
HONEYWELL

MULTICSAPL
USER'S GUIDE

SOFTWARE

MULTICSAPL

USER'S GUIDE

SUBJECT

Description of the Multics Implementation of APL

SPECIAL INSTRUCTIONS

This edition of the APL manual supersedes the previous edition of the manual,
Order Number AK95-01, dated March 1979 and its associated addendum,
AK95-01A, dated May 1980. This edition does not contain marginal change indi
cators.

Section 7 (System Functions), Section 8 (System Variables), Section 9
(Stream I/O), Section 10 (External Functions), and Section 11 (APL Sample Pro
grams) are new. See the Preface for a complete description of all changes to the
document.

SOFTWARE SUPPORTED

Multics Software Release 11.0

ORDER NUMBER

AK95-02 December 1985

HoneyYVell

Preface

This manual describes the Multics implementation of APL (A Programming
Language). The document assumes no prior knowledge of APL.

The manual does not attempt to provide the reader with extensive information
on the Multics system. The reader is referred to the Multics Programmer's Refer
ence Manual (Order No.: AG91) or the Introduction to Programming on Multics
(Order No.: AG90) for details on programming in the Multics environment.

Section 1 briefly describes the characteristics of APL and the nature of the
Multics implementation.

Section 2 describes Multics APL processing conventions.

Section 3 is a description of the APL language.

Section 4 lists APL functions that can be created and modified by the APL
function editor.

Section 5 provides information on the system commands that can be used to
adjust or control the operation of APL.

Section 6 describes the Multics APL file system.

Honeywell disclaims the implied warranties ofmerchantability andfitness for a particular
purpose and makes no express warranties except as may be stated in its written agreement
with and for iis customer. in no eveni is Honeywell Iiable to anyone for any indirect, special
or consequential damages.

The information and specifications in this document are subject to change without notice.
Consult your Honeywell Marketing Representative for product or service availability.

©Honeywell Information Systems Inc., 1986 File No.: 1L13 AK95-02

Section 7,8,9, and 10 describe, respectively, Multics APL system
functions, system variables, stream lID, and external functions.

Section 11 contains APL sample programs.

A glossary of terms is provided in Appendix A.

Appendix B lists the Multics commands that relate to APL.

Significant Changes in AK95-02

The character representations assigned to octal codes 044 and
045 were changed. See Table 2-1 on page 2-3.

The desc r i pt ion 0 f " Escape Pr 0 c e s sins" 0 n page 2-1 3 was c han g ed
to add information describing the proper procedure for removing an
escape sequence and also to indicate that, if the character
immediately following the escape character does not follow the stated
rules, then that character (and the escape character) will not appear
in the input line.

On page 3-4, the Note attached to the description of "Small
Numbers" was changed.

On page 3-5, ther e ar e new ex am pl es accompan ying the d escr iption
of" Lar g e Num ber s ,"

On page 3-54, the example illustrating use of "Inner Product" is
new.

iii AK95-02

The description of "Mixed Output" on page 3-61 was changed to
indicate that a pair of semicolons are the only characters that can be
used as delimiters.

The description of "Character Input" on page 3-14 was changed to
indicate that a strong interrupt can be generated if it is entered
before any characters are typed.

There are new APL language elements in new Sections 1, 8, 9, and
10.

A new Section 11 describes APL sample programs.

iv AK95-02

.

Section 1

Section 2

Section 3

CONTENTS

Introduction ••••
Histor y 0 f APL •• •••
Characteristics of APL ••••••••

The APL Character Set
Multics APL ••.•.••••••

Communicating With Multics APL
Calling APL . .• . •••

APL-only Users ••••••••
Input Prompt • • • • • • •
APL Character Set •••••• ••

Internal Codes •••.
Terminal I/O Conventions • • • • • • •

Overstrikes = = e •••••

Tabulating ••••••
EBCDIC Terminals
Ascii Terminals •••
Input Line Processing •

Canonicalization ••
Erase, Kill, and ATTN Processing

Ki11 ••••
Erase • . • • • .
ATTN • • • • • •

Escape Processing
Using APL • • • • • • • • • •

The APL Lang uag e
Values •

Type . • • •
Rank • • • • • • •
Shape • . • •

Output of Values •••
Shape Oper ator

Elements •.•••
Scalars ••••••••••••

~n~~~~~~~n UA~~~~~n
,••)'...,.1.<;;;11\1.1..1..1...., 11,,\11;;1\1.1...,11 ••••••

Small Numbers •
Large Numbers

Vectors • • • • • . • •••
Character •••••••••••
Numeric •••••••.••••

Matric esand Ar rays • •••

v

Page

1-1
1-1
1-1
1-2
1-2

2-1
2-1
2-1
2-2
2-2
2-2
2-8
2-8
2-9
2-9

2-10
2-10
2-ii
2-11
2-11
2-11
2-12
2-13
2-13

3-1
3-1
3-1
3-2
3-2
3-3
3-3
3-3
3-4
? _JI
.J-"

3-4
3-5
3-5
3-5
3-6
3-6

AK95-02

. ~ .

CONTENTS (cont)

Matrices •• ••••••••
Arrays e !O •••••••

Character • • • • •
Input of Values' ••••••

Numeric •••••••
Character • • • • • ••
Numeric ••••••••••••

Operators ••••••••••••
Matrices and Arrays
Scalar Operators •••••••••

Extension to Non-Seal ar
Arguments • • • • • • • • • • •

~onadic •••.•••••••
Dyadic •••••••

General Properties of Scalar
Operators •••••••••••

General Properties of Monadic
Scalar Operators ••••••

Gener al Pro per ties 0 f Dyadic
Scal ar Oper ator s • • • • • •

Add, SUbtract, Multiply, Divide
+ - x t • • • •

Plus, Negative + - •••••
Si gn um x • •... • • • • • • • • • •
Reciprocal t • • • • • • • • • •

Power, Logar i thm * •
Residue I•
Magnitude I ..••.•.•
Factorial J • • • • •
Binomial Coefficients :
Maxi rn um and Mini murn r l • • • •
Ceil ing and Floor r l
Ho11 ? • • • • • • '" • • • • • •
Comparison Operators <: s = ~ ~ >

Gener ating Algor i thm ••
Log Lc al Oper ator s ,.., A V 'If ~

Circ ul ar 0 • • • •• • •

PI Times 0 • • • • • • • • • • •
Mixed Operators • • ••••

Shape p • • • • • • • • • •
Reshape p • •• ••••
Ravel • •• • • • •
Catenate • ..!... • • .. ••

General Rules for Catenate
Laminate A.[I]B •••...••

General Rules For Laminate ••••
In dex Gener at0 r 1.

Index of 1. •••••••••

Take, Drop + ~ •••••••

vi

Page

3-6
3-6
3-7
3-8
3-8
3-8
3-9

3-10
3-10
3-11

3-11
3-11
3-12

3-13

3-13

3-14

3-15
3...15
3-16
3-16
3-16
3-16
3-17
3-17
3-17
3-18
3-18
3-19
3-19
3-19
3-20
3-21
3-21
3-21
3....22
3-22
3....23
3-23
3-28
3-31
3-35
3-37
3-38
3-38

AK95-02

CONTENTS (cont)

Grade Up, Grade Down At ••••
Reverse 4> e • • • • • • ••
Rotate ~ 9 • • • • • • • • •
Tr an s po s e ~ • • • • • •
Compress / f • • • • • • •
Expand \, • • • • •
Membership € • •••••••

Encode T •• •••••
Decode .l • • •

De al ? • • • e

Matr i x In v er s e ~ • • • • • • • •
Matrix Divide ~

I-Beam r
Format ., • • • •

Composite Operations
Reduction 0/ Of •••
Sc an 0 \ 0\ • • • • • • •

Ou ter pr od uc to .. ~ • • • • • . .
Inner Product 0.9 ••••

Expressions ••••••
Right-to-Left Rule ••••.•••
Subexpressions .••••••
Implicit Subexpressions ••••
Explicit Expression Delimiters
1\.r'__ A
\/iLJN;V ••••••••

Explicit Subexpressions ••••
Parenthesized Expressions and
Subexpressions • • • • •

Lists • . •. . .•••••
Indexing ••. . • • •
Mixed Output •••••• .••
Argument Lists •••
Comments •••••. •••••
Labels •••••••••.••••
Statements • • • •• •••
Closed Expressions •••••• ••

Objects •••.••.••••••••
Diamond Lines • • • • • • • •
Nam es • • • • •• •••••
Syntax of Names • • • • • •
Identifiers •• • •••••••
"~r;~h'o M~moc:!

II' '-A., ""'" J." '-" LI.I. '- • • • • • • • •

Function Names • • • • • •
Group Names • • • • • • • • • • • •
Variables •••••••••••••
Functions • • • •• ••••••
Groups • • •

The Assignment Pseudo-Operator ~ • • •
Indexed Assignment • • • • • • • •

vii

Page

3-39
3-40
3-40
3-41
3-42
3-43
3-43
3~44

3-44
3-44
3-45
3-45
3-46
3-47
3-49
3-50
3-52
3-53
3-54
3-54
3-55
3-55
3-56

3-57
3-57

3-58
3-58
3-59
3-61
3-62
3-63
3-63
3-63
3-64
3-65
3-65
3-65
3-66
3-66
3=66
3-67
3-67
3-67
3-68
3-68
3-69
3-70

AK95-02

CONTENTS (cont)

Page

Results. • • • • • . • • . 3-70
The 110 Pseudo-Variables O~ • • • •• 3-71

Output of Explicit Results 3-71
Evaluated Input 0 • • • • • • • •• 3-72
Character Input (!I • • • • • 3-74
Output O~ ~ ~ ~ ~ ~ ~ ~ ~ e 3-74

The Execute Pseudo-Operator ~ . • . . 3-75
Pornography: Dependence Upon

Undefined Ev al uation Order 3-76
Works paces • . . • . • • • • • • • 3-79

Example 1 • • . • . • •. 3-19
Example 2 • . • . • • • •. 3-19
The Active Workspace ••..••. 3-80

Section 4 Functions . . . • . • • . . .•..
Functions ...•..•..•.•

Arguments •
Results. . . .••
Local Identifiers .•....
Local Objects .•..••.•.
Global Identifiers .•••.•••
Global Objects •.•
Immediately Local Identifiers and
Objects•••

The Function Header . .
Syntax Definition •.....•
Argument Identifiers ••••.
Result Identifier •.
Local Identifier List •
The Function Body
Line Numbers
Execution Flow • . • . . . • .
The Branc h Pseudo-Oper ator -+

Function Return . • .
Labels •......•.
Re cur s ion • • . . . • .
Implicit Results ..••.
Scal ar Func t ion s .•.•
Tr ace Pseudo-Var iables Tmame of fn
Locked Functions

The State Indicator ..••.•..•
Execution Termination • • . . • . •

Attn; Weak & Strong Interrupts.
We ak In ter r upt
Strong Interrupt .

Error Handling •..••.•..
Suspension •.•...••.
Syntax and Context Errors

viii

4-1
4-1
4-1
4-1
4-2
4-3
4-3
4-4

4-4
4-4
4-4
4-5
4-6
4-6
4-7
4-7
4-7
4-8

4-10
4-11
4-12
4-12
4-13
4-14
4-16
4-17
4-17
4-17
4-17
4-17
4-18
4-18
4-19

AK95-02

Section 5

CONTENTS (cont)

Stop Pseudo-Variables
S zn am e of f'n .• • • •

Implicit Results •
Locked Functions • • • • . • • •
Halted Function Calls

Suspended Function Calls
Pendent Function Calls •••

The)SI System Command ••.
The)SIV System Command

Exploring the SI ••...•••.
The OSI System Function
I 27, 126 and OLC • • • •
The Escape -+- • .. • • .. • •

Clearing the SI .
Restarting a Suspended Function

C,a11
SI Damage • • . • . • . • •

Effects .
Editing Halted Functions .
Editing A Function ..
Editing A Line ...

System Comm and s • •
Environment Parameters •.

Workspace Parameters
Session Parameters
The)ORIGIN System Command
The)WIDTH System Command ..
The)DIGITS System Command
The)ERRS System Command ...•.
The)TABS System Command
The)CHECK System Command .
The)HUH System Command • . . . • .
The) VARS System Command

Symbol Table . . • • • • • • • . . • •
The) FNS SYstem Comm and •
The)GROUP System Command
The) GRP System Command . •
The)GRPS System Command
The)ERASE System Command
The)SYMBOLS System Command
The)SI System Command •
The)SIV System Command .

Workspace Management •
Workspace Identification
Passwords . . . • • . • • .
The)CLEAR System Command
The)LIB,)LIBD System Command
The)SAVE System Command

ix

Page

4-19
4-19
4-20
4-21
4-21
4-21
4-22
4-22
4-22
4-22
4-23
4-23
4-23

4-23
4-24
4-25
4-25
4-26
4-28

5-1
5-1
5-2
5-2
5-3
5-3
5-4
5-4
5-5
5-5
5-5
5-5
5-5
5-6
5-6
5-7
5-7
5=7
5-8
5-8
5-9

5-10
5-10
5-11
5-12
5-12
5-12

AK95-02

Section 6

Section 7

CONTENTS (cont)

The ')SAVE System Command •••
The)LOAD System .Command .•.
The)COPY System Command •••
The) PCOPY System Command • •
The)CONTINUE System Command
The)WSID System Command •••
The)DROP System Command
Version 1 APL Workspaces

Communicating With Multics • • .•
The) Q,) QUIT,) OFF System Command s
The)PORTS System Command . • •
The) EXEC ,]E System Commands •
The)HELP System Command
The)MSG System Command • .
The)DFN,)MFN,)ZFN System

Commands • . • • • . •••
External Functions . • . • • • • . • •

Definition Syntax •.
Definition Errors ••••.•.
External Functions Cannot Be Edited
External Function Calling Sequence
Status Codes for Use by External

Functions
Conventions for Using the Value

St ac k • . . . • • . . •
External Function Include Segment .
apl push stack . . • •
Usage . -: • . -: .. . • • •

File System .
The Multics APL File System

Organization of APL Files •
Use of APL Files ••••••.••
File Manipulation Functions
Access Control • • • .
File Sharing .••..••.

System Functions •••.••..••••
The Multics APL System Functions

Active Function • • • •••
Accounting In formation •••.
Call
Canonical Representation •••••
Character Set • . . • • • • . • • •
Delay •
Execute Command •
Expunge
Fix ••

x

Page

5-12
5-14
5-14
5-16
5-16
5-16
5-17
5-17
5-17
5-17
5-18
5-18
5-18
5-19

5-19
5-19
5-20
5-20
5-20
5-21

5-23

5-24
5-25
5-26
5-26

6-1
6-1
6-1
6-2
6-2
6-8
6-9

7-1
7-1
7-3
7-5
7-6
7-8
7-9

7-10
7-11
7-12
7-13
7-i5

AK95-02

CONTENTS (cont)

Page

Section 8

Section 9

Sec tion 10

Name Count
Name Li st • • • •
Time Stamp. •••••••••
Terminal Type • • • • • • •
User Load •.•••••
Workspace Available
Workspace Used ••••••••••

System Variables ••••••
The Multics APL System Variables •

Comparison Tolerance •••
Index Origin .•••
Integer Tolerance ••••••
Latent Expression • • • • • • • • •
Printing Precision .•••••
Page Width .•••
Random Link . • . .

Stream 1/0 • • • • • • • • • • •
The Multics APL Stream I/O File System

The Stream I/O Functions •••••
CREATE •
EOF
NUMS • • •
POSITION • • • • •
READ •

REWIND • • • • • • • •
TIE
UNTIE. • • • • • • •
WRITE • • • • • • •

External Functions • • • .
The Multics APL External Functions

a p.l er f •..••••••••
apI-pickup float bin 2
apl-ioa -: .• -: • - - •••
apl-get-list nums
apl=read_segment_-

7-16
7-18
7-20
7-21
7-22
7-23
7-24

8-1
8-1
8-2
8-3
8-4
8-5
8-6
8-7
8-8

9-1
9-1
9-2
9-2
9-2
9-2
9-2
9-2
9-3
9-3
9-3
9-3

10-1
iO-i
10-2
10-3
1O-}~
10-5
10-6

Section 11 APL SAM PL E PROGRAM S . • •• .•••• 11- 1
APL Sample Programs • • • • • .• 11-1

APL Programming Style •...•.• 11-1
Executing a Sample Program 11-1
Sample Programs • • •••• 11-2

Car d Dealer ••••• i i - 2
Graph Plotting. • • • • • • 11-4
Get Month . •• • •• 11-12

Appendix A Glossar y

xi

A-1

AK95-02

Append ix B

CONTENTS (cont)

Commands •••••
a pl , v2apl . • • • .•

Usage • .•••
No te • • • • • • • • • • •

apl end • • • • • • • • • • .
Usage ••••••••••
Notes • ••• •••••

apl start •••
Usage • . • • •
No te s • • • • • • • • • •

convert tsoapl workspace, ctw ••••
Usage • . .-. • . • . • • • •

display tsoapl workspace, dtw
Usage • • .-. . • . . • • •

read tsoapl tape, rtt •••••.
Usag e • - ..•. ••••••
Notes • • . • . • • . • • •

xii

Page

B-1
B-2
B-3
B-4
B-4
B-4
B-5
B-5
B-5
B-5
B-7
B-7
B-8
B-8
B-9
B-9
8-9

AK95-02

SECTION 1

INTRODUCTION

HISTORY OF APL

A Programming Language (APL) originated as a mathematical
notation for the discussion of the theory of algorithms. It was
inv en ted by Dr. Kenneth E. Iv er son and was d escr i bed by him in hi s
book, ! Programming Language.* The value of the notation as a
practical means for expressing an algorithm to a computer was soon
noticed. An interpreter which realized a subset of the notation was
developed by IBM for its 7090 computer. The success of this pilot
interpreter led to a second and more powerful implementation, known as
APL\360, on the IBM System 360 series.

CHARACTERISTICS OF APL

The success of APL can be attributed to some characteristics
which distinguish it from more conventional programming languages.
First, it is interactive by design rather than by decree -- it is fast,
succinct, forgiv i ng , informative, and even fun to use. Next, it is at
once both simple and powerful -- it is transparent and easy to learn;
yet it attacks abstruse problems with ease.

APL can be characterized as a line-at-a-time desk calculator
with many sophisticated operators and a stored-program capability.
The user needs little or no prior acquaintance with digital computers
to use it. After invoking APL, the user types an expression (or
statement, or line) to be evaluated. The APL interpreter performs the
calculations, prints the results -- if any, and awaits a new input
1 ine.

*John Wiley and Sons, 1962

1-1 AK95-02

The result of an expression evaluation can also be assigned to a
variable and remembered from line to line. In addition, there is a
capability for storing, by an assigned name, an ordered sequence of
unevaluated APL lines. A later" mention of the name causes the
statements to be recalled and interpreted -- almost as if they had been
entered from the terminal at the time 4

Finally, there is the ability to save the entire current
environment -- complete with all variable values and stored programs
-- so that the user may continue at a subsequent APL session.

The APL Character Set------
The APL language uses its own specially designed character set,

in which each operator is represented by a single character. The most
convenient access to APL is via a terminal with a complete APL
character set. Among these are:

a) IBM 2741 -- and other Selectric-based terminals -- with an
appropr iate type sphere mounted: IBM part number 1167988
for BC D mac hi n e s, 0 r IBM 1167987 for cor res po nd en c e
terminals.

b) Selecterm System 75 -- and other terminals based on the
Diablo HyType I or HyType II printers -- with an APL print
wheel mounted: Diablo part number 38150.

c) Anderson Jacobson 630A -- and other terminals based on
dot-matrix printers -- equipped with an APL ROM and some
facility for switching to and from the APL character set
(from and to the ASCII character set).

MULTICS APL

Mul tic s APL behaves muc h I ike the other maj or commerc iall y
available APLsystems (i.e.: Scientific Time Sharing's APL*PLUS, and
IBM's APLSV). This minimizes the learning effort required of those
already familiar with other APL's, and promotes compatibility at the
source language level.

The Multics APL processor consists of three main components:
the interpreter for the mathematical expressions of the APL language;
a system command processor, which prov ides bookkeeping aid sand
maintains an environment within which the language runs; and an editor
that is used to create and modify stored APL programs.

AK95-02

Multics APL f'u l Ly supports all of the above listed terminals, and
is usable from any other ASCII terminal as well , although the user must
be aware of the typing conventions used to represent some of the APL
characters within the framework of the available ASCII graphics.

1-3 AK95-02

SECTION 2

COMMUNICATING WITH MULTICS APL

CALLING APL

Normal Multics users must call Multics APL as a command:

apl {path} {-control_args}

Implemented arguments, their use, and their effects are
doc umented in Append ix B a f this manual, and in the Multics Commands
and Active Functions manual (Order No.: AG92).

All arguments are optional.

APL-only Users

Some users are registered as APL-only users: after login, they
are automatically encapsulated in the APL subsystem environment.
Therefore, they need not and cannot issue any Multics command line
that calls APL.

(Note: This distinction is not triv ial. An APL-only user has a
process overseer which, among other things, calls a special APL entry
point as a subroutine. He is not permitted any direct access to the
Multics command environment or storage system. Furthermore, upon
leaving APL, he is logged out automatically.)

2-1 AK95-02

INPUT PROMPT

After invocation, APL responds by typing six spaces and awaiting
input from the user. This not only indicates APL is waiting for
information from the user, but also improves the readability of the
terminal listing: most of the user-typed lines appear indented by six
positions, while most of the APL-generated responses begin at the left
margin.

Before typing any input, however, it must be determined how the
APL character set is represented on the user's terminal. Since the
APL character set differs significantly from the Multics standard
character set, normal Mul tics typing conventions do not apply to
communication with APL.

APL CHARACTER SET

In contrast to the 94 graphics of the Multics standard character
set, the Multics APL character set has more than 150 graphics.
Mul tic s APL gr aph ic s ar e shown in Table 2-1, tog ether wi th the ir
internal codes, names, and printed representation on both APL and
non-APL terminals.

Internal Codes

The in t ern a1 cod e ass i g ned to e ac h c ha r act e r i s not nor mall y 0 f
significance to the APL user. There is no mechanism wi thin the formal
APL language to discover or make use of the internal representation of
a character e However, there are occasions on which the Mul tics APL
user may need to know the internal code assignments:

1) while in APL, the user may enter any APL character (graphic
or nongraphic) with an escape sequence using a 3-digit
octa1 cod e; for e x am pIe, the new page (0 14) con t r 0 1 cod e may
be entered and used as character data;

2) in unusual cases, it may be desired that data and/or
programs created within APL be used as data by programs
external to APL. (This does not apply to APL-only us er s ,)

To simplify code mapping, and to minimize learning effort, the
Multics APL code assignments agree with the Multics ASCII code
assignments wherever any correspondence of graphics between the two
character sets can be found.

2-2 AK95-02

Table 2-1. APL Character Set

Pr inted
Representation
non-APL APL

Octal
Code Graphic Name

(none)

(none)

(none)

(none)

(none)

(none)

(none)

"042

$

~~ 044

(

)

*
+

/

o

1

(none)

(none)

(none)

(none)

(none)

(none)

(none)

042

043

81

044

046

(

*
+

/

o

1

007

010

011

012

014

015

040

041

042

043

045

044

046

047

050

051

052

053

054

055

056

057

060

061

(none)

(none)

(none)

(none)

(none)

(none)

(none)

,.
(none)

(none)

.$'

(none)

(none)

(

)

*
+

/

o

1

2-3

bell

backspace

tabulate

new line

new page

carriage return

space

exclamation point

double quote

number sign

dollar sign

amper sand

per cent

quote (apostrophe)

open parenthesis

close parenthesis

star (asterisk)

plus

comma

hyphen (minus, bar)

dot (period)

slash

zero

one

AK95-02

Pr inted
Representation
non-APL APL

Octal
Code Graphic Name

2 2 062 2 two

3 3 063 3 .thr ee

4 4 064 4 four

5 5 065 5 five

6 6 066 6 six

7 7 067 7 seven

8 8 070 8 eight

9 9 071 9 nine

072 colon

073 semi-colon

< < 074 < less than

= = 075 = equals

> > 076 > greater than

? ? 077 ? question mark

@ 100 100 (none) commercial-at

A A 101 A capital A

z Z 132 Z capital Z

[[133 [open bracket

\ \ 134 \ backslash

]] 135] close bracket

"136 136 136 (none) c irc urn fl ex

i37 underscore

2-4 AK95-02

Pr inted
Representation
non-APL APL

Octal
Code Graphic Name

A

140

A

140

141

(none)

A

accent grave

A

z Z 112 Z Z

{ { or [0 113 { open brace

114 vertical bar (stile)

} } or]0 115 } close brace

116 tilde

(none) (none) 117 (none) pad

< s 200 s less or equal

> ~ 201 ~ greater or equal

=/ ~ 202 ~ not equal

v v 203 v or

& A 204 A and

. . 205 . divide.- .-

e € 206 E epsilon

IA- t 201 t up arrowI

lv + 210 + down arrow

0 0 211 0 circle

c r 212 r un~t.il~-,;------

f l 213 l downstile

d Ii 214 Ii delta

0 0 215 0 null

2-5 AK95-02

Pr inted
Representation
non-APL APL

Octal
Code Graphic Name

q 0 216 0 quad

n n 217 0 cap

.i 220 .i base

t T 221 T top

(c 222 c open shoe

) :::> 223 ::> close shoe

u u 224 u cup

v- v- 225 "., nor

&- 1\- 226 '" nand

D- o- 227 e circle-hyphen

I- I- 230 t slash-hyphen

g- v- 231 Ii del-tilde

*0 *0 232 f.t star-circle

0: 0\ 233 ~ c i r c1e - ver tic aI bar

0\ 0\ 234 t\l circle-backslash

01 01 235 t/J circle-slash

g: vi 236 t del-vertical bar

dl 6\ 231 ~ del ta-vertical bar

n , no 240 A lamp

'q '0 241 I!l quote-quad

b .iT 242 .t I-beam

\- \- 243 ~ backslash-hyphen

m Ot 244 iii domino

" 245 dieresis

w 246 omega

2-6 AK95-02

Pr inted
Representation
non-APL APL

Octal
Code Graphic Name

i 1 247 t iota

p p 250 p rho

x x 251 x times

a (J 252 (J alpha

253 overscore

g V 254 V del

<- ... 255 +- left arrow

>- + 256 right arrow

<> c or <> 251 0 diamond

0 0 260 0 zero-underscore

9 9 271 9 nine-underscore

d f1 272 d del ta-underscore

(none) (none) 273 (none) mark error

e J.o 274 .! hydrant

t To 275 • thron

(- t- or (- 276 t- left tack

)- -I or l- 271 -I right tack

(none) (none) 300 (none) line feed

(none) (none) 301 (none) conditional newline

c: cJ 302 et: cent sign

,- • 303 i comma-hyphen

2-1 AK95-02

TERMINAL I/O CONVENTIONS

Overstrikes

Most APL graphics can be typed in one keystroke, regardless of
terminal. However, many graphics are formed by overstriking two
graphics. (Overstriking more than two di.fferent graphics is never
either required or allowed.) In columns one and two of Table 2-1, this
is indicated by an entry showing its two component graphics.

To simplify operations on character values, APL considers a
graphic formed by an overstrike sequence to be a single char~cter

internally. Since each internal character must be assigned a unique
octal code, and since Multics character operations are limited to
characters with 3-digit octal codes, then there is a fixed limit of 512
po s sib1 e c ha r acte r s . (So far , Mu1 tic s APL has ass i gned mean in g to 168
ofthem.) There fo r e, therem us t be an ev en small e r 1 i mit 0 nthe n um ber
of valid overstruck characters. (Many codes must be assigned to
nonoverstruck characters and to terminal-control and carriage-motion
characters.) Since there are 4371 possible combinations of the 94
nonoverstruck g r aph i c s (taken two at a time) (2!94 in APL; see Section
3), most of these possible overstrikes cannot be valid. In fact, only
those overstrikes explicitly defined in Table 2-1 are valid: typing
any undefined overstrike results in a CHAR ERRORreport, and automatic
deletion of all input involved in, and to the right of, the invalid
overstrike; the input to the left of the invalid overstrike is
"replayed" back to the user, allowing completion of the input line.

The "visual fidelity rule"states, in effect, that "you get what
you see." This implies that the temporal order of typing input is
irrelevant; only the visual order is significant (see
"Canonicalization" below). It further implies the following two
conventions:

1) Redundant overstriking is allowed, but the redundancy is
discarded. For example, overstriking the following 10
graphics resul ts in a single domino character:
DfffDDtDff. (This is not in confl ict wi th the two-graphic
over str ike r ul e stated above, s inc e onl y two gr aphic s ar e
involved.)

2) Invisible overstriking is allowed for terminals that
produce APL graphics; the apparent character is used by
APL. For example, due to the consistent graphic design of
the APL lower case alphabetic characters, overstriking the
L and the F produces a graphic which looks exactly like the
E. APL replaces this overstrike with the letter E.

2-8 AK95-02

There are manyoverstrikes of this sort; the following are groups
of alphabetics related in this way:

BPR CG EFL IT OQ

Various nonalphabetic groups also exist:

•• :: +:-. +- [rt +-+

=~ t v . a-vur 1.

Note: Not all possible overstrikes of components of the above
groups are necessarily meaningful: overstriking Band R
is meaningless and is therefore inv al Ld ,

Tabulating

Multics APL initially assumes that terminal tab stops are setat
in t e r val s 0 f 10 spac e s (i. e .: col um ns 11, 21, 31 , . • •). APL use s tab s
to speed up output, and accepts tabs as input. However, all input tabs
are immediately translated into the appropriate number of spaces:
only "escaped-in" tabs are not translated (see ESCAPE PROCESSING
below). If some other tab interval setting is used, APL must be
informed via the)TABS system command, (see Sections IV and VI). Use
of tabs for input and output may be suppressed via:)TABS 0 OR [J HT of

o.

EBCDIC Terminals

EBCDIC terminals are Selectric-based, and therefore have
interchangeable typing elements. Multics APL assumes that these
terminals have an appropriate APL typesphere mounted: the second
column of Table 2-1 should be used in determining how characters are
represented on these terminals.

Note that five graphic s in col umn two give a choice of
representation: --173 (open brace), 175 (close brace), 257
(d i am 0 nd), -- 2 76 (1eft t ac k) , and -- 2 77 (rig ht t ac k) • On EB CDI C
terminals, these graphics are represented in the overstruck form: e ~

IE f 1. On APL/ASCII terminals (see below) , they are represented as:
{}]r--t. This anomaly is due to the lack of room on Selectric
typespheres for these new graphics.

2-9 AK95-02

Multics APL supports both BCD and Correspondence terminals,
determining from Multics which type is being used. Note, however,
that BCD and Correspondence terminals use different APL typespheres:
unreadable 1/0 results from use of the wrong typesphere (BCD uses
typesphere #988; Correspondence uses #987).

Ascii Terminals

ASCII terminals with interchangeable graphics have the
potential capability of producing APL graphics, such as del », quad 0,
and upstile r. However, to realize this potential, the terminal must
be properly equipped. Specifically, terminals based on the Diablo
HyType I printer must have the APL print wheel mounted (Diablo part
#38150); terminals based on dot matrix printers must be equipped with
an APL ROM and some mechanism for switching to and from APL (this
includes CRT based terminals).

ASCII terminal s wi th interchangeable graphics, equipped to
produce APL graphics are called APL/ASCII terminals. All other ASCII
terminals are called non-APL/ASCII, or simply ASCII.

APL/ASCII terminals can produce the full APL character set,
including the five new graphics {lOI--1, and therefore the second column
of Table 2-1 should be used in determining how characters are
represented.

Non-APL/ASCII terminals cannot produce most of the graphics of
the APL character set, but reasonable and consistent mappings have
been established for Multics APL, and are shown in column one of Table
2-1 •

Mul tics APL assumes that every ASCII terminal is a non-APLI ASCII
term inal, un less the -t t P or -term in al type con trol arg ument is g i v en
when APL is called; see Appendix B. (For APL-only users, the process
overseer makes the decision, supplying an appropriate terminal type
identifier.)

Input Line Processing

2-10 AK95-02

CANONICALIZATION

As soon as backspaces are allowed in any typed line, it becomes
ev id ent that ther e ar e man y differ en t ways to type a given 1 Lne , That
is, there are many different sequences of keystrokes that produce
visually identical results. To reduce confusion and allow greater
freedom to the typist, APL'canonicalizes each input line as it is read.
This means that the characters typed by-the user are sorted into their
visual order on the page, independently of the temporal order in which
they were typed. Hence, the user need not bother to type overstr ikes
in any specified order.

ERASE, KILL, AND ATTN PROCESSING

Typing errors in Mul tics APL may be corrected through either the
Multics mechanism of erase and kill characters, or by backspacing and
pressing the ATTN or BREAK key (as in other APLs). The Multics APL
kill character is the alpha il, and the corresponding erase character
is the omega e ,

When using ASCII graphics, the Mul tics erase and kill characters
may be used (/1 and @ respectively) , or the ASCII mapped equivalents to
the Mul tics APL erase and kill characters may be used (lowercase wand
lowercase a respectively).

Kill

The kiII c ha r acterr em0 vesthe en t ire 1 in e prec edin g it. Th at
is, the kill character deletes itself, anything ov er st r uc k with it,
and all characters to the left. Characters to the right of a kill
character are not deleted.

Erase

The definition of erase is a little more complicated. If the
erase character is overstruck with anything, then everything in that
one print position is removed. If the erase character appears alone
in a print position, then it and the character in the preceding print
position are removed. If there is no character in the preceding
posi tion (i.e., it is whi te space), then the entire whi te space
preceding the erase character is deleted.

Since erase and kill are performed after canonicalization, the
spatial positions of the characters on the line determine which
characters are removed: the order in which the characters were typed
is not significant.

2-11 AK95-02

By convention, kill characters are processed before erase
c ha r acte r s , but wit h 0 ne im po r tan t ex c e pt ion: a kill 0 v er s t r uc k wi t h
an era s ere sul t sin the kill be in g erased. There for e, the 0 n1 y way to
erasea kill i s to 0 v er s t r ike the kill and era s e char acte r s:-ATTNmay
always be used to eliminate a kill character; see ATTN, below.

Note further that erase character.s are processed one at a time,
working from left to right. Therefore, several erases in succession
do not erase each other; rather, they erase successive characters to
their left. Furthermore, a nonoverstruck erase character may be
effectively nullified by overstriking it with some printing graphic.
However, an already overstruck erase character can never be erased or
null ified.

ATTN

Pressing the ATTN key removes everything in and to the right of
the current column. That is, it removes itself, anything
"overstruck" with it, and everything to its right. Characters to the
left are not affected.

