

YFNS

CONVERT GET_LIST_NUMS INPUT LIMITS MATRIX MAXMIN PLOT POINTS
SECTIONS STORE TIE UNTIE WRITE XSIDE YSIDE

R THIS FUNCTION, THE DRIVER, REQUIRES ONE CHARACTER VECTOR AS AN
R ARGUMENT. THE ARGUMENT SPECIFIES THE NAME OF THE INPUT FILE
R CONTAINING THE DATA.

VPLOT[O1V
V Z « PLOT FILE ; V 3
® CALL THE REST OF THE FUNCTIONS.
[1] Z « V POINTS (XSIDE YSIDE MATRIX SECTIONS LIMITS MAXMIN
(Vv « INPUT FILE))
v

THIS FUNCTION TAKES THE FILE NAME PASSED TO THE DRIVER FUNCTION
AS ITS ARGUMENT. THIS FUNCTION CALLS THE EXTERNAL FUNCTION
GET-LIST-NUMS TO READ NUMERIC VALUES FROM A MULTICS SEGMENT
INTO AN o+ VECTOR.

2 2> D 2

VINPUT[O]vV
V Z « INPUT FILE ; TEMP ;
® STORE THE DATA IN THE VECTOR ‘TEMP!
(1] TEMP « GET _LIST NUMS FILE

@ RESHAPE THE VECTOR, SUCH THAT COLUMN ONE CONTAINS X VALUES WHILE
R COLUMN TWO CONTAINS THE RESPECTIVE Y VALUES

[2] Z < (((pTEMP) + 2).2) p TEMP e
\'

THIS FUNCTION TAKES THE DATA MATRIX AS ITS ARGUMENT. THE
MAXIMUM AND MINIMUM VALUES ARE COMPUTED IN THIS FUNCTION.
ELEMENTS 3, 4, S5, AND 6 OF 'DATA' ARE SET TO THEIR
ABSOLUTE VALUES.

D2 D2 D® D

VMAXMIN[O]V
V Z « MAXMIN INFO ; XMAX ; YMAX ;
[1] XMAX « [/ INFO[;1]
[2] YMAX « [/ INFO(;2]
[3] DATA[1] LCL 7/ INFOL311)
[4] pATA[2] L(L /7 INFO[3;21)

[5] DATA[S5] <« |DATALS]
[6] DATALe] « [DATAls]
[7] DATAL3] <« |DATA[3]

£8] DATA[4] « |DATA(H4]

® ENSURE THAT THE TWO MINIMUM VALUES CAN BE DIVIDED EVENLY BY
R THE INCREMENT VALUES IN 'DATA[S]' AND 'DATA(s6]'.

[9] DATAL2] <« DATA[2] - (DATA[Le] | DATA[2])

11-5 AK95-02

[11] DONE: Z « XMAX ,YMAX
v

THIS FUNCTION COMPUTES THE GRAPHS UPPER AND LOWER LIMITS,
COMPLYING WITH THE INCREMENT LEVEL SPECIFIED IN 'DATA'. THE
MAXIMUM X Y VALUES ARE ROUNDED SUCH THAT THE MAXIMUM VALUE
ON EACH AXIS IS EVENLY DIVISIBLE BY 'DATA[5]1' AND 'DATA[61]'.

2222 3

VLIMITS[O]IV

V Z « LIMITS MINMAX ; TOPX ; TOPY ;
m# IF THE MAXIMUM Y VALUE IS EVENLY DIVISIBLE BY 'DATA[61', GO TO
@ LABEL 1,
(1] + ((DATA[6] | MINMAX[2]) .FNT
f THE MAXIMUM Y VALUE IS NOT EVENLY DIVISIBLE BY 'DATA[6]'.
R ROUND THE MAXIMUM Y VALUE UP TO THE FIRST NUMBER EVENLY
m DIVISIBLE BY 'DATA[l6]'.
[2] TOPY « MINMAX[21 + (DATA[e] - (DATA[e6] | MINMAX[21))
[3] +> L2
@ ROUND THE MAXIMUM Y VALUE DOWN TO THE FIRST NUMBER EVENLY
mn DIVISIBLE BY 'DATA[e1]'.
(4] L1: TOPY « MINMAX[(2] + (DATALe] - (DATA[6] | MINMAX[2]1)) - DATA[6]
@ THE SAME PROCEDURE AS ABOVE APPLIES THE THE X MAXIMUM VALUE.
[5] L2: - ((DATA[5] | MINMAX[1]) .FNT
[6] TOPX « MINMAX[1] + (DATA[5]1 - (DATA[S] | MINMAX[11))
{71 -~ L4
{8] L3: TOPX « MINMAX[1] + (DATA[S5] - (DATAL5] | MINMAX[11)) - DATALS]
[(9] Lu: Z « TOPY,TOPX

v

THE ARGUMENT OF THIS FUNCTION IS THE MODIFIED MAXIMUM AND
MINIMUM VALUES COMPUTED BY THE 'LIMITS' FUNCTION. THE
TOTAL NUMBER OF SPACES NEEDED TO CREATE THE GRAPH IS
CALCULATED HERE.