When ATTN is pr essed , APL send s (to the term in a l) fo ur char ac ter s
which flag the use of ATTN: 1 inefeed, "or" v, backspace, and
linefeed. This sequence leaves the printer in the same column it was
in when ATTN was pressed, except two 1 ines lower, and wi th the v
marking the effectively redirected flow of input.

The effects of using ATTN to edit the input line occur
immediately: both the four-character response and the erasure of
appropriate characters occur immediately after the ATTN key is
pressed. Therefore, it is impossible to erase or nullify an ATTN
after it is used.

Since the input line is canonicalized before each ATTN is
processed, the spatial posi tions of the characterson the 1 ine
determ ine which char ac ter s ar e removed. And since the remain ing
characters (after ATTN processing) replace the original line in the
input line buffer, they are available for further editing, including
the use of erase, kill, ATTN, and overstrikes, or simply appending
further in put.

2... 12 AK95-02

An input 1 ine is not considered complete -- and therefore is not
passed on for erase, kill, or escape processing -- until a carriage
return (or a newline, for ASCII or APL/ASCII terminals) is received
which is not part of a character constant (i.e., inside a quoted
string) • (Note that all such embedded carriage returns are
translated to newlines. Furthermore, carriage return (or newline) -
embedded or not -- renders the input line up to that point unavailable
for further ATTN processing.) Therefore, all ATTN processing occur s
before any erase, kill, or escape processing:-Furthermore, any or all
erase, kill, or escape sequence characters may be removed using ATTN.

ESCAPE PROCESSING

An escape mechanism is provided in order to allow any arbitrary
character or sequence of characters to be entered in spite of
canonicalization, erase, kill, and ATTN. The escape character is the
dieresis .. (represented as a double quote n on non-APL terminals).

The escape character is followed by: (1) another escape
character, which represents exactly one dieresis as data in the input
line, without further escape processing; or, (2) a one-, two-, or
three-digit octal number, which represents a single APL character of
precisely that internal code; or, (3) a carriage return, which
represents exactly nothing -- the two characters are deleted from the
input line; or, (4) an erase(or kill) character, resulting in neither
character appearing in the input line.

If the character immed iately following the escape character does
not fit into one of the above rules, then it and the escape character do
not appear in the input line. --

It is not possible to delete individual characters of an escape
sequence: in order to erase a complete escape sequence, the last
digit of the three digit octal sequence should be overstruck by the
erase character or the ATTN key.

USING APL

When APL has been invoked and awaits input, the user may enter one
of three types of input: an expression to be eval ua t ed immediately, a
system command, or an invocation of the function editor.

An expression to be evaluated immediately is the most common
response. This entry initiates computations. This class of input is
discussed in Section 3.

2-13 AK95-02

A system command interrogates or adjusts the environment in
which computations are performed. Most system commands are attendant
to bookkeeping functions: listing names of variables and functions,
erasing variables, or leaving APL and returning to Multics (for
APL-only users, logging out). System commands are discussed in
Section 5.

Finally, the function editor is used to create, modify, or
replace stored sequences of unevaluated APL lines -- known as
fune tions -- for 1ater ex ee ut ion. The f'un o t ion ed i tor is disc us s e d in
Section 4.

2-14 AK95-02

SECTION 3

THE APL LANGUAGE

VALUES

In APL,
ex pr ess ion.

a value is returned by evaluating any variable or
Values are therefore the fundamental entity of APL.

A value is a rectangular array of elements, each of which is a
single character or a single number. A value can have any integral
number of dimensions, from zero up, and the extent of each dimension
can be any integer from zero up.

The number of elements in the val ue is equal to the produc t of its
dimension extents. Character and numeric elements cannot be mixed
within the same value.

Thr e e i mpor tan t char act e r i s tic s 0 f ever yAPL val uear e its t YPe ,
its rank, and its shape.

The type of a value is either character or numeric, depending
upon whether its elements are characters or numbers.

APL further classifies numeric values into three subtypes:
boolean, integer, and floating-point. These subtypes can be mixed
within the same APL value; however, APL classifies the entire value
according to the most general sUbtype present in the value.

For example, a value co n t a Ln i ng booleans and integers is
classified as an integer value, since integers are a superset of -- and
therefore are more general than -- booleans. Similarly, a value
containing both integers and floating-point numbers is classified as
a floating-point value.

3-1 AK95-02

Type and subtype distinctions are very important, since most APL
operations have type and/or sUbtype restrictions on arguments.

A value with no el~ments at all (a so-called empty value) is
acceptable to most APL operations. Usually, its type is ignored,
since its lack of elements makes it compatible with both character and
numeric operations.

Rank

The rank of a val ue is the number of dimensions it has. A scalar
has rank zero, and consists of a single element. A vector has rank
one, and consists of a set of linearly ordered elements.

A matrix has rank two J and con s is t s of a set of elements arranged
in two orthogon al (per pend icul ar) d imen s ion s , It has well defined,
linearly ordered rows and columns. All rows have the same number of
elements; the same applies to columns.

An array has rank three or greater, and consists of a set of
elements arranged in three or more orthogonal dimensions. It has well
defined, linearly ordered rows, columns, planes, hyperplanes, and so
forth. All rows have the same number 0 f elements, the same appl ies to
columns. All planes have the same dimension extents; the same applies
to hyperplanes.

Ran k is 0 f grea t pr act i c a lim po r tan c e, sinc e man yAPLope rat ion 5

have constraints on the ranks ot their arguments.

Shape

The shape of a val ue is its set of dimension extents, expressed as
an integer vector called the shape vect~r; it is i tsel f an APL val ue ,
A scalar -- having no dimensions -- has an empty shape vector: a
vector with no elements.

A vector has a one-element shape vector: an integer indicating
the number of elements in the vector value. The shape of a vector is
usually referred to as its length.

A matr ix has a shape vector wi th exactl y two elements. In
general, the rank of any given value equals the length of its shape
vector.

3-2 AK95-02

SHAPE OPERATOR

The APL shape operator, monad ic p , returns the shape vector of its
argument value. It is the only practical means of finding the shape of
a val ue, and therefore is a very important and heav il y used operator.

If Ais a 5 by 2 by 4 character array (three dimensional: 5 planes,
2 rows, and 4 columns) , then pA is an integer vector of three elements
with value 5 2 4.

The shape of the shape is also an APL value: it is the rank of the
original value. Thus, ppA would be 3 in the our r e n t example.
Similarly, for any APL value B, pppB is a one-element integer vector
with value 1.

Elements

Each element of any APL value is equivalent to a scalar: an
element cannot be 'null' or empt y; an element cannot be equ i val ent to a
vector, matrix, or array. Of course, a value can have no elements, in
which case the value is empty. An empty value can have any shape or
rank, except that at least one of its dimension extents must be zero.

OUTPUT OF VALUES

Two env ironment parameter s d Lr e c t I y affect the output of val ue s ,
They are the page width and the number of digi ts of pr inting prec ision.

The page width is the maximum number of character positions per
line that APL fills when typing output. It effectively acts as a right
margin beyond which APL does not type. It can be set using the)WIDTH
system command, orx) the DPW system variable.

The number of digits of printing precision is the number of
decimal digits that are printed when numeric values are displayed.
Numbe r s are r 0 un d ed tothis pr e cis ion be fo r e pr in ting. The de fa u1tis
10 decimal digits, but this can be changed using the)DIGITS system
command, or the OPP system variable.

This precision does not affect the accuracy with which internal
calculations are carried out; it affects only the final printing of
answers.

3-3 AK95-02

Scalars

A char acter sc al ar is out put s impl y as the sing Le char ac ter wh ich
it is; it is not placed within quotes or otherwise altered.

A numeric scalar is output in the simplest representation
po s sib1 e in the dec i mal not at ion • Posit i v e s i g n s are om itted,
negative signs are printed as the overbar - Magnitudes are displayed
rounded to conform to the current digits setting.

SCIENTIFIC NOTATION

If its magnitude is very large or very small, APL may display the
number in scientific notation; this consists of a digit string, the
letter E (for "exponent") , and an integer which is the power of ten by
which to multiply the digit string to obtain the true number being
represented.

Forex am pl e, Bo 1 t zm an~ , s con s tan t - - in j 0 u1 e s pe r d e~ r e eKe 1v in
is about 1.38 times 10 3. APL prints this as 1.38B 23.

In general, the mantissa (1.38 here) will be between 1 and
9 • 9999. •. inc 1 us i v e in magnit ude. The e x po n en t can ran g e fr om - 3 8 to
38 inclusive.

3m all Num be r s

Foran urn bernear ze r 0, APL use s sci en t i f i c not at ion i fan don 1 y
i f the n urn ber i s r e pr e sen ted in t ern all y as be ing 1essthan 0 r e qua 1 to
o. 0 0 0 1 (0 r lE - 4) in magnit ud e . Th i s t hres ho I dis in de pe nden t 0 f the
)DIGITS setting: 0.000097 is pr inted as 9. 7E-S while in)DIGITS 2 or

more, and as lE-4 in)DIGITS 1.

(Note: The number lE-3 is never printed as such; rather, it
appears as 0.001. The printing of lE-3 indicates that
the) DIG ITS set ting has c au s ed a n urn ber t hat i s 1 e ssthan
lE-3 to be rounded up to it for printing.)

Large Numbers

For a large number, the)DIGITS setting defines the threshold
that determines the printing format. If the)DIGITS setting is
referred to as n, then in general, APL uses scientific notation for
large numbers if and only if the number is represented internally as
being greater in magnitude than 10 to the n power.

3-4 AK95-02

Farex am pl e, in) DIGITS 3 , 999. 9 9 9 9 i s pr in ted as 1 0 a0 , wher e as
1000.00001 is rounded down and printed as lE3.

In general, the degree of precision for any value Nis 10 to the -N
power. Examples:

)DIGITS setting

1

3

5

numeric value printed value

34.456 3E1
72.67584 7E1
19.1234E31 2E32
22.23423E-10 2E-9

34.456 34.456
72.67854 72.679
19.1234E31 1. 91 E32
22.23423E-10 2.22E-9

34.456 34.456
72.67854 72.67854
19.1234E31 1 • 9123E 32
22.23423E-10 2.2342E-10

Note that values printed in scientific notation are printed to
the N - 1 degree 0 f dec imal prec i sion (wher e N is the)DIGITS setting)
while those values whose magnitude is less than or equal to N are
printed to the Nth degree of decimal precision.

vectors

For both character and numeric vectors, an empty vector prints as
a single blank line.

CHARACTER

Acharac ter vector is output as a char acter str ing , wi th no added
spaces or other separators intervening between its elements. Of
course, the elements themselves can be special characters: space,
backspace, carriage-return, newline, etc. In fact, every character
in Table 2-1 is valid as an element of an APL character value.

If the character vector is longer than the page width, then as
many elements as possible are printed on the first line; then, the
excess elements overflow to the following line or lines, as necessary;
each overflow line is indented six spaces.

3-5 AK95-02

NUMERIC

In the pr inting of a numer ic vector, each element is set off from
the preceding one by a single space. The printing format is
determined for each element individually; for e xan pl e , the following
i sac0 r r ec t 0 ut put wh i 1 e in) DIG IT.5 3: 2 3 7 4. 6 E- 1 7 O. 1 9 8 3. 8 9 E3 - 6 • 4.

As with character vectors, if one line is insufficient in width
to accommodate all the elements, the excess elements are placed on a
succeeding line or lines, each indented by six spaces. However, the
character string that is the printed representation of a single
numeric element is never split between lines.

Matrices and Arrays

Matrices and arrays are pr Ln t e d in a succession of rectangular
planes, pairs of which are separated by one or more blank lines. As
many planes as necessary are printed to output the entire value. Each
row of a plane is pr inted starting on a new pr int line; wi thin a plane,
no blank lines appear.

To ensure that the output of each matrix or ar r ay begins on a
fresh print line, APL always sends a conditional newline -- ""301 __
immediately before starting to print any matrix or array.

As with vectors, if the page width is insufficient to hold the
output of an entire row, then the excess elements from each row are
printed on the immediately following line or lines, as necessary;
these inserted overflow lines are each indented six spaces.

MATRICES

A matr ix is pr inted in one pl ane, wi th no lead ing, imbedded, or
trailing blank lines; assuming sufficient page width, it occupies
exactly as many print lines as the matrix has rows.

ARRAYS

A 3-dimensional array is printed in as many planes as the array
has. Each pair of planes is separated by exactly one blank line. For
e x am p.l e , a 5 by 3 by 7 c ha r acterar ray i s pr in ted in 5 pI an e s, e ac h 0 f
wh i c h has 3 lin e sand 7 col um n s ; e ac h pl an e - - ex c e pt the fir s ton e -
is preceded by a blank line.

3-6 AK95-02

Blank lines are inserted only when printing values of rank
g rea t e r t han two - - ar rays • The y s e r v e mer el y a s a visua1 aid: the y
indicate the boundary between adjacent planes, hyperplanes, and so
forth. (Since paper is inherently two-dimensional, matrices,
vectors, and scalars can be represented without any intervening
separators or boundary indicators.)

In order to understand the insertion of blank lines in the output
of arrays, it is useful to visualize N-dimensional values as an
ordered sequence of identical shape (N-1)-dimensional values. Each
(N-1)-dimensional value is itself an ordered sequence of identical
shape (N-2)-dimensional values, and so forth.

For example, a 3-dimensional array can be thought of as an
ordered sequence of identical shape matrices -- planes of the 3-d
array; each matrix is an ordered sequence of identical length vectors;
each vector is an ordered sequence of scalars.

With this concept in mind, the gener al pr inting format is
recursively defined for any N-dimensional value as follows:

If N<2, print the matrix, vector, or scalar as described
above and below,

otherwise,

print the value as an ordered sequence of (N-1)-dimensional
values, inserting N-2 blank lines between adjacent values.

For example, a 5-dimensional value A, such that 254 6 3 =pA, is
printed as two 4-dimensional values, separated by three blank lines.
Each of these 4-dimensional values is printed as five 3-dimensional
values, with adjacent 3-dimensional values separated by two blank
lines. Each 3-dimensional value is printed as four 6-bY-3 matrices
(planes), with adjacent matrices separated by one blank line.

CHARACTER

As with character vectors, the output of character matrices and
character arrays contains no extra spaces or other separators
intervening between the elements of each line of output.

3-7 AK95-02

Furthermore, APL keeps trackof the cursor position -- the column
posi tion of the typing element -- even when pr inting imbedded
carriage-motion characters space, backspace, tabulate,
carriage-return, linefeed, or newline -- and when printing escape
seque nc esin 1 i e u 0 f un d e fin ed c h ar act e r s • There fo re, 0 ut put i s
consistent with the)WIDTH setting. (The only exception occurs when a
tabulate character is output while the physical or electronic tab
stops are set at intervals other than the current)TABS setting.)

NUMERIC

The output of numeric matrices and arrays is more complicated.

A consequence of this output format is that -- for many cases -
it is impossible to correctly determine the rank or shape of a value
merely by examining its printed display. When the shape of a value
must be known pr ec isel y, the shape opel" ator P should be used to
explicitly extract its shape.

Examples of the output of values follow the discussion of value
input below.

INPUT OF VALUES

Character

A scalar or vector character value is input by typing the desired
character(s) between a pair of quote characters. If it is desired to
represent a quote character itself, the quote must be typed as two
quotes. Thus, the input of a scalar character value representing a
quo t e con sis t s 0 f fo ur quo t e s : two to del i mit the val ue, and two to
represent the single quote being entered.

Newline, space, and any other APLcharacter -- including those
constructed from overstrikes or escape sequences -- can be entered
between quotes. Note that the only carriage-motion characters that
c an be in put d ir ec tl y ar e newl in e and spac e. Due to the "v isual
fidelity" rule, tabulate, carriage-return, backspace, and linefeed
must be input via an appropriate escape sequence.

A character produced by an overstrike or escape sequence is
considered a single element internally.

3-8 AK95-02

Numeric

A seal ar or vector n um er ic val ue is in put by typing the des ir ed
numer ic element s (s) , separ ated by one or mor e spaces or tabs. Numeric
values do not require any explicit delimiting character, as do
character values. Instead, the delimiting is implicit: anything
that cannot be interpreted as a numeric element -- according to the
prescribed rules -- is considered to delimit the numeric value.

The rules for forming a valid numeric element for input are as
follows:

Elements are delimited by "white space" -- one or more
spaces and/or horizontal tabs -- and by anything which
delimits a numeric value. Therefore, "white space" cannot
be part of a numeric element.

Only the following characters are valid:

012345678 9 E

Adig its t r in g is d e fin ed asac0 nt i g uo us s t r ing compo sed 0 f
the decimal digits:

o 1 234 567 8 9

The fir st char acter 0 f the n umer ic element must not be the
letter E.

The element must be of the form, -ds1.ds2E-ds3, where:

o The first (leftmost) overbar is optional, and is
punctuation -- not an operator -- indicating that the
element is negative.

o ds1, ds2, and ds3 are digit strings.

o ds1 and ds2 can be of any length -- including zero.

o ds1 and ds2 cannot both be of zero length.

o The dot •
operator
point.

is optional, and is punctuation -- not an
indicating the position of the decimal

o The con s t rue t E-d s 3 i sopt ion a l , and i s pun c t ua t ion -
not an operator -- indicating the use of a decimal
e xponen t i a Lrnu1 tip 1 i e r . Wit hi nth i s co ns t r uc t : d s 3
and E are r e qu i r ed ; ds3 must have either 1 or 2 digits;
the overbar is optional, and is punctuation -- not an

3-9 AK95-02

operator -- indicating that the decimal exponent is
negative.

The way in wh i chan urn be r' i styped doe s not mat t e r; for e xam pl e ,
all the following inputs result in the very same internal value:

7 007.00 .07E2 "1"\l"'\1"\T:'7-,... r'J
IUUUCJ o I. 7EO.

Matr ices and Ar.r ays

A value of rank higher than one cannot be input directly. Such a
value must be constructed by entering its elements as a vector, and
then using the reshape operator -- dyadic p -- to reshape it to the
desired dimensions, filling in the supplied elements in row-major
order.

For example t the input 2 3p 1 2 3 4 5 6 is an expression whose value
is a 2 by 3 matrix of integers from one to six; the first row is 123;
the second row is 4 5 6.

OPERATORS

Every APL pperator has the following properties:

It is graphically represented by exactly one printable,
fixed -- not user-definable, nonalphanumeric symbol.

Its action is fixed:
operator s ,

users cannot "customize" APL

Exactly one of the following cases is true:

a) It takes exactly one argument an APL val ue •

b) It takes exactly two arguments.

It returns exactly one explicit result _... an APL value -
unless an error is detected.

The resul t is passed out of the operator and made available
for use as an ar gument to the nex toper ator ,
pseudo-operator, function, system function t or composite
operation.

No implici t r e s ul t is produced (e ~g ~ : a o h ang a in the
workspace environment).

3-10 AK95-02

If an error is detected, all execution terminates, no
result is produced, and all arguments and intermediate
values are discarded.

An operator taking one argument.is said to be monadic and is
always written before -- to the left of -- its argument. An operator
taking two arguments is said to be dyadic and is al ways wr i tten between
its left and right arguments.

Scalar Operators

A scalar operator is one which is defined in terms of its action
when given scalar arguments.

With certain broad restrictions, scalar operators can take
nonscalar arguments. However, the scalar operation is still defined
only in terms of its action on individual elements of its arguments:
the elements are effectively taken one at a time, independently of
each other.

In other word s , a sc al ar 0 per ator appl ied to nonscal ar ar g uments
mer ely ex te ndsitsac t ion to e achind i v i d uale1 emen t 0 fit s a r g um en t s •

This is in contrast to a mixed operator, which effectively
accepts entire values as its arguments, and which performs some action
on whole values at once: an action in which the individual elements of
its arguments cannot be considered independently of one another.

Examples of scalar operations include: addition, subtraction,
logical AND, and logical OR (dyadic); also: absolute value,
reciprocal, and factorial (monadic).

Examples of mixed operations include: reshaping and
concatenation (dyad ic) ; al so: matr i x tr an spo si tion , matr i x
inversion, and sorting (monadic).

EXTENSION TO NON-SCALAR ARGUMENTS

Monad ic

If a monadic scalar operator is applied to a nonscalar, the
resul t is a value of identical rank and shape, and each element of the
result is computed by applying the scalar operator to the
corresponding element of the argument.

3-11 AK95-02

For example, if A is a numeric vector of six elements, then TA is a
numeric vector of six elements, each element being the reciprocal of
the corresponding element of the argument vector.

Dyad ic

If a dyadic scalar operator is applied to two arguments of
identical rank and shape, then the resul t is a value of the same rank
and shape, and each element of the resul t is computed by applying the
operator to the two corresponding elements of the two arguments.

For example, two
element-by-element: 16

6 11 23.

identical length vector s can be added,
2 13 7 29+114 19 4 6 gives the result 17 12

If a dyadic scalar operator is applied to two arguments that fail
to match in ran k and shape, but ex ac tl y one 0 f the arg uments consists
of just one element, then that single element is considered to be
replicated (extended) to the rank and shape of the other argument, and
the operator proceeds element-by-element as above_

In other word s, the si ng le e 1 emen t par tic i pates wi th eac h
e 1 emen t 0 f the 0 the r ar g urn en tin t urn, pro d uc ingar e s u1tid en ticalin
rank and shape to the other argument.

For example, if A is a 2 by 3 matrix of integers, then 6+A is a 2 by
3 matrix of integers, each of which is six greater than its
corresponding element in A: the single element 6 is applied
independently to each of the elements of A.

If both arguments consist of just one element -- any dimension
extents must equal unity, then the rank of the result is arbitrarily
taken as the larger of the two arguments' ranks.

For example, if A is a 1 by 1 n um er ic matr I x (rank 2) and B is a
one-element numeric vector (rank 1), then A+B is a 1 by 1 numeric
matrix containing the appropriate sum.

If the two arguments do not match in rank and shape, and if
neither argument consists of just one element, then the operation is
in error: clearly, no general, unambiguous correspondence of the
type described above can be established between the elements of the
two arguments.

3-12 AK95-02

As a result, APL will suspend execution and issue a diagnostic
message: RANK ERROR if the two arguments do not match in rank; LENGTH
ERROR if they match in rank but some corresponding pair of dimension
extents do not match.

General error reporting and possible recovery actions are
discussed in detail later in this section.

GENERAL PROPERTIES OF SCALAR OPERATORS

In addition to the above outlined properties that every APL
operator has, every scalar operator has the following properties:

Exactly one of the following is true:

a) Its arguments must be numeric.

b) Its argumen ts can be 0 f an y type; the oper ator is
either = or ~, both of which are dyadic.

It ignores the type of empty arguments.

Its res uI tis n urn er i c •

Its result has exactly the same rank and shape as at least
one 0 fit s ar g umen t s ; the r an k and sh ape 0 f the res u1 tis
compl etel y d eterm ined by that 0 fits arg umen ts and thus is
independent of the individual data elements contained
within its arguments.

It is a function, in the mathematical sense -- as opposed to
a relation: each element of its (possibly extended)
arguments maps onto exactly one element of its result.

General Properties of Monadic Scalar Operators

In addition to the above outlined properties that every scalar
operator has, every monadic scalar operator has the following
pro per tie s :

It takes e xac tl y one argument.

Its graphic symbol must be the first printable character to
the left of its argument.

Its argument can have any rank and shape.

Its argument must be numeric.

3-13 AK95-02

It detects only DOMAIN ERRORS.

Its result has exactly the same rank and shape as its
argument.

Each element of its result is computed by applying the
operator to the corresponding element of its argument.

General Properties of Dyadic Scalar Operators

In addition to the above outlined properties that every scalar
operator has, every dyadic scalar operator has the following
proper ties:

Itta ke sex ac t 1 y two ar g um en t s •

Its graphic symbol must be the only printable character
between its two arguments.

Its two arguments must be scalar conformable, which is
defined as follows:

o Exac t 1 yon e 0 fit s two ar g um en t s can hav e any ran k and
shape.

o Exactly one case from the following exhaustive set of
mutually exclusive cases must be satisfied:

1) Neither argument has exactly one element; the
arguments must have identical rank and shape.

2) Exactly one argument has exactly one element;
t hat ar g um en t can hav e an y r an k , and the 0 the r
arg ument can have an y rank and shape.

3) Each argument has exactly one element; each
ar g um en t c an hav e an y r an k .

It detects only the following errors, in the order given:
RANK, LENGTH, DOMAIN, and COMPATIBILITY.

The rank and shape of its result are determined by which one
of the above scalar conformability cases is satisfied:

1) Its result has exactly the same rank and shape as its
arguments.

2) Its result has exactly the same rank and shape as the
nonsingle-element argument.

3-14 AK95-02

3) Its result has exactly the same rank and shape as the
argument wi th the higher rank.

The individual elements of its result are computed using a
method determined by which one of the above scalar
conformability ·cases is satisfied:

1) Its resul t is computed element-by-element by applying
the operator in a scalar fashion to the pair of
elements that occupy the corresponding position in
the ar g um en t s •

2) Its result is computed by first considering the single
element to be replicated to the rank and shape of the
nonsingle-element argument, and then using rule (1)
above by substituting the now extended argument for
the single-element argument.

3) Its r esul tis computed by tr eating the two arg uments
as sc alar s ,

It s r esul t is sc al ar con formable to both 0 fits argumen ts .

ADD, SUBTRACT, MULTIPLY, DIVIDE + - x t

When used dyadically, + - x and .. represent the arithmetic
oper ations 0 f add i tion, s ubtr ac t i o n , mul ti pl ic ation, and d iv ision .

Unlike some programming languages that truncate quotients of
integers to an integer, APL retains the fractional part of a quotient
as accurately as the hardware permits -- approximately 19 decimal
digits.

A DOMAIN ERROR occurs when dividing by zero, except for OtO,
which is defined to equal 1. A NONCE ERRORoccurs when the resul t of an
operation exceeds the capacity of the hardware to represent numbers-
the 1 ar g est mag nit uderepr e sen tab 1 e i s 1 • 7 0 1 4 11 8 3 L f) .J 4 6 92 3 1 7F?, 8.
Nonce errors are due to limitations of the implementation, not to some
misuse of the APL language itself.

The divide operator uses integer fuzz to determine whether or not
its 1eft and / 0 r rig ht ar g urn en t s are "e f f ec t i vel v" - - t hat is, "fu z z
equal to" -- zero.

PLUS, NEGATIVE + -

Monad ic + leaves its n umer ic arg umen tunc hang ed. A DOMAIN ERROR
oc cur s i f a c harae t erar g urn en tis g i v en .

3-15 AK95-02

Mon ad ic - r epr esen ts neg ation; that is, algebr aic change 0 f sign
of its ar g um en t •

SIGNUM x

Monadic x represents the mathematical signum operation; that is,
it returns a 1jf its argument is greater than zero, 0 if its argument
i s ze r 0, and 1 i fit s ar g urn en tis 1 essthan ze r 0 ~

Signum uses integer fuzz (value of OCT) to determine whether or
not its argument elements are "fuzz equal to" zero.

REC IPROCAL t

Monad ic t returns the r ec iproc al 0 fits arg umen t . A DOMAIN ERROR
occurs if an element of its argument is within the integer tolerance of
zero.

POWER, LOGARITHM * 6)

is expressed in APL B*N. is expressed as BeN. Note that the base is
the left argument for both operators.

If the base is omitted (monadic usage), then the base of the
natural logarithm -- e :: 2. 7182818j8459045... -- is used. Thus, *1
is e itself; *X is the same as e ; and ex is the same as In x.

There is no square-root or cube-root operator in APL; the power
operator is used to perform these operations. For example, the square
root of A can be expressed as A*O.5.

Since APL does not handle complex numbers, any attempt to extract
an even root of a negative number results in a DOMAIN ERROR.

The indeterminate case 0 0 defined to equal 1.

RESIDUE I

Dyadic I represents the modulo operation: B IN is read "Nmodulo
B" or "the Bresidue of N." It is defined as the remainder left after B
is d i v i d ed the maxi mal in t eg r a1 n um ber 0 f tim esin to N. (Note the
order of the arguments = the left argument is the divisor and the right
argument is the dividend.)

3-16 AK95-02

More precisely, if N is not 0, then an integer quotient Q is
chosen so that the remainder N-(QxB) is the smallest possible
nonnegative remainder -- that is, greater than or equal to 0, but
strictly less than the absolute value of B; this remainder is the value
of BIN. .

If B is 0, then N itself is the value of BIN.

MAGNITUDE I

Monadic I represents the absolute value of its right argument:
the algebraic sign of each element is changed to positive if it was
neg at i ve . Thus, the res u1tis e f f e c t i vel y the un s i gned magnitude 0 f
its argument.

Monadic! represents the factorial function. For positive,
integer arguments !N is defined as the product of all positive
integers up to N, where N is no greater than 33.82635. For negative,
integer arguments the factorial function is singular and resul ts in a
DOMAIN ERROR. For zero arguments, the resul t is defined to be 1. For
non-integer arguments, !A represents the gamma function of A-i.

The gamma function is computed over the range 0 to 1, to an
accuracy of 20 decimal places. Results for arguments outside this
range are computed using a recurrence relation.

Note that the factorial function is wr i tten before its argument,
not after it as in conventional mathematical notation. All APL
monadic functions precede their argument.

Dyadic ! represents the binomial coefficients function. For
non-negative, integer arguments K!N represents the number of ways
that K different elements can be chosen from a collection of N objects.
For negative, or non-negative arguments is defined in terms of the
Gamma function, and generalized as before.

The cases of the binomial coefficents relation to binomial
coefficients by the following identity:

BETA (AtB) +~ fBx+A-i~!A+i

3-17 AK95-02

The mathematical notation for the binomial coefficients
function is related to the APL notation as follows.

~NK i(~ K! N

Table 3-1. Binomial Coefficients Function Special Cases

A B B-A AtB

0 0 0 (!B)f(!A) !B-A

0 0 1 0

0 1 0 DOMAIN ERROR

0 1 1 (-1*A)=A!A-B+1

1 0 0 0

1 0 1 IMPOSSIBLE CASE

1 1 0 (-l*BxA)=(IB+1)! IA+1

1 1 1 0

In this table, a 1 indicates that the value of A, B, or B-A is a
negati ve integer, and a 0 indicates that it is not.

The right-most column gives the expression that is used to
compute the resul t , The resul t 0 f K! N is al so equi valent to the Kth
coefficient in the binomial expansion of (X+1)*N.

MAXIMUM AND MINIMUM r l

Dyadic rand l represent the maximum and minimum operations,
respectively. They are defined only for numeric arguments:
characters have no collating sequence in APL.

CEILING AND FLOOR r l

Monad ic rand l represent the ceil ing and floor operations,
respectively. Ceiling is defined as the algebraically smallest
integer greater than or equal to its ar gument ; floor is defin ed as the
algebraically largest integer less than or equal to its argument.

3-18 AK95-02

A number is considered equal to an integer if it is within a
certain tolerance of that integer. This tolerance is called integer
fuzz. Fuzz is disc~ssed later in this section.

ROLL ?

Whil e dyad ic ? is a mixed oper ator -- deal, monad ic ? is a sc al ar
operator -- the random number generator -- named roll.

Its argument -- A -- must be a positive integer; its result is an
integer chosen randomly and uniformly from the set of integers tA.

(As explained later, the set tA is a vector of A integers -
ei ther 1 2 3 • •• A, or el se ° 1 2 • •• A-1 -- depend ing upon whether the
index origin is set to lor 0, respectively. (The index origin can be
changed wi th the) ORIGIN system command or the DIO system var iable.»

Generating Algorithm

The random number algorithm used by Multics APL is a
multiplicative congruential generator with period 34359738368. In
this algorithm, the seed used to produce each random number is a
function of the seed used to produce the precious one. In a clear
workspace, the starting seed is derived from the calendar clock, so
that the sequences of random numbers generated are unpredictable from
session to session.

If i tis des irablet0 wo r k wi t h are pr 0 d uc i b I e sequenceo fran d om
n urn ber s, the use r s h0 uIde xp I i cit I yin i t i a lize the seed wi t h the ORL
system variable. The seed can be set to any integral value from 1 to
34359738367. The seed is properly remembered and restored by the
)SAVE and)LOAD system commands.

COMPARISON OPERATORS < ~ = ~ ~ >

The APL comparison operators are < ~ = ~ ~ and >. They
represent the mathematical relations of less-than,
less-than-or-equal-to, equal-to, not-equal-to,
greater-than-or-equal-to, and greater-than, respectively. The
comparison operators are all dyadic, and they all return the boolean
value 1 to signify "true", or the boolean value °to signify "false".

Arguments of < s ~ and> must be numer ic -- otherwise, a DOMAIN
ERROR acc ur s •

3-19 AK95-02

Arguments of = and ~ can be numeric or character or both. A
n umber is consider ed not equal to a char ac ter; hence, in a mixed-type
compar ison, = always returns 0 and ~ always returns 1.

Two numbers are considered equal if they are within a certain
tolerance of each other. This tolerance is called fuzz. Fuzz is
discussed later in this section.

LOGICAL OPERATORS ~ A V ~ ~

~ A V ~ and ~ represent the logical operations NOT, AND, OR, NAND,
and NOR r espec tivel y. The NOT 0 per ator ~ is monad ic; the other four
are dyadic. Both the arguments and the resul ts of the logical
operators are restricted to the two boolean values 1 and 0, which
signify "true" and "false" respectively.

~A is 1 if and only if A is o.

AAB is 1 if and only if both A and Bare 1.

AvB is 0 if and only if both A and Bare o.

A~B is 0 if and only if both A and Bare 1.

AltfB is 1 if and only if both A and Bare o.

By virtue of their actions on arguments of 0 and 1, the six
comparison operators introduced above can also be used as dyadic
logical operators, with =representing EQUIVALENCE, ~EXCLUSIVE OR, s
IMPLIES, and ~ IS IMPLIED BY. This gives APL the complete set of all
ten nontrivial dyadic logical operations.

A=B is 1 if and only if A and B are both 0 or both 1.

AS;B is 1 unless A is 1 and B is O.

l!>B is 0 unless A is 1 and B is o•

A~B is 1 unless A is 0 and B is 1.

3-20 AK95-02

A<B is 0 unless A is 0 and B is 1.

CIRCULAR 0

Dyadic circle 0 is used to generate the common trigonometric and
hyperbolic functions of its right argument. The left argument
determines which function is generated.

Angular val ues are expr essed in r ad ian s •

70A 0+- -+ arc tanh A
60A 0+- -+ arccosh A
soA 0+- -+ arcsinh A
40A -+ (-l+AxA)*O. S
30A .. -+ arctan A
20A 0+- -+ arccos A
loA 0+- -+ arcsin A
ooA 0+- -+ (l-AxA)*O. S
loA 0+- -+ sin A
20A 0+- -+ cos A
30A 0+- -+ tan A
40A 0+- -+ (l+AxA)*O~ 5
soA 0+- -+ sinh A
60A 0+- -+ cosh A
70A 0+- -+ tanh A

Any other left argument of 0 is a DOMAIN ERROR.

PI TIMES 0

Monadic circle 0 multiplies its argument by (an approximation
of) the tr an s c end en tal n urn be r pi. For e xam pl e , OA i s
~x3.6-3Y.1S926S3S8979 ••• The value of pi used by APL is accurate to 1 part
In 2

Mixed Operators

A mi xed oper ator is one that must consid er an argument as a whol e,
rather than acting independently on its constituent elements. Each
mixed operator has its own rules about the rank and shape of arguments
it accepts. Like the scalar operators, some mixed operator symbols
can be used either monadically or dyadically, with some change in
meaning of the oper ation per formed.

3-21 AK95-02

A few of the operator descriptions in this section make use of
sub sc r i pt. notation before it is formally introduced. That is t V[l] is
used to refer to the Ith element of the vector V, and M[l ;J] is used to
refer to the I,Jth el ement 0 f the matr i x M. The subso r ipt ing
capab il i ty 0 f APL is ac tuall y far mer e power ful than these s Lmpl e uses
suggest, and is discussed at length under Lists later in this section.

SHAPE p

Monadic rho p is an operator whose return value is the dimension
vector, or shape of its argument. The type and element values of the
argument are ignored. The resul t of the shape operator is always an
integer vector.

The shape of a scalar (which has no dimensions) is an empty vector
(a vector with length 0; i.e., containing no elements). The shape of a
vector is a vector of length 1 (because the argument has one dimension)
whose element indicates the length of the argument. The shape of a
matrix (2 dimensions) is a vector of length 2, whose elements are the
extents of the two dimensions of the argument matrix .. In general, the
shape of any value is a vector of length equal to the rank, or number of
dimensions, of the value. ----

The shape 0 pe rat 0 rcan be a ppI i edt0 its 0 wn res u1 t to pr 0 d uc e the
shape of the shape. Since the length of the shape is the rank of the
or i gin alar g urn en t, t his i sawa y 0 fob t a in in g the ran k 0 fan y val ue •

RESHAPE p

Dyadic rho p is the reshape operator. It forms a sequence of
elements into a specified shape. The left argument of reshape must be
a shape vector (a vector of no nr.eg at i v e i n t.eg er s) . The elements of
the right argument are used to fill up a value of the shape specified by
the left argument. The shape of the right argument is ignored.

If the result requires fewer elements than the right argument
prOVides, the excess elements are simply not used. II the result
requires more elements than the right argument prOVides, then the
elements of the right argument are repeated over and over, as many
times as are necessary to fill up the result.

The el ements ar e ex tr ac ted and pac ked in row-major order. That
is, the first elements treated are those of the firstrowofthe first
plane, followed by the second row of the first plane, and so on,
through the last row of the last plane.

3-22 AK95-02

If the result is to have any elements at all, then the right
argument of reshape must have at least one element; otherwise, a
LENGTH ERROR occurs.

RAVEL •

Monadic comma , is the ravel operator. Ravel returns its
argument as a vector, by retaining all of its elements but ignoring its
rank and shape.

CATENATE , ..!..

The operation implied by the ford} A, [I]B is dependent upon the
subtype of the value of I: if I is an integer, then the operator is
catenate; if I is a noninteger, it is laminate.

Cate nat e j 0 ins two APL val ue salong an ex is ting coor din ate: its
two arguments are combined to form its resul t by placing them "next to"
each other, along a coordinate specified by the origin-dependent
coordinate index I -- if given, or along the last dimension of the
higher-ranked argument -- if the form A,B is used.

The con f'o rn ab il it y r equir emen ts 0 f c aten ate ar e qui te compl ex ,
yet are as unrestrictive as is reasonably possible, and are in
practice more easily mastered than those of some other, seemingly
simpler mixed operators.

Since catenate is the only APL operator that performs the vital
operation of joining values along an existing coordinate, it is a
heavily used operator in almost any application, and its
confor:nability requirements must therefore be thoroughly mastered.

Although these conformability requirements are discussed in
general later in this description, it is also useful -- for greater
clarity -- to present them in a more detailed, case-by-case framework,
as follows.

In the following discussions, it is assumed that the coordinate
index for the operation is available in the variable I. If the form
A, [I]B is used, -I is explicitly stated. If the form A ,B is used, then I
is taken to be (ppA) rppB in)ORIGIN 1 (-1+(ppA) rppB in)ORIGIN 0). If
the form A..!.. is used, I is taken to be 1.

3-23 AK95-02

Case 1: Two multielement arguments.

If bo t h A and Bar emu1 tie1 emen t v al ue s, thenthe con fo r mab i 1 i t y
requirements are:

DOMAIN A and B must be of the same type;

INDEX I -- if specified explicitly
1 (p pA) rp pB;

be In

LENGTH

LENGTH

If A and B have the same rank, then their shapes must
match, except that their Ith dimension extents need
not be equal;

If A and B have ranks that differ by exactly one, then
their shapes must match, except that the Zth dimension
exte n t 0 f the hi g her - ran k ar g urn en tis di sr eg ar d ed
(for the purposes of this comparison);

RANK If A and Bhave ranks that differ bymore than 1, then a
RANK ERROR is reported.

The rank of the resul t equals that of the higher-rank argument.

If A and B have the same rank, then the shape of the resul t matches
that of each argument, except that its Ith dimension extent is the sum
of the Ith dimension extents of the arguments.

If A and B have ranks that differ by 1, then the shape of the
result matches that of the higher-rank argument, except that its Ith
dim en s ion exten tis 1 grea t e r t han t hat 0 f the hi g her - ran k ar g urn ent:

Case 2: One multielement argument; one single-element argument.

If one argument is a single-element value, while the other
argument is a multielement value, then the conformability
requirements are:

DOMAIN

INDEX

A and B must be of the same type;

I -- if specified explicitly -- must be in the set
lPpMULTI_ELEMENT_ARG;

The rank of the resul t equals that of thp. mu l t.ielement. argument;

AK95-02

The shape of the resul t matches that of the mul tielement
a r g urn en t, e xc e pt t hat its Ith d imen s ion exte ntis 1 grea t e r t han t hat
of the multielement argument.

Case 3: Two single-element arguments.

If both A and B are single-element values, then the
confor~ability requirements are:

DOMAIN

INDEX

A and B must be of the same type;

I -- if specified explicitly -- must be in the set
1 (p pA) rp pB •

Theran k 0 f the res uI t e qua I s t hat 0 f the hi g he r - ran k a r g urn en t •

The shape of the result is such that all dimension extents equal
1, except the Ith, which equals 2.

Case 4: One single-element argument; one empty argument.

If one argument is a single-element value, while the other is an
empty value, then the conformability requirements are:

INDEX I -- is specified explicitly -- must be in the set
lPpEMPTY_ARGUMENT.

The rank of the result equals that of the empty argument.

The shape of the result equals that of the empty argument, except
that the Ith dimension extent of the resul t is one greater than that of
the emptyargument.

The type 0 f the r esul t depend s upon the n urn ber 0 f el emen ts in the
result, and may depend upon the argument order:

if the resul t is nonempty, then the type of the resul t matches
that of the single-element argument;

if the resul t is empty, then the type of the resul t matches that
of the right argument.

3-25 AK95-02

Case 5: One multielement argument, one empty argument.

If one argument is a mul tielement value, while the other is an
empty value, then the conformability requirements are:

INDEX

LENGTH

LENGTH

LENGTH

RANK

I -- if specified explicitly -- must be in the set:
1 (p pA) r p pB ;

If A and B have the same rank, then their shapes must
match, except that their 1th dimension extents need
not -- and wi 11 not -- be equal; or the empt y arg umen t
must be a zero-extent value. --

If the multielement argument has rank exactly one
greater than that of the empty argument, then the
empty argument must be a zero-extent value;

If the empty argument has rank exactly one greater
than that of the multielement argument, then their
shapes must match, except that the Ith dimension
extent of the empty argument is disregarded (skipped
over); or, the empty argument must be a zero-extent
value. -

If A and B have ranks that differ by more than one, then
a RANK ERROR is reported.

The rank of the result equals (ppA)rppB.

If (ppA)=ppB, then the shape of the result equals that of the
multielement argument.

If, of the two arguments, the empty argument has the higher rank,
then the shape of the result is:
«1-1)tpMULT1_ELEMENT_ARG) .1. (1-1)~pMULT1YLEMENT_ARG.

If, of the two arguments, the mul tielement argument has the
higher rank, then the shape of the result equals that of the
mul tielement argument, except that the Zt.h dimension extent of the
result is 1 greater than that of the multielement argument. (This has
the effect of "creating data:" the resul t has more elements than do the
two argumen ts . The ex tr a el emen ts r efl ec t the type 0 f the r esul t:
the y are ze r 0 s i f n urn eric, 0 r spa c e s i f c ha r acte r •)

3-26 AK95-02

Case 6: Two empty arguments.

If A and B are both empty values, then the conformability
requirements are:

INDEX

LENGTH

LENGTH

RANK

I -- if specified explicitly -- must be in the set:
1 (ppA) rp pB

If A and B have the same rank, then their shapes must
match, except that their Ith dimension extents need
not be equal; or, at leas~one argument must be a
zero-extent value;

If A and B have ranks that differ by exactly one, then
their shapes must match, except that the Ith dimension
extent of the higher-rank argument is disregarded;
or, at least one argument must be a zero-extent value.

If A and Bhave ranks that differ bymore than one, then
a RANK ERROR is reported.

The type of the result matches that of the right argument.

The rank of the result equals (ppA)rppB.

The shape of the result depends upon the type of conformability
achieved:

If A and B have the same rank, then

If the shapes of A and B -- excluding their Ith dimension
extents -- match, then the shape of the result matches that
of each argument, except that the Ith dimension extent of
the result is the sum of the Ith dimension extents of the
arguments.

If at 1 east one 0 f the ar g umen ts is a zero-exten t val ue ,
then the shape of the result matches that of the other
argument -- which mayor may not also be a zero-extent
val ue •

3-27 AK95-02

If A and B have ranks that differ by exactly one, then

If the shapes of A and B -- excluding the Ith dimension
extent of the higher-rank argument -- match, then the shape
of the result matc he s that of the higher-rank argument,
except that the Ith dimension extent of the resul t is one
greater than tha~f the higher-rank argument.

I fat 1 e a s ton e 0 f the ar g um en t sis a ze r 0 - exte n t val ue ,
then:

i f the hi g he r - ran k ar gumen tis a ze r a - exten t val ue ,
then the shape of the result matches that of the
lower-rank argument, except that a dimension extent
of 1 is inserted into the Ith posi tion:

(pRESULT)=«I-l)tpLOWER_RANK_ARG),l,(I-l)~pLOWER_RANK_ARG).

if the higher-r an k ar g umen tis not a zero-extent val ue
(but the other argument is), then the shape of the
r esul t matc he s that a f the higher-r ank arg umen t ,
except that the Ith dimension extent of the result is
one greater than~hat of the higher-rank argument.
(Note that this may cause the result to be nonempty.)

General Rules for Catenate

TYPE:

Conformability:

Result:

RANK:

Conformability:

If both arg umen ts ar e nonernpt y, then they must be
of the same type.

I fat 1 e a s tonear g urn en tis empt y, then type i s
ignored in determining conformability.

If both arguments are empty, or if the result is
empty, then the type of the resul t matches the
type of the right argument.

If at least one argument is nonempty, and if the
resul t is nonempty, then the type of the resul t
matches the type of the nonempty argument.

If neither argument is a single-element value,
then their ranks may differ by either a or 1.

If at least one argument is a single-element
value, then rank is not considered in
conformability.

3-28 AK95-02

Result:

SHAPE:

Conformability:

If neither argument is a single-element value,
or if both arguments are single-element values,
then the rank of the result matches that of the
hi ghe r - r an k ar g urn en t • (p pR) =(p pA) r (p pB)

If exactly one argument is a single-element
value, then the rank of the result matches that
of the nonsingle-element argument.

After meeting type and rank requirements -- if
any, two arguments are catenate conformable:

if at least one argument
single-element value; or

is a

Result:

if at least one argument is a zero-extent
val ue; or

if their ranks match, then if their shapes
-- excluding their Zth dimension extents-
match; or

if their ranks differ by 1, then if their
shapes excl ud ing the Ith dimension
extent 0 f the higher-rank argument
match ..

If the ar g um en t r an ksmatc h , thenthe Ith
dimension extent of the resul t equals the sum "01
the Ith dimension extents of the arguments.

If the ar g um en t r an ks d iffe r by 1, 0 r i fat 1 e a s t
one argumen tis a one-el ement val ue , then the Ith
dimension extent of the result is exactly one
grea t e r t han t hat 0 f the hi g he r - r an k ar g um en t •

The other (non-Ith) dimension extents of the
result "match" those of at least one of the
arguments:

if the argumen t ran ks mate h , then the
non-Ith dimension extents of the result
matc hThe non-Ith dimension of at least one
of the arguments;

3-29 AK95-02

i f the ar g um en t r an ks d iffe r by 1, thenthe
non-Ith dimension extents of the result
matchEhe non-Ith dimension extents of the
higher-rank argument, and/or match all
dimension extents of the lower-rank
argument;

i f the ar g um en t ran ks d iffe r by m0 rethan 1,
then at least one argument is a
single-element value, and therefore:

if exactly one argument is a
single-element value, then the
non-Ith dimension extents of the
resultmatch the non-Ith dimension
extents 0 f the nonsingle-elements
argument;

if both arguments are single-element
values, then the non-Ith dimension
extents of the resul t allequal 1, and
therefore match the non-Ith dimension
extents of the higher-rank argument.

The following rules define which argument(s)
determine, supply, and therefore have dimension
extents that "match" the non-Ith dimension
extents of the result:

if at 1 east one arg ument is a mul tielement
val ue, then each mul tielement argument
does;

if exac tl y one argument is a single-element
value, then the other -- nonsingle-element
-- argument does;

if both
val ues,
does,

arguments are single-element
then the higher-rank argument

if both arguments are empty values, then:

if at 1east one argument
nonzero-extent value, then
nonzero-extent argument does,

is a
each

if both arguments are zero-extent
values, then both arguments do.

3-30 AK95-02

(These rules define a hierarchy of precedence as
follows:

Notes:

mul tielement

empty

single element

~nonzero-extent values

~zero-extent value

With one exception, catenate does not discard data -- the result
usually has all of the elements contained in both arguments.

The exception: one single-element argument, one empty
argument; if (pEMPTY_ARG) [IJ;tO or if the empty argument has more
than 1 dimension extent of zero (that is, (+/OpEMPTY ARG»l),
then the result is empty. However, if (pEMPTY ARG)[I]=O and if
l=+/O=pEMPTY ARG, then the result is not empt y, and is composed
solely of the-element supplied by the single-element argument.

With one exception, catenate does not create data -- the resul t
usually has no elements that are not found in the arguments.

The exception: argument rank difference of 1, lower-rank
ar g urn en tis a ze r 0 - exte n t val ue; the Ith dim ens ion exte n t 0 f the
result is 1 greater than that of the mgher-rank argument (All
othe r d imen s ion exte n t smat c h tho s e 0 f hi gher - ran k ar g um en t .) ;
if this change causes the result to have more elements than has
the higher-rank argument, then additional elements are needed.
(In general, this is true unless the higher-rank argument is
empty and has a zero dimension extent that is not its Ith on e ,)
The additional elements are zeros if the typeOf the result is
numeric, or spaces if character.

LAMINATE A,[I]B

I f I i san0 n in t e g er, n urn eric, 0 ne - e I emen t val ue, then A, [I] B
represents laminate.

Laminate joins two APL values along a new coordinate: its two
arguments ar e combined to f'orm its r esul t by pl, ac ing them par allel to
each other, creating a new coordinate whose dimension extent is 2.

3-31 AK95-02

The placement of the new coordinate -- relative to the original
coordinates -- is specified by the origin-dependent coordinate index
I -- if given. (If I is not given, then the operator is laminate if and
only if both arguments are scalars, in which case I is taken to equal
.5; otherwise, the operator is catenate (above).)

However, since I is not an integer, it does not refer to an
ex isting coord in ate. Rather, it spec i fies the coord inate (s) next to
which -- or between which -- the new coordinate will be placed.

For example (origin 1), for A,[1.5]B, the new coordinate is the
2nd coordinate of the result: fl. If A and B are equal length
vectors, then the result is a pA by 2 matrix. If A and Bare
identically shaped matrices, then the new coordinate is placed
between the 1st and 2nd (LI and rI) coord in ates 0 f the arg uments; the
result is a rpA)[l]bY 2 by (pA)[2] array.

The conformability requirements of laminate are much less
complex than those of catenate, but are still about as general and
unrestrictive as is reasonably possible.

Like catenate, laminate is the only APL operator that performs
the vital operation of joining values along a new coordinate. Thus,
it is a commonly used operator whose conformability requirements
should be learned thoroughly.

Case 1: Two multielement arguments.

If both arguments are multielement values, then the
conformability requirements are:

DOMAIN A and B must have the same type;

RANK A and B must have the same rank;

INDEX Imust be less than l+ppA (ORIGIN 1) or ppA (ORIGIN 0);

I must be greater than 0 (ORIGIN 1) or - 1 (ORIGIN 0);INDEX

LENGTH A and B must have the same shape.

Theran k 0 f the res uI tis 1 grea t e r t han t hat 0 f e ac h a r g urn en t .

3-32 AK95-02

The shape of the resul t matches that of each argument, except
that a dimension extent of 2 is inserted, becoming the rIth dimension
extent of the resul t , -

Case 2: One multielement argument; one single-element argument.

If one ar g ument is a single-element val ue, while the other
argument is a multielement value, then the conformability
requirements are:

DOMAIN

INDEX

INDEX

A and B must have the same type;

I must be less than l+ppMULTI_ELEMENT_ARG (ORIGIN 1)
or ppMULTI_ELEMENT_ARG (ORIGIN 0);

I -- if specified explicitly -- must be greater than 0
(ORIGIN 1) or -1 (ORIGIN 0).

The rankof the result is 1 greater than that of the multielement
argument ..

The shape of the resul t matches that of the mul tielement
argument, except that a dimension extent of 2 is inserted, becoming
the fIth dimension extent of the result.

Case 3: Two single-element arguments.

If both arguments are single-element values, then the
conformability requirements are:

DOMAIN

INDEX

INDEX

A and B must have the same type;

I -- if specified explicitly -- must be less than
l+ppHIGHER RANK ARG (ORIGIN 1) or ppHIGHER RANK ARG
(ORIGIN 0); - - -

I -- if specified explicitly -- must be greater than 0
(ORIGIN 1) or 1 (ORIGIN 0).

The rank of the resul t is 1 greater than that of the higher-rank
argument.

3-33 AK95-02

The shape of the resul t is such that all dimension extents equal
1, except the rIth, which equals 2.

Case 4: One single-element argument;, one empty argument.

If one argument is a single-element value, while the other
argument is an empty value , then the conf'o r-m ab i Lit y requirements are:

INDEX

INDEX

I must be less than l+ppEMPTY ARG (ORIGIN 1) or
ppEMPTY_ARG (ORIGIN 0);

I must be greater than 0 (ORIGIN 1) or -1 (ORIGIN 0).

The type of the result matches that of the right argument.

The result is empty.

The rank of the result is 1 greater than that of the empty
argument.

The shape of the resul t matches that of the empty argument,
except that a dimension extent of 2 is inserted, becoming the rIth
dimension extent of the result.

Case 5: One multielement argument; one empty argument.

RANK A and B must have the same rank;

INDEX

INDEX

LENGTH

Imust be less than 1+ppA (ORIGIN 1) or ppA (ORIGIN 0);

I must be greater than 0 (ORIGIN 1) or -1 (ORIGIN 0);

The empty argument must be a zero-extent value.

The rank of the resul t is 1 greater than that of the mul tielement
argument.

The shape of the resul t matches that of the mul tielement
argument, except that a dimension e x t e n L of 2 is inserted, becoming
the rIth dimension extent of the result.

3-34 AK95-02

Case 6: Two empty arguments.

If both arguments are empty values, then the conformability
requirements are:

RANK

INDEX

INDEX

LENGTH

A and B must have the same rank;

Imust be less than 1+ppA (ORIGIN 1) or ppA (ORIGIN 0);

I must be greater than 0 (ORIGIN 1) or -1 (ORIGIN 0);

A and B must have the same shape, or at least one must
be a zero-extent value.

The r an k 0 f the res u1tis 1 grea t e r t han t hat 0 f e ac h ar gurn en t •

The type of the result matches that of the right argument.

The result is empty.

If at least one argument is a nonzero-extent value, then the
shape of the result matches that of each nonzero-extent argument,
except that a dimension extent of 2 is inserted, becoming the rIth
ri;mon~;i"'\n ovi-o",i- ,..,.;' +-1.-."" ... "".,.",+-
'\",& 1.1.1.'-",, '-1'\.",,,,,1 • ..., V~ vl.l'\.:; J t:;;"vlA..Lve

If both arguments are zero-extent values, then the shape of the
r esul t mate hes that 0 f each arg umen t , except that a d imen sion extent
of 2 is inserted, becoming the rlth dimension extent of the result.

General Rules For Laminate

TYPE:

Conformability

Result:

If both arguments are nonempty, then they must
have the same type.

If at least one arg ument is empt y, then type is
ignored in determining conforillability.

If both arguments are empty, or if the result is
empty, then the type of the resul t matches that
of the right argument.

3-35 AK95-02

RANK:

Conformabilit¥.:

Result:

SHAPE:

Conformability:

If at least one argument is nonempty, and if the
resul t is nonempty, then the type of the resul t
matches that of the nonempty argument.

If neither argument is a single-element value,
then their ranks must be equal.

If at least one argument is a single-element
value, then rank is not considered in
determining conformability.

If neither argument is a single-element value,
then the rankofthe result is 1 greater than that
o f e ac h ar g urn en t .

If both arguments are single-element values,
then the ran k 0 f the r esul tis 1 greater than that
of the higher-ran k argumen t ,

If exactly one argument is a single-element
value, then the rank of the resul t is 1 greater
than that of the nonsingle-element argument.

After meeting type and ran k r equir emen ts, -- if
any, two ar-guments are laminate conformable:

if at 1 east one ar gumen t
single-element value; or

is a

Result:

if at least one argument is a zero-extent
val ue ; or

if the ir ran ks match, then if the ir shapes
match.

The rlth dimension ex ten t 0 f the resul t equal s 2.

The other (non-flth dimension extents of the
result match those of at least one of the
arg umen ts •

if at least one argument is a mul tielement
value, then each multielement argument;

if exactly one argument is a single-element
val ue, then the other -- nonsingle-elernent

argument;

3-36 AK95-02

if both arguments are single-element
values, then the higher-rank argument;

i f both a r g urn en t s are empt y val ue s, then :

if at .least one argument
non zero-ex ten t val ue , then
nonzero-extent argument;

is a
each

if both arg umen ts ar e zero-exten t
values, then both arguments.

(These rules define a hierarchy of precedence:)

Notes:

mul tiel emen t
empty

single element

~ nonzero-extent

?zero-extent

With one exception, laminate does not discard data -- the result
usually has all of the elements contained in both arguments.

The exception: one sing le-el emen t argument, one empty
ar g um en t; the res u1 t will be empt y, and theref0 red 0 e s not
contain the element from the single-element argument.

With one exception, laminate does not create data -- the result
usually has no elements that are not found in the arguments.

The exception: one mul tielement argument, one empty
(zero-extent) argument; the resul t has exactly twice the number
of elements that the two arguments have, and therefore
additional, arbitrarily chosen elements are needed; these
el emen ts ar e consi sten t wi th the r esul t type: zero s if n umer ic ,
spaces if character e

INDEX GENERATOR 1

Mo n ad i c i 0 tal i s the in d ex g en era tor 0 pe rat0 r • Its ar g urn en t
must be a one-el emen t nonneg ativein teg er val ue. The r esul t 0 f lA is a
vector of integers of length A, the first element of which is the index
origin (either 0 or 1), and succeeding elements of which are each one
greater than the preceding element.

The index origin can be changed wi th the) ORIGIN system command
or the oro system variable.

3-37 AK95-02

INDEX OF 1

Dyad ic iota A 1B represents the index of the fir st occurrence 0 f B
in the v ec tor A. The left arg ument 0 f index 0 f must be a vector, or a
RANK ERROR occurs. The r i g ht. argument can be a value of any shape; its
elemen ts ar e con sid er ed ind epend en tl y·o f one another. The shape 0 f
the result is the same as that of the right argument.

As each element is selected from B, it is compared to the
successive elements of A, starting with the first and proceeding until
a match is found. If a match is found, then the answer is the index of
the element that matched. If no match is found, then an index one
greater than the last (highest) index of A is returned.

The ind ice s ret urn e d by ind ex 0 f follow the in d ex 0 rig in. 1fthe
index origin is 0, then the first element of A has the index 0, then
next is indexed 1, and so on. If the index origin is 1, then the first
element of A is indexed 1, the next 2, and so on.

Two numeric elements are considered equal if they are within a
c er t a i n to 1 er an ceo f e ac hother • Th i s toler an c e i s calledthe
comparison tolerance, and is discussed later in this section.

If more than one element of A matches the element of B being
considered, the index of the earliest is returned.

If no element of A matches, then an index one greater than the
last index of A is returned; e vg , , if A has seven elements, then 7 is
returned in origin 0 (because the elements of A are numbered from 0 to
6), but 8 is returned in origin 1 (because the elements are then
n urn bered fr 0 m 1 to 1).

TAKE, DROP t ...

Take t and dr o p u are both dyadic operators that accept a vector
of integers V as left argument and any value A as right argument. pV
must equal ppA (except that a scalar V is automatically replicated to
the r an k 0 f A).

The result of take VtA is to take, for each dimension Iin the rank
of A, the first (if V[I]>O) , or the last (if V[I]<O) IV[I] elements of
that dimension, discarding the other elements.

3-38 AK95-Q2

The result of drop V~A is to drop or discard the first (if
V[IJ >0) or last (if V[I] <0) IV[I] element of each coord inate I,
retaining the others.

For both take and drop, IV[I] need not be less than (pA)[I].

For take, if (IV[I]»(pA)[I] for some I, then either zeros or
spaces -- depend ing upon the type of the right argument -- are used to
fill out the result to the required dimensions.

For drop, if (IV[I])~(pA)[I]for some I, then all elements along
the Ith coordinate are dropped. (It is meaningless to speak of
dropping more elements than actually e x i s t ,) That is, what is
act ua11 y pe r fo r med is: ((x V) x (I V) Lp A) ~ A • Thism akesthe exte nt 0 f
the Ith dimension of the resul t equal zero, and therefore the resul t is
emptY:

For take, the result always has shape (ppA)pIV, which, for
non-scalar V (O;tppV), is simply Iv.

For drop, the result always has shape (pA)-(IV)LpA, which, for
(V:S;pA) "V~o (that is, nonnegative and wi thin the dimension extents of
A), is simply (pA)-V.

GRADE UP, GRADE DOWN ~ V

Gr ad e up ~ and gr ad e down V ar e the APL sor t ing oper ator s • They
are both monadic, and accept any numeric array as argument (characters
have no collating sequence in APL -- hence they cannot be sorted.).

Theresul t 0 f ~ 0 r Vis a pe r muta t ion ar ray (a val ue wh 0 s e
elements are indices), identical in shape to A, that orders the
elements of A to be monotonically nondecreasing or nonincreasing
aIong the 1 as t dim en s ion 0 fA. Thi sis, when the res u1 t 0 f the gr ad e
operator is used to subscript its argument, the resul t is found to be
sorted along the last dimension.

The sort preserves the original order of equal elements.
Neither grade up nor grade down uses the comparison tolerance when
comparing elements.

If A is a vector, then A[!A] is the elements of A sorted into
increasing order. If A is a matrix, then ~A is a permutation matrix

3-39 AK95-02

each row of which orders each row of A into ascending order, so
A[I;(AA)[I;JJ is the Ith row of A sorted.

If a one-element nonnegative integer value in brackets follows
the grade operator, as A[IJA, then the value I is taken as the
coordinate index upon which to sort (instead of the last coordinate).
The coordinate index and the indices returned by the grade operators
follow the index origin. Thus, in O-origin indexing, if A is a matrix,
then ![l]A is the same as ~A, while ~[O]A is the permutation matrix
which orders the columns of A into increasing order.

REVERSE 4> e

Monadic <I> reverses the elements along the last dimension of its
arg ument, whil e monad ic e rever se s along the fir st dimension 0 fits
argument. Like the grade operators, reverse accepts a bracketed
coordinate index; <I>[I]A and e[I]A reverses the elements of A along the
Ith dimension; where I is a one-element nonnegative integer value.
The coordinate index follows the setting of the index origin.

ROTATE 4> e

Dyadic <I> and e represent the rotate operators: <I> rotates the
elements of its right argument along the last dimension while e
rotates along the first dimension. <I>[I] and e[I] rotates along the
Ith dimension (coordinate index follows the index origin).

The left argument of <I> and e specifies the amount of rotation as
follows: in A<I>[I]Bor Ae[I]B, A must be an integer value with rank one
lower than that of B, or a 1-element integer value of any rank; each
integer specifies the number of positions to the "left" that the
elements of each corresponding "vector" of B along the Ith dimension
are to be rotated.

Elements rotated off the end of a value re-enter it on the other
end.

Zero is a valid rotation (which results in no change), as are
negative numbers (which resul t in rotation to the "right") , as well as
very large numbers (which may have the effect of rotating the "vector"
through its starting position several times -- the interpreter avoids
per forming the super fl uous complete cycles).

If a one-element integer value is given for A, then it is
replicated to the required shape; i.e., all "vectors" of B along the
Ith coordinate are rotated by the same scalar amount.

3-40 AK95-02

"Left" and "right" here are used figuratively: they refer to the
direction of rotation when rotating along the last coordinate. For
example, if B is a matrix, then 14>B causes all rows of B to be rotated to
the left 1 po s i tion, whereas leE causes all columns of B to be rotated
up 1 position. Thus, positive rotation is always in the direction of
TOwer indices for that coordinate; t ha t is, positive rotation moves
elements towards the first elements of that dimension (towards an
ax is) •

Similarly, "vector" is used loosely above to refer merely to a
set of linearly ordered elements, not to a complete and separate
val ue.

Conformability requirements are as follows: l=X/pA or

A) For A<PB : (pA) =-1 ~ p B ;

B) For AeB: (pA)=l~pB;

C) For A<P [I] B 0 rAe [I] B : (p A) =((I - 1) +PA) , I ~ pBas s urn i ng t hat
I € 1 P pB.

That is for any B, A can be a single-element value; otherwise, pA
must the same as pB, except that pA does not include the dimension
extent of the coordinate of B along which the rotation takes place.
Note that if A and Bare rotate conformable, then they are also
catenate conformable.

TRANSPOSE ~

Monadic ~ is the ordinary transpose operator. It reverses the
coord inate number ing 0 f all coord in ates 0 fits arg ument : (p~A) =~pA.

Clearly, ~A has no effect if the rank of A is less than 2.

In dyadic transpose V~A, V must be a nonnegative integer vector
of length equal to the rank of A, so that V[I] corresponds to the Ith
dimension of A. Then, dimension I of A becomes dimension V[I] of toe
result.

The dimension indices in V follow the index origin.

3-41 AK95-02

It is not necessar y that the in teg er s in V be differ en t: if two
or more integers of V are equal, then that dimension of the result is
composed of elements taken from the major diagonal crossing the
dimensions of A that map into it (If the involved dimensions of A are
not id en tic al in exten t, ·then the diagonal end s at the edge 0 f the
shortest dimension.). For example, ·1 latA is the ordinary major
diagonal of the matrix A.

It is required, however, that all dimensions that will finally
appear in the resul t be specified somewhere in the vector V. That is,
the vector V must consist of the numbers from the index origin (which
is the number of the first dimension) through the highest element of V,
with some possibly repeated, but none missing. Or, stated in APL,
every member of If IV must be present at least once in V. (Or:
(lfIV)€V.)

Note that: (pV~A)[V]=pA, and (pV~A)=(pA)[!V] if there are no
r e pe tit ion sin V, 0 the r wi s e, (p V~A) [V] spA.

Monadic transpose is related to dyadic by:

COMPRESS I f

(~A)=(4'lppA)~A.

Compress is a dyadic operator. In VIA, Vmust be a boolean vector
o fIeng the qua 1 to the exten t 0 f the 1 as t dim en s ion 0 fA. There su l tis
obtained by selecting (retaining) those elements along the last
dimension of A that correspond to a 1 in the vector V, and omitting
those elements that correspond to a O.

That is, elements are retained whose last index matches the
index of a 1 in V; all other elements are "compressed o ut ;"

Thus, the resul t has the same rank as A, and has the same
dimension extents except for the last, along which it has been
com pr e ssed .

In VfA, the operation is applied along the first coordinate:
elements are retained whose first index matches the index of a 1 in V;
other elements are compressed out.

A bracketed coordinate index can be used to explicitly specify
the coordinate along which compression takes place: Vf[I]A and
VI[I]A are equivalent. The coordinate index follows the index
or ig in •

3-42 AK95-02

V can be a one-element boolean value of any rank: if that element
is 1, then A is retained in its entirety; if it is 0, then the
appropriate coordinate of A is completely compressed out, and· the
result is an empty value. (All dimension. extents remain unchanged,
except that of the coordinate along which the compression took place,
which becomes zero.)

EXPAND \ \

Like compress, expand is a dyadic operator r e qu i r t ng a boolean
vector as left argument. However, for expand, the number of l's in the
left argument must equal that dimension extent of the right argument
that corresponds to the coordinate along which expand is applied.

Theresul t 0 f V \ A (0 r V \ A 0 r V ~ [I] A 0 r V \ [I] A) is 0 b t a in e d by
inse r tingin A e i the r zer 0 s (i f A i s n um er i c) 0 r spac e s (i f A i s
character) in positions defined by V. l's in Vcorrespond to elements
of A; 0' s in V correspond to inserted elements.

The inse r t ion is a pp1 i e d aIon g the ex pl i cit1 Y 0 rim pl. i cit1 y
specified coordinate; the coordinate index follows the index origin.

As wi th compress, the resul t has the same rank as A, and has the
same dimension extents, except for that of the coordinate that was
expanded;

Note that compress is the inverse of expand: A=V/V\A.

MEMBERSHIP €

The result of A€B is a boolean value identical in shape to A, with
l's corresponding to those elements of A that are found to occur
somewhere (anywhere) within B, and 0' s for those elements of Athat are
not found in B. The shape of B is irrelevant: Bmerely represents a
collection of elements, and € determines which elements of A are
members of the collection and which are not.