D> DD

VSECTIONSIOV

V Z « SECTIONS XY ; X ; Y 3
(YMAX + ABS(YMIN)) + YINCREMENT
Y « (x¥[1] + (IDATA[2]1)) = DATA[s6]
(XMAX + ABS(XMIN)) % XINCREMENT
X = (XY[2]1 + (|DATA[1])) + DATA[S]
2 « Y, X

MPAEAID
e P

THE ARGUMENT TO THIS FUNCTION IS A VECTOR CONTAINING THE NUMBER
OF SPACES ON THE Y AXIS AND X AXIS. THIS FUNCTION CONSTRUCTS
THE ACTUAL MATRIX. THE AXIS ARE DRAWN AND AT EVERY 'DATA[u]1' AND
'DATAL3]' SPACE, A ‘'+' IS SUBSTITUTED FOR THE '|' AND '-!

ON EACH RESPECTIVE AXIS.

2 22D 2

11-6 AK95-02

VMATRIX[O1v
V Z <« MATRIX XY 3 M ;
@ CONSTRUCT A (YMAX + 1) x (XMAX + 1) MATRIX. THE ADDITION VALUE
r OF ONE ON EACH AXIS ACCOUNTS FOR THE NUMBERING WHICH WILL 9CCUR
m LATER.
(1] M« ((XY[11 + 1),(xy[2] + 1)) p '
m DRAW THE Y AXIS IN COLUMN 1.
[2] ML31] « ']
@ DRAW THE X AXIS IN THE LAST ROW.
[3] MLXY[1] + 1;] <« -1
@ LET I .FNT
[u] I <« (pM)[1]
STARTING AT THE 'BOTTOM' OF THE MATRIX, PLACE A '+' WHERE THE
TWO AXIS MEET AND THEN ENTER A LOOP THAT PLACES A '+' AT
EVERY 'DATA[u4]' SPACES ON THE Y AXIS. I IS DECREMENTED EVERY
PASS THROUGH THE LOOP, AS IT SPECIFIES THE ROW THE '+' SHOULD
BE PRINTED IN. STOP THE LOOP WHEN THE 'TOP' OF THE MATRIX HAS
BEEN REACHED.
[51 L1: M[I;1] <« '+
[6] I « I - DATA[4]
[71] > (r 2 1) / I1
® STARTING AT COLUMN 1, AND THE ‘BOTTOM' OF THE MATRIX, START
PRINTING THE '+' ALONG THE X AXIS. THIS PROCESS IS MUCH THE
SAME AS THE PROCESS DESCRIBED ABOVE, BUT INSTEAD OF DECREMENTING
I, IT IS INCREMENTED BY ‘'DATA[3]' AT EACH PASS THROUGH THE
LOOP.
8] I « 1
[9]1 L2: M[(pM)[1]3;I] « '+
[10] I « I + DATA[3]
(111 > (I < (pM)[21) / L2
[12] Z <« M
v

2

D DDdDDD

> D D2

® THIS FUNCTION IS A TOOL USED BY ‘YSIDE' AND 'XSIDE'. IT TAKES
R A NUMERIC ARGUMENT AND CONVERTS IT TO A CHARACTER VECTOR.
~004m THIS FUNCTION WILL CONVERT REAL NUMBER VALUES IN DECIMAL
R NOTATION UP TO FOUR DECIMAL PLACES OF ACCURACY.

VCONVERT[O1v
VZ <« CONVERT V 3 S 3 T 3 N 3 A ; B
a SET THE INDEX ORIGIN TO 0. THIS IS NECESSARY TO INDEX INTO
n THE VARIABLE ‘'N°'.

[1] 01r0 <« o
® IF THE VALUE IS NEGATIVE, MAKE THE FIRST ELEMENT OF THE
R OUTPUT CHARACTER VECTOR, 'A', A '-'. IF THE VALUE IS POSITIVE,

R MAKE THE FIRST ELEMENT OF 'A' A BLANK.
2] + (Vv < 0) / NG

R HANDLE A POSITIVE VALUE.

[3] A <« © 7

. [u] + START

n HANDLE A NEGATIVE VALUE.

(5] NG: A « '-!

1-7 AK95-02

[6] V«Vx "1
@ INTIALIZE ‘N°.
[7] START: N < '0123456789"
[8] B«l'
@ DOES THE VALUE HAVE A DECIMAL PORTION? IF NO, PROCESS INTEGER.
@ ELSE, ASSIGN THE DECIMAL PORTION TO 'S' AND SET THE FIRST
@ ELEMENT OF THE CHARACTER VECTOR, 'B', TO '.'.
[9] > ((1 | W)
[10] S <« 1|V
[11] B « '.!
@ IF A DECIMAL PORTION EXISTS, PROCESS IT IN THIS LOOP.
MULTIPLY THE DECIMAL VALUE BY 10. THE FIRST DIGIT IN THE
DECIMAL VALUE WILL BE TO THE LEFT OF TH DECIMAL POINT AFTER
DOING THIS. E.G .344 x 10
NOW 'S' IS EQUAL TO 3.u44., THr LAST OPERATION IN LINE [12]
IS 3.44 - .44 OR (S5 - (1| 3.44)). THIS GIVES US THE VALUE
3, WHICH IS ASSIGNED TO THE VARIABLE 'T'..
(12 LOo: T « 8§ - (1| (S « ((1] &) x 10)))
f JOIN THE CHARACTER 'N[U(LT)]' WITH THE VECTOR 'B'.
[13] B <« B,N[(LT)]
@ CONTINUE THE PROCESS DESCRIBED ABOVE UNTIL THE DECIMAL PORTION
a IS LESS THAN 0.000009.
(1431 -+ (S > 0.00009) / LO
@ PROCESS THE INTEGER PORTION OF THE INITIAL VALUE. IT IS MUCH
n THE SAME OPERATION AS THAT DESCRIBED ABOVE, EXCEPT THAT THE
n VALUE IS BEEN MULTIPLIED BY 10 INSTEAD OF BEING DIVIDED BY 10.
(151 L1: V « (V - (T « (10] V))) = 10
[16] 4 <« A,N[(LT)]
(171 (v > 0) / L1
® JOIN THE DECIMAL VECTOR TO THE INTEGER VECTOR. THE LAST
a ELEMENT OF 'B' IS DROPPED AND THE REMAINDER IS JOINED TO THE
n TRANSPOSE OF 'A[1]' T0 ‘'Al(pA)]1'. THE RESULT OF THIS OPERATION
n IS JOINED WITH 'A[0]'.
(181 Zz « A[01,(d(1 + 4)), ("1 + B)
@ RESET THE INDEX ORIGIN TO 1.
[19] 010 <« 1
v

23 D2 222

® THIS FUNCTION TAKES THE MATRIX CREATED BY 'MATRIX' AS ITS
n ARGUMENT. THE Y AXIS IS NUMBERED AT EVERY 'DATA[u4]' SPACE.

VYSIDELOIV

V Z « YSIDE M 3 YS ; YM 3 TEMP ; BLANKS ; I ;
@ CREATE A VECTOR OF BLANKS.
(1] BLANKS <« 10 p ' !
m 'YM' BECOMES EQUAL TO THE MAXIMUM NUMBER A Y AXIS NUMBER MAY
R REACH. 'Y2' IS TEH MINIMUM DATA VALUE.
[2] YM <« DATA[2] + DATA[6] x ((pM)[1] - 1)
3] YS « DATA[2]
m CREATE A MATRIX OF SPACES. TO ENSURE THAT EVERY NUMBER BETWEEN
m YMIN AND YMAX CAN BE PRINTED, THE CHARACTER LENGTH OF EACH VALUE

m IS COMPARED. THE LENGTH OF THE LARGEK OF THE TWO IS USED IN

11-8 AK95-02

THE CREATION OF THE TEMPORARY MATRIX. THE TEMPORARY MATRIX WILL
BE USED AS A TEMPORARY BUFFER FOR THE AXIS NUMBERS. LATER, WHEN
ALL THE NUMBERS HAVE BEEN CONVERTED AND PLACED IN THE TEMPORARY
MATRIX, THE MAIN MATRIX AND THE TEMPORARY MATRIX WILL BE JOINED
ALONG THE Y AXIS.

(4] - ((p(CONVERT YS)) > (p(CONVERT YM))) / Y1

[5] TEMP < ((pM)[1],(4 + (p(CONVERT ¥YM)))) p ' !

[6] + Y2

[7] Yi: TEMP <« ((pM)[13,(4 + (p(CONVERT YS)))) p ' !

@ SET 'I' TO THE NUMBER OF ROWS IN MATRIX 'M'.

(8] Y2: I « (pM)[11

@ 'TEMP[I;]' IS REPLACED BY THE CHARACTER REPRESENTATION OF THE

@ Y AXIS NUMBER VALUE. IF THE CONVERTED VALUES LENGTH IS LESS

@ THAN THE NUMBER OF COLUMNS IN 'TEMP', IT MUST BE PADDED WITH

@ BLANKS.

(9] <Li: TEMP[I;] <« (((pTEMP)[2] - p(CONVERT YS)) + BLANKS) ,CONVERT Y:
m DECREMENT 'I' T0O THE NEXT ROW THAT REQUIRES A Y AXIS NUMBER.
[10] I « I - DATA[u4]

@ COMPUTE THE NEXT Y AXIS NUMBER.

[11] YS <« YS + (DATA[u] x DATA[61])

@ QUIT WHEN THE ‘'TOP' OF THE MATRIX HAS BEEN REACHED.

[12] - (I =2 1) / I1

@ JOIN A COLUMN OF BLANKS TO THE TEMPORARY BUFFER TO SEPARATE

f THE NUMBERS IN 'TEMP' FROM THE AXIS IN 'M'.

[13] TEMP « TEMP,((pTEMP)[11,1) o ' !

@ JOIN THE Y AXIS NUMBER LABELS TO THE MAIN MATRIX.