A and B can be of any type, rank, and shape, and can differ in any
or all of these properties: Of c o ur s e , if Aand Bare not of the same
type, the result will be all or s : (pA)pO=A€B.

Note that no errors are detected by membership.

3-43 AK95-02

ENCODE T

ATB encodes each element of B into its positional representation
in an y one or mor e n umber system s, the r ad ices being spec i fied by the
numeric value A. Each element of A represents the radix applicable to
the corresponding position in the representation being generated. If
the rank of A is 2 or greater, then each row of A is interpreted as a set
of radices for a single number system; each element of B is encoded
into all of the number systems represented by A: all combinations of
numbers and number systems are used:

The result is a value whose shape is the catenation of those of A
and B.

DECODE 1

A 1B i s the inv er s e 0 fen cod e • I t ac c e ptsan urn er i c val ue A
defining the radices of the positions in one or more number systems,
and a value B containing digits representing one or more numbers in
those systems. The result has rank 2 less than the sum of those of A
and B: (ppA1B)=-2+(ppA)+(ppB).

The shape of Amust equal the first dimension extent of B, unless
A is a one-element value, in which case A is reshaped to the
appropriate length.

To be meaningful, B must be of the form produced by encode.

DEAL ?

Though monadic? is a scalar operator, dyadic A?B is a mixed
operator. A and B must be one-element integer values such that:
(OSA)I\ASB. The result is a vector of Aelements selected randomly and
without replacement from the set iB; The effect is that of shuffling a
deck of B cards, and then dealing A of them.

The set lBconsists of either the integers from 0 to B-1, or from 1
to B, depending upon whether the index origin is set to 0 or to 1
respectively.

Det a tl s of the random number generation algorithm used by the
deal operator can be found under n Roll", earl ier in this section.

3-44 AK95-02

MATRIX INVERSE ~

Monadic ~ is matrix inverse. In ~A the argument A must be a
numeric matrix or one-element value. If a matrix, it must have at
least as many rows as columns; otherwise a LENGTH ERROR results.

If A is a one-element val ue, then (I)A) =fA; that is, the resul t is
the ordinary reciprocal of A.

However, if A is a multielement value, then the result has the
shape (pI)A) =4:>pA; that is, the resul t has the same shape as the
transpose of A. The elements of lilA are chosen to least-squares
best-fit the ordinarymatrix product of Aand lilA to the identitymatrix
o for d er 1 t PA (the n um be r 0 fro ws inA). That is, i f Xis the res u1 t 0 f
lilA, then the elements of X are chosen to minimize +/,«A-.xX)-I)*2
where I is the identity matrix.

If A is a square matrix, then lilA is the ordinarymatrix inverse of
A• I f A i s 0 v er - s qua r e (mor e rows t han col urn n s) , then A i s not e xact1 y
invertible, and lilA is the least-squares best inverse. If A is
un d er - s quar e, then lilA res u1 t sin a LENGTH ERR0R•

If A is a singular square matrix, then lilA yields a DOMAIN ERROR.

MATRIX DIVIDE iii

Dyad i c ~ ism at r i x d i v ide. There su l t X 0 f AIiIB i s c ho sen to
least-square best-fit the matrix product of B and X to A. More
precisely, the elements of X are chosen to minimize +/, «V+. xX)-A)*2.

A and B must be n umer ic val ue s .

The shape and con formabil it y r equiremen ts 0 f matr ix d iv ide are
as follows:

1) If B is a one-element value, then: B can have any rank; A
can have any rank and shape; the resul t has the same rank and
shape as A; the resul t elements are computed using
division, Ai-B.

or

2) If B is a multielement value, then:

3-45 AK95-02

a) B must be a matrix, 2=ppB;
b) A must be a matrix or a vector, (ppA)E:l 2;
c) The first dimension extent of A and B must be equal,

(ltpA)=ltp;B;
d) B must have at least as many rows as columns,

(ltpB)~l+pB;

e) Violation of (a) or (b) yields a RANK ERROR;
f) Violation of (c) or (d) yields a LENGTH ERROR;
g) The result has the shape (pA~B)=(l+pB),l+pA;

h) the result is the x/l+pA sets of least-squares best
sol utions in l+pB un known s to the x Ii +pA sets 0 f ltpB
linear equations in l+pB unknowns.

I-BEAM I

I-beam .r is a monadic operator that accepts as argument a
one-element integer value whose element is chosen from a small set.
The result is the value of some system dependent parameter, which
particular one being selected by the argument.

All times are in sixtieths of a second; all results are scalars,
integers, except .r27. The results are defined as follows:

.r19 The real time since this instance of APL was invoked •

.r20The tim e 0 fda y •

.r21 The CPU time used since this instance of APL was invoked •

.r22 The amount of workspace remaining available to be used, in units
of 9-bit bytes (i.e., four times the number of words) •

Thi s number r efl ec ts the fac t that a Mul tic s APL war kspace can
be many segments in size. However, since any single APL value
must fi t wholl y wi thin one segment, it is possible for some APL
expressions to cause errors even when I-beam 22 is returning
large values. For example, it is impossible to create a
2,000,000 character item, even in a workspace with millions of
characters of space available •

.r23 The number of Multics users currently logged in •

.r24 The time of day that this instance of APL was invoked •

.r25 The date, as a 6-digit integer, MMDDYY •

.r26 The first element of I-beam 21 (or 0 of I-beam 21 is empty) •

.r27 The vector of statement numbers in the state indicator, most
recent first. An element of o corresponds to pending evaluated
input (D) entries in the state.

3-46 AK95-02

FORMAT .,

Mo n ad i c fo rmat., conv er t s n urn er i c ar g urn en t s to c har acte r fo r m,
and returns char ac ter arg uments un c hanged. The r esul t has the same
a ppe ar an c e, whend is pl a ye d, a s t hat 0 f the ar g urn en t • Theresul tis
fo r Jl at ted us ing the sam e r ul e s as n urn er 1c 0 ut put, but t his res u1 tis
explicitly available, instead of being printed.

The rank of the result is a vector if the argument is a scalar.
Otherwise, the resul t has the same rank as the argument. The length of
each dimension of the result, except the last, is the same as the
corresponding dimension of the argument. The length of the last
dimension is equal to the number of columns in the printed
represenation. Each element of the argument generally takes several
columns to print.

Theresul t n ever has a tr ail in g col urn n 0 fbI an ks • 1fther e sul t
i s a v ec to r, i t wi 11 not hav e an y 1 e ad in g b1 an ks , e i the r . Ea c h col um n
of numbers is for~atted independently, so that each column in the
result occupies as few characters as possible. The width of each
column is chosen so that only one blank separates adjacent columns.

The v al ue 0 f OFPis used to d e t e r min e the n urn ber 0 f dig its
printed. The printing width, OPW, is considered to be infinite.

of APL to another, so users needing precise control should use dyadic
format.

Dyadic format., converts numeric arguments to character form
under the control of the left argument, and does not accept character
ar g urn en t s • In the g en era1 case, the 1 e ft ar g um en t con t a ins 0 n e pa i r
o f v al ue s (" fo r mat pa i r ") fo reac h col urn n in the rig htar g um en t • Ea c h
format pair controls the spacing, type, and precision of one column of
the result.

The rig htarg um en t to for mat i s the n um er i c val ue to be
converted. It may have any rank and shape. A scalar is c on s i d er-ed to
have one column, a vector has as many columns as elements, and an array
has as many columns as the length of its last dimension. The left
ar-z um en t, to f'o r mat, C;3n he ;3 sC;31;3r inteQ:er _ ;3 na i r- of inteQ:ers _ or as
- - 'J _.-.- - - - - - - - - - _.- - - - - - - - - -- -_.. -- - -- - - - - - - t..J - - 7 -- .a.- -- - - - - - - - - - '-..I - - .- 1 - - _.-

many pairs of integers as columns in the right argument.

3-41 AK95-02

Theran k 0 f the res uI tis a v e c to r i f the ar g um entis a sc aI ar •
Otherwise, the resul t has the same rank as the argument. The length of
each dimension of the result, except the last is the same as the
corresponding dimension of the argument. The length of the last
dimension depends on the values specified by the format pair.

Each format pa ir control s the conv er sion of one col umn of val ues
fr om the rig htar g um entin to 0 n e fie I d 0 f s uc c e s s i v e col um n s 0 f
characters in the result. If only one format pair is specified, it
applies to all columns.

The first element of the format pair specifies the field width.
This is the total number 0 f char acter s each val ue occupies. All
values are right-aligned in their fields. If a field width of zero is
specified, a default width is chosen such that exactly one blank
separates the longest number from the neighboring column.

If only one format pair is specified, a field width of zero causes
the default width to be the same for all columns, otherwise the default
width is computed only for the specific column.

The fie I d wi d t h can be fr om 0 to 255 , inc Ius i v e •

The second element of a format pair specifies the type and
preCIsIon of the formatted value. The sign of the second element
specifies the type (negative for exponential, or scientific, form;
zero for integral form; positive for fixed decimal form). The
absolute value of the second element specifies the precision. This is
the number of significant digits in scientific form and the number of
dec i mal p.l acesin fix ed dec i maI fa r m• I f a singleeI em en tis
specified as the left argument to format, it is taken as the precision,
and a default field width is used.

The precision can range from
1 to 57 for fixed decimal form.

to 19 for sc ienti fic form, and fr om
A 0 indicates integral form.

There is no requirement that a blank be left between fields if the
field width is specified explicitly -- thus boolean values may be
tightly packed, for example. If a formatted value will not fit in the
specified field width, a domain error occurs.

3-48 AK95-02

Notes

Values are formatted by converting from binary to decimal,
rounding the decimal value to either the specified number of digits,
to an in teger , or to the spec i fied number 0 f dec imal pl ac es, and then
converting the decimal value to character form. Decimal values are
precise to 19 digits before rounding.· Since small negative numbers
can round to zero, the sign of the original value can be lost.

Bot h m0 n ad i c an d d ya d i c fo r mat rese r vethr e e c ha r act e r po sit ion s
in exponential form for the sign of the exponent and two digits, even
though only one of them may be needed. Trailing blanks are added, as
necessar y, so that col umns 0 f val ues ar e al ig ned by the dec imal po in t ,
No decimal point is produced if only one significant digit is
requested in exponential form.

Format produces a leading zero in fixed decimal form if the
absolute value of the decimal value is less than one. Monadic format
suppresses trailing zeros, and any trailing decimal point, in fixed
decimal form. Dyadic format never suppresses trailing zeros.

COMPOSITE OPERATIONS

Composite operations use scalar operators to perform very
frequently used operations that would otherwise require a host of
complex and time-consuming user-suppl ied functions. In a few
keystrokes, they define operations that would require iOO to iOOO
keystrokes to define otherwise. And, they can per form these
operations 100 times faster than an equivalent APL function.

APL has four compo si te oper ations: reduction, scan, outer
product, and inner product. Syntactically, they all behave like
operators, reduction and scan being monadic, and outer and inner
product being dyadic. Furthermore, they all use scalar operators in
both their definition and printed representation. However, they do
not behave like scalar operators; they behave like mixed operators.

For all composite operations, the following are true:

- It is syntactically equivalent to an operator.

- It is defined only with scalar operators.

One or two scalar operators are present in its printed
representation; the same number are used in its definition.

3-49 AK95-02

- Its elemental domain is determined by those of the scalar
operators used in its definition.

- Its rank, shape, and conformability requirements are
determined by the operation (reduction, outer product, inner
product), not by the operators.

REDUCTION 0/ Of

Reduction is a composite operation consisting of a slash /
preceded by the symbol of any standard APL dyadic scalar operator.
For example, plus-reduction is +/ and maximum reduction is rL,
(Scalar operators are described under "Scalar Operators", earlier in
this section.)

When it is necessary to discuss reduction in general, it will be
shown as 0/ with the understanding that the 0 symbol, which has no APL
meaning, stands for the symbol of any dyadic scalar operator.

Reduction behaves like a monadic mixed operator: it accepts a
single argument, aright argument. The argument can have any rank and
shape.

When applied to a vector argument, the resul t of «t v is the same
as placing the scalar operator (0 between each adjacent pair of
elements of V. For example, if V is a four-element numeric vector,
then +/Vis the same as V[1]+V+[2]+V[3]+V[4]. (The sub sc r i pt.s are in
1-origin indexing.) Thus, the plus-reducing of V is the sum of the
elements of V, returned as a scalar.

If the argument of reduction is an empty vector, the resul t is the
identity element for the scalar operator involved, if it has one;
otherwise, it is a DOMAIN ERROR. Identity elements for the dyadic
scalar operators are shown in Table 3-2.

3-50 AK95-02

Table 3-2. Identity Elements for Dyadic Scalar Operators

Operator Ldenti ty
Name Symbol ~/ ZO

--,~-_ ..-
add + 0
subtr ac t 0 (right)
multiply x 1
d iv ide .. 1 (right)
power * 1 (right)
log ar i thm $ none
maximum r 1.701411834604692317E38
minimum L 1.701411834604692317E38
residue I 0 (left)
combin ation s ,

1 (left).
circular 0 none
and A 1
or v 0
nand '* none
nor tV none
less < 0 (left ,boolean)
less-equal s 1 (left ,boolean)
equal s = 1 (bool ean)
not-equal ~ 0 (boolean)
greater-equal ~ 1 (right,boolean)
greater > 0 (right,boolean)

If the ar~ument of reduction is a scalar. it is treated ~~ ~-- '-J - - - - -- - -- -- - - - - - - - -- -' 7 - - - - - - - - -

one-element vector. The resul t of reducing a one-element vector is
always simply the single element itself, returned as a scalar, if in
the domain of the reducing scalar operator. (+/'X' yields a DOMAIN
ERROR.)

1fthear g urn en t 0 f red uc t ion i samatr i x 0 r ar ray, thenthe
reduction is along the "v ec t o r s" that form the last dimension of the
value. The result has rank one less than the argument, and has the
same shape as the argument, except for the disappearance of the
reduced-over last dimension.

Reduction can be performed along coordinates other than the
last: ~fA signifies ~ reduction along the first coordinate of A,
co / [I] A and ~ f [I] A s i g n i f y red uc t ion aIon g the It h coo r din ate 0 fA,
where I is a one-element value whose element is among the set lppA.
(Coordinate index follows the index origin.)

In gener a l , the r esul t has ran k one 1 ess than that 0 f the
arg umen t, and has the same shape, except for the disappear ance 0 f the
red uc ed-over d imen sion •

3-51 AK95-02

The exact order in which the repeated scalar operations of a
reduction are performed is sometimes of consequence -- it is not in the
case of plus-reduction -- but is in the case of minus-reduction.

For example, if V
V[1]-(V[2]-(V[3]-V[4]»
«V[1]-V[2])-V[3])-V[4].

is a
which

four-element vector, -IV gives
is·d ifferentin val ue fr 0 m

The rule is that the 0 per ations ar e per formed in r ight-to-left
order; i.e., the first operation performed is the rightmost one, and
the result of that operation becomes the right argument of the next
operation to the left, and so on. As discussed under "Right-to-Left
Rule", later in this section, this is the same interpretation given to
V[1]-V[2]-V[3]-V[4] if it were typed directly.

SCAN 0\ o~

Scan is a composite operator consisting of a backslash \preceded
by the-5""ymbol of any standard APL dyadic scalar operator. For
example, pL us- sc an is + \ and max imum- sc an is r\.

As wi th reduction, the form 0\ ind icates that the discussion can
be generalized to any dyadic scalar operator scan.

Like reduction, scan behaves like a monadic mixed operator,
accepting a single, right argument. Also like reduction, the
a r g um en t can ha v e any ran k and s hape . UnI ike red uc t ion, s can
preserves the structure of its argument; thatls, the resul t of a scan
has the same rank and shape as its argument, without exception.

When applied to a vector argument V, the result R of CD\V is
defined as follows (origin 1): R[I]=oII+V for each I€lPV. That is,
R[1] =V[1] , R[2] =0 I 2tV, R[3] =0 I 3-v, ..., and R [p V] =0 I V. For e xam pl e ,
1 3 6 10 15 21 28 = +\17. Thus the plus-scan of V is the vector of
cumulative sums of the elements of V.

Unlike reduction, if the argument of scan is an empty vector, the
result is an empty vector; no identity elements are involved.

Like reduction, if the argument of scan is a scalar, it is treated
as a one element vector, except that the result is a scalar, not a
one-element vector.

3-52 AK95-02

Like reduction, if the argument of scan is a matrix or array, then
the scan is along the "vectors" that form the last dimension of the
value. The result always has the same rank and shape as the argument.

Like reduction, scan can be performed along coordinates other
than the 1 ast : o\A s igni fies 0 scan al.ong the fir st coord inate 0 fA;
O\[I]A and O\[I]A signify scan along the Ith coordinate of .4, where I
is a one-element value whose element is among the set lppA.

Note the following relationships (A is boolean):

(-<\-A) =:S;\A
(-A \ -A) =v\A

(X\A)=A\A
(r\A)=v\A

(-:S;\-A)=<\A
(-V\-A)=A\A

(L\A)=A\A
(I\A)=<\A

All scan relationships hold for reduction.

OUTER PRODUCT 0.0

Outer product is a composite operation consisting of the symbols
o and • followed by the symbol of any standard APL dyadic scalar
operator. When outer product is discussed in general, it is shown as
o • 0.

Outer product behaves like a dyadic mixed operator, accepting
two arguments, right and left. Each argument may have any rank and
shape.

The elemental domain of outer product (i.e. valid type and
element values) depends upon the particular scalar operator in use.

The resul t 0 f outer prod uc t al ways has rank equal to the sum 0 f
the ranks of its arguments, and has shape equal to the catenation of
the s h a pe s 0 fit s a r g um en t s • That is, A 0 • ~B has ran k (p p A) + p p B, and
shape (pA) ,pB.

Th e elements or t n e result of Ao.<9B are computed by a ppLyLng tile
operator e t o every AB pairwise combination of the individual elements
of A and B, taken in row~major order.

3-53 AK95-02

Inner product is a composi te operation buil t up out of any
standard APL dyadic scalar operator, followed by a dot., followed by
another dyad ic scal ar oper ator . When inner product is being
discussed, in general, it is shown as ~.9.

Inner product behaves like a dyadic mixed operator, accepting
two arguments, right and left. In A~.9B, the last dimension extent of
A must equal the first dimension extent of B.

If A and B are both vectors, then the result of A~.9B is a scalar
whose value is 0/ AE&B. This is, the elements of A and B are passed as
arguments to the ED dyadic scalar operator, and the resul t vector is
reduced with the 0 operator to form a scalar result.

More generally, if A and B are of higher rank, then each "vector"
forming the last dimension of A (there may be many of them, as
determined by the preceding dimensions of A) is paired with each
"vector" forming the first dimension of B (again, there may be many of
them, as determined by the succeeding dimensions of B) to form a single
element of the resul t, just as in the vector-vector case. (The two
vectors are passed as arguments to the ED operator, and the result
reduced with the 0 operator.)

Every possible AB pairwise combination of the "vectors" of A and
B is formed in this way, and yields one element of the final resul t.

Note that the elemental domain is determined only by that of the ED
operator. However, the range of the 9 operator must be in the domain
of the ~ operator. For example, 'ABCD'=.='AACC' works, but
'ABCD'f.='AACC' yields a DOMAIN ERROR.

The result of AO.9B has shape equal to the catenation of the
shapes of its arguments, except that the 1ast dimension ex tent 0 f A,
and the first dimension extent of B, are missing (these two dimensions
are lost in the reduction process).

EXPRESSIONS

An expression is any valid combination of APL symbols which, when
executed, produces exactly one explicit result: an APL value.

Expressions may be of any length, and may produce any number of
implicit results.

3-54 AK95-02

Right-to-Left Rule

In every APL expression, each operation (operator, composite
operation, function, system function, and pseudo-operator) takes -
for its right arg ument the val ue prod uc ed by the entir e
subexpression to its right, and takes for its Left argument -- if it
requires one -- the value immediately to its left.

Thus, in every APL expression, the first operation to be
performed is the right-most one; the resul t of that operation becomes
the right argument for the next operation to the left; its result is
passed to the next operation to the left, and so on.

Operation precedence is therefore positional, rather than
attributive (as in algebra, and most other programming languages).
This may seem unusual at first, but the large number of APL operators
would render almost any attributive precedence scheme unworkable.
Thus, positional precedence is a natural choice. The selection of
right-to-left ordering is due to monadic operations taking of right
ar gumen t s rather t han 1e ft ar g urn en t s • (Left- to - rig htor der ing co u1d
have been chosen as well, so long as all monadic operations were
defined to take only left arguments.)

SUbexpressions

A subexpression is an expression that is part of a larger
ex pr e s s ion.

Note that a sube xpr e s s Lo n need not preserve the meaning of its
containing expression, and therefore need not be delimited.

3-55 AK95-02

For example, the expression 1+2,3p4+12 contains the following
sUbexpressions,

2,3
1+2
3p 4
1 +2, 3
2, 3p 4

and mote, all of which are inconsistent wi th the intent and meaning of
the i r con t a in ing ex pr e s s ion, sin c e the y v i 01 ate its s yn t a x , For
e x am pl e , 3p 4 v i 01 ate s the s yn t a x 0 f the 0 rig ina1 ex pr e s s ion bec au s e
the 4 is the left arg ument 0 f the rightmost add + in the or ig in al
expression, yet is used as the right argument of reshape p in this
subexpression; the intended right argument to reshape p is 4+12.
Similarly, 1+2 has the 2 as right argument to add +, whereas the 2 is
the left argument to catenate, in the containing expression; the
intended right argument to this add + is the implicit subexpression
2,3p4+12.

Implicit Subexpressions

An implicit subexpression is a subexpression that is delimited
implicitly -- that is, due to APL syntax -- rather than explicitly-
such as with parentheses -- and therefore preserves the meaning of its
containing expression.

Every APL expression consisting of at least one operation
contains at least one implicit sUbexpression.

For example, the expression 1+2, 3p 4+12 contains only the
following implicit subexpressions, in order of increasing length:

2
1 2
4+12
3p4+12
2,3p4+12

The following are not implicit subexpressions of this
expression, since their argument associations are inconsistent with
those defined by the syntax of the original expression:

3p 4
2,3
1+2
1+2,3
1+2,3p4

3-56 AK95-02

Explicit Expression Delimiters ();[J~:Q

Eight characters explicitly delimit APL expressions when
outside of character constants: (); [J~ :0. Each has one or more
special meanings associated with it, which are explained below.

Two "characters" implicitly delimit APL expressions: bol
("beginning of line") and eol ("end of line").

Explicit Subexpressions

An explicit subexpression is a subexpression that is explicitly
delimited by one of the following eleven pairs of explicit expression
delimiters;

()
[]
(;..
t t

;)
[;
;]
;l't
;0..
• t

0;

or by one 0 f the two pa ir s bol ; or ;eol, wher e "bol It denotes" beg inn ing
o f lin e" an d "eo I " den 0 t e sitend 0 f 1 in e . "

Every explicit subexpression preserves the meaning of its
containing expression. (This is because any delimited subexpression
preserves the meaning of its containing expression.)

3-57 AK95-02

Note that the following nine pairs of expression delimiters -
none of which are in the above list -- can delimit a valid APL
expression, but not a sUbexpression:

:A
:0
:eol
OA
00
oeo l
bo l a
bolO
bol
eol

No other pairwise permutation of expression delimiters can delimit an
expression or subexpression.

Parenthesized Expressions and Subexpressions

Any APL expression or implicit subexpression can be enclosed in
parentheses nested to any depth. However, the parentheses will have
no effect whatever. (If the reason for this is not immediately
obvious, review the definitions of expressions, the right-to-Ieft
rule, and implicit sUbexpressions.)

Parentheses have operational significance only when they define
(del imit) subexpressions that do not qual ify as impl ic it
subexpressions. Subexpressions delimited by parentheses are
explicit subexpressions called parenthesized subexpressions.

Each parenthesized subexpression is evaluated separately, and
its result replaces it in the evaluation of the remainder of the
expression. A given parenthesized subexpression is evaluated just
before the exec ution 0 f the 0 per ation that takes the r esul t 0 f that
parenthesized subexpression as an argument, and no sooner.

Lists

A list is a sequence of any number (including zero) or APL
expressfons, separated by semicolons. Lists have three uses in APL:
indexing, mixed output, and multi-value argument passing to external
functions and system functions.

3-58 AK95-02

Indexing

Indexing is an operation that allows the detailed selection of an
arbitrary number of elements, or blocks of elements from any
non-scalar APL value. In algebra and most other programming
languages, this is called subscripting.- However, since there is no
means for entering a subscript on most terminals, and since the
element selection is made by specifying element indices, indexing is
an appropriate term for this operation.

To index a given value, the value is immediately followed by a
bracketed list of expressions that produce nonnegative integer values
as resul ts. The number of expressions in the list must equal the rank
of the indexed value. Therefore, the number of semicolons in the list
must be one less than the rank of the indexed value.

Clearly, indexing a vector requires a list with only one
expression, and no semicolons; that is, a vector is indexed by a
bracketed expression. Indexing a matrix, however, requires a list of
two expressions, with exactly one semicolon.

The elements of the result value of each expression of the index
list are interpreted as indices for the coordinate of the indexed
value that corresponds to that expression, of elements of the indexed
value. This is, the elements of the resul t of the first expression
specify first coordinate indices of elements of the indexed value; the
elements of the second expression result specify second coordinate
indices; and so forth.

For e xam pl e, i f A i s a 6 by 10matr ix, then A [1 3 4; 2 7] s e I ec t s
elements of A that have a first coordinate index of 1 or 3 or 4, and a
second coordinate index of 2 or 7. That is, selected elements must be
in the first or third or fourth rows, and must be in the second or
seventh columns. Clearly, there are six such elements.

3-59 AK95-02

Note that in the example, the numbers of elements in the two
expression results are not equal. Furthermore, the selection
effectively uses all possible pairings of one element from each of the
two expressions. This is true in general. Therefore, the number of
selected elements is the product of the numbers of elements of the
selecting expression results. (This is not the only possible scheme.
For e x am pIe, i fit we r erequi r ed t hat all ex pro e s s ion res u1 t s havethe
same number of elements, then these elements could be paired (in the
matrix case) sequentially to enable the sparse selection of elements.
For example, A[l 3 4;2 4 7] would -- in this system -- select three
elements: A[1;2], A[3;4], and A[4;7]. However, although this type
of indexing can be useful, it is not nearly as useful as the scheme
sel ec ted for use in APL.)

The shape of the resul t of indexing is determined by the shapes of
the r esul ts 0 f the ex pr essions in the ind ex 1 ist, not by the shape 0 f
the ind exed val ue : the shape 0 f the r esul tis the c aten ation 0 f the
shapes of the results of the indexing expressions. Clearly, the rank
of the result is the sum of the ranks of the results of the indexing
ex pr e s s ion s •

For example, if all indexing expressions produce scalars, then
the result is a scalar. However, if all indexing expressions produce
one-element vectors, then the result is a one-element value with rank
equal to thatofthe indexed value. (Ignoring the rank of one-element
results of indexing expressions is likely to produce erroneous later
results: RANK ERRORS due to superfluous dimensions of unity extent.
Use of "p on one-element indexing expression resul ts will yield the
usually desired sc al ar ;)

All indices used in indexing follow the index origin.

All indices must be among the set l(pA)[I], where I specifies the
coordinate being indexed and A is the indexed value. Any index not in
thi s set is inv al id: use 0 f inv al id ind ic es yield s an INDEX ERROR.

3-60 AK95-02

Aspecial feature of APL indexing that does not fi t into the rules
above is the elided expression: any expression in the index list can
be omitted. The defaul t expression, used in place of elided
expressions, is effectively 1 (pA) [I], where A is the indexed value and
I is the coordinate index of the coordinate being indexed by that
expression. This has the effect of selecting all indices along the
coordinate of the elided expression. For example, if A is the 6 by 10
matrix used above, then A[l;] selects the' first row of A, returning it
as a 10-elementvector; A[;3]selects the third column of A, returning
it as a 6-elementvector; A[2 5;]selects the second and fifth rows of
A, returning them as a 2 by 10 matrix; and A[;] selects all elements of
A, returning them as a 6 by 10 matrix identical to A.

Note that for the above example, A[] yields a RANK ERROR, since A
is a matr ix, and the ind ex 1 istis sui tab1 eon1 y for a v ec to r . Thus,
when eliding index list expressions, do not elide any semicolons.

Mixed Output

A list of implicitly defined expressions delimited by pairs of
semicolons produces mixed output when evaluated:

;15;' IS A VECTOR CONSISTING OF ' ; 5 ; , ELEMENTS ';

produces the following output:

1 2 3 4 5 IS A VECTOR CONSISTING OF 5 ELEMENTS

Mixed output is the output (printing) of the explicit result of
each expression in turn, one after another, wi th no add i tional spaces
or newlines inserted between them. All spaces and newlines that are
part of the normal printed representation of each value are printed as
usual. Since some of the expressions may produce character values and
others numeric values, mixed output is one way to form output with
mixed type in one line.

The explicit results of the list expressions are printed
starting with that of the left-most expression in the list, and
proceeding to the right. This may at first seem inconsistent with
APL's usual right to-left ordering, but note that the order in which
the expressions are evaluated is explicitly undefined in APL: only
the left-to-right order in which the explicit results of those
expressions are printed is defined. Furthermore~ left-to-right is
the way terminal printers print, and is therefore appropriate for
mixed output.

3-61 AK95-03

Any mixed output list entry that produces no explicit result -
and is therefore not an expression -- is an error, as mixed output
requires a value from each expression in the list. Evaluation of such
a mixed output list yields a VALUE ERROR.

However, elided list entries are valid: they are equivalent to a
list expression of 10. That is, elided entries are completely ignored
and do not affect the printed output.

Note that for the purposes of defining mixed output, a mixed
output list must contain at least two expressions: a one-expression
"list" delimited by one of the above pairs is not a list, it is an
expression.

Argument Lists

A list that is delimited by parentheses -- a parenthesized list
can be used as an argument to two special types of functions

discussed in more detail later in this manual: external functions,
and system functions.

An external funct ion is a user -defi ned ex ec utable ent i t y wr it ten
in PL/I, compiled, and made available in APL via the)DFN,)MFN, or
)ZFN system commands (See Section 5.). It can have any syntax that an
APL function or operator can have; its syntax can also be dependent
upon how it is called: it can therefore have both a monadic and dyadic
definition; either of its arguments can be a parenthesized list.

A system function is an executable entity similar to an external
function, but with two differences: it is a permanent part of APL
(Users cannot create one; they are always available to the user, just
as operators ar e c I ; its "name" begins wi th a quad D.

A+DCS

or

A+'I3' OFMT (112;10+112;100+112;1000+112).

3-62 AK95-02

Comments

Comments can be appended to any complete line of APL by using the
lamp A as the left-most character of the comment," APL ignores
everything to the right of any lamp A that is not imbedded in a
character constant.

If outside of any character constant, the lamp A is equivalent to
an eol: it can serve as a right delimiter of implicit sube xpr e s s Lon ,
expression, mixed output list, statement, function line, and any
diamond line.

Labels

A label is a part of a function line that effectively "names" the
line. Any reference to the label produces as an explicit result the
line number of the line on which the label is defined. A label is
defined by placing its name, followed by a colon, immediately to the
left of the definitionOfthe function line to be "labeled".

This is the only valid use of the colon in APL syntax.

If outside any character constant, and if to its left is a valid
APL name (discussed later), the colon is equivalent to a bol, except
that it has the side-effect of defining a label: a colon can serve as a
left delimiter of an exoression. mixed outout list. statement. or
d i am 0 nd 1 in e • ~ , ~ , ,

Labels are discussed in more detail later in this section.

Statements

A statement is any valid sequence of APL operations that is
delimited by one of the following nine pairs of delimiters:

:A
:0
:eol
OR
<X>
oeol
bolA
bo l o
bol eol

3-63 AK95-02

An operation is anything that can take one or more arguments.
Operations include: operators, pseudo-operators, composite
operations, indexing, mixed output, functions, system functions, and
external functions.

An operation need not produce an explicit result.

A statement is a syntactically closed construct: it is entirely
sel f -conta ined, and ther e fore cannot ac t as an arg ument to an y
construct, nor can it take an argument from any construct.

A statement's delimiters are not part of the statement.

A statement need not produce an explicit result: if its lowest
precedence operation -- that is, the one that is executed last -- does
not produce an explicit result, then the statement itself does not
produce an explicit result.

Only the lowest precedence operation is el igible to not produce
an explicit result: if an operation with higher precedencefails to
produce an explicit result then a VALUE ERROR, SYNTAX ERROR, CONTEXT
ERROR, or USAGE ERROR occurs, depending upon the cause.

The statement is the most general APL construct that contains
on1 y 0 pe rat ion s •

The del i mit e r pair s 1 is ted abo v e imply t hat a s tatemen t cannot be
a portion of a "larger" statement. This is in contrast to an
expression, which can be a portion of a larger expression.

Closed Expressions

A closed expression is an expression which is a statement: its
explicit result is not taken as an argument of any operation.

3-64 AK95-02

Diamond Lines

A diamond line is a sequence of any number (including zero) of
statements separated by diamonds o.

A diamond line is evaiuated by the sequential evaluation of its
consti tuent statemen ts, wor king from left-to-r ight. The statements
are treated completely separately and independently: neither
arguments nor results are shared or passed amongst the statements;
each statement must have valid APL syntax.

This is the only valid use of the diamond in APL syntax.

If outside any character constant, the diamond in many ways can
act similarly to both eol and bol: it can serve as a right delimiter of
an implicit subexpression, an expression, any mixed output list, and
any statement, and simultaneously can serve as a left delimiter of an
expression, mixed output list, or any statement. Any diamond which is
inside a character constant is merely a character, not a syntactic
entity.

With respect to labels, all statements of a diamond line are
considered to be part of the same function line.

Since a statement need not produce an explicit result, any
statement of a diamond line can be "vacuous", containing only white
space.

A one-statement diamond line is generally called a

OBJECTS

An object is a variable, a function, or a group.

Names

, ..Llne.

A name is used to establish a reference to an object: every
object has exactly one name; every name refers to exactly one object.

Aname consists of an alphabetic character followed by any number
including zero -- of alphabetic or numeric characters. For the

purposes of this rule, the alphabetic characters are defined as:

AABCDEFGHIJKLMNOPQRSTUVWXYZ and
AABCDEFGHIJKLMNOPQRSTUVWXYZ

3-65 AK95-02

and the numeric characters are defined as:

0123456789 0123456789 •

Note that the underscore
name.

cannot be the first character of a

All characters of a name are significant. Names can be of any
length.