[14] 2 « TEMP , M

v

b e - T - - i -}

m THIS FUNCTION TAKES THE MATRIX WITH THE LABELED Y AXIS AS AN
f ARGUMENT. THE X AXIS IS LABELED IN THIS FUNCTION. A TEMPORARY
m MATRIX 'TEMP' IS CREATED TO STORE THE NUMBER LABELS AS THEY
m ARE COMPUTED AND CONVERTED TO THEIR CHARACTER RESPRESENTATION.
VXSIDE[O]V
V Z <« XSIDEM ; XS 3 XM 3 TEMP ; I ;
@ 'XS!
[1] XS « DATAf1]
@ 'I' .FNT

[2] I « M[(pM)[1T 31 1 '+

n CREATE A TEMPORARY VECTOR OF BLANKS.

[3] TEMP <« (1,((pM)[21 + 1)) p * !

n 'XM?

[u] XM < DATA[1]1 + DATA[L5] x ((pM)[2] - I)

@ IF THERE IS INSUFFICIENT SPACE TO PRINT EACH NUMBER ON THE

Vv AV TCQ nANna1
& X AXIS, DON'T PRINT ANY NUMBER LABELS.

[5] - ((p(CONVERT XM)) > (DATA[3] - 1)) /STOP
a 'X?

R X AXIS.

(6] MAIN: X « CONVERT XS

R "INC2' .FNT

[7] INC2 <« pX

11-9 AK95-02

n IF LENGTH 'X' IS ODD, ‘'INC' .FNT

n ELSE 'INC!

8] - ((1] (pX) = 2) > 0) / OD

(9] INC « 71 x (((pX) %+ 2) - 1)

f10]1 = GO

[11] OD:INC « "1 x (((pX) % 2) - 0.5)

m ODD LENGTHED NUMBER LABELS ARE CENTERED UNDER THEIR RESPECTIVE
'+' APPEARING IN THE 'M' MATRIX. EVEN LENGTHED NUMBER LABELS

;]
m ARE CENTERED WITH THE 'BEST FIT' METHOD. NEGATIVE NUMBERS WILL
@ HAVE THE EXCESS CHARACTER TQ THE LEFT OF THE '+' WHILE POSITIVE
n NUMBERS WILL HAVE THE EXCESS CHARACTER TO THE RIGHT OF THE '+°',
n THE NUMBER LABELS ARE TRANSFERRED TO THE TEMPORARY VECTOR ONE AT
a A TIME.
[12] GO: TEMP[1;(I - INC)] <« X[INC2]
[13] INC2 « INC2 - 1
Ci4] INC <« INC + 1
@ IF THE NUMBER LABEL HAS BEEN TRANSFERRED, COMPUTE THE NEXT
n NUMBER LABEL. ELSE, TRANSFER THE NEXT CHARACTER IN THE NUMBER
R LABEL TO THE TEMPORARY MATRIX.
{151 > (INC2 =2 1) [/ GO
a COMPUTE THE NEXT NUMBER LABEL.
[16]1 XS « XS + DATA[3] x DATA[5]
® ADVANCE TO THE NEXT LOCATION ON THE X AXIS.
[17] I <« I + DATA[3]
IF THE END OF THE X AXIS HAS BEEN REACHED, QUIT.~00S
(18] =+ (XS < XM) / MAIN
R JOIN A BLANK LINE TO THE 'BOTTOM' OF THE MATRIX 'M'.
[19] STOP: M « M,[21(((pM)[1],1) p ' ")
n JOIN THE X AXIS NUMBER LABELS TO THE MAIN MATRIX.
[20] 2z « M,[1]TEMP
v

m TO0 THIS POINT, THE GRAPH HAS BEEN CREATED AND IS READY TO HAVE
n THE DATA PLOTTED. ROUNDING OF VALUES IS5 SLIGHTLY DIFFERENT
® FOR POSITIVE AND NEGATIVE VALUES. NEGATIVE VALUES ARE ROUNDED
&# DOWN WHILE POSITIVE VALUES ARE ROUNDED UP. THIS REDUCES THE
n APPEARANCE OF GRAPHIC INCONSISTENCIES BETWEEN NEGATIVE AND
n POSITIVE VALUES.

VPOINTS[OIV

VZ <+« V POINTS M ;3 X 3 Y 3 I ;

(1] I« 1

@ GET DATA FROM DATA MATRIX 'V'.

[2) Li: X « Vv[I;1]

[3] Y « V[I;2]

® ROUND THE VALUES TO THE RULES SPECIFIED ABOVE.
[4] > ((DATAl6] | (lY)) = (pATA[6] % 2)) / L2
[5] Y « (xY) x (Y x (x¥Y)) - (DATA[6] | (lY))

(6] + L3
[7] L2: Y « (xY) x (Y x (xY)) + (DATA[6] - (DATA[e] | (lY)))
rgel ra: - ((pATACsS] | (lXx)) > (pATATS] ¢+ 2)) / Lu

[9] X « (xX) x (X x (xX)) - (DATALs5]1 | (lX))

11-10 AK95-02

101 -~ L5
[11] Zu: X « (xX) x (X x (xX)) + (DATA[S] - (DATACS51 | (ix)))
n SCALE THE X AND Y COORDINATES.
[12]1 L5: ¥ « ((pM)[1] - 1) - ((DATA[2] = "1) + Y) & DATA[6]
(131 X « (MO(pM)[1] - 130 v "+') + ((DATA[11 # ~1) + X) % DATALS]
m PRINT AN 'x' AT THE CORRECT SPECIFIED BY X AND Y.
[14] MIY3X] <« "%
m WHILE DATA IS NOT EXHAUSTED, CONTINUE PLOTTING THE POINTS.
[15] > ((I « I + 1) < (pV)[11) / L1
@ THE FINAL PRODUCT IS RETURNED !
[16] Z « M

v

® THIS FUNCTION IS OPTIONAL. IT STORES THE GRAPH IN A MULTICS
n SEGMENT. THE STREAM I/0 FACILITY IS UTILIZED, SO GRAPHS MAY
n SENT TO A PRINTER IF DESIRED.

VSTORE[O]V

vV STORE M ; I
[1] I « 1
[2] 'PLOTS' TIE 1
m APPEND A LINEFEED CHARATER TO EACH ROW OF THE GRAPH BEFORE IT
f IS WRITTEN TO FILE.
(31 L1: (M[r;],0cS[11]) WRITE 1
[u4] I « I +1
[5] - (I < (pM)[11]) / L1
(6] UNTIE 1

v

)Q

1T"-11 AK95-02

APPENDIX A

GLOSSARY

array
a value with any number of dimensions. Generally the terms
scalar, vector, and matrix will be used when possible; the term
array covers all values.

composite operation
a class of operations whose result is defined in terms of
repeated applications of one or two scalar operators to one or
two arguments. The shape of the result is defined by the
particular composite operation, not the scalar operator(s).
The four composite operations are inner product, outer product,
reduction, and scan.

diamond line
any number of statements, including zero, each separated by a
diamond. Contains no label. See "line.,"

dyadic
taking two arguments - a right argument and a left argument.

explicit result
a value created as the primary (perhaps sole) result of
evaluating an operator or function or pseudo-operator.

eXxplicit subexpression
an expression that is contained in a larger expression and is
delimited by matching parenthesis. Short for "explicitly
delimited subexpression."

A-1 AK95-02

expression
a valid combination of APL symbols that produces one explicit
result and any number (including zero) of implicit results.

external function :
a program that is separately compiled and exists outside the
active APL workspace. It has a name and a syntactic usage
description in the workspace, but is actually a program written
in PL/I.

function
a sequence of one or more function lines, together with a header,
that defines a stored APL program. The header defines its name
and syntactic usage.

function line
a diamond line that can be preceded by a label.

implicit result
avalue or effect created as a secondary (perhaps sole) result of
evaluating a pseudo-operator or function. For example, the
explicit result of [(specification) is its right argument., 1Its
implicit result is the assignment of the right argument to the
name given as the left argument,

implicit subexpression
an expression that is contained in a larger expression and is
delimited by the syntactic rules of APL, and the right-to-left
order of evaluation of APL. Short for "implicitly delimited
subexpression."

line
a single statement. Contains no diamonds nor a label.

matrix
a value with two dimensions.

mixed operator
aclass of operators that defines the shape of the result in terms

of the individual operator and the particular shape of the
argument or arguments. Membership, shape, and reshape are
examples of mixed operators.

A-2 AK95-02

monadic

taking one argument - always a right argument.

niladic

taking no arguments.

operation

any APL construct that can take one or more arguments. The
following are operations: composite operations, external
functions, functions, indexing, mixed output, operators,
pseudo-operators, system functions. Even though they take no
arguments, niladic functions are considered operations as well.

operator

a builtin (not user-definable) APL construct that takes one or
two arguments and returns one explicit result and no implicit
results. An operator is always represented by a single graphic
symbol. See mixed operator and scalar operator,

pseudo-operator

rank

a builtin (not user-definable) APL construct that takes one or
two arguments, may return an explicit result, and may have an
implicit result. Specification and execute are examples of
pseudo-operators.

the number of dimensions in a value.

scalar

a value with no (zero) dimensions.

scalar operator

a class of operators that defines the shape of the result solely
in terms of the shape of the argument or arguments, not the
particular operator. In particular, theresultof applying such
an operator to non-scalar arguments is an extension of the result
when applied to scalar arguments. Signum, add, and equal are
examples of scalar operators.

A-3 AK95-02

shape
(as a noun) the vector of dimension extents of a value - the
number of dimensions (rank) together with the length of each
dimension. Also the name of a monadic mixed operator
represented by the rho R symbol.

statement
an expression that is not contained in any other expression; i.e.
an expression that is on a line by itself, or an expression that
is between diamonds.

stop pseudo-variable
see trace pseudo-variable,

subexpression
an expression that is contained in a larger expression.

system function
a builtin (not user-definable) function, with a reserved name,
that is always present in the active workspace., Lfx is an
example of a system function.

trace pseudo-variable

a variable associated with each user-defined function that
specifies a (possibly empty) vector of 1line numbers.
Pseudo-variables can appear in the same contexts as normal
variables, except for indexed assignment and localization.
Assigning a value to a stop or trace pseudo-variable causes an
implicit effect when the function 1is executed, namely, the
stopping or tracing of lines of that function.

type
the representation of a value; either character or numeric. A
given value is either one or the other; the two cannot be mixed.

value
a collection of any number (including zero) of character or
numeric elements. A value is completely characterized by its

type, shape, and list of elements.

vector
a value with one dimension.