Syntax of Name~

At I east one nonal pha-numer ic char ac ter must appear between eac h
pair of adjacent -- yet distinct -- names, numbers, or names and
numbers, in order to unambiguously separate them. This separator
character can be a space or tabulate, or the symbol of a dyadic APL
operator, or an explicit expression or value delimiter, or a
punctuation character.

All of these separators -- except space and tabulate -- have
special meanings in APL, and therefore cannot be used
indiscriminately. However, since space and tabulate serve only as
se par ator s , the y c an be in ser ted whenever nec essar y or conv en ien t ,

Except for the above mentioned special cases, and the additional
special case of distinquished names (discussed later), the inclusion
o f spac e sand tab uI ate s - - II wh i t e spac e " - - inAPL e x pr e s s ionsis
completely optional.

Identifiers

An identifier is a name that refers to -- or is intended to refer
to -- a variable or a function that either currently exists or can
exist in the current env ironment. That is, an identifier is any name
that is not currently in use as the name of a defined group.

Variable Names

A variable name is an identifier that refers to -- or is intended
to refer to -- a variable that either currently exists or can exist in
the current environment. That is, a variable name is an identifier
that is not currently in use as the name of a defined (existing)
fune tion-:-

3-66 AK95-02

Function Names

A function name is an identifier that refers to -- or is intended
to refer to -- a function that either currently exists or can exist in
the current environment. That is, a function name is an identifier
that is not currently in'use as the name of an existing function.

Group Names

A group name is a name that refers to -- or is intended to refer to
-- a group that either currently exists or can exist in the current
env ironment. That is, a group name is a name that is not curren tl y in
use as the name of an existing variable nor a defined (existing)
function. --

Variables

A variable is an identifier that currently references exactly
one val~-That is, a variable is an identifier to which some one
value is currently assigned. In order to qualify as a variable, a
binding between identifier and value must currently exist.

More simply, a variable is an APL value that has a name. Unlike
most programming languages, APL requires no declarations of names: a
variable is created by merely assigning a value to an identifier
(discussed later).

Variables have no type, subtype, rank, or shape restrictions:
any identifier can be assigned any APL value; when a new value is
assigned to an existing variable, its previous value is discarded.

The i mpo r tanceo f a v ar i a b1elie sin the fa c t t hat i tis the 0 n1y
mechanism by which a value can be indefinitely and conveniently
stored: unless stored in a variable -- or in a less versatile and more
cumbersome file, every value produced in the evaluation of an APL
expression is discarded by the time its evaluation completes.

A value cannot be assigned to the name of an existing group or
function: only existing variables can be redefined in this way; this
protection hinders accidental erasure of functions and accidental
dispersal of groups.

Syntactically, variables behave as do constants and
parenthesized expressions: in evaluation, the identifier is
effectively replaced by the value to which it refers.

3-67 AK95-02

Any "by-value" reference to an identifier not yet assigned a
value -- nor defined as a niladic function returning an explicit
result (discussed below) -- yields a VALUE ERROR.

Functions

A function is an identifier that currently references exactly
one previously defined function definition: a sequence of function
lines -- called the function body -- and its associated header
(discussed later). In order to q~alify as a function, a binding
between identifier and function definition must currently exist.

More simpl y, a function is a stored APL program that has a name.
It con sis t s 0 fan yin t eg r aI n urn ber (not inc I ud ing ze r 0) 0 f
unevaluated, sequentially ordered functionllnes (discussed later),
plus a header that defines the function's syntax and specifies the
identifiers to be used temporarily and internally during its
execution.

A function can be manually created and altered using the APL
function editor (discussed in Section 4); or, it can be created and
altered by another function -- with the help of APL system functions.

Syntactically, functions can behave in many different ways,
depending upon the specification in the header: functions can mimic
operators, or variables, or neither. In evaluation, a monadic or
dyadic function -- defined to produce an explicit result -- takes one
or two arguments respectively, and produces exactly one explicit
r esul t , ther eby mim ic king monad ic and dyad i c 0 per ator s ,
respectively; similarly, a niladic function -- defined to return an
e xpl i cit res uI t - - t a ke s no ar g urn en t s , and s i mpl y retur n san e xpI i cit
result that effectively replaces the identifier in the expression
thereby mimicking variables; finally, functions can behave unlike
operators or variables: a niladic, monadic, or dyadic function -
de fin ed· lit 0 t to retur nan ex pl i cit res uItta ke s ze r 0, 0 ne, 0 r two
argumentsrespectively, and produces no explicit result (If such a
fun c t ion is to be use fu I as m0 rethan j liSt a cpu- t ime con s urn erand/ 0 r
"bit bucket", then it should produce either an implicit result -- such
as a change in environment, or a printed output.).

Groups

A group is a named collection of objects. Grouping the objects
allows them to be copied and erased as a unit, without repetitively
typing their individual names.

3-68 AK95-02

Agroup can conta in an y in tegr al number (except zero) of an y type
of object, including other groups. An object can be in more than one
group at a time, since grouping is only a "bookkeeping" convenience,
and has no effect whatever on the values of grouped variables or on the
definition or execution of grouped functions.

Groups have no significance other than in the)eOpy,)ERASE,
)PCOPY,)GROUP,)GRPS, and)GRP system commands.

Groups have no syntax, since a group name can never be a valid
part of any APL expression.

Groups -- and their associated system commands -- are discussed
more fully in Section 5.

Note that by the above definitions, a "variable name" is not the
same as a "name of a variable": the "Name of a variable" is literally
the name of an existing variable, whereas a "variable name" is a name
which either is, or can be, the name of a variable, given the current
env ironment. Thi s d istinc tion appl ie s in an an alogous manner to
"function name" versus "name of a function" and to "group name" versus
" name 0 fag r 0 up. it

THE ASSIGNMENT PSEUDO-OPERATOR +

Left arrow + is the symbol for the dyadic assignment
pseudo-operator. A variable name or an indexed name of a variable
must appear as its left argument: this argument is evaluated
by-reference, not by-value. A value must be its right argument.

The assignment pseudo-operator creates a binding between its
left and right arguments.

For the example VAR NAME+VALUE, if 'VAR NAME' is not the name of
an existing variable, then APL creates a variable namea-'VAR_NAME',
assigning to it the value VALUE; if VAR NAMEis the name of an existing
variable, then APL discards its old value and assigns to it the new
val ue VALUE.

3-69 AK95-02

Indexed Assignment

For the example NAME OF VAR[index list]+VALUE, NAME OF VAR
must be the name 0 f an ex ist ing-v ar iabl e, index 1 ist must be a v al id
index list for the variable NAME OF VAR (that is~ consistent with the
rank and shape of NAME OF VAR, and VALUE must either be a one-element
value of any. rank, or -must have the same rank and shape as
NAME OF VAR[index list], with the exception that unity dimension
extents-are ignored when making the rank and shape tests.

The elements of NAME OF VAR selected by the indices given in
index list are replaced by the corresponding elements of VALUE (If
VALUE-is a one-element value, then that element replaces all selected
elements of NAME OF VAR.).

Elements of NAME OF VAR not selected by the indices of
index list are unchanged.

The type of NAME OF VAR must match that of VALUE: mixed-type
values are not permitted:

Neither the rank nor the shape of the variable NAME OF VAR can be
changed using indexed assignment: this operation merely changes the
value of existing elements.

The order in which the selected elements of NAME OF VAR are
replaced is explicitly undefined: if some particular-element is
selected several times and successively replaced by unequal elements
of VALUE, the final value of that element is undefined and may differ
among APL implementations.

Results

Like operators, the assignment pseudo-operator produces an
explicit result: its right argument is passed to the left to be used
as an argument to successive operations.

There for e, e xc e pt for the v er y i mpo r tan t imp1 i cit res u1 t 0 f
either creating a variable or changing the value of' an existing one,
assignment has no effect on the evaluation of its containing
expression.

3-70 AK95-02

Output of Explicit Results

APL prints every value that is not taken as an argument to some
operation. For example, if A and B are variables, then the expression
A causes the value of A to be left unclaimed by any operation whatever:
thus, it is printed; similarly, A+B produces an unclaimed explicit
result, whic~ is therefore printed.

Assignment is the one exception to this rule: its explicit
result is not printed, even when no operation takes it up as an
argument.

Mixed output is the one exception to the rule that the explicit
result of every expression in a mixed output list is printed, without
exception.

Assignment is called a pseudo-operator because it violates the
defined properties of operators; specifically, it violates them in
the following respects:

o one argument must be a reference, not a value

o it produces an implicit result

THE I/O PSEUDO-VARIABLES O~

Quad 0 and quote-quad [!I are syntactically equivalent to
variables, with the single exception of indexed assignments -- an
operation not allowed with 0 ~.

Operationally, 0 and ~ behave as do variables, except that
instead of a value being stored in, or fetched from, the
semi-permanent "memory" of a variable, the value is output to, or
input from, the user's terminal.

In all other respects, any 0 or ~ appearing in an expression
outside of any character constants -- behaves exactly as does a
var iable.

3-71 AK95-02

Evaluated Ineut D

When not the left argument of assignment, a quad D indicates a
r e que s t for eval uatedinput. Wh en an eval uatedin put r e que stis
encountered during execution of an expression, APL temporarily sets
aside evaluation of t.he v r em a i nd er- of the expression, leaving the
execution env ironment unchanged; APL then pr ints on the user's
term inal the ev al uated input prompt D:, followed by a newl ine and si x
spaces; APL waits for the user's in put, whic h c an be an y expr ess ion;
APL then evaluates this expression in the current execution
environment; the explicit result of this input expression effectively
replaces the quad Din the original (source) expression; finally, with
the requested input value successfully obtained, APL resumes
execution of the original expression at the point of temporary
interruption.

If what is input in response to the evaluated input prompt is a
statement that produces no explicit result -- if the response given to
it is not an expression, then APL pr ints a VALUE ERROR message, then
reprompts -- again awaiting input of an expression: APL cannot
proceed until the request has been satisfied.

If the input is a statement that yields an error message while in
execution at the level of that statement, then APL reprompts -- again
awaiting input of a (hopefully) error-free expression.

If the input is a system command other than ~ OFF,) QUIT,
) CONTINUE,)CLEAR,)LOAD,)COPY, or)EXEC, then the command is
performed, and APL reprompts for evaluated input.

If the input is one of the above system commands, but not)COPYor
)EXEC, then the command is performed; however, due to the action of the
command, APL obviously cannot possibly reprompt.

If ~he input is either)COPY or)EXEC, then t he command is
per formed; however, due to the potential action of the command, APL
may not be able to reprompt.

If the input is an invocation of the function editor, then
editing can be performed normally; after exit from the function
editor, APL reprompts for evaluated input.

Execution of an expression containing a request for evaluated
input never resumes until the requested input value has been obtained.

3-12 AK95-02

Other than the rather drastic use of the above five system
commands, there are two mechanisms for escaping from a request for
ev al ua ted in put: the poten ti all y dr ast ic and destr uc tiv e escape -+-,

and the generally much safer strong interrupt.

Typing a. right arrow alone as the response to an ev al uated in put
request causes APL to unwind its execution stack back to the last point
of suspension; that is, execution of the current expression, its
container (usually a function), that container's caller, that
caller's caller, its caller, etc. back to the point at which there are
no further callers, is abandoned, with all direct evidence and results
of this execution sequence being discarded. (For full Mul tics users,
the escape is essentially equivalent to the Multics release command
with no argument. The)RESET system command is comparable to the
Multics command, release -all.)

The strong interrupt is input by pressing the ATTN key twice in a
row. While in evaluated input mode, any strong interrupt causes APL
to permanently in terr upt exec ut ion at the po in t 0 f the r eque st for
evaluated input. Furthermore, APL discards the temporary results
obtained from the partial evaluation of the expression. Execution
cannot be res tar ted at the po in t 0 fin t err up t ion, a s the seresul t s are
needed and no longer available. Thus, any resumption of execution
must reevaluate at least the entire expression" However, the
container of the expression, and all of its callers, are unaffected:
the execution stack is unchanged by strong interrupt.

Escapes and interrupts are discussed in detail later in this
section.

3-73 AK95-02

Character Input ~

When not the left argument of assignment, a quote-quad [!I
ind i cate s areque s t for c h a r act e r in put. Whensuc h arequest i s
encountered during expression evaluation, APL temporarily sets aside
evaluation of the remainder' of the expression; APL then waits for the
user's input,. which can be any string of characters -- APL does not
prompt for character input; APL interprets the input as an arbitrary
character vector -- no evaluation or modification is performed; this
character vector is the value which effectively replaces the
quote-quad [!I in the original expression; finally, with the requested
input character vector successfully obtained, APL resumes execution
of the original expression at the point of temporary interruption.

No error can directly result from the use of character input
since no evaluation takes place.

On c e a c har acte r has t yped, therei son1 yon e mec han i sm fo r
escaping for a character input request, and its action is identical to
that ofa strong interrupt issued in evaluated input mode (Interrupts
cannot be issued while in character input mode -- all ATTN's are
interpreted as editing the Ln put c) : type the three letters 0 UTall
over str uc k , as fII.

The newline character that terminates the input line is not
included in the character vector value of quote-quad input.

Therefore, if no in put is g iv en -- onl y the term in ating newl ine
is input, an empty character vector -- equivalent to "-- is its
val ue •

Any input produces a vector, even if it is a single character: a
single character is not returned as a scalar.

Output 0 [!I

Quad 0 or quote-quad [!I, when the left argument of the assignment
pseudo-operator, output the value to the user's terminal, rather than
to a variable.

Values are printed completely normally, except that the newline
which normally terminates the output of values is not printed if
quote-quad output is used. (Thi sis the onl y difference between 0
output and [!I output.) --

3-74 AK95-02

THE EXECUTE PSEUDO-OPERATOR ~

The execute pseudo-operator takes one argument: a character
scalar, vector or single-element array. The argument must be a single
diamond line (Note that this precludes labels but not comments). The
effect of execute is to .evaluate the diamond line in the current
environment, performing all implicit and explicit operations
specified. Execute can have one explicit result: the explicit
resul t of the rightmost statement. The only case in which execute has
no explicit result is when its argument is null or blank.

Execute is useful in several ways. It can be used to convert
char ac ter s to number s • It can be used to build APL statements und er
program control, and then have them evaluated.

Execute is a pseudo-operator because it can have no explicit
result.

Execute can be used in a subexpression like any other operator;
if it does not return an explicit result a value error occurs.

There is no practical limit to the length of the argument to
execute, nor to the depth of recursion of its use.

All SYNTAX ERRORS are detected before evaluation of the
argument. All other errors are detected during evaluation, as is
normal in Multics APL. The verbosity of messages printed when an
error is detected during evaluation of execute can be controlled by
the)ERRS system command.

The explicit resul t of execute may not be meaningful or useful.
If execute is the left-most operation in a statement this result is
unclaimed, and hence is printed. To suppress this printing, the
result of execute can be assigned to a variable name or to a system
variable that ignores assignment (DAI, for example).

Execute should be used to per form actions than cannot be
performed without it, or are very difficult without it; not to perform
actions that can just as easil y be done another way. This is because
the argument to execute must be converted to an internal form each time
execute is ev al uated , r ather than just once, (per) LOAD or) COpy) as is
the case for functions. There is a small, but nontrivial, cost
associated with this conversion that can add up if execute is used
excessively or unwisely.

3-75 AK95-02

PORNOGRAPHY: DEPENDENCE UPON UNDEFINED EVALUATION ORDER

In APL, pornogr aphy is defined in form all y as the dependence upon
undefined evaluation order for the successful or correct evaluation
of an APL statement.

Two evaluation orderings are explicitly undefined in APL:

that of the various complete expressions of a list; and

- that of the arguments of any operation.

Any APL function or statement that depends upon assumptions in
either of these undefined cases for its correct or error-free
evaluation is incorrect APL: any such incorrect APL code cannot be
expected to operate consistently when evaluated by different
implementations of APL, or even when evaluated by future versions of
any given implementation; as these cases are explicitly undefined, an
implementation may choose any evaluation order it desires, and is free
to change it at any time.

The various complete expressions that form the entries of a list
ar e al ways ev al uated separ atel y and independentl y: no port ion of an y
expression participates as an argument of any operation in the
expression of any other entry in that list.

The s emi colon s 0 f ali s t e f f e c t i vel y act as" bar r i e r s" tothe
scope of the right-to-left rule, which holds only within single
expressions and single explicit and implicit subexpressions.

3-16 AK95-02

Therefore, the order in which the separate and independent list
entry expressions are evaluated is explicitly undefined.

D+A[I+3;I+I+1J

'THIRTY = ';N+3;N+0

THIRTY = 30

0+' ONE' ;0+' TWO'

?

?

ONETWO

Two list ex pr essions reference a var iable
whose value is changed in one of those
expressions. The value I+3 is undefined, as
it mayreference the old or the newvalue of I.

The val ue of N after ev al uation of thi s
statement
is undefined.

This statement yields three lines of output,
the third
defini tely being the string ONETWO, that being
the mixed
out put "r e su l t ~ " Wh e the r the 0 ther two 1 in e s
are printed
in the order ONE TWO or TWO ONE is undefined.

The right-to-left rule defines precisely the order in which
operations are performed in an expression, but it leaves undefined the
order in which the arguments and coordinate index of a single
argument-taking entity are evaluated.

(I+2)~[I+1J3 4P1I+12

9 10 11 12

123 4
567 8

(A+3)xA

AxA+3

n.n
UTU

0:

17
2

The ex pl i cit res u1 tis d e fin i tel y 24>[1 J3
4pt12, but
the value of I after evaluation is
undefined.

Cl earl y, A+3 is ev al uated before a X(.(J.

However, the val ue of (.(J is undefined: it
may reference either the old or new A.

This expression is well defined: 3x3.
However, this type of code is obscure and
is therefore not recommended.

Two separate requests for evaluated
input occur.
However, which acts as which argument of
af(.(J is undefined.
0:

3-77 AK95-02

r/["pI+(1+11).?27 3p10]I The coordinate index is well-defined:
it is 1+ index origin. However, the
val ue being red uced -- w in r/ [<I]w -- is
undefined: it may reference ei ther the
old or new I.

r/["pI+]I(1+t1),?27 3p10 This expression is well-defined (except
for the randomness of ?). However, it is
ob s c ur e • I + (1+ 1 1) • ? 2 7 3 p 10 0 r I I , "p I] I
is well-defined and transparent.

In summary, dependence upon undefined evaluation order occurs
only in statements containing assignments to variables referenced
elsewhere in that same statement. For the purposes of this statement,
any reference to the I/O pseudo-variables must be considered a form of
assignment, as must calls to functions that perform relatively global
assignments or that reference the I/O pseudo-variables.

Not every statement containing such assignments and references
is necessaril y undefined, but such statements -- if at all complex -
tend to be qui te ob sc ur e : suc h code should be avoided whenever
reasonable by splitting the offending statement into several
statements.

Obviously, however, it is unnecessary to split A+A+1 into
T+A+10A+T, but even such seemingly simple statements as AxA+3 should
be split into A+30AxA.

The following two ex pressions are taken from a sui te 0 f functions
recently pub l t shed in an APL newsletter. Both are well-defined, yet
unnecessarily obscure. Both cases are then repeated after being
split into well-defined, transparent expressions.

3-78 AK95-02

Example .1.

E+pD+-1+(C.O)-O.C+(+/-C)+AC+(-~\"" =B)AA =B+.B.A

when A and B are previously defined.

This monstrosity should be split into the following sequence of
ex pr e s s ion s :

B+.B.A
C+(-~\""=B)AA=B

C+ (+ / -C) +.C
D+ -1 +(C • 0) - 0 • C
E..... pD

Example ~

Z[B+(CAX€D)/tPXi]+(2 4p' Y9 X9 ')[(C+(-~\""=X)AA~pD)/A+(D+'wa')tXi]

where Z and X are previously defined.

Similarly, this eyesore should be split into the following
ex pr essions :

D+'wa'
A+Dt.X
C+(-~\""=X)AA~pD

B+(CAX€D)/tpX
Z[Bi]+(2 4p' Y9 X9 ')[C/Ai]

Spl it up, these ex amples are r-e I ati vel y easy to follow, unl ike
their source expressions. Unfortunately, expressions such as these
examples are easy to dredge up from APL pubLic at Lon s -- including many
APL user's manuals, and have therefore contributed to the
undeservedly negative reputation which APL has in some circles.

WORKSPACES

A workspace is a portion of computer memory in which APL stores
everything it needs to remember during a session, and in which the user
stores an arbitrary -- but usually logically related -- collection of
objects. The workspace is the largest logical entity in APL: it is
the most general self-contained entity that can be referenced and used
as a unit.

3-79 AK95-02

Every APL workspace contains: (1) the symbol table, listing the
name and storage location of each variable, function, and group; (2)
the value of each variable, and the definition of each function and of
each group; (3) the state indicator; (4) the value stack, in which
temporary and intermediate values are s t or ed by APL; (5) an assortment
of dynamic, user-modifiable workspace par.ameters; and (6) an
assortment of static, non-user-moditiable workspace attributes.

The Active Workspace

All computing in APL takes pI ac e in a spec ial works pac e, called
the active workspace.

When APL is first entered, The active workspace is clear: the
symbol table has no entries; there are no values, nor function or group
definitions; the state indicator is empty; the value stack is empty;
the workspace parameters are set to default values; the workspace
attributes are undefined or set to dummy values.

APL has a system command that saves a copy of the contents of the
active workspace. Another command loads a copy of a previously saved
workspace into the active workspace. This permits an APL session to
be interrupted and saved, and then resumed at a later date wi th no loss
o fin fo r mat ion • Thi sal so pe r mit s a use r to ma in t a in an y n urn be r 0 f
saved workspaces, each applicable to some separate task, and to take
them up in turn as desired.

The active wor ks pace is impl emented by Multic s APL as at least
four separate segments. Every saved Mul tics APL workspace is stored
as either a single segment, or a multisegment file, as necessary.

3-80 AK95-02

SECTION 4

FUNCTIONS

FUNCTIONS

Functions are stored APL programs. They are generally created
and modified by the APL function editor -- described later in this
section -- although other mechanisms are also available.

More formally, a function is a stored ordered sequence of
unevaluated function lines -- called the function body -- preceded by
a special line called the header, which defines the syntax, name, and
local identifiers of the function.

A function line is a diamond line which may be preceded by a
label.

Arguments

Ever y APL function takes a fix ed number 0 f arguments -- ei ther
zero, one, or two. Functions are thus characterized as niladic,
monadic, or dyadic, respectively.

Results

Every APL function has another fixed property: the ability -- or
lack thereof -- to return an explicit result.

A function defined to be unable to return an explicit result
cannot -- and will not -- ever return an explicit result. A function
defined to be able to return an explicit resul t mayor may not return
one, depending upon the arguments given and/or the code in the
function body.

4-1 AK95-02

As discussed earlier under "Names", a niladic function that
returns an explicit result syntactically behaves exactly as does a
v ar i able: it takes no ar g uments, and returns an ex pl ic it val ue •
Furthermore, a niladic function defined to be able to return an
explicit resul t syntactically behaves almost exactly as does a
variable name: it takes'no arguments, and mayor may not return an
explicit result value; the difference is that a call to a niladic
function that returns no explicit result can stand alone in an APL
statement without error, whereas a similar reference to a variable
name always yields a VALUE ERROR.

Similarly, a monadic or dyadic function that returns an explicit
result syntactically behaves exactly as does a monadic or dyadic
operator, respectively: it takes one or two arguments, respectively,
and returns an explicit result.

Regardless of its definition, upon returning to its caller, a
function call. that has not produced an explicit resul t yields a VALUE
ERROR if the context of the function call demands an explicit result.

Operationall y and env ironmentall y, functions do not behave as do
variables, variable names, or operators: a function may produce
implicit results that affect the environment or are printed; a
function may execute for an infini te period of time wi thout returning;
a func tion may refer ence fil es and v ar i ab l e s other than its arg ument s ;
a function may call itself or other functions; etc.

Local Identifiers

A local identifier is an identifier that is currently localized
by a function call and that masks -- but does not al ter or destroy -
any object which that name may refer to in the environment external to
this function call.

An identifier is localized by a call to a function that includes
the identifier in its header in any position except that of the
function name.

A local identifier masks the existence of any object in the
environment external to this function call whose name matches the
local identifier.

Masking is a change in the execution env ironment: masked
objects can no longer be referenced.

4-2 AK95-02

Masking is an immediate consequence of the localization process:
it occurs at the time of the function call, before any function lines
are executed; it occurs if and only if an identifier to be localized
matches the name of an existing object.

Ne Lther-' identifier localization nor masking causes any object in
any environment to be created, modified, or destroyed: only
name-object referencing rules are affected, and only for local
identifiers and masked objects.

The execution environment reverts to its original state upon
return from the localizing function call: masking is removed, and
local identifiers and their referents -- local objects created by the
localizing function or· its cal lees -- are discarded.

Local identifiers are truly intended "for internal use only:"
local objects wi th any names -- except that of the local izing function
-- can be safely and freely created, modified, and erased without
alteration or destruction of any nonlocal object of the same name;
masked objects are therefore completely safe, as they are isolated and
unavailable by any mechanism.

Local Objects

A local object is an object whose name is currently a local
identifier.

Only variables and functions can be local:
ineligible.

groups are

Local objects behave -- in normal execution -- exactly as do
their global counterparts: all definitions and rules of APL
expression and function evaluation apply as well to local objects.
However, some system commands and system functions treat local
objects differently than global objects.

Global Identifiers

A global identifier is an identifier that is not currently
local ized by any function call. That is, the current execution
environment is in such a state that the identifier is not localized.

This does not preclude the possibility that a future function
call may localize this identifier: it merely indicates that no
function call is currently doing so.

4-3 AK95-02

Global Objects

A global object is an object whose name is not currently a local
identifier.

Any object can be a global object: variables, functions, and
groups are equally eligible.

Global objects are the basis for the comparison of the behavior
o f 0 therob j e c t s • There for e, b y de fin i t ion, the y a1way s beh a ve
"normally."

Immediately Local Identifiers and Objects

An immediately local identifier is an identifier that is
localized by the function call that is on the top of the execution
stack; that is, it is local to the most recent function call.

An immediately local object is an object whose name is an
immediately local identifier.

The Function Header

The function header, or simply header, defines the syntax, name,
and local identifiers of the function.

Headers have two parts: the syntax definition, and the local
identifier list.

Syntax Definition

The synta x defin i tion is essent iall y in the form of a prototype
calIon the function: it defines the name of the function, the number
of arguments it takes, and its ability -- or lack therefore -- to
return an explicit result; furthermore, it specifies the local
identifiers to be used to copy its arguments into the function, and its
result (if any) out of the function.

Clearly, there are six possible forms for the syntax definition
they are listed below:

FN NAME (niladic, no result)
FN NAME R (monadic, no result)

L FN NAME R (dyadic, no result)

4-4 AK95-02

ER+FN NAME (niladic, possible result)
ER+FN-NAME R (monadic, possible result)

ER+L FN-NAME R (dyadic, possible result)

In these examples, PN NAME is the function name, R is the local
identifier to which the right ar g um en t T s automatically assigned when
the function is called, L is the analogous local identifier for the
left argument, and ER is the local identifier which is assumed to refer
to the value that is returned as the explicit result when the function
returns.

ER, L, FN NAME, and R must all be distinct: any attempt to define
a function whose header's identifiers are not all distinct will fail,
yielding a DEFN ERROR.

ER, L, and R are local identifiers. However, they are treated
specially, as indicated briefly above. Their treatment and
significance is explained below.

Argument Identifiers

Land R are called the argument identifiers. When a function is
called, its arguments -- having been successfully evaluated in the
calling expression -- must be made available to it. In APL, this
mechanism is qui te simple: the function's arguments are
automatically assigned to their corresponding argument identifiers.

Thus, before any function line is executed, zero, one, or two
local variables are automatically created by APL, corresponding to
niladic, monadic, and dyadic functions, respectively.

4-5 AK95-02

Result Identifier

ER is the result identifier. When a function returns, if its
result identifier refers to an APL value, then that value is returned
as the function's explicit result. Otherwise -- and if the function
has no result identifier, no explicit result is returned.

Local Identifier List

The local identifier list is an optional list of additional
identifiers to be localized when the function is called: each list
entry is a single identifier to be localized.

Not all local identifiers will necessarily be found in the local
identifier list: result and argument identifiers -- if any, must not
be placed in this list; and any labels -- which are implemented-a5
local functions, must also not be placed in this list. Any attempt to
violate this rule will fail, yielding a DEFN ERROR.

The 10cal i d en t i fie r 1 is t - - if i t has any en t r i esat all - - is
placed to the right of -- and separated by a semicolon from, the syntax
definition.

If the local identifier 1 ist has no entries, then no semicolon is
placed to the right of the syntax definition. --

Elided list entries are not permitted: an identifier separates
each pair of adjacent semicolons; the header must not end with a
semicolon.

R+NM LOCATE ADDR;R_NM;I;T;CI

PRINT X;R;RR

ER+L XRHO R

This head er spec ifies a dyad ic
function named LOCATE, whose argument
identifiers are NM and ADDR, whose
resul t identifier is R, and which
additionally localizes R_NN, I, T,
and CI. Reference to any other
identifiers will refer to objects
that are not local to this function.

This header specifies a monadic
function named PRINT, which cannot
return an explicit result, whose
argument identifier is X, and which
additionally localizes R and HR.

'fh; ~ hp~Hipr ~npl". i -fi p~ ~ rl ,,~rl; r»
- . - - - -- - - - _. - r: - - - - - - - - - J - - --

function named XRHO, whose argument

4-6 AK95-02

identifiers are Land R, whose result
identifier is ER, and which does not
localize any additional identifiers.

The Function Body

A function body is a sequence of any integral number -- except
zero -- of function lines.

Afunction body must have at least one function line: otherwise,
the function can do nothing but consume arguments.

Line Numbers

A line number is the positive integer that is associated with a
single function line of a given function.

Every function line has a single corresponding, unique positive
integer line number.

Line numbers -- and their corresponding function lines -- are
sorted in ascending order in the function body.

The fir st fune t i on 1 ine in the fune t i on bod y has the 1 ine number
1 • Eac h s ucc e s s i ve fu nc t ion lin e has aline nurn berexact1yone
greater than its predecessor.

The largest line number of the function equals the number of
function lines in the function body.

Execution Flow

Unless otherwise directed by a successful branch (see below),
APL executes the function lines in the function body in succession
according to their line numbers: the function line whose line number
equals 1 is executed first followed by the function line numbered 2,
followed by line 3, then line 4, then 5, etc. until no more function
lines remain to be executed -- that is, the next line number exceeds
the largest one in this function; then j the function returns~

This execution flow is realized by the use of the statement
counter: each statement in a function is associated with a unlque,
positive integer statement number -- the first statement of the first
function line is statement number 1, the second statement of the first

4-7 AK95--02

line is statement 2, ••• , and the last statement of the last function
line is statement n, where n is the total number of statements in the
function; the statement counter contains the statement number of the
next statement to be executed.

After completing a statement, APL fetches a copy of the next
statement to be executed, as given by the statement counter. Then,
APL increments the statement counter by 1. Finally, APL executes the
new statement.

Thus, if nothing meddles with the value of the statement counter,
execution proceeds "straight through" the function, as described
above.

However, the sole purpose of the branch pseudo-operator is to
change -- under user control -- the val ue of the statement counter.

The Branch Pseudo-Operator +

The branch pseudo-operator allows the dynamic or static
specification of an arbitrary function line execution sequence.

Ostensibly, branch is equivalent to the famil iar "go t o" of many
other programming languages. However, its implementation allows
much more sophistication than this implies.

Branch is a monadic pseudo-operator. It produces no explicit
resul t , It must therefore be the left-most graphic of its containing
statement.

The argument of branch must be an integer vector or scalar -
otherwise, a RANK or DOMAIN ERROR occurs.

The implicit result -- if any -- is to change the value of the
statement counter to the statement number of the first statement of
the function line whose line number is specified in the argument:

- If the argument is an empty vector, then the statement counter
is not changed -- the branch is unsuccessful, and execution
flow proceeds normally;

- If the argument is a scalar or non-empty vector, then the
statement counter is changed to tne statement number of the
first statement of the function line whose line number is the

4-8 AK95-02

first element of the argument -- the branch is successful, and
execution flow is redirected.

If the first element of the argument is an integer, but is not a
valid line number for this function, the branch sets the statement
counter to zero.

Just before attempting to fetch the next statement, APL checks
the validity of the statement counter: if it is zero, or is greater
than the number of statements in this function, then APL terminates
execution of this function by initiating function return.

Note that for the purposes of branching and general execution
flow, APL need not keep track of the line number of the function line
from which the currently executing statement comes. However, various
user interfaces use this line number; so for the convenience of these
interfaces, APL does maintain this information. (The implementation
of this execution flow system requires only the following: function
lines must be broken down into separate statements; an internal vector
containing -- for each function line -- the number of its first
statement (This vector is indexed by the target line number of
successful branches to give the needed target staternentnurnber); the
total number of statements in this function.)

Note that if the argument of branch is a multielement vector,
only its first element has significance: all other elements are
ignored and discarded.

Sinc e the ar g um en t 0 f the j urn p ps e ud 0 - 0 pe rat0 rcan bethe
explicit resul t of an arbitrary APL expression, the target line number
can be calculated -- as opposed to being a constant. Furthermore,
this enables branching to be conditional as well as unconditional.

Thus, the branch pseudo-operator can be used to perform four
types of branching:

unconditional-constant +3;
unconditional-computed +3+5 xppARG;

conditional-constant +«KspARG)AK~O)p14;

conditional-computed +(NsppTEMP)p7 11 15 19[1+ppTEMP]

APL does not have any constr uc t d ir ec tl y analogous to the DO or
FOR-NEXT constructs of other programming languages -- its array
handling capabilities vastly reduce the need for such constructs.
However, highly efficient looping algorithms are easily coded in APL,

4-9 AK95-02

and often are far more efficient than their brute force,
storage-heavy, non-looping, "elegant" counterparts. (As in most
fields, beauty -- in this case, "elegance" -- is in the eye of the
beholder.) Dramatic examples of some proper -- and improper -- uses
of branching are given later.

The target function line of any successful branch is always
within the function containing the branch: there is no mechanism for
branching from one function into another.

Function Return

APL initiates function return whenever it discovers that its
statement counter contains an invalid statement number for the
function currently in execution.

Function return is the process by which APL returns from an
executing function: first, APL checks to see if the resul t identifier
-- if any -- refers to a value; if so, it copies this value into its
execution stack -- to make it available to the calling expression;
then, APL restores the local execution environment to its state just
before this function call -- that is, APL reverses the localization of
its local identifiers -- unmasking any masked objects, and discards
all local functions and values; finally, APL -- having copied in any
explicit result -- resumes evaluation of the calling expression.

4-10 AK95-02

Labels

It should be obvious by now that the use of a line number -
computed or constant -- as the argument of a branch is at best of
dubious value, and can easily result in erroneous code. (Consider the
problem of inserting or deleting function lines in an existing
function definition: associations between line numbers and function
lines automatically change. Therefore, care must be taken to mod ify
any line number constants and computations that are affected by these
changes. Failure to correctly perform these modifications results in
erroneous code.)

To satisfy the need for a simpler and less error-prone mechanism
for referencing and branching to specific function lines -- rather
than whatever function line happens to be associated with a given line
number, APL provides the capability of defining function line labels.

A label or function line label is a local identifier that refers
to a local niladic function which returns an explicit result: the
scalar integer equal to the line number of the function line on which
the label is defined in this invocation of the function.

A label is defined by placing its name to the left of -- and
separated by a colon from -- a diamond line of function definition.

A label IS automatically created by APL when its localizing
function is first entered: the label name is localized, and an
appropriate function definition is generated and placed in the local
environment.

Every label in a function must have a different name -
otherwise, its resul t would be undefined" In fact, each local
identifier of a given function must be distinct from all other local
identifiers and from the name of the localizing function.

Label names must not be included anywhere in the header -- they
can only be defined by their presence to the left of a diamond line.

(Recall that a function line is merely a diamond line which mayor
may not that is, is syntactically permitted to -- have a label
defined on it.)

Since labels are implemented as niladic local functions which
always return an explicit result, they behave just as do local
variables, except that their name cannot be the left argument of an

4-11 AK95-02

assignment -- that is, their result value cannot be changed via an
assignment.

In fact, the value returned by a label function cannot be changed
by any mechanism, since its function definition is locked, and
therefore cannot be edited or otherwise modified by the user.

Recursion

Since each call to a function relocalizes its local identifiers,
APL functions can be fully recursive.

It is generally best if recursive functions do not produce
implicit results -- implicit results are not localizable, and are
therefore difficult to control correctly in recursive functions.

Implicit Results

An imp1i cit res u1tis any chan gemad e tothe wo r kspaceor
execution environment that remains in effect after completion of
execution of its change-producing construct.

For example, the assignment and branch pseudo-operators produce
implicit results: assignment produces a variable or a change in the
value of a variable -- changes in the execution environment that
remain in effect after assignment is complete; branch may change the
statement counter -- a change in the execution environment that
remains in effect after this pseudo-operator has completed.

Similarly, a function produces an implicit result if it creates
or modifies a global variable or function, as these objects and/or
changes remain in effect after the function returns.

Any APt function can be defined to produce any number of implicit
results. In fact, any expression can do the same.

However, it is usually undesirable for functions to produce
implicit results, as their hidden nature obscures the fact of their
ex istence or occurrence. The semi-permanent change of some workspace
or execution environment parameter by a mechanism that obscures this
change is usually of little utility, and may easily cause substantial
and potentially irreparable destruction of data or other information.

4-12 1\K95-02

It is recommended that functions -- whenever possible -- produce
only explicit results. Any temporarily needed variables or functions
should be created locally -- not globally: as local objects, they
mask existing objects, and are discarded dur ing function return -- as
global objects, they would destroy existing like-named objects, and
would remain in the workspace independently of function return -
often cluttering and confusing the workspace and its symbol table wi th
forgotten and useless objects.

Similarly, functions generally should not globally modify
workspace parameters, such as the index origin and digits -- these may
be locally changed by appropriate use of localized system variables.

Some functions may be required to produce impl ic it resul ts, as
this may be the only mechanism available to perform the desired
action.

For example, a function that edits or creates functions must
produce one implici t resul t: the creation or replacement of a global
function.

Similarly, a function that selectively erases local or global
objects must obviously produce implicit results.

However, except when necessitated by APL' s inability to produce
the desired results explicitly, functions should not produce implicit
results.

Scalar Functions

A scalar function is a function that behaves exactly as do scalar
operators, except with respect to argument and result types and to
symbolic representation.

A function is a scalar function if: it is monadic or dyadic, and
capable of returning an explicit result; it references all arguments
but only its arguments and result identifier; it uses only scalar
operators and the assignment pseudo-operator; every statement is an
expression ending in an assignment to the result identifier; every
constant is a scalar; assignments are made only to the resul t
identifier; at least one statement references all arguments by value;
every statement references by value either all arguments, or the
result value and at least one argument. .

4-13 AK95-02

Scalar functions that do not conform to the above rules can be
written, but verifying their scalar behavior is necessarily more
difficult.

Scalar functions can be very powerful in appropriate
appl ications -- such as those that are purely mathematical -- as they
generalize (extend) to n-dimensional values in-the same convenient
and natural way as do scalar operators.

Trace Pseudo-Variables T6name of fn

A trace pseudo-variable is a pseudo-variable whose name is
composed of the string T~ immediately followed by the name of a
function, and that can be used -- wi th certain restr ictions -- just as
can any normal variable, except that its proper use produces a side
effect -- an implicit result for which this construct was designed-
tracing the execution of its namesake function.

A trace pseudo-variable name can be the left argument of the
assignment pseudo-operator -- its right argument can be any APL value •

. Similarly, a trace pseudo-variable can be referenced by value-
returning the value most recently assigned to it.

Unlike variables, trace pseudo-variables cannot be listed using
any system command, and similarly cannot directly be erased using any
system command.

Furthermore, a trace pseudo-variable cannot be created unless
the character string following the T~ in its name is the name of an
existing function.

Analogously, the trace pseudo-variable is automatically erased
when its namesake function is erased.

A trace pseudo-variable name is localized just as are normal
identifiers, wi th two exceptions: a trace pseudo-variable name must
not appear anywhere in a header syntax definition; a trace
pseudo-variable name must not be used as a label name. However, any
number of trace pseudo-variable names may appear in the header local
identifier list.

4-14 AK95-02

Localizing a trace pseudo-variable name masks any existing
identically-named trace pseudo-variable. However , its namesake
function is not masked.

Localizing an identifier may mask a function; if so, the masked
function's trace pseudo-variable is also masked -- but its name is not
local i zed.

Regardless of any localizations and masking, a trace
pseudo-variable name cannot be referenced in any context unless its
namesake function name refers -- in the current environment -- to an
existing function.

A trace pseudo-variable is used to trace the execution of its
namesake function.

The execution of a function is traced by printing -- for each
traced function line -- the function name, immediately followed by the
bracketed line number of that function line, followed by the explicit
result -- if any -- of each statement in that function line; the
outputs for the various statements are separated by a string of seven
characters: newline, 0, and five spaces -- which is printed between
the execution of each adjacent pair of statements, regardless of
whether or not any given statement produces an explicit result.

A statement ending in a branch does not produce an explicit
result. However, for the purposes of tracing execution flow, a
successful branch is denoted in the trace output for that statement as
~, where n is the target line number .. Similarly, an escape is denoted
by +.

The fu nc t ion 1 inest0 betr acedar e s pe c i fie d by 1 in e n um be r in
the trace pseudo-variable for that function. Before executing each
function line, APL uses the membership operator to find out if that
function line is to be traced: n ETllname of function, where n is the
line number of the function line about to be executed, and
TAname_of_function is the appropriate trace pseudo-variable.

Since the membership operator is used for this determination, no
rank, shape, type, or subtype restrictions on the value of a trace
pseudo-variable need be imposed.

For example, if MAX_RANK is a seven-line function, and
TAMAX_RANK+2 4p-3 92.617 a 15 4 2.9 1 42, then its function lines
numbered 1 and 4 are traced when MAX_RANK is executed.

4-15 AK95-,02

Thus, tracing of a given function can be "turned off" by setting
its trace pseudo-variable appropriately: assigning 10 or -1 or 0 to
the trace pseudo-variable works equally well.

Tracing is used almost exclusively for
diagnosing complex or allegedly errant functions.
any -- practical use outside of these contexts.

exploring and/or
It has little -- if

A locked function cannot be traced: an attempt to create a trace
pseudo-variable for a locked function yields a USAGE ERROR; an
ex isting trace pseudo-var iable 0 f an un locked function is erased when
that function is locked.

Locked Functions

A locked function is a function whose definition cannot be
displayed or modified -- and whose execution cannot be traced -- by any
APL user, including the writer or owner of that function.

When first created, most functions are unlocked. However, any
function can be locked at any time -- even at the time of its creation
-- using the APL function ed i tor. Furthermore, any function can be
locked using the DLOCK system function or the)LOCK system command.

Locking a function does not affect its execution.

A locked function cannot be edited or displayed in any way,
whether through the APL function ed i tor, or through a system function:
its function definition is totally unavailable to any and all APL
users through any mechanism available in APL.

THE STATE INDICATOR

The s tat e in d i cat0 r - - 0 r SI - - i s the APL ex ecut ion s t ac k : i t
contains all information needed to control and facilitate execution
flow.

The SI is compo sed of a push down stack 0 f stack fr ames, each of
which is associated wi th a single call to a function, or to toe execute
pseudo-operator ~, or to evaluated input D.

The information that APL records in each stack frame is that
which would be needed by AFL to correctly resume execution upo n r e t ur n

4-16 AK95-02

from a further call to a function, to execute .2, or to evaluated input
o.

For example, if a function FDa has a statement A+(2+B) xDEC 3.ARG
with variables Band ARG, and a call to the function DEC, then APL needs
to remember the statement number -- and po int wi thin that statement -
at which the call to DEC occur s , Otherwise, upon returning from DEC,
APL would not know at what point to resume execution of Faa.

Stack frames associated with function calls also contain the
information needed to "undo" any localization and masking caused by
that function call. Clearly, this type of information does not exist
for calls to execute .2 or to requests for evaluated input O.

Execution Termination

ATTN; WEAK & STRONG INTERRUPTS

The user can interrupt APL e xecut ion by pr ess ing the ATTN -- or
BREAK -- key. (Note that this use of ATTN is entirely different from
its use in editing input lines: this use of ATTN causes APL to discard
pending output, to stop evaluation of statements, and finally to read
input from the terminal.)

However~ APL has two different types of interrupt: the weak
interrupt, and the strong interrupt.

Weak Interrupt

The weak interrupt is signalled when APL r eceiv es a single ATTN.
Aweak interrupt causes APL to immediately discard all pending output,
but to continue evaluation to the end of the current statement, at
which point execution stops.

APL does not send any message to acknowledge its receipt of a weak
interrupt.

Strong Interrupt

The strong interrupt is signalled when APL r eceiv es two distinct
ATTNs in a row -- with no input between them. A strong interrupt
causes APL to immediately discard all pending output, and to abort
evaluation abruptly -- without regard to how clean or restartable the
break is.

4-17 AK95-02

APL then types INTERRUPT to acknowledge the receipt of the strong
interrupt; finally, APL prints out the interrupted source line,
pI ac ing the er r or mar ker 1\ under the point 0 f in terr uption • Thus, the
execution history of the interrupted line is fully documented.

Of course, a strong interrupt can only be signalled after having
signalled a weak interrupt. That is, when APL receives the first
ATTN, it discards pending output but continues execution of the
current statement. When the second ATTN is received, the weak

-interrupt becomes a strong interrupt: pending output is again
discarded; execution hal ts immed iatel y; and the INTERRUPTmessage and
flagged source line are output to the terminal.

ERROR HANDLING

Wh en an err 0 r i s detee ted d ur in g the ex ecut ion 0 f a s tat emen t ,
APL aborts further evaluation, types a message naming the error, and
prints a copy of the source line containing the error, placing the
error marker -- the caret 1\ -- under a character appropriate to the
error.

If the offending line is a line read from the terminal -- as
either desk calculator or evaluated input -- then no change is made to
the SI or any other internal APL construct: APL merely discards the
line and reprompts for the appropriate input.

Suspension

However, if the line in error is a line from the body of a
fu net i on, then ex ecut ion 0 f t his fu net ion call i s t empo r a r i 1 Y
suspended: lines for evaluation cease to be drawn from the function
body; instead, APL reverts to reading lines from the terminal.

Following a suspension, arbitrary APL lines can be input; they
execute completely normally, except that they now execute in the
env ironment pr ev ai 1 ing at the ins tant 0 f suspens ion. Ther efor e, all
objects -- both local and global -- that were available to the
now-suspended function just prior to its suspension are now equally
available to the user -- to be displayed and/or changed. Since the
full power of APL is available for manipulating these objects, APL is
truly its own debugging language.

4-18 AK95-02

Impl ic it Resul ts

Of course, any implicit results produced by evaluation of APL
code prior to the error cannot and will not be undone by APL. Note that
such implicit results include -- but are not limited to -- I/O
activity, assignments to variables, pseudo-variables, and system
variables, and erasure and creation of objects via system functions.

Syntax and Context Errors

UnI ike many other APL implementations, Mul tics APL detects and
reports all true syntax errors before beginning evaluation of a
terminal input line. Furthermore, Multics APL also detects and
reports all such errors occurring anywhere in a function just before
beginning execution of the function.

Therefore, any error whose report is SYNTAX ERRORhas been found
before any evaluation of its containing entity has taken place.

However, since function definitions are subject to dynamic
change -- under program control, APL cannot know in advance if the
syntax of a function call is correct -- that is, consistent with the
fun c t ion s yn t a x de fin i t ion. Th ere fo r e, e I" I" 0 r s 0 f t his so r t - - wh i c h
are named CONTEXT ERRORs in HuI tics APL -- can only be detected at the
time of the function call: the line containing the function call must
be partially evaluated before a CONTEXT ERROR can be found and
reported. (Context errors are so named because whether or not a
statement contains such an error is dependent upon the context of the
function call at the time of the function call -- it is dependent
solely upon the syntax definition of the called function as currently
de fin ed at t he ins tan t 0 f t he fun c t ion o al l , There for e, s uc han err 0 I"

is not a true syntax error -- as it is not intrinsically an error -- but
rather is a context-dependent error, or simply a context error.)

Note that SYNTAX ERRORs are the only runtime errors in Multics
APL that are detected and reported before evaluation begins.

STOP PSEUDO-VARIABLES Sf1name of f'n

A stop pseudo-variable is a pseudo-variable whose name is
composed of the str ing 86 immed iatel y followed by the name of a
function, and which can be used -- wi th certain restr ictions -- just as
can any normal val" iable, except that its proper use produces a side

4-19 AK95-02

effect -- an implicit result for which this construct was designed-
which stops the execution of its namesake function.

With the sole and crucial exception of this implicit result, the
properties, behavior, and rules governing the use of stop
pseudo-variables exactly match those of trace pseudo-variables.

Execution of the namesake function of a stop pseudo-variable is
stopped just before APL begins to execute any line of that function
whose line number is found in that stop pseudo-variable. Before
executing each function line, APL uses the membership operator to find
out if that function line number is specified in the appropriate stop
pseudo-variable: nES!:Iname of fn, where n is the line number of the
function line about to be executed, and S!:Iname of fn is the
appr 0 pr iate sto p pse ud o-v ar iabl e. If thi s te st yi e l d's a-' -- "tr ue "
-- then the function execution is suspended, and APL pr ints:
name_of_fn[n]. Otherwise, execution proceeds normally.

Like trace, stop pseudo-variables are used almost exclusively
for exploring and/or diagnosing complex or allegedly errant
functions. They have little -- if any -- practical use outside of
these contexts.

Tr ace an d s top Ps e ud 0 - v aria b I esc an be use d sin g I y, 0 r inan y
combination, as appropriate. They do not in any way interact or
interfere with each other.

LOCKED FUNCTIONS

When APL detects an error in a locked function, it reports the
error just as it does those in unlocked functions, wi th an important
exception: the offend ing source I ine is not pr Ln t ed , However, the
error name, the name of the errant function-;-c3nd the line number of the
offending line are all printed as usual. Suspension proceeds
completely normally.

ATTN may be used -- just as wi th unlocked functions -- to
interrupt execution of any locked function. The function call is
suspended completely normally. However, as wi th error reporting, APL
does not print the source line of any locked function whose execution
is interrupted in mid-line by a strong interrupt.

Stop and tr ace pseudo-var iables cannot be used wi th locked
functions: any attempt to create one yields an error.

4-20 AK95-02

Apart from the restrictions and exceptions previously
mentioned, locked functions behave exactly as do unlocked functions.

HALTED FUNCTION CALLS

A halted function call is any function call that has stopped
executing due to any of the above causes -- an interrupt, error, or
stop pseudo-variable. A function call is not hal ted if it has stopped
executing due to normal function return, nor if it is waiting return
from one of the following, which is in execution: a function call, 0
or [!] input or execute J!. However, if the function call is awaiting
return from something which is itself halted -- a function call, 0
input, or J! -- then the function call is halted.

Suspended Function Calls

A suspended function call is a halted function call that is not
awaiting return from anything.

The execution environment is unchanged by a suspension. That
is, the values of local and global variables, of system functions and
local and global system variables, of trace and stop
pseudo-variables, and of labels, and the definitions of local and
global func tion s, and of groups, ar e compl etel y un affec ted by the fac t
that the function call that was in execution at the current level has
become suspended: In fact, the only change is that instead of reading
diamond lines to be executed from the function definition, APL reverts
to read ing them fr om the user's term in a l , Thus, the user "see sty the
same execution environment that the now suspended function call
executed in just before suspension.

Pendent Function Calls

A pendent function call is a function call that is awaiting
return from one of the following: a function call, 0 input, or J!. A
pendent function call mayor may not be hal ted: the execution status
of its "callee" is irrelevant.

A pendent function call is not "in execution".

A given function call always falls into exactly one of the three
mutually exclusive categories: in execution, suspended, or pendent.

A pendent function call has a special property: it contains a
par ti all y ev al uated pendent statement con ta in ing the call wh ic h
rendered that function call pendent.

4-21 AK95-02

Exploring the SI

APL has several facilities for listing the contents of the SI.
The most commonl y used ar e the two system command s) SI and) SIV and the
system function OSI. Less useful -- except in special applications-
are the I-beam functions 127 and I26, "and the system function OLe.

THE)SI SYSTEM COMMAND

The)SI system command causes APL to print out a listing -- with
one 1 ine per stac k fr arne -- of the names 0 f the en ti tie s in whose behal f
the stack frames exist, together with -- in the case of function calls
-- a bracketed line number that indicates: for pendent function
calls, the function line on which the pendency exists; or, for
suspended function calls that were interrupted between function
lines, the function line that was to be executed next; or, for
suspended function calls that were interrupted in mid-line via a
strong interrupt, the function line that was interrupted and only
partially evaluated.

So, for a stack fr ame created by a function call, the)SI 1 ist
en try a ppear s as: n am e 0 f fn [n] . Si mil ar 13, the) SI en try 0 f a
request for evaluated input-is simply a quad 0, and that of a call to
execute is a hydrant ~.

To help distinguish between pendent and non-pendent -- that is,
suspended or in execution -- function calls, APL flags every)SI entry
of a non-pendent function call with a star *. (Note that since execute
~ and evaluated input requests 0 cannot be suspended -- they can be
either in execution or pendent -- no ambiguity can exist as to what
s tate a g i v en sue h call i sin. There fo r e, no fl agging 0 f) 81 en t r i e s
for such calls is necessary.)

THE)SIV SYSTEM COMMAND

The)SIV system command produces the same listing that)SIVdoes,
except that each function call entry is followed -- on the same line-
by a list of all local identifiers localized by that function call.

THE OSI SYSTEM FUNCTION

The OSI system function returns -- as an explicit result -- a
char ac ter matr ix repr esentation 0 f that which) SI would pr int. That
is, the result of OSI -- if displayed immediately -- would match the
printed output produced by)81.

4-22 AK95-02

127, 126 AND OLC

127 and OLC are identical, each returning an integer vector
explicit result whose elements correspond one-to-one with)S1 entries
as follows: if the entry is .2 or 0, then the corresponding element in
the resul t of 127 and OLC is a zero; if" the entry is a function call,
then the corresponding element in the resul t of 127 and OLe is the line
number that is bracketed in the)SI entrYe

126 returns an integer scalar explicit result that is the first
element of 127 and OLC, or zero if they are empty.

Clearing the SI

It is usuall y undesir able to leave suspen sions -- and an y
associated pendencies -- in the S1 any longer than is necessary to
explore and/or diagnose problems in the functions involved in the
suspension. Suspensions may require large amounts of storage,
especially if local objects are large, or if pendent function or
execute calls are nested very deeply; furthermore, unneeded)S1
entries clutter and confuse the)S1 listing.

Eliminating, or clearing unneeded suspensions is accomplished
by the escape -+ mechanism.

THE ESCAPE -+

The escape -+ -- a branch symbol wi th no argument -- causes APL to
unwind exactly one suspension: the most recently created one. It
clears the SI back to the point of the previous suspension, undoing all
localization and masking caused by the most recently suspended
function call, and by all of its pendent function calls.

The)RESET system command on other system can be mimicked by
entering one at a time -- as many escapes as there are suspensions.

Restarting ~ Suspended Function Call

Following the suspension of a function call, the branch
pseudo-operator can be used to restart function execution on any line
of the most recently suspended function.

Of course, if execution termination was caused by an error, then
this is generally useful only after suitable remedies have been
effected to prevent recurrence of the error. Such action might

4-23 AK95-02

include manual entry and execution of appropriate APL statements,
and/or corrective editing of the suspended function itself.

The user must also be careful to restart on the correct line-
whether the line before, during, or after which the interruption
occurred needs to be executed depends upon the intricacies of the
function and upon precisely how, why, and where the interruption
o o c ur r ed ,

Function line labels of the suspended function call are defined
and accessible, so they can be used -- if convenient -- in restarting
that function call.

As always in APL, it is possible to branch only to a line of the
topmost function call in the S1 -- that is, of the most recently
invoked function call.

S1 Damage

S1 damage occur s when the env ironment is changed in such a way
that it becomes inconsistent with the S1.

For example, the S1 is damaged if a function is erased that has
pendent or suspended function calls in the S1. Similarly, S1 damage
occurs if the header of a function with a suspended call is changed via
the function editor.

31 damage cannot be caused by any APL function or system
function. S1 damage can only be caused by: improper editing -- VIa
the APL function ed i tor ----o-rfunc tion s wi th suspended function call s
in the S1; or, erasure -- via the APL)ERA8E or)COPY system commands-
of global functions with suspended or pendent function calls in the
S1; or, errant or malicious external functions, although APL cannot-
and will not -- detect or report such damage.

APL notifies the user that S1 damage has occurred by printing the
message: 8I DAMAGE.

S1 damage is irreversible. However, although sometimes quite
complex, it is always possible to recover from S1 damage, resuming and
successfully completing the original or even modified
computations and function call sequence.

4-24 AK95-02

EFFECTS

S1 damage does not cause APL to make any further change to the
environment. All local and global objects -- except the erased or
improperly modified function -- and all localizations and masking,
remain unchanged in any respect, regardless of the cause of the S1
damage. (Significantly, APL correctly remembers which is the result
identifier -- if any -- and this returns completely normally any value
assigned to it, when and if the function call returns.)

However, APL prevents further execution in the damaged function
call: any attempt to restart a damaged function call, whether by
means of a branch into a damaged suspended function call - via -+N,
where N>O -- or by a return to a damaged pendent function call, fails,
yielding an SI ERROR.

Note that a function return -- via -+N, where N<5:0 -- or an escape -+,
is completely acceptable, and proceeds normally.

S1 damage is recorded in the)SI and)SIV listings, and in the
explicit result of OSI in the following way: the name of fn[n]
portion of each damaged function call entry is replaced-with six
spaces. Any stars * that flag non-pendent function calls remain
unchanged, and local identifier lists produced by)SIV remain
unchanged.

Note that S1 damage extends to all previous calls to the erased or
destructively modified function -:-every existing suspended and
pendent function call to that function is damaged, not merely that
most recent such call. ---

EDITING HALTED FUNCTIONS

Functions that have pendent function calls cannot be edited,
because at least one of its lines is only partially evaluated, and is
therefore saved in the S1. No meaningful association could be
established between this saved information and an edited function
definition: APL could not know where or how to resume execution of
these partially evaluated lines.

Consequently, if it is necessary to eo i t a f'un c t i o n with pendent
calls, these pendencies must first be cleared from the S1 using
escapes ""*.

4-25 AK95-02

However, functions that have only suspended function calls can
be ed ited and restarted successfull y, wi th the following
restrictions:

- The header cannot be changed in any way.

- Label names cannot be changed.

- Labels cannot be added or deleted.

Any failure to observe these rules elicits a warning from APL
when the user attempts to leave the ed itor. A second request to leave
the editor is honored, but the violation of the above rules causes 81
damage to all calls to the just modified function.

If the above restrictions are observed, no warning or 81 damage
occ ur s when leav ing the ed i tor. Fur thermor e, the new func tion
definition takes effect immediately, for both future and suspended
function calls.

Labels are automatically redefined -- if necessary -- just
before leaving the function editor. This is necessary if the line
n urn be r 0 f the lin eon wh i c h the 1 abe 1 a ppea r s d iffe r s bet we en the 0 1d
and the new function definitions. (Note, however, that non-branching
references to labels ~ade prior to editing cannot and will not be
corrected by APL, and may therefore be invalid. For example:
£2 :A+3+5 x £ 2 ; after editing, £2 is redefined correctly, but A reflects
the old L 2 defin i tion, and ther e for e ca uses incor r ec toper at ion 0 f the
function.)

EDITING A FUNCTION

APL prov ides a function ed iting capabil ity. Add ing, deleting,
or retyping lines can be performed on complete lines. Detailed
editing of individual lines, such as deleting, inserting, and
changing individual characters on a line, can also be performed. APL
must be in definition mode to perform function editing.

The various function editing techniques are described below.
Assume the following function has already been defined as:

VX+AVG
[1] SUM+(+/NUM)
r 21 V

4-26 AK95-02

This function may be edited as follows:

1. To add a new line, type VFUNCTION NAME

VAVG
[2]

Notice that APL is now in definition mode, waiting for you
to enter line 2, the next available line in the function.
Type in the line and terminate definition mode:

[2] X+SllMfpN UM
[3] V

or

[2] X+fpNUMV

2. To list a function and return to immediate mode, type:

VAVG[O]V

To list a function and remain in definition mode, type:

VAVG[O]
VX+AVG

[1] SUM+(+/NUM)
[2] X+SUMfpNUM

'fJ

To list a function when the interpreter is already in
definition mode type:

[3] [0]
VX+AVG

[1] SUM+(+/NUM)
[2] X+SUMfpN UM

V

To list a single line, type:

[3] [20]
[2] X+SUMfpNUM
[2J

To list all of the lines from line K on, type [OK]. For
example:

[2] [01]
[1] SUM+(+/NUM)

4-27 AK95-02

[2] X+SUMTpNUM
[3]

3. To delete aline, type, in squar e brackets, a del ta (~),

followed by the line number that is to be deleted.

4. To replace a complete line, type, in square brackets, the
number 0 f the 1 ine that is to be r epl aced. When prompted by
the appropriate line number, type in the new line.

[2] [1]
[1] X+(+/NUM»TP
[2]

A line can also be replaced by typing the line number to be
replaced in brackets, followed immediately by the new text.

5. To insert a line between the other lines, use fractional
line numbers. For example, to insert a line between the
header (considered to be line 0) and line 1, type some
fraction between 0 and 1 (say 0.5) in brackets. When APL
prints the line number [0.5], type in the new line.

[2] [0.5]
[0.5] 'AVERAGE'
[0.6] v

Lines ~ay also be inserted by typing the fractional
1 ine number in br ackets, followed immed iatel y by the text
for that line.

When a function is closed, APL
resequences the function 1 ine number s ,
function now looks like this:

AAVG[O]V
VX+AVG

[1] 'AVERAGE'
[2] X+(+/NUM)TP

V+V

EDITING A LINE

automatically
The ed i ted

Characters within a function line (including line 0, the header
line) can be replaced, deleted, and inserted by typing [MON]; where M
is the line number to be edited, and N is the approximate position in
the line for editing to begin. After [MON] is typed, the line to be

4-28 AK95-02

edited is displayed, the carriage is returned, and N positions are
spaced over. Editing of the line may then be performed.

1. To delete any number of characters, type in a I beneath the
characters to be deleted:

[3] [2015]
[2] X+(+INUM»fp

I
[2] X+ (+ INUM) 7 P

NM
[3] [20]
[2] X+(+INUM)fpNM
[2]

This line is now displayed again, and the carriage waits at
the end of the line so that additional characters may be
added to the line.

2. To insert a character or characters between two adjacent
characters j and k , type a digit below k to indicate the
number of characters which are to be inserted to the left of
k:

[3] [308]
[2] X+(+INUM)fpNM

1

inserted. The carriage then waits at the leftmost blank
for insertion:

[2] X+(+INUM)fpN M
U

The letters A through Zcan be used in placeofthedigitto
insert 5 blanks for an A, 10 blanks for a B, etc.

3. To replace a character with another character or
characters, combine the two above methods and type IN,
where N is a digit or letter to indicate the number of
characters to replace the character:

[3] [1013]
[1] 'AVERAGE'

/4
[1] 'AVERAG '

E =

4-29 AK95-02

4. To add to the end of a line, the editing command [MOO]can be
used. Line M will be pr inted, and new mater ial may be
added. This is convenient for adding comments to the end of
aline.

[2] [000]
X+-AVG

NUM
[1] [100]
r « ,
L..L...I 'AVERAGE = '

ACOMMENT

The edited function now looks like:

[1] [0]
VX+-AVG NUM

[1] 'AVERAGE = 'ACOMMENT
[2] X+-(+/NUM)tpNUM

V
[3] V

4-30 AK95-02

SECTION 5

SYSTEM COMMANDS

System commands are special lines typed by the user to adjust or
control the operation of APL. They are distinguished from
expressions by always beginning wi th a right parenthesis -- no
expression could ever begin that way.

The right parenthesis is followed by the name of the particular
system command, which is then followed by arguments, separated by
spaces. The arguments required by each command vary, and are
discussed under the individual command descriptions below.

System commands can be issued whenever APL is awaiting desk
calculator or evaluated input. They cannot be issued from a function
call, nor are they recognized while APL is awaiting character input =

Most system commands are innocuous enough to be accepted while in
the function editor. However, certain system commands are explicitly
disallowed while in the editor -- any attempt to issue these commands
is rejected:

)CLEAR,)CONTINUE,)COPY,)ERASE,)LOAD,
)OFF,)QUIT,)SAVE, and)V1COPY.

A system command is per formed as soon as it is issued; then APL
requests again the input it was awaiting before encountering the
command -- unless the action of the command is such that the input is no
longer needed.

ENVIRONMENT PARAMETERS

APL is par tiall y controlled by a set 0 f environment par ameter s ,
These incl ude the works pac e par ameter s, and a set 0 f session
parameters.

5-1 AK95-02

APL offers system commands and/or system variables to set each
parameter, or to find out its current setting.

For system commands, a parameter is set by issuing the command
name, followed by the desired setting, as an argument. The command
name alone causes APL to pr int the c urr en t setting, wi thout change.

For system variables -- discussed more in a later section -- a
parameter is set by assigning the desired setting to it, just as with a
regular variable.

Workspace Parameters

Every workspace contains a set of dynamic, user-definable
workspace parameters, used for specific, fixed purposes by APL.
These are: the index origin, the number of digits of printing
precision, the comparison tolerance, the integer tolerance, the
I atent ex pr ess ion, the wor ks pac e id en t i fic ation, and the random
number seed. Mo st 0 f these wor kspace par ameter s have assoc iated wi th
them a system command and a system variable to set and/or find its
val ue •

The workspace parameters are also affected by the)CLEAR and
)LOAD system commands. The)CLEAR command resets all parameters to
their default values, while the)LOAD command sets them to the values
recorded in the saved workspace.

Session Parameters

Every APL session has an associated set of dynamic,
user-definable session parameters, each of which is used by APL for
specific, fixed purposes. The session parameters are: the page
width, the horizontal tab setting, the error mode, and the
compatibility mode.

Each of these session parameters has a system command to set or
inquire about its value.

None of these parameters are affected by changing or clearing the
active workspace.

5-2 AK95-02

The)ORIGIN System Commands

The)ORIGIN system command takes as its argument either the
constant 0 or the constant 1~ The command establ ishes its argument as
the new value of the index origin and types out the old value.

The index origin of a clear workspace is 1 by default.

The index origin of a workspace is saved and restored by the)SAVE
and)LOAD system commands.

The index or ig in determines whether number s from 0 to N-1 or from
1 to N ar e used to number coord inates and elemen ts for v ar ious
operators:

A[A ; A; ••• ; A]
tS V tA
l1A VA
?A S?S
l1[S]A V[S]A
4>[S]A VcP[S]A
V/[S]A V\[S]A
<D/[S]A

The)WIDTH System Command

interpretation of subscripts;
result of index operators;
result of grade operators;
result of roll and deal;
interpretation of coordinate
number s ,

The)WIDTH system command takes as its argument an integer
constant from 30 to 130. The integer supplied is established as the
new page width to be observed by the APL output routines, and the
previous value of the page width is typed out.

The page width of a workspace determines the maximum number of
characters that the APL output routines place on a line before
deciding the line is full and overflowing to the next line.

Page width is a session parameter whose default is taken to be the
line length in use when APL is entered.

5-3 AK95-02

The)DIGITS System Command

The)DIGITS system command takes as its argument an integer
constant from 1 to 19. The integer suppl ied is establ ished as the new
number of digits of pr inting precision; the old value is typed out.

The digits setting of a clear workspace is 10.

The digits setting is saved and restored by the)SAVE and)LOAD
system commands.

The d ig its setting determ ines onl y how val ues ar e formatted for
printing. It does not affect the stored values themselves, nor does
it affect their calculation. All values in Multics APL are calculated
to 63 bits of precision (approximately 19 decimal digits). As a value
is printed, it is rounded to the desired number of significant digits
when it is converted to printable characters.

The)ERRS System Command

The) ERRS system command establ ishes whether APL error messages
ar e pr in ted in the ir long or br ie f form. The long form gives
additional information on the cause of the error, while the brief form
is very short, giving only the error name.

The argument is the mode that the errors are to be printed in:
that is, LONG or BRIEF. The error mode is a session parameter.

5-4 AK95-02

The) TABS System Command

The)TABS system command takes as its argument an integer
constant from 0 to 130. The argument is establ ished as the new tab
setting to be used to speed up output. For properly formatted output,
the physical or electronic tab stops must be set at uniform intervals
that match the)TABS setting. .

)TABS 0 disables use of tabs in output.

The tabs setting is a session parameter.

The)CHECK System Command

The)CHECKsystem command accepts one argument; os or OFF. This
command establishes whether or not APL checks and reports usage of APL
constructs whose definitions have been changed incompatibly. APL
reports such usage as a COMPATIBILITY ERROR only when the
compatibility mode is turned on via)CHECK ON.