A-Y4 AK95-02

APPENDIX B

COMMANDS

This appendix gives descriptions of the Multics commands that
relate to APL.

B-1 AK95-02

apl

Name: apl, v
Invokes
workspace.
Usage
apl {wo
where:

1. workspa

2apl

the APL 1interpreter, optionally 1locading a saved

rkspace_id} {-control_args}

ce id

is the pathname of a saved workspace to be loaded. The
default is to load the user's continue workspace, if any,
otherwise to provide a clear workspace.

2. control_args

-term

may be chosen from the following:

inal_type STR, -ttp STR
specifies the kind of terminal being used. Possible
values of STR are:

1050 CORR2741

2741 LA3%

1030 TEK4013

ARDS TEKU4015

ASCII TELERAY

BITPAIRED TN300
TYPEPAIRED

This control argument specifies which one of several
character translation tables is to be used by APL when
reading or writing to the terminal. Since there are
several different kinds of APL terminals, each
incompatible with the rest, it is important that the
correct table beused. Specifying a terminal type to APL
changes the terminal type only as long as APL is active.
The default depends on the user's existing terminal type
(refer to the set tty command, in Multics Commands and
Active Functions manual (9rder No.: AG92)). These
terminal types default to the same APL terminal type:
1050, 2741, CORR2741, ARDS, TN300, TEK4013, TEKY4015,
ASCII, LA36, TELERAY11. All other terminal types
default to ASCII. The APL terminal types BITPAIRED and
TYPEPAIRED are generic terminal types that can be used
with any APL/ASCII terminal of the appropriate type.

-brief errors, -bfe

causes APL to print short error messages. This is the
default,

B-2 AK95-02

apl

-long_errors, -lge
causes APL to print long error messages. The short form
of the message is printed, followed by a more detailed
explanation of the error.

-user_number N
sets the APL user number (returned by some APL functions)
to N. The default is 100.

-check, -ck
causes a compatibility error to occur if a monadic
transpose of rank greater than 2, or a residue or encode
with a negative left argument is encountered. (The
definition of these cases is different in Version 2 APL
from Version 1 APL).

-debug, -db
causes APL to call the listener (cu $cl) upon system
errors. This puts the user at a new command level,. The
default is to remain in APL. This control argument is
intended for debugging apl itself.

-no_quit _handler, -nqgh
causes APL to ignore the quit condition. The default is
to trap all quits within APL.

-temp dir path, -td path
changes the directory that is used to hold the temporary
segments that contain the active workspace to path. The
default is to use the process directory.

Note

This command invokes the Version 2 APL interpreter, which
replaces the obsolete Version 1 APL interpreter.

B-3 AK95-02

apl_end

Name: apl_end
Resets the user's terminal environment to the normal Multics

environment, removing all of the special attachments and translations
for APL that are put in effect by the apl_start command.

Usage

apl_end
Notes

See the apl_start command for a description of the APL terminal
environment.

B-4 AK95-02

apl_start

Name: apl_start

Sets up the user's terminal environment as it is when running

APL.
Usage
apl_start {-contrcl_arg}

where:

1. control arg
may be -terminal type STR, -ttp STR to specify the kind of
terminal being used. Possible values of STR are:
1050 CORR2741
2741 LA36
1030 TEK4013
ARDS TEK4015
ASCII TELERAY11
BITPAIRED TN300

TYPEPAIRED

This control argument specifies which one of several
character translation tables is toc be used by APL when
reading or writing to the terminal. Since there are
several different kinds of APL terminals, each
incompatible with the rest, it is important that the
correct table be used. Specifying a terminal type to APL
changes the terminal type only as long as APL is active.
The default depends on the user's existing terminal type
(refer to the set tty command, in the Multics Commands
and Active Functions manual (Order No.: AG92). These
terminal types default to the same APL terminal type:
1050, 2741, CORR2741, ARDS, TN300, TEK4013, TEK4015,
ASCII, LA36, TELERAY11. A1l other terminal types
default to ASCII. The APL terminal types BITPAIRED and
TYPEPAIRED are generic terminal types that can be used
with any APL/ASCII terminal of the appropriate type.

Notes

The apl_start command is used to set up the user's terminal
environment as it is during an APL session without actually invoking
the APL interpreter. After invoking apl start, the appropriate APL
character set translations for the user's terminal type will be in
effect, including the use of an APL graphic character set if the
terminal has one.

B-5 AK95-02

apl_start

When interacting with Multics, the following translationrule is
used: the APL letters are translated into Multics lower case letters,
and the underscored APL letters are translated into Multics uppercase
letters, both on input and output.

The apl start command is particularly useful for preparing
exec com or absentee 1input segments that wish to execute APL
expressions. See also the description of apl end.