)CHECK OFF disables this checking.

The compatibility mode is a session parameter.

The)HUH System Command

The)HUH system command is used to pr int the long form of the most
recent error message. It is used to obtain more information about the
problem when running in)ERRORS BRIEF mode.

SYMBOL TABLE

The symbol table is an area of the workspace set aside for
remembering names and the objects to which they refer. A number of
system commands exist for inspecting and manipulating the symbol
table.

The)VARS System Command

The)VARSsystem command is used to print out alistofthenames
of all currently accessible -- non-masked -- variables in the
workspace, both local and global. The list is produced in alphabetic
order, and is pr in ted in as man y col umns acro ss the page as the page
width allows.

5-5 AK95-02

The)VARS system command can be issued without any arguments, in
which case it 1 ists all v ar iables. It can al so be issued wi th a name as
its argument, in which case it lists only names that match or follow
the argument name in alphabetic order.

The name supplied as the argument "need not name an object in the
workspace: it is used only in an alphabetic comparison to decide
which names to print.

The)FNS System Command

The)FNS system command is used to pr int a 1 ist of the names of all
currently accessible -- non-masked -- global and local functions
defined in the active workspace. Like)VARS, the)FNS command prints
its list in alphabetic order, and a valid APL name possible
representing a nonexistent object -- is accepted as an optional
argument indicating where to begin the list.

The) GROUP System Command

The) GROUP system command is used to gather objects into a group,
to append more objects to a group, or to disband a group.

The first argument of the) GROUP command must be the name of the
group upon which the command is to operate. If the purpose of the
)GROUP command is to create the group, then the group need not yet
exist at the time the command is issued; otherwise, it is an error if
the first argument is not the name of an existing group.

5-6 AK95-02

If no further arguments beyond the group name are suppl ied, then
) GROUP disbands the group. Disbanding a group has no effect upon its
member s; the onl y consequence is that they ar e no longer consid er ed to
be in a group. Thi s should be car efull y contr asted wi th er asing a
group, which also erases its members •.

If some names of objects follow the group name argument, then
) GROUP establishes a group of the designated name having the indicated
members. Any object can be a member of a group: a variable, a
function, or a group.

Only one object cannot be made a member of a group: the group
itself. The inclusion of the group's own name in the list of members
has a special meaning to the) GROUPcommand : all the previous members
of the group are to be retained in the new group, along with the new
members. This appends new members to an existing group.

The) GRP System Command

The)GRP system command lists the names of the members of a group.
It takes as its argument the name of a group.

The)GRPS System Command

The)GRPS system command lists the names of all groups defined in
the ac ti v e wor ks pac e. Li ke the) VARS and) FNS command s, the) GRPS
command prints its list in alphabetic order, and accepts a starting
name as an optional argument.

The)ERASE System Command

The)ERASE command is used to delete objects from the active
workspace. Its arguments are any number of names of objects to be
deleted. The objects can be global variables, function, or groups.

When an object is erased, it is completely removed from the
workspace and discarded. No record of its previous existence
remains. Its name and the storage it occupied become available for
other uses.

Local objects cannot be erased by the)ERASE command.
they are automatically erased when the function to which
local returns. Al so OEX er ases local obj ec t s ,

5-7

However,
they are

AK95-02

If an argument to)ERASE is the name of a group, then the group is
disbanded, and all members of that group are erased. However, groups
that are members of the erased group are disbanded, but their members
in t urn are not a f fee ted. Thus, erasure 0 f g r 0 ups con t a in ing gr 0 ups
is not full y r ec ur si v e; only the d ir ec t member s 0 f the er ased group ar e
erased. ----

The)SYMBOLS System Command

The Mul tic s APL) SYMBOLS command does not accept arguments, and
causes no change to the wor kspace env ironment. It simpl y reports the
total number of symbol table entries currently used.

The)SI System Command

The)SI system command is used to inspect the state indicator of
the APL processor. The state indicator is an area of the workspace set
aside to record the state of functions currently invoked.

The meaning and workings of the state indicator are fully
explained in Section 4, but, briefly, the state indicator acts as a
stack. As one APL statement invokes another (either as a function or
as evaluated input), the information pertaining to the partially
evaluated invoking line is stacked in the state indicator. The APL
processor is then free to evaluate the invoked lines, knowing that
when it finishes it can return to complete the evaluation of the
invoking line by restoring the saved state of evaluation from the
state indicator stack. Since the invoked statements can further
invoke other statements, many partial evaluations may need to stack
successively in the state indicator. As their respective evaluations
complete, the stack is popped back in parallel.

A statement whose execution is stopped temporarily because the
processor must execute another statement (that it invokes) is said to
be pendent. Thus, the use of the state indicator discussed so far is
to remember all pendent statements.

Another item of information remembered in the state indicator is
func tion sus pen sions. When the exec ution 0 f a function prod uces an
error report, statements cease to be drawn from the function
definition and are instead read from the user's terminal until the
function is explicitly restarted. During this interval, the function
is said to be suspended. An entr y in the state ind icator for a
suspension differs from that for a pendent statement in that no
partially evaluated statement is remembered, and also in that a
suspension marks a place where the user obtained control and was able
to type new statements.

5-8 AK95-02

In the 1 isting pr inted by the) SI command there is one I ine per
entr y on the state ind icator stac k , The stac k is pr in ted in the ord er
of most recent item first to least recent last; thus, the first line
printed corresponds to the most recent entry made into the state
ind icator. Each 1 ine shows the name of "the function in execution (or
the symbol D if the entr y refer s to an ev al uated in put 1 Ln e) , the
statement number upon which execution resumes (the pendent statement
itself for pendent entries; the statement following the error for
suspended entries) , and finally an asterisk if the entry represents a
suspension (lines without an asterisk correspond to pendent entries).

The) SIV System Command

The)SIV system command per forms the same function as the)SI
system command, except that each line of the display shows, in
addition to everything shown for the)SI command, all identifiers
local to the particular invocation.

Since a reference to an identifier is satisfied by the most
recently created object of that name, the referent of any given
identifier is easily found by scanning the)SIV list downward. The
fir st in stance 0 f the sought id ent i fier is the sat i sfying refer ent •
If the identifier is not found anywhere in the)SIV list, then the
reference is satisfied by a global object. Local and global
identifier referencing is treated more fully in Section 4.

5-9 AK95-02

WORKSPACE MANAGEMENT

On e 0 f the m0 s tim po r tan t f eatures 0 f APL is its ab t l i t Y to s a v e
the compl ete contents 0 f a wor kspace and then take it up again 1 ater •
Work can then be continued as if there had been no interruption. On
Multics, workspaces are saved as segments -- or, if necessary, as
multisegment files -- anywhere in the storage system hierarchy.
Normal Multics quota and access conventions govern the storage of
saved workspaces.

When a workspace is saved, everything necessary to resume the
session in progress is remembered. The values of all variables, both
local and global, the definitions of all functions and groups,
everything in the state indicator, and the settings of all workspace
par ameter s ar e saved.

When a wor kspace is to be taken up ag ain, the user has a choice 0 f
how much of the saved workspace to recall. He can copy individual
global variables or functions or groups via the)COPY system command
with specific objects named; or he can copy all global objects but not
the state of execution or workspace parameter via the)COPYcommand
with no objects named; or he can recall the entire workspace via the
) LOAD command.

Objects can be moved from workspace to workspace or duplicated in
several workspaces.

Workspace Identification

Each workspace has associated with it a workspace
identification, which is the absolute or relative pathname of the
workspace.

The active workspace also has a workspace identification: that
ofth e wo r kspac e m0 s t r e c en t 1 Y load ed • If no wo r ks pac e has yet been
loaded, the active workspace has the identification CLEAR 'fIS. Note
t hat a wo r ks pac e i d 0 f CLEA R WS doe s not meantha t the act i v e wo r ks pac e
is clear; it only means that it started out as a clear workspace.

When a) LOAD command is issued, APL locates the saved wor kspace
in the Multics hierarchy, loads a copy of its contents into the active
workspace -- discarding the old contents of the active workspace -
then replaces the current wsid -- workspace identification -- with the
pathname given to)LOAD, and finally prints a message indicating the
date and time at which the workspace was last)SAVED.

5-10 AK95-02

When a) SAVE command is issued wi th no pathname as arg ument, the
acti v e wor kspace is stored accord ing to its current wsid. If a
pathname argument is given, then the wsid is replaced by the new
pathname, and the active workspace is saved at the new place in the
Multics hierarchy.

It is an error to issue a)SAVE command with no pathname given
when the workspace identification is CLEAR WS.

The wsid can also be inspected or changed at any time with the
)WSID system command. No commands other than)CLEAR,)SAVE,)LOAD,
and)WSID affect or concern themselves with the active wsid.

The user is cautioned that changing the working directory when
the wo r ks pac e iden t i f i cat ion i son1 y are1 at i v epat hn ame can c han g e
the meaning of that pathname -- and a succeed ing)SAVE command wi th no
argument may not necessarily refer to the previously loaded
workspace.

Passwords

It is possible to associate a password with a saved workspace.
When a workspace has been saved wi th a password, APL prevents a load or
copy from it unless the password can be supplied. The password is also
required to delete a saved workspace.

Cautious users should note, however, that nothing prevents
another user from supplying a program of his own construction to
search for interesting things in your saved workspaces.

The mec han i c s 0 f sup plyin g pa s s wo r d s are as follows. Pas s wo r d s
are ac c e pted by the) SAVE,) LOA D,)COPY,)PC 0PYa nd) DR0P s Ys t em
commands. To indicate that a password is to supplied, a colon follows
the 1 as t c ha r acte r 0 f the pathn ame con s tituti ng the wo r ks pac e
id en ti fic at ion in the command 1 ine • Then, the user has the c ho ic e 0 f
suppl ying the password in one 0 f two ways: he c an en ter it into the
command 1 ine, immed iatel y following the colon; or, he can enter -- in
its place -- a quote quad [!\, indicate that APL should use the
get pa s s wo r d subrout in e toen sur e t hat the pas s wo r dis not vis i b 1 e to
other users.- Entering a [!\ in place of the password results in the
prompt PASSWORD: and an opportunity to enter the password with either
the printer turned off, or on top of a pre-printed mask of random
characters, depending upon the terminal.

The password maybe from zero to eight characters in length, with
zero charaoters indicating that no password is to be used.

5-11 AK95-02

The remainder of the command line is typed normally. After
receiving the correct password, APL proceeds normally.

If a workspace saved with a password is addressed by a)LOAD,
) COpy,) PCOPY, or) DROP command wi thout a password or wi th an
incorrect password, then the command "is ignored.

If a) SAVE command is used wi thout a colon, then the wor kspace is
saved with its current password -- if any~ To remove or change the
pas s wo r d 0 f a wo r ks pac e, the) SAVE comm an d mus t be iss ued wi t hac 0 Ion.
A password 0 f zero char acter sis considered the same as no password.

A clear workspace has no password.

The)CLEAR System Command

The)CLEAR system command is used to clear the active workspace.
When the)CLEAR command is issued, the APL processor types CLEAR··WS,
erases all objects, discards the state indicator and all local
variables; resets the index origin, digits, fuzz, password, latent
ex pr ess ion, and wor kspac e id en t i fic at ion to the ir defaul t val ues, and
reads the calendar clock to obtain a new seed for the random number
generator.

The)LIB.)LIBD System Command

The) LIB and) LIBD command s eac h pr int a 1 ist 0 f the pathname 0 f
all saved APL workspaces in the user's hierarchy.)LIB prints a
horizontal list while)LIBD prints a vertical list.

)LIBD additionally lists -- for each such workspace -- the
date-time saved and date-time used data.

The)SAVE System Command

)SAVE is used to save a copy of the active workspace. Everything
in the workspace is saved. Workspaces become Multics segments or
multisegment files.

)SAVE can be issued in three forms: the command alone,

)SAVE

or with a workspace identification (i.e., pathname),

5-12 AK95-02

)SAVE wsid

or with a workspace identification and a colon,

)SAVE wsid

In the first form -- the command alone, the workspace is saved
under its current identification and wi th its current password. See
the preceding two sections for a description of workspace
identifications and passwords. This form of)SAVE is invalid when the
workspace identification is set to CLEAR WS.

The response to this command is the current date and time,
followed by the workspace identification as a reminder.

In the second form, the active workspace is saved under the new
identification (i.e., at a new place in the storage system hierarchy) ,
but wi t h the cur r en t pas s wo r d i fan y • The cur r en t wo r kspac e
ident i f i cat ion is rep1 aced by the wsidar g um en t to) SA VE• The
response to this form of the command is the current date and time.

In the final form of)SAVE, APL requires a password. Then the
ac tiv e wor ks pac e is saved und er the new id enti fic ation wi th the new
password. An empty password is the same as no password. The current
workspace identification and password are both changed to those given
in the command 1 ine. Again, the response to this command is the date
and time.

The)SAVE command does not alter the current workspace in any
way, except that its wsid and password may change. Following the
)SAVE, computations can resume in the current workspace.

If any Mul tics errors occur in per forming the save, such as
record quota or access violations, they are reported and the current
workspace remains unchanged.

5-13 AK95-02

The)LOAD System Command

The)LOAD system command takes as its argument a workspace
identification, (i.e., pathname) , optionally followed by a colon. If
the colon is supplied, APL requires a password. If the password
supplied does not match that of the saved workspace whose
identification is given in the)LOAD ·command, then the error is
reported and the current workspace remains unchanged. Otherwise, the
cur r en t act i v e wo r kspa c e con ten t s are discar d ed and rep1 aced by a cop Y
of the saved workspace.

The response to the)LOAD system command is saved followed by the
date and time that the workspace was saved.

The saved workspace itself is not altered by the)LOAD command.

The)COpy System Command

The)COPY system command copies functions, groups, and global
variables from a saved workspace into the active workspace. The
active workspace remains unchanged except for the addition of the new
object or objects.

5-14 AK95-02

The)COpy system command can be issued to two forms. The fir st
is:

)COpy wsid

where wsid is the pathname 0 f a saved wor kspace • If the wor kspace was
saved wi th a password, then it must be g i v en. This form 0 f the command
places copies of all global functions, groups, and variables
contained in the saved workspace into the active workspace. If any
object of the same name as an object to be copied already exists in the
active workspace, it is erased and replaced by the new object. All
other objects in the active workspace remain unchanged, as do the
workspace parameters and the state indicator -- unless SI DAMAGE
occur s ,

In the second form of the)COPY command, a list of specific
objects is mentioned, as:

)COPY wsid object object ••.

where, as before, wsid is the pathname 0 f a saved wor kspace, and each
'object' is the name of a global function, group, or variable in the
saved wor kspace ..

The func tion 0 f this form 0 f the)COPY command is to copy onl y the
objects mentioned from the saved workspace into the active workspace ..
If any object is a group, however, all of its members are copied as
well.

As in the other form of)COPY, naming conflicts between copied
objects and existing objects are resolved by erasing the existing
obj ects.

If a spec ified obj ect does not ex ist in the saved wor kspace, an
error report gives the message that it was not copied.

In any case, there is no change to the saved workspace. The
response to the)COPY command is the d ate and time the donor wor kspace
was saved.

5-15 AK95-02

The)PCOPY System Command

The)PCOPY (protected copy) system command behaves exactly like
the)COPY system command wi th the exception of its treatment of naming
conflicts. With the protected copy command, when an object to be
copied has the same name as an existing object, the existing object
rem ain s unc hang ed, and the saved obj eo tis simpl y not copied. The
names of any objects not copied are reported.

Like the)COPY command, the)PCOPY command can copy either
specified objects or all global objects out of a saved workspace. The
normal response to the command is the date and time the workspace was
saved. There is no change made to the saved workspace.

The)CONTINUE System Command

The)CONTINUE system command prov id es no new c apab il i ty to the
APL system, but is simply a convenient way to terminate an APL session
that must be resumed again later. The)CONTINUE command behaves
identically to the sequence

)SAVE CONTINUE
)OFF

of commands. That is, the current workspace is saved under the name
CONTINUE, and the APL session is terminated. Later, the command:

)LOAD CONTINUE

can be used to pic k up the wor k ag ain as if ther e had been no
interr up t i.o n ,

The)WSID System Command

The)WSID system command is used to inspect or change the current
workspace identification. If)WSID is typed with no arguments, as:

)WSID

then the current workspace identification is printed out.

)WSID can also set the current workspace identification. In
this case, the user types:

)WSID wsid

5-16 AK95-02

where "wsid" is any absolute or relative pathname.
identification is typed in reply.

The former

The pur pose 0 f setting the workspace iden ti fication is to allow a
later)SAVE command given without an identification to save the
workspace in the desired place. Beyond)WSID, the only commands that
affect or concern themselves with the workspace identification are
)CLEAR,)SAVE, and)LOAD.

The)DROP System Command

The)DROP system command is used to delete the saved copy of a
workspace. The form of the command is:

)DROP wsid

where "wsid" is the pathname of the saved workspace to be deleted. A
password is not required to delete a saved workspace.

)DROP has no effect on the active workspace.

Version 1 APL Workspaces

In add i tion to the system command s for man ipul ation 0 f
workspaces, analogous commands exist for use with workspaces created
by t-1ul tic s Vei sion 1 APL. The se command s ar e) V1LIB,) V1COPY,
)V1PCOPY, and)V1DROP. Their syntax and actions are identical to
their Version 2 APL counterparts. Thus in order to convert a
workspace from Version 1 APL to Version 2, just copy it into the
current workspace using)V1COPY, then save it using the regular)SAVE
system command. The Ver sion 1 workspace is not deleted or replaced.
To delete it, use the)V1DROP system command.

COMMUNICATING WITH MULTICS

In addition to the commands relating to the saving and reloading
of workspaces, a number of other commands involve communication
between APL and Mul tic s , The) Q,) QUIT, and) OFF system command s ar e
used to exit from APL. The)PORTS system command prints the names of
other users currently logged in to Multics. The)R system command
returns the users Multics command line while the? system command
lists all the system commands. Finally, the)E system command
prov id es a means 0 f executing Mul tic s command s wi thout ex i ting from
APL.

The)Q,)QUIT,)OFF System Commands

5-17 AK95-02

The)Q,)QUIT, and)OFF system commands are all identical. They
cause the APL processor to return to its caller. If APL was invoked as
a Mul tics command, this amounts to a return to Mul tics command level.

Following a return to Mul tics, the current workspace is no longer
accessible. If the user wishes to save the resul ts of an APL session,
a)SAVE command must be issued before returning, or else the)CONTINUE
command should be used to exit instead of)Q,)QUIT, or)OFF.

The)PORTS System Command

The)PORTS system command prints a list of the Multics users
currently logged in. It is implemented as a calIon the Mul tics "who"
command. Any arguments typed after the)PORTS command are simply
passed on to the "who" command, so a certain amount of selectivity is
possible. Refer to the description of the "who" command in the
Multics Commands and Active Functions manual COrder No , : AG92), for
further information.

The)EXEC,)E System Commands

The)EXEC and)E system commands are identical. They are used to
execute an arbitrary Multics command line from within APL. The entire
remainder of the command line following the)E is passed unchanged to
the Multics command processor for execution.

The user is cautioned that the command line itself has been read
by APL; hence, it has undergone the APL r ather than the Mul tics input
processing. While the APL and the Multics character sets largely
overlap, there are some differences. It is up to the user to
anticipate the translations mentioned in Section 2 and compensate for
them where necessary. For example, if one types

)E SM MGS M WHY ERROR WHEN 123 IS TYPED?

the actual message transmitted~ in ASCII, is

Why error when Sit is typed?

The)BELP System Command

The)HELP system command provides an interface to the Multics
help facil i ty.) HELP is used to pr int out the on-l ine documentation
available on Multics for both Multics APL and most of the other
facilities available on Multics.

5-18 AK95-02

If the)HELPcommand is given no arguments, it prints a summaryof
the info files available on Multics APL. If it is given an argument,
the argument is interpreted as the name of a Multics info file. Afull
Multics pathname may be specified.

The)MSG System Command

The)MSG system command provides an interface to the Multics
send message facility, allowing APL users to send interactive
messages to other Mul tic s user s . It take s one or mor e arguments, the
fir st of which is the Multic s user to send the message to Cfor example
fMITH.luLTICS). The remainder of the line is interpreted as the text
of the message, and is sent to the specified user. If there is no text
given on the request line, the message tNPUT: is printed, and text
lines are read from the terminal and sent to the specified user as they
are typed. To exit the message sending session, type a line
containing only a period C.).

EXTERNAL FUNCTIONS

The Multics APL interpreter permits APL programs to make
external calls out to obj ect segments that have been created by other
Multics translators, such as PLfI, provided that those object
segments obey a specified inter face. To the APL program, such a call
looks like an ordinary reference to a defined function; the function
may accept zero, one, or two arguments, and it may optionally return a
result.

The)DFN,)MFN,)ZFN System Commands

The system commands)DFN,)MFN, and)ZFN are used to define
external function names. The command)DFN is used to declare a dyadic
function; i.e., one accepting two arguments. The command)MFN is used
to declare a monadic function; i.e., one accepting one argument. And
the command)ZFN is used to declare a zero-adic (niladic) function;
i .e., one accepting no arguments. Whether an external function
produces a result need not be specified at the time its name is
defined; in fact, the same function can at times return and at other
times not return a value, as it chooses.

5-19 AK95-02

Definition Syntax

The syntax of an external name definition is:

)DFN aplname pathname

or else:

)DFN pathname

where)DFN can be replaced by)MFN or)ZFN as appropriate to the
function being defined. The fir st form defines the name" aplname" to
be an externally-coded dyadic function. When an APL program makes a
function reference to "aplname", the APL interpreter performs a call
on the object segment "pathname" with the calling sequence described
below. When "pathname" returns, any returned value is considered as
the resul t of "aplname", and execution of the APL program resumes.

The "pathname" maybe an absolute or relative pathname, or itmay
be a reference name, in which case the Mul tics search rules are used to
obtain its referent. The" pathname" may contain both a segment name
and an entry name separated by a dollar sign, as" A$B" , or it may simply
contain a segment name, as "A", which is considered" A$A", i.e., a call
to entry point" A" in segment" A". Note that the dollar sign must be
typed as S backspace / ($) on Selectric-type terminals.

In t ne second form of definition, where "aplname" is not
specified, it is considered to be the same as the entry point name of
"pathname", (for example, "B" if pathname were" A$B" , or "XYZ" if
pathname were simpl y "XYZ").

Definition Errors

A definition error report can be due to: (1) an invalid
character in the function name; (2) an invalid pathname; (3) inability
to find the specified pathname/reference name; (4) conflict with
existing reference name; (5) a global variable or group already in
existence with the proposed function name.

External Functions Cannot Be Edited

External functions cannot be edited in any way by the APL editor.
An attempt to open one for editing results in a definition error
report. However, external functions can be erased or redefined, and
their definitions can be copied from one workspace to another.

5-20 AK95-02

External Function Calling Sequence

A procedure, say" f'" , that is to be called by APL as an external
function, must conform to the following calling sequence:

f: procedure (operators_argument);

declare 1 operators argument aligned,
2 operands (2) aligned,

3 value pointer unaligned,
3 on stack bit (1) aligned,

2 operator aligned,
3 dimension fixed bin,
3 padding bit (18) unaligned,
3 op2 fixed bin (8) unaligned,
3 op1 fixed bin (8) unaligned,

2 result pointer unaligned,
2 error code fixed bin (35),
2 where=error fixed bin;

Each of the fields in operators_argument is described below:

operands(1) .value pointer to the left operand's value bead. If
this is null, the operator is monadic.

operands(1).on_stack
equal to "1"b if the operand is on the value
stack. See below for a detailed explanation of
conventions for using the value stack.

o per and st g) .value pointer to the right operand's value bead.

operands(2).on stack
- Similar to operands(1) .on_stack flag.

dimension

padding

op2

o p t

result

the dimension along which the operator should
oper ate. This is al wa ys the last dimension for
external functions.

this field is unused.

this field is unused for external functions.

this field is unused for external functions.

(output) pointer to the resul t value bead. This
bead must be on the val ue stack. See below for a
detailed explanation of conventions for using
the value stack.

5-21 AK95-02

error code (output) set to a status code in
apl error table before the oper ator signal s
apl-operator error • See below for a list of
status codes: -

where error (output) set by error processing in operator to
ind ic ate wh ich o per and the error appl ies to. By
default the error marker is placed under the
external function name. Add one to where error
to cause the error marker to be placed under the
left operand. Subtract one from where error to
cause the error marker to be placed under the
right oper and.

An APL value bead is declared:

declare 1 value bead aligned based (value_ptr),
2 bead type unaligned,

3 operator bit,
3 symbol bit,
3 val ue bi t,
3 function bit,
3 group bit,
3 label bit,
3 shared variable bit,
3 lexed 1unction bit,

2 data type unaligned,
3 list value bit,
3 character value bit,
3 numer ic val ue bi t,
3 integral value bit,
3 boolean value bit,

2 unused bit (5) unaligned t

2 bead size bit (18) unaligned t

2 reference count fixed bin (29),
2 total data elements

fixed bin (21),
2 rhorho fixed bin,
2 data pointer pointer unaligned,
2 rho 1ixed bin (21) dim (n refer

(value_bead.rhorho));

declare 1 character data structure aligned based (data ptr),
2 character datum char (1) unaligned -

- dim (O:data_elements - 1);

declare 1 numeric datum float bin (63) aligned
dimension (O:data elements - 1)
based (data_ptr);-

where:

string (bead type) is "001000000 tt b for a value bead;

5-22 AK95-02

string (data_type) is "01000"b for a character value, "00100"b for a
n urn er i c v al ue, "0 0 1 10"b fo r a in t e g r a1 nurn er i c
val ue, and "0 0 111"b fo r abooleann urn eric val ue •

un used is un used.

bead size is not used or set by an operator or external
function.

reference count is not used or set by an operator or external
function.

total data elements is the number of elements in the APL value. This
is 1 for a scalar, pV for a vector V, and p,A for
an array A.

rhorho

d a t a_ po in t e r

rho

is the "rho r ho " (number of dimensions) of the APL
value. This is 0 for a scalar, 1 for a vector,
and ppA for an array A.

is a pointer to the array of elements, either
char ac ter or numer ic • The data arr ay al ways
immediately follows the value bead in storage.

is the array of dimensions of the value. This is
undefined for a scalar, a single-element array
for a vector, and a vector of integers for an APL
array. (pA for an array A).

status Codes for Use by External Functions

When an ex ternal function reports an error (ei ther in one of its
operands, or an error arising from a computation) it assigns one of the
following status codes to operators argument.error code and returns.
This activates the APL error mechanism. -

The status codes are:

apl_error_table_$rank prints RANK ERROR

apl_error_table_$index prints INDEX ERROR

apl_error_table_$length prints LENGTH ERROR

apl_error_table_$domain prints DOMAIN ERROR

apl error table $system error
- - - - prints SYSTEM ERROR

5-23 AK95-02

Conventions for Using the Value Stack

The Multics APL interpreter normally passes operands by
reference; results of expressions are passed by value, however. The
difference is important; operands passed by reference may not be
modified in anyway, operands passed byvaluemaybeoverwritten in the
course of operation, as an optimization to avoid allocating a
temporary work area. The on stack flag is set by the APL interpreter
to indicate whether an operand has been passed by value or by
reference. If the on stack flag equals "1"b, that operand has been
passed by value, on £he "value stack".

The value stack is a segment (or several segments) used solely to
hold results of operations, and intermediate work areas. It is
managed with a stack discipline; new storage is allocated at the end,
and the pointer to the end of the stack is advanced. The subroutine
apl push stack in the include file apl push stack fcn .incl.p11
should be called to allocate space on the value stack.- It takes one
argument, which is the number of words needed.

A typical external function operates as follows:

1. Checks its operands for consistency (make sure both are
n urn er i c, 0 r both are c har acter, ma ke sur e r an ks are
compatible, etc).

2. Allocates a value bead for the result on the value stack.

3. Performs the operation.

4. Pops operands that are on the value stack off of it.
Operand 2 (the right operand) is guaranteed to be lower on
the stack than operand 1 (the left operand), if both
operands are on the stack. Therefore, if operand 2 is on
the stack, the result value bead should overlayoperand 2.
If operand 1 is on the stack, the result value bead should
overlay it. If neither operand is on the stack, the result
value bead must stay where it is. Now copy (if necessary)
the result to its final place on the value stack, resetting
ws_info.value_stack_ptr to point to the end of the result.

5. Sets operators argument.result to point to the result
value bead. -

6. Returns.

5-24 AK95-02

External Function Include Segment

The include segment apl external function .incl.p11 may be used
by writers of external functions. It contains declarations for
operators argument, value bead, character data structure,
numer ic datum, the APL status c od e s , and the storage-management
ex ternaI en tr Le s , The following ex ternal entr y is decl ar ed in
apl external function .incl.p11, and should be used to allocate space
on the value-stack.

5-25 AK95-02

apl push stack

This function allocates storage on the current value stack.

Usage

declare apl_push_stack_ entry (fixed bin (19)) returns (ptr);

data_ptr = apl=push=stack_ (n_words);

where:

1. data ptr (output)
is the pointer to the storage that has been allocated.
Thi s stor ag e is al ways al igned on an even word bound ar y.

2 • n wo r d s (in put)
- is the number 0 f word s to be alloc ated on the val ue stac k ,

5-26 AK95-02

SECTION 6

FILE SYSTEM

THE MULTICS APL FILE SYSTEM

The Mul tic s APL file system prov ides the APL user wi th the
ability to save the values of APL computations in a file for later
retrieval. Unlike APL workspaces, this saving and loading may be done
under the control of APL programs, allowing complex manipulation of
d at a and ma i n ten an ceo f s pe cia1 pu r po sed atab a s e s • I n add it ion, the
APL file system allows several APL users to share data and perform
coordinated simultaneous operations on databases.

Organization of APL Files

An APL file is divided into components, one component for each
APL value in the file. APL values of any shape or rank, containing
numeric or character data may be stored in a component of a file.

Each component has assoc iated wi th ita po si ti v e integer
corresponding to its position in the file called its component number.
This component number is used to refer to the component and to the APL
value associated with it. Components in a file are numbered
con sec utivel y, start ing wi th 1 for the fir st component added to a new
file. Components can be deleted from either end of a file, so the
number 0 f the fir st component in the file is not al ways 1. Components
can not be deleted from the middle of the file. Thus there are never
any gaps in the components in a file (e.g. 5 6 7 8 9 is a possible
n urn be r in g 0 fall 0 f the com po nen t sin a f i I e whi 1 e 5 6 8 9 is not) •

APL files differ from workspaces in several respects:

1. More than one file may be active at a time in one APL user's
environment. Each file is referred to by a unique number,
so all active files may be referenced concurrently.

6-1 AK95-02

2. Files may be shared simul taneousl y by mul tiple APL users.
Locking mechanisms are provided to ensure file integrity.

3. The files are manipulated by APL system functions, allowing
file operations to be per f'or-m ed from wi thin APL programs as
well as from the keyboard.

Use of APL Files

The first step in using an APL file is to associate the file with a
positive integer called a "file number". This process is called t ytng
a f i 1e • The f i 1e n um be r (or tie n um be r) is used to ident i f y the f i 1e
for all sub se quen t file operations. The value of the file number is
chosen by the user and must be different from any other file number in
use at the time it is selected.

After the file has been tied, the file system functions may be
used to perform operations on it. Each function takes as an argument
the file number of the file to be operated upon. In addition, some
files require a component n umber spec i fying the particul ar val ue in
question. Some 0 f the fi le system func tions return a resul t, other s
do not.

File Manipulation Functions

OF'CREATE

Syntax: 'file name' OFCREATE file number

The OFCREATE func tion creates an APL fi le wi th the spec i fied name and
ties it to a file number for subsequent use. If no directory is
specified in the file name, the file is created in the working
d irec tor y. APL files have the suffi x " .c f •ap L'", The suffi x need not
be supplied by the user. If a file with the specified name already
ex is t s, an err 0 roc c ur s " Wh e n a f i 1e is fir 5 t c rea ted i tis empt y and
the first and last component numbers are O.

OFTIE

Syntax: 'file name' OFTIE file number

6-2 AK95-02

The file function OFTIE ties an APL file for exclusive use. When a
file is exclusively tied, no other APL user may tie the file for the
duration of its use. To tie a file for shared use by mul tiple APL users
see the [JF'8TIE function. Unlike OFCREATE, the specified file must
already exist and no other user may have the file tied. The suffix
".cf.apl" need not be supplied.

OF8TIE

Syntax: 'file name' OF8TIE file number

The OF'8TIE function ties an APL file for shared use. Any number of APL
users may have a file tied for shared use simultaneously. Like OFTIE
the file must already exist. No other user may have the file
exclusively tied. The suffix ".cf.apl" need not be supplied.

OF UNTIE

Syntax: OFUNTIE file number vector

The OF'UNTIE function closes and unties APL files. The file numbers of
files that have been untied are no longer associated with those files
and may be reused by subsequent OFTIE or DFCREATE operations. If the
vector of file numbers is empty, no files are untied. If any of the
specified file numbers are not tied to a file an error occurs, but the
remainder of the specified files are untied.

OFRENAME

Syntax: 'file name' OF'RENAME file number

in e OFRENAME function changes the name of the file tied to file number
to file name. The file remains otherwise unchanged, with the same
components, ACL, etc. The file must be exclusively tied.

6-3 AK95-02

OFERASE

Syntax: t file name' DF'ERASE file number

The OFERASE function deletes the APL file specified by both the file
name and file number. The file must be exclusively tied. If the
specified file name does not match the name of the file that is tied to
the file number, an error occurs .. The suffix "~cf~apl" need not be
suppl ied •

[JFAPPEND

Syntax: value OFAPPEND file number

[jFAPPEND adds an APL value to the end of a file, g iv i ng it a component
number one greater than that of the last component already in the file.
The val ue may be the resul t of a computation, the val ue of a v ar iable,
or simply a constant.

[JFREPLACE

Syntax: value OFREPLACE file_number component_number

The function OFREPLACE replaces the value in a specified component in
a fil e wi th a new val ue. If the spec i fied component number does not
already exist in the file, an error occurs. The new value may be any
APL value, regardless of the shape or type of the value being replaced.

OFREAD

Syntax: result + OFREAD file_number component_number

The O1?READ function returns the val ue stored in the specified
component in the specified file. The value returned may be assigned
to a variable, used in further calculations, or printed out , If there
is no component corresponding to the component number specified, an
error occurs.