B-6 AK95-02

convert_ tsoapl workspace

Name: convert tsoapl_ workspace, ctw

Converts a TSO APL saved workspace, as read into a Multics
segment by read_tsoapl tape, into a Multics APL workspace. Only
global names and values are converted; the state indicator (SI) is not
converted.

Usage

convert tsoapl workspace path {newpath}

where:

1. path
is the pathname of the segment to be converted. The
suffix ".sv.tsoapl"™ is assumed.

2. newpath

is the pathname of the segment in which to place the
converted workspace. The default is to create the
segment in the working directory with the same entryname
as the TSO APL workspace, but with the suffix ".sv.apl".

B-7 AK95-02

display tsoapl_workspace

Name: display_tsoapl workspace, dtw

Lists the contents of a saved TSO APL workspace read into a
Multics segment by read tsoapl tape. The names and values of all
global objects are displayed. :

Usage

display_tsoapl_workspace path {-control arg}

where:

1. path

is the pathname of the segment containing the workspace
to be displayed. The suffix .sv.tscapl is assumed.

2. control arg

-long,

may be

_]_g

list the workspace system variables (DIGITS, WIDTH,
etc.) as well as the user defined objects. The default
is to list only the user's objects.

B-8 AK95-02

read_tsoapl tape

Name: read_tsoapl_tape, rtt

Reads an APL SELDUMP tape, such as those created by APLUTIL on
TS0, placing the saved APL workspaces on the tape into segments in the
working directory. The segments are given the names of the saved
workspaces, with the suffix ".1ibN.sv.tsoapl", where Nis the library
number of the workspace.

Usage

read_tsoapl tape tapeid {filename] ... filenamen}
{-control args}

where:

1. tapeid
is the tape slot number of the tape.

2. file namei
is the name of a workspace to be read from the tape. The
default is to read all workspaces on the tape.

3. control_args
may be chosen from the following:

-attach _description STR, -atd STR
Use STR as the attach description. The default attach
description is "tape nstd_ tapename -bk 10000".

-density N, -den N
Use Nas the density setting. N must be 200, 556, 800, or
1600. The default is 1600.

-list, -1s
List the names of the workspaces on the tape, witnout
reading the workspaces into segments. The default is to
list and read the workspaces,

Notes

The user must have rw permission on the segment
>sci1>rep>workspace.acs, in order to get larger than normal tape
buffers (tapes created by APLUTIL have 10,000 byte records, which is
larger than the default buffer size).

Since Multics permits only ASCII characters in segment names,
any delta characters in the workspace name are translated to "d", and
any underlined delta characters are translated to "D".

B-9 AK95-02

accounting information
add, subtract, multiply, d

APL
APL external functions

7-5

ivide

10-1

character set 1-2, 2-2
communicating with Multics 5-
file sharing 6-9

file system 6-9

histery of 1-1

Multics file system 6-1
organization of files 6-1

sample programs 11-1
stream I/0 9-1

system functions 7-1
system variables §-1

terminal I/0 conventions

use of files 6-2
values 3-1
apl command 2-1, B-2

apl_push_stack function

TT
11

e : -~ A an
ASC terminals 2-10

assignment pseudo-operator

ATTN processing 2-12

2-8

5-26

3-69

3-15

an

0

INDEX

i-1

binomial coefficients 3-1

calling APL 2-1
canonical representation
catenate 3-23
ceiling and floor 3-18

character set 1-2, 7-9

circular 3-21
closed expressions 3-64

B-1
7-11

commands
execute

comments 3-63

compdar 1501

PR TP
operavors
comparisen tolerance

composite operations

AK95-02

7

7-8

compress 3-42

deal 3-41

delay 7-10

diamond lines 3-65

EBCDIC terminals 2-9
editing a line 4-28
encode 3-44
environment parameters 5-1
erase processing 2-11
error handling 4-18
errors U4-19
escape processing 2-13
execute pseudo-operator 3-75
execution flow 4-7
execution termination U4-17
expand 3-U3
expressions 3-54
implicit expressions 3-56
right-to-left rule 3-55

subexpressions 3-55

expunge T-12

factorial 3-17
fix 7-13
format 3-47

function calls
pendent L4-21
suspended U4-21

functions 3-68, 4-1
active 7-=3
arguments U4-1
call T7-6
editing a U4-26
editing halted functions U4-23
external 5-19, 5-20, 5-21, 5-2
5-25
apl_erf 10-2
apl get list nums 10-5
apl iea 10-4
apl pickup float bin 2 10-3
apl_read _segment_ 10-8%
file manipulation ~6-2
locked U#-20
restarting a suspended function
4-23
results U-1
stream 1/0 9-1

functions calls
halted 4-21

general rules for catenate 3-28
general rules for laminate 3-35
generating algorithm 3-19

glossary A-1

AK95-02

grade up, grade down 3-39

groups 3-68

I-Beam 3-46
identifiers 3-66
index generator 3-37
indexing 3-59, 3-70
inner product 3-54
input
character 3-T4
evaluated 3-72
input line processing 2-10
ATTN 2-11
canonicalization 2-11
erase 2-11
kill 2-11
input prempt 2-2
internal codes 2-2
interrupts 4-17

strong 4-18
weak U4-17

kill processing 2-11

labels 3-63

i-3

laminate 3-31

line counter 7-15
lists 3-58

10§ked functions 4-16

logical operators 3-20

magnitude 3-17

matrices and arrays 3-6
character 3-8
matrix divide 3-45
matrix inverse 3-U45
numeric 3-8

matrix
divide 3-45
inverse 3-45
maximum and minimum 3-18
membership 3-43
mixed operators 3-21
mixed ocutput 3-61
name count 7-16
name list 7-18
names 3-65, 3-66

function 3-67

group 3-67
syntax of 3-66
variable 3-66

objects 3-65

operator
dyadic scalar 3-12
mixed 3-11
monadic scalar 3-11

operators 3-11
scalar 3-11

outer product 3-53

overstrikes 2-8

parameters
environment 5-1
session 5-2
workspace 5-2

PI times 3-21

plus, negative 3-15

pornography 3-76

power, logarithm 3-16

ravel 3-23

reciprocal 3-16
recursion 4-12
reduction 3-50

reshape 3-22

residue 3-16
results
explicit 2-71
implicit 3-70, 4-19
‘output of explicit 3-72
reverse 3-40
roll 3-19

rotate 3-40

scan 3-52
session parameters 5=2
shape 3-22
S1
clearing U4-23
damage 4-24
exploring W4.22
signum 3-16
state indicator U4-16
statements 3-63

stop pseudo-variables U4-19

suspension 4-18

symbol table 5-5

system commands 51

tabulating 2-9

AK95-02

take, drop 3-38 workspace (cont)
active 3-80

terminal I/0 conventions 2-8 available 7-23
ASCII terminals 2-10 identification 5-10
EBCDIC terminals 2-9 management 5-10
input line processing 2-10 parameters 5-2
overstrikes 2-8 passwords 5-11
tabulating 2-9 used T7-24

terminal type T7-21
time stamp 7-20

transpose 3-41

user load 7-22

using APL 2-13

values 3-1

elements 3-3
output of 3-3

scalars 3-4

scientific notation 3-U4

rank 3-2
shape 3-2

operator 3-3
type 3-1

variables 3-67

vectors 3-5
character 3-5
numeric 3-6

W

workspace 3-T79

i-5 AK95-0.

CUT ALONG LINE = — = — = — — e e e e e e o

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form

TITLE

MULTICS APL
USER’S GUIDE

ERRORS iN PUBLICATION

ORDER NO.

DATED

AK95-62

DECEMBER 1985

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

Your comments will be investigated by appropriate technical personnel
[and action will be taken as required. Receipt of ali forms will be
¢ acknowledged; however, if you require a detailed reply, check here.

FROM: NAME
TITLE

COMPANY

ADDRESS

DATE

PLEASE FOLD AND TAPE-
NOTE: U.S. Postal Service will not deliver stapled forms

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 39531 WALTHAM, MA 02154

POSTAGE WILL BE PAID BY ADDRESSEE

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM, MA 02154

ATTN: PUBLICATIGNS, MS486

NO POSTAGE
NECESSARY
IF MAILED
INTHE
UNITED STATES

Honeywell

T T oo~ —— ——— CUTALONGLINE ———————

FOLD ALONG LINE

FOLD ALONG LINE

Together, we can find the answers.

Honeywell

Honevwell Information Systems
U.S.A.: 200 Smith St., MS 486, Waltham, MA 02154
Canada: 155 Gordon Baker Rd., Willowdale, ON M2H 3N7
U.K.: Great West Rd., Brentford, Middlesex TW8 9DH Italy: 32 Via Pirelli, 20124 Milano

Mexico: Avenida Nuevo Leon 250, Mexico 11, D.F. Japan: 2-2 Kanda Jimbo-cho, Chiyoda-ku, Tokyo

Australia: 124 Walker St., North Sydney, N.S.W. 2060 S.E. Asia: Mandarin Plaza, Tsimshatsui East, H.K.

44840, 5C286, Printed in U.S.A.

AK95-02

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	01-01
	01-02
	01-03
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	03-25
	03-26
	03-27
	03-28
	03-29
	03-30
	03-31
	03-32
	03-33
	03-34
	03-35
	03-36
	03-37
	03-38
	03-39
	03-40
	03-41
	03-42
	03-43
	03-44
	03-45
	03-46
	03-47
	03-48
	03-49
	03-50
	03-51
	03-52
	03-53
	03-54
	03-55
	03-56
	03-57
	03-58
	03-59
	03-60
	03-61
	03-62
	03-63
	03-64
	03-65
	03-66
	03-67
	03-68
	03-69
	03-70
	03-71
	03-72
	03-73
	03-74
	03-75
	03-76
	03-77
	03-78
	03-79
	03-80
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	04-30
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	05-25
	05-26
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	07-23
	07-24
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	09-01
	09-02
	09-03
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	A-01
	A-02
	A-03
	A-04
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	I-01
	I-02
	I-03
	I-04
	I-05
	replyA
	replyB
	xBack