6-4 AK95-02

OFDROP

Syntax: OFDROP file_number drop_number

The function OFDROPremoves components from ei ther end of an APL file.
If the number of components to be dropped is positive, that many
components are removed (dropped) from the low-numbered end of the
f i 1 e • If the n urn be r i s neg at i v e, the com po nen t s are dr 0 ppe d fr 0 m the
high-numbered end of the file, and the number of components removed is
equal to the absolute value of the number given. If there are fewer
components in the file than the number spec i fied, an error occur s , If
all of the components are dropped from a file, the first and last
component number s are set to 0, t , e ., the fi Le looks jus t I ike a newl y
created file.

OF'NUMS

Syntax: result ~ DFNUMS

DF'NUMS returns a vector with the file numbers of all the files
currently tied in the user's APL environment. If there are no files
tied, the empty vector is returned. The simplest way to untie all of
the files currently tied is to execute the statement OFUNTIE DFNUMS,
passing the vector returned by nli'NUMS on to DFUNTIE.

OFNAMES

Syntax: result ~ DFNAMES

OFNAMES returns a character matrix, each row of which contains the
pathname of the APL file tied to the corresponding file number in the
vector returned by OFNUMS.

OFLIB

Syntax: result + DFLIB 'library_name'

6-5 AK95-02

The DFLIB functions returns a character matrix, each row of which
contains the name of an APL file contained in the directory specified
by 1 ibrar y name. The 1 ibrar y name can be ei ther a 1 ibrar y number or a
Multics pathname.

IJFLIM

Syntax: result + OFLIM file number

The DFLIM function returns a two-element numeric vector. The first
element of the vector is the component number of the first component in
the file and the second element is one greater than the component
n umber of the 1 ast component in the file, i.e., the component number
that would be ass igned to the next val ue added to the file by OF'APPEND.

OF'SIZE

Syntax: result + OFSIZE file number

The DE'SIZE function returns a four-element numeric vector. The first
two e 1 emen t s 0 f t his v ec to r are the sam e as tho seret urn ed by OFLIM,
the component number of the first component in the file and one greater
than the component number 0 f the 1 ast component in the file. The third
element is the amount of storage currently being used by the file, in
bytes. The fourth element is the max imum si ze to which the file may
grow. This number is not meaningful in Multics APL, since the maximum
size of a file is limited only by the quota allocated to the containing
directory of the file. Therefore, the fourth element is only included
for the sake of compatability with other APL file systems, and is
defined to always be the value of the largest existing number in
Multics APL, 1.701411835E38.

[JpRDCI

Syntax: resul t ... [JPRDCI file number component_number

5-6 AK95-02

OFRDCI returns a three-element numeric vector. The first element of
the vector is the size of the specified component in bytes. The second
element is the user number of the APL user who last wrote a value into
the component. This number is only meaningful when the APL user who
modified the component is part of a sub s ys t em where user numbers are
assigned, or has invoked APL with the ~user number control argument
(see the apl command description). The defaul t user number is 100.
The third element of the vector is the time at which the component was
wr i tten. Thi s time is measur ed in a stand ard Mul tic s clock read ing ,
the number of microseconds since midnight January 1, 1901 GMT.

OFHOLD

Syntax: DFHOLD file number vector

The OFHOLD function is used to lock a file opened for shared use so that
no other APL user maymodify the file. DFHOLDfirst unlocks all of the
files currently locked by the user, then proceeds to lock all of the
files specified in the vector of file numbers. Thus, calling OFHOLD
with an empty vector simply unlocks all of the currently locked files".
If any of the specified files are already locked by another user,
OFHOLDwaits until the file becomes free, then locks it and continues.
The files are locked in an order that guarantees that no deadlock can
occur between user s per forming OFHOLD operations.

OFLISTACL

Syntax: result + OFLISTACL file number

OFLISTACL returns a character matrix containing the Multics file
system access control list (ACL) for the file. The character matrix
has 36 col umns -- 3 for the access modes, 1 bl an k col umn, and 32 for the
access id -- and as many rows as is necessary. For more information on
Mul tics access control, see the Multics Programmer's Reference
Manual, COrder No. AG91). -

OF'SETACL

Syntax: access matrix OF'SETACL file number

6-7 AK95-02

The DFSETACL fune tion takes a char ac ter matr i x 1 ike the one returned
by DF'LISTACL and sets the ACL for the specified file to the value of the
matr t x , The matr i x must be 36 col umns wid e, and may have an y number 0 f
rows. However, if a vector is supplied for the left argument, it need
be only as long as is necessary to contain the access modes, the blank
column, and the access id (a minimum ers characters). The first three
columns of each rowmust consist of some combination of the characters
r e w or bl an k ; the acc ess modes. The fo ur th col umn must be bl an k ,
Columns 5-36 must contain a valid access id of the form used by the
Multics access control commands. For more information about file
system access control, see the section on access control in this
chapter.

DF'ADDACL

Syntax: access matrix DFADDACL file number

The []FADDACL function is similar to DFSETACL, except that instead of
replacing the ACL of the file with the one specified by the matrix, the
entries in the matrix are added to the existing ACL. If any of the
entries in the matrix duplicate an existing entry on the file's ACL,
the access modes in the ACL are replaced by those in the matrix entry.

OFDELETEACL

Syntax: access id matrix DFDELETEACL file number

The []FDELETEACL function takes a 32-column-wide character matrix,
each row of which is a Mul tics storage system access t d , Any entries
on the ACLofthe file matching anyofthe access idsin the matrix are
del e ted fr om the ACL• Entr i e sin the mat r i x t hat are not 0 n t he ACL for
the file are ignored.

Acc~~s Control

Many applications involving the use of the APL file system
r e qu lr' e the use 0 f on e fil e by sever al user s , To control which user s
can access which files, the APL file system provides an interface to
Mul tics storage system access control. The following discussion
provides an overview of Multics access control and how the APL file
system in ter faces wi th it. For a more d eta il ed disc ussion 0 f Mul tic s
access c on t.r o L, see the Multics Programmer's Reference Manual (Order
No~ AG91). -

6-8 AK95-02

Each APL file has associated with it a list of users that can
access the file, and what form of access they have. This list is
called the Access Control List, or ACL, of the file.

Each en tr y in the ACL is compo sed. of two parts, the access id and
the access modes. The access id is used to identify a Mul tics user or
group of users. An access id is composed of three parts, separated by
periods: the person id, the project id, and the instance tag (e.g.
Smith.Student.a). Any of the fields may be replaced by an asterisk
(*), signifying that any string will match that field. Thus the
access id Smith.*.* will match the user Smith on any project, and
* .Student.* will match any user on the Student project. The access id
..* matches any user on any project.

Assoc iated wi th each access id are the access modes for the user.
The access modes specify what access the corresponding user has to the
file. There are two access modes for APL files: read (r) and wr i te
(w) access (a third access mode, execute (e), ex ists, but is not
meaningful for APL files and may be ignored by users of the APL file
system). A user may have both read and write access to a file, only
read ace ess, or no acc ess at all (null acc e s s) , The combin ation 0 f
wr i teac c e s sand no r e ad ac c e s sis e quival en t to hav ingnu11 ac c e s s to
the file.

Several file system functions exist for manipulating the ACLs of
APL files. DFADDACL and DFDELETEACL add and delete ACL entries
respectively, and DFSETACL replaces the entire ACL for the file with
one supplied by the user. For more detailed information, see the
individual descriptions of the functions.

File Sharing

The APL file system allows the simultaneous use of an APL file by
several APL users. In any application where a database is shared
among multiple users it is desirable to have a mechanism for ensuring
exclusive use of the file while executing a critical section of an APL
program. The DFHOLD function provides this ability.

The DFHOLD function takes as its arguments a vector of file
numbers of files to be locked. After unlocking any files that the user
already has locked, it attempts to lock all of the specified files.

While a user has a file locked, no other user may perform any
oper ations on the file that would change an y 0 f the data in the fi 1 e
(e.g. DFAPPEND, OF'REPLACE). Other user s may, however, read
information from the file (i.e. using DFREAD, ORDCr e t o v) ,

6-9 AK95-02

When several APL users are sharing code that does file
manipulations, (e.g. interactive updating of a common database) , the
locking capability provided by the OFHOLD function can be used to keep
the data in a consistent state. If the critical code that performs the
actual file reading and writing operations is surrounded by calls to
the OFHOLD function, then the user executing the code is guaranteed to
have excl usiv e use 0 f the fil e for the d ur ation 0 f the important
operations. Thus any number of users can read and write the same
database without interfering with one another =

6-10 AK95-02

SECTION 7

SYSTEM FUNCTIONS

THE MULTICS APL SYSTEM FUNCTIONS

System functions are those defined by the APL system itself;
some of which are programming aids while others return information
pertaining to the APL system.

The system functions, like system variables, are characterized
by the 0 (quad) character followed by the name of the particular
function, which is then followed by arguments, separated by spaces.

System functions may be called from within an APL program or
from the APL environment.

The current APL system functions are:

OAF ••••••••••• • Active Function

OAI .•.......... Accounting Information

~ALL•••••••••• Call

~R •••••••••••• Canonical Representation

~s Character Set

OD L • • • • • • • • • • • • De1 a y

7-1 AK95-Q2

DEC • • • • • • • • • • • • Ex ec ute Command

DEx •••••••••••• Ex pung e

DFX ••••••••••• •Fix

DLC •.•••.•.••.• Line Counter

ONC •••••••••••• Name Count

ON L •••••••••••• Nam e Li s t

OTS •.•••....••. Time Stamp

OTT ••.••••..••• Terminal Type

DUL •••..•••..•. User Load

CWA ••••••••••• •Workspace Available

CWU•...........Workspace Used

7-2 AK95-02

Active Function

Syntax

OAF Multics active function expression

Multics active function expression is an APL character vector that
spec i fies a function expr ess ion that returns a val ue . For ex ampl e:

A + OA F 'T 1M E'

Semantics

The Active Function function executes a Multics active function
expression from within the APL system. This APL function always
returns a vector.

Notes

When this function has completed execution, the user will be
returned to the APL system, unless the function is one that implicitly
specifies ,or resul ts in, an exit from the APL system. The' new pr oc '
and 'logout' commands should not be called by this function; use the
DEc system function for these commands.

If the Multics function resulted in an error, or could not be
executed for some reason, the value returned is the error message (in
APL char acter vector form). The error message can be assigned to an
APL variable if the user desires.

If the value returned is not going to be used as the right
argument to the assignment operator, or not used within the calling
expression, it is printed to the user interface.

If the function specified by the argument does not return a
result, the error message 'PROCEDURE CALLED IMPROPERLY' is returned.

1-3 AK95-02

If the fun c t ion s pe c i fie d by the ar g urn en t can not bel 0 cated, the
error message 'SEGMENT NOT FOUND' is returned.

If the argumen tis an empty char ac ter v ec tor or one consi sting of
whi tespace onl y, the message 'CODE 100.' is returned.

SYNTAX ERROR is a result of arguments (one is required).

DOMAIN ERROR is a result of a numeric argument (must be
character), or a matrix or array argument (must be a single vector).

7-4 AK95-02

Accounting Information

Accounting Information

Syntax

oAI

Semantics

The Accounting Information function produces a It element vector
consisting of:

1. User Number
2. Computer time used in this session
3. Connect time since sign on
4. Typing time.

Items 2, 3, and It are measured in milliseconds.

Notes

If the value returned is not going to be used as the right
argument to the assignment operator, or not used within the calling
expression i it is printed to the user interface.

This function always returns a vector.

CONTEXT ERROR is a resul t 0 f an attempt to pass an argument to the
function.

7-5 AK95-02

Call

Syntax

Function call: V + DCALL (entrydcl; arg1; arg2; ••• ; argN)
Subroutine call: [JCALL (entry_del; ar g t ; arg2; ••• ; ar g N)

entry del is an APL character value containing a PL/I style entry
declaration specifying the routine to be called, the number of
arguments it takes, whether it is a subroutine or function, and the
types of the arguments and function value. (Input) (See "Entry
Declaration" below for d e t a l l s ,) ar g t , ar g z , ••• argN are the APL
variables and values to be used as the arguments to the routine which
i s be ing call ed • (Upd ate) I fan ar g um en tis a s i mpl e v ar i ab 1e (a s
opposed to a constant, an expression or an indexed variable), the
value of that variable is updated to reflect any changes made by the
called routine.

Semantics

An APL system function to provide APL users the ability to call a
FORTRAN or PL/I routine. If the routine is a subroutine, no result is
returned to APL. But if the routine is a function, the function's
value is returned as the result.

Entry Declaration

The entry declaration is identical to that of PLfI (except that
the 'entry' keyword is optional), with the following restrictions:

(1) The attributes in a parameter declaration must be in the
following order:

dimensions, type, size and alignment.

(2) A lower bound may not be specified for a dimension.

(3) The mode (i.e 'real' or 'complex') may not be specified.

(4) The only types supported are: bit, char, entry, fixed bin, and
float bin ..

(5) Neither- dimensions nor parameter descriptions (other than
'options (variable)') may be specified for 'entry' values.

(6) A scale factor may not be specified for 'fixed' values ..

(7) 'fixed' and 'float' values may not be unaligned ..

7-6 AK95-02

Example

A typical declaration would be:

'get line length $stream(char(*), fixed bin(35)) returns(fixed
bin)' - -

Notes

I f a s imp1 e v ar i ab 1 e i spa ssed a san ar g um en t, t hat v ar i ab 1 e need
not have been previously assigned a value. In such a case, the value
passed to the called routine for that argument has the shape and type
indicated by the entry declaration and is initialized to binary
zeroes.

The val ue 0 f an ar g ument must agr ee wi th the type spec i fied in the
entry declaration. For example, if an argument is to be passed as a
'bit' value, it must be numeric and contain only zeroes and ones.

The shape of an argument must agree with that specified in the
en try dec 1 arat ion. Th i sus uall y me an s t hat an ar g urn en t has the s hape
indicated by the declaration. However, an argument that is to be
passed as a 'bit' or 'char' value is also considered to have the
correct shape if its rank is one greater than in the declaration, its
shape when the last dimension is excluded is the same as in the
declaration, and the length of the last dimension is the same as the
size attribute in the declaration. For example a 3x4 character matrix
may be passed as: (3, 4) char (1)' or '(3) chat" (4)

Ei ther a po si tivein teg er or an aster i sk may be used in the en tr y
declaration to specify the length of a dimension or the size of a 'bit'
or 'char' value. An asterisk in a dimension specification means use
the current length of the correspond ing dimension of the argument" An
asterisk in a size attribute means use the c ur r en t length of the last
dimension of the argument. Aster isks may not be used when the
corresponding argument is a simple variable that has not yet been
assigned a val ue. Aster isks may onl y be used in the 'returns'
attribute if the routine being called was written in PL/I and contains
asterisks in the 'returns' attribute of its header.

If 'options (variable)' is given in place of parameter
d ec l.ar ations, any number of arguments may be suppl Led , A r" ank N
numeric argument is passed as an N-dimension array of 'float bin(63)'
numbers. Arank Ncharacter argument is passed as an (N=1)=dimension
array of 'char(M)', where M is the size of the arguments last
dimension.

1-1 AK95-02

Canonical Representation

Syntax

OCR function name

function name must be an APL character vector that specifies a
function name local to and residing in the current active APL
workspace.

Semantics

The Canon ic al Re pr esen ta t ion func t ion r etur ns the char ac ter
representation of a function.

Notes

This function will always return a matrix.

A 0 by 0 matrix will be returned if the function specified by the
argument could not be found, or if more than one syntactically correct
argument was passed.

If the value returned is not going to be used as the right
argument to the assignment operator, or not used within the calling
expression, it is printed to the user interface.

SYNTAX ERROR is a result of zero arguments (a character vector is
required) •

DOMAIN ERROR is a result of a numeric value as the argument.

7-8 AK95-02

Character Set

Syntax

Des

Semantics

The Character Set function (Atomic vector on other systems)
returns a vector of 196 characters, each of which is an element in the
APL character set.

Notes

If the value returned is not going to be used as the right
argument to the assignment operator, or not used within the calling
expression, it is printed to the user interface.

CONTEXT ERROR is a result of an attempt to pass an argument to the
func tion •

7-9 AK95-02

Delay

Syntax

oDL N seconds

N_seconds is a positive,scalar integer value. It is the number of
seconds of delay.

Semantics

The De 1ay fun c t ion del ays for N sec 0 ndsand return s the actuaI
number of seconds delayed.

Notes

If N seconds is <= 0, then 0 is returned.

Asoft interrupt will terminate the delay. The number of seconds
of delay up to the interrupt are returned.

If the value returned is not going to be used as the right
argument to the assignment operator, or not used within the calling
expression, it is printed to the user interface.

SYNTAX ERROR is a result of zero arguments (one integer value is
required) ..

DOMAIN ERROR is a result of an attempt tp pass a character scalar
as an argument, or an y mul ti~el ement v a1 ue 0 f an y kind as an argument ..

7..10 AK95-02

Execute Command

Syntax

DEc Multics command

Multics command is an APL character vector that specifies the Multics
command-or executable segment of code to be executed. For example:

DEC 'cp fileone filetwo'

Semantics

The Execute Command function executes a Mul tics command or
executable segment of code from within the APL system. Avalue is not
returned by this function.

Notes

When the command has completed execution, the user will be
returned to the APL system, unless the command is one that explicitly
specifies,or implicitlyresults in, an exit from the APL system. The
'new_proc' and' logout' command s can be executed wi th this function.

The character vector must be an executable Mul tics command or a
Multics system error message will be printed to the user interface.

If the command is an active function call (i.e., returns a
value), the result cannot be assigned to an APL (user defined)
v ar iable.

The command can be an y Mul tic s command, not just an acti v e
function. See apl.quadAF. info for more information on active
functions.

SYNTAX ERROR is a result of zero arguments (one is required).

DOMAIN ERROR is a result of a numeric argument (must be
character) , or a matrix or array argument (must be a single vector) •

1-11 AK95-02

Expunge

Syntax

DEX object_name

object name is a character vector that specifies the name of an APL
object-to be erased, or the name of a character matrix whose rows are
used to specify the name of an object to be erased.

Semantics

The Expunge function erases var iables and functions under
program control. The most local instance of the object is used.

is returned if:
- the object did not exist within the current workspace.
- a successful operation has taken place.

o is returned if:
- the object could not be erased (those labels, functions or groups

in the state indicator).
- the object named provided was not a valid APL name. e.g.

123TEST

Notes

1fthe fu nc t ion i s call ed cor r ec t 1 y, DEX a1ways ret ur n s a vec tor
of 1's, O's or a combination of both.

If the value returned is not going to be used as the right
argument to the assignment operator, or not used within the calling
expression, it is printed to the user interface.

All labels, values or functions can be deleted using the
following method:

DEX (ONL *)

where ONL is the Name List function and * is 1 , 2 or 3.

SYNTAX ERROR is a,result of zero arguments.

DOMAIN ERROR is a result of a numeric argument.

7-12 AK95-02

Fix

Syntax

DFX matrix

matrix is an APL character matrix whose rows are syntactically correct
APL code and whose format follows the guidelines for APL function
definition. The argument is NOT a character vector specifying the
matrix name, it is the matrix or matrix name itself. For example:

R + DFX GRAPHICS

R + DFX 'GRAPHICS'

is correct

is incorrect

where GRAPHICS is a character matrix.

Semantics

The Fix function converts a canonical representation of a
function, in character matrix form, into an APL function. If the
operation is successful, a character vector specifying the new
function name is returned.

Notes

If the matrix cannot be converted, for syntactic reasons, an
error message will be printed and the source of the error will be
displayed.

If the value returned is not going to be used as the right
argument to the assignment operator f or not used within the calling
expression, it is printed to the user interface.

See apl.quadCR.info for information on the inverse operation of this
function (i.e., function to canonical representation).

SYN TAX ERR 0 R i s aresul t 0 f ze r 0 ar gum en t s (0ne c har act er mat r i x
must be passed), or a combination of character (scalars and/or
vectors) and numeric value(s) being supplied as arguments.

CONTEXT ERROR is a resul t of more than one argument being
suppl ied • At least one 0 f the arguments must be val id for this error
to occur.

7-13 AK95-02

DOMAIN ERROR is a result of either one or more numeric values
being supplied as arguments, or one or more character scalars and/or
vectors being supplied as arguments.

7-14 AK95-02

Line Counter Syntax

OLe

Semantics

The Line Counter function returns a numeric vector whose
elements are pending and suspended lines of functions appearing on the
state indicator.

Notes

If the value returned is not going to be used as the right
argument to the assign~ent operator, or not used within the calling
expression, it is printed to the user interface.

A vector is always returned.

CONTEXT ERROR is the resul t of an attempt to pass an ar g um en t to
the runc tion.

7-15

Name Count

ONC apl val ue

a p1 val ue can be a c ha r acte r v ec to r 0 r a c ha r act e r mat r i x • The v ec to r
(or-row of a character matrix) must specify a valid APL name and/or
identifier. For example:

e 1) .4 + i PUN0 NE '
B + ONC A
B

3
e2) A + 2 6 p 'FUNONE' 'FUNTWO'

B + ONe A
B

3 3

Where FUNONE and FUNTWO are functions in the current active workspace.

Semantics

The Name Count function returns an integer value that specifies
the type of the argument:

a = Name is not in use at the present level. It may be used to define
a variable, label, function or group.

= The name has been defined as a label.

2 = The name has been defined as a variable.

3 = The name has been defined as a function.

4 = The name is unavailable for use.

(The s h a pe 0 f the res u1 t d e pe nd son the n um ber 0 f the ar g um en t s • The
resul t could be a scal ar or a vector. See Notes 1 and 2 below)

Notes

An integer vector is returned if the argument is a character
matrix. Each row is handled as an independent character vector and
passed to the function as such~

7-16 AK95-02

An integer scalar is returned if the argument is a character
vector.

If there are two or more names wi thin the character vector (i.e. ,
alphabetic and/or alphanumeric characters separated by whitespace
c ha r act e r s) thentheret ur ned val ue wi11 be a 4. Thi sis ani nd i cat ion
that the argument was malformed. For example:

4

A +- ONC 'FUNONE
A

FUNTWO'

1fther ear e two 0 r m0 r e c harae t er vec tor s be i ng pas sed as
ar g urn en t s , thentheret ur ned val ue wi11 be 0 • Thi s doe s not
necessarily mean the names are available for use. For example:

A + ONC 'FUNONE 'FUNTWO'
A

o

If the value returned is not going to be used as the right
argument to the assignment operator, or not used within the calling
expression, it is printed to the user interface.

SYNTAX ERROR is a result of zero arguments.

DOMAIN ERROR is a result of an integer value as an argument.

7-17 AK95-02

Name List Syntax

L DNL N

Nis an integer scalar or integer vector whose value(s) must be >= 1 and
<= 3. The following table shows the integer value that corresponds to
each type(s).

VALUE
1
2
3

TYPE(S)
Label
Value (ie scalar,vector,matrix,array)
Function

L is an optional argument that can be a character vector or scalar
where each element is the first letter of an object name. Only objects
whose first letter is an element in the argument (or is the argument in
the case of a scalar) are considered. For example:

'4RQ' ONL 3

lists the functions whose names begin with an A , Rand Q.

Semantics

The NameL i s t fun c t ion lis t s the n am e s 0 f the APL t ypes pe c i fie d
by N. On I y the nam esus ed wit h i nthe c ur r en t , act i v e APL wo r kspac ear e
listed.

Notes

If Nis an integer vector, the list produced by this function may
not be in the correct order. That is, types could get mixed in the
output list.

If the value returned is not going to be used as the right
argument to the assignment operator, or not used within the calling
expression, it is printed to the user interface.

This function will always return a matrix, barring the
occurrence of system errors.

A 0 by 0 matrix will be returned if the type specified by the
argument could not be found, or if more than one syntactically correct
argument was passed.

SYNTAX ERROR is a result of zero arguments.

7-18 AK95-02

DOMAIN ERROR is a result of a character value as an argument, or
an integer value that is not within the specified allowable range of
val ue s (1 <= N <= 3).

1-19 AK95-02

Time Stamp

Syntax

DTS

Semantics

The Ti meSt amp fun c t ion ret urn s a 7 - e1 em en t v ec tor con sisting 0 f
the Year, Month, Day, Hour, Minute, Second, and Millisecond.

Notes

If the value r e t.ur ried is not going to be used as the right
argument to the assignment operat0r, or not used within the calling
expression, it is printed to the user interface.

CONTEXT ERROR is the resul t o f an attempt to pass an ar g um en t to
the function.

7-20

Terminal Type

Syntax

OTT

Semantics

The Terminal Type function returns a numeric scalar value
i d en t i f yin g the t ype 0 f t e r min alinus e • Th e val ue ret urn ed is> = - 1 1
and <= 5. In following list, the possiblevalues aregiven withtheir
respective terminal names.

-11 ••• LA36
-10 ••• BITPAIRED

-9 TYPE PA IR ED
-8 ARDS

Notes

-7 ... TN300
-6 •.. ABSENTEE
-5 ... 1030
- 4 ••• TELERA Y11

-3 ••• ASCII
-2 ••• TELETYPE
-1 ••• TEK40 13
o••.

1••• CORR2741
2 •.• 2741
3••• 1050
4 ••• 3270-DAF
5... 3270

If the value returned is not going to be used as the right
argument to the assignment operator, or not used within the calling
expression, it is printed to the user interface.

CONTEXT ERROR is a r esul t 0 f an attempt to pa s s an ar g umen t to the
func tion •

7-21 AK95-02

User Load

Syntax

DUL

Semantics

The User Load function returns the number of users pr e s e n t I y on
the system.

Notes

If the value returned is not going to be used as the right
argument to the assignment operator, or not used within the calling
expression, it is printed to the user interface.

CONTEXT ERROR is the resul t of an attempt to pass an ar g um en t to
the function.

AKS3-JJ

Workspace Available

Syntax

OWA

Semantics

The Wo r ks pac e Av ail ab 1 e fun c t ion ret urn s the am 0 un t 0 f a v ail ab 1 e
storage in the active workspace. The unit o f measurement is bytes.

Notes

If the value returned is not going t o be used as the right
argument to the assign~ent operator, or not used within the calling
expression, it is printed to the user interface.

CONTEXT ERROR is the r esul t 0 f an at tempt to pa ss an ar g urn en t to
the f'un c tion •

7-23 AK95-02

Workspace Used

Syntax

owu

Semantics

The Workspace Used function returns a numeric scalar whose value
specifies the amount of the current workspace already in use.

Notes

If the value returned is not going to be used as the right
argument to the assign~ent operator, or not used within the calling
expression, it is printed to the user interface.

CONTEXT ERROR is a result of an attempt to pass an argument to the
function.

7-24 AK95-02

SECTION 8

SYSTEM VARIABLES

THE MULTICS APL SYSTEM VARIABLES

System variables are variables reserved by the APL system.
Eac h wo r kspa c e has a set 0 f par am e t e r s 1 0 cal to itself t hat are set b y
assigning a value to the system variables.

A workspace parameter has a limited range of values. An error
message will be printed if there is an attempt to assign a system
variable a value not within its range of values.

Typing the name of the system variable alone yields its current
setting as an explicit result~

The current APL system variables are:

OCT ••••••••••• • Comparison Tolerance

OIO Index Origin

OIT Integer Tolerance

OLX Latent Expression

oPP Printing Precision

OPw Page Width

ORL Random Link

8-1 AK95-02

Comparison Tolerance

Usage

OCT +- N

where:

1 e N

is a numeric scalar >= 0 and <= 1 •

Semantics

OCT is a system var iable known on other systems as 'fuzz'. When
comparing two numeric values, OCT is used in conjunction with the
values themselves in determining the allowable margin of difference
t hat dis tin g u ishe sone val ue f'r om the next. Tw 0 n urn be r s are
considered equal if:

(I A - B) s IOCT x (A - B)

8-2 AK9503

Index Origin

Usage

DID -+- N

where:

1 • N

is either 0 or 1 •

Semantics

The DI 0 s y s t em v aria b 1 e c han gesthe in d ex 0 r i gin to 0 or 1. If
set to 0, the first element of a vector is accessed with the value 0 as
its minimum subscript value. e.g. VCO]. If set to 1, the first
element is accessed with the value 1 as its minimum subscript value.
e.g. V[l]

8-3 AK95-02

Integer Tolerance

Usage

DIT + N

where:

1 n
I • LV

is >= 0 and <= 1 .

Semantics

The OIT s ys t em v aria b 1 e i suse din d e t e r min in g wh i c h val ue s are
in t e g e r sand wh i c h are no t , Mu1 i t c s APL cor; sid e r s a val ue to bethe
integer lC + 0.5 if:

(IC - l C + O. 5) < OIT

Notes

If 0.0001 <= N < 0.5 then DIT is set to O.

If 0.5 <= N < 1 . 0 then OTT is set to 1 .

If N = 1 then C = (C - (1 I C» + ((1 C) ~ O. 5)

If N <= 0.0001 and I (1 I C) ~ OIT then C = lC

8-4 AK95-02

Latent Expression

Usage

DLX ~ apl expression

where:

1. apI_expression

is an APL character vector that specifies an executable APL
expr e s s i on ,

Semantics

The latent expression for any given workspace is one that is
executed immediately after the workspace is loaded. If OLX does not
hold an expression, the keyboard is unlocked and the time and date are
printed. If there is a latent expression value, however, the keyboard
i s 10c ked and the ex pr e s s ion i sex e cut ed. Th e tim e and d ate will not
appe ar •

Notes

If the expression could not be executed, the following error
messages are printed:

.2 ERROR

.2 DLX

8-5 AK95-02

Printing Precision

Usage

OFP + N

where:

1• N

is >= 0 and <= 19

Semar.tics

Th e val ue 0 f OPPindie ate s the de g r e e 0 f pr in tin g pr e cis ion used
to display numeric values. A value is printed to the maximum of 10 * N
precision. e.g. if OFP +- 3 then 5.34567 would be printed as 5.346.

8-6 AK95-02

Page Width

Usage

OPw -(- N

where:

1 • N

is >= 30 and <= 390

Semantics

The val ue 0 f OPw ind icates the maximum val ue 0 f the term in al page
width. That is, DPw is the maximum number of characters that may
appear on one line of terminal output.

Notes

The OPW value is not operational wh en in audit, although it may
appear to be .. Hardcopies will not reflect the terminal appearance of
the text during the audit.

Any output overflowing the DPW setting is continued on
succeeding lines and indented the appropriate number of spaces, as
determined by the current)TABS setting.

8-1 AK95-02

Random Link

Usage

ORL +- N

where:

1• N

is >= 0 and <= 34359738367

Semantics

This variable is the seed for the random number generator.

8-8 AK95-02

SECTION 9

STREAM 1/0

THE MULTICS APL STREAM 1/0 FILE SYSTEM

The Multics APL stream ilo file system is provided for the
purpose of manipulating Multics segments as stream files from within
the APL system. This facility gives the user the ability to save and
retrieve APL character data from an ascii text segment.

Operations equivalent to the APL standard file handling
routines are pr ov i d ed , plus several which are meaningful only in the
sequential access stream file environment.

To access these functions, you must enter the ap pr o pr iate
external function definitions, as presented in the following list:

CREATE •••••••••)DFN CREATE APL CODED $CREATE

EOF)MFN EOF APL_CODED_$EOF

NUMS•••••••••••)ZFN NUMS APL_CODED_$NUMS

POSITION)DFN POSITION APL_CODED_$POSITION

READ...........)DFN READ APL_CODED_$READ

REWIND •••••••••)MFN REWIND APL CODED $REWIND

TIE............)DFN TIE APL CODED $TIE

UNTIE ••••••••••)MFN UNTIE APL CODED $UNTIE

WRITE..........)DFN WRITE APL_CODED_$WRITE

9-1 AK95-02

CREATE

Syntax: 'path_name' DCREATE file_number

The CREATE subroutine creates a segment named' path name' and opens it
for stream i/o. File number is analogous to 'fIe number' in APL
files, but the two systems are independent of each other. This means
you may have a stream file 7 and an APL file 7 tied concurrently. An
attempt to create an e x i s t i ng file will result in an error message and
program termination.

EOF

Syntax: r + EOF file number vector

The EO F fu nc t ion ret urn s abo0 lean v e c tor 0 f ' end 0 f f i 1 e ' s tat us for
e a c h f i 1 e s pe c i fie d by a n urn be r in the f i lenurnb e r vec to r . EO F
becomes true when the last character in a file has been read.

NUMS

Syntax: R + NUMS

The NUMS function returns the vector of tied file numbers. An empty
vector is returned if no files are tied.

POSITION

Syntax: type [,skip] POSITION file number

The POSITION function repositions the file. If 'type' is:

.... 1 the file is rewound.
o 'skip' lines are skipped.
1 the file is positioned after the last line.
2 the file is postitioned at the 'skip'th character.
3 'skip' characters are skipped.

If 'type' is -1 or 1, 'skip' is ignored. The default value of 'skip' is
1. 'skip' may be a negative value, resulting in a backward skip.

READ

Syntax: R + no of lines READ file number

9-2 AK95-02

The READ function returns a character matrix of dimension [I J] where I
i s the n urn be r 0 f 1 in esac t u a 11 y read (I <= no 0 f 1 in e s •• • End 0 f f i 1 e
may be reac hed befor e the spec ified n umber of lines ar e read). and J
is the length of the longest line read (J <= 512). Lines containing
less than J characters are right padded with blanks.

REWIND

Syntax: REWIND file number vector

The REWIND subroutine positions each file specified in the
file number vec tor sue h that the nex tREAD 0 per ation would read the
first line fri the file or the next WRITE would truncate and replace the
file contents with new data.

TIE

Syntax: 'path_name' TIE file_number

The TIE subroutine opens a segment named' path_name' for stream i/o.
Pathname may be relative or absolute.

UNTIE

Syntax: UNTIE file number

The UNTIE subroutine closes and detaches a segment opened for stream
i/o.

WRITE

Syntax: 'char vector' WRITE file number

The WRITE subrout ine wr i tes the char ac ter s 0 f the 1 eft ar gumen t to the
designated stream file, specified by the right argument. Newline
characters (octal escape ··012) must be included explicitly if
desired.

9-3 AK95-02

SECTION 10

EXTERNAL FUNCTIONS

THE MULTICS APL EXTERNAL FUNCTIONS

The following procedures and functions are available for use by
an APL program when the appropriate definitions are made within the
workspace where the program resides. These external procedures and
functions are written in PL/1 but contain the outward syntactic
properties that define an APL function.

The appropriate function definitions that should be made in the
programs workspace are listed in the Usage section of each individual
function/procedure description.

The following is a list of the current APL external functions:

ERF apl_erf

PICKUP apl_pickup_float bin 2

IOA •• • • • • • • • • • • • • • • • • apl_ioa_

REAV-SEGMENT •.••••••• apl_read_segment_

10-1 AK95-02

A s c al ar , menad ic fun c t ion that accept s an y n umer ic ar gument and
applies the p11 builtin "error function" to each value8

Usage

)MFN ERF APL ERF
R <- ERF value

where:

1. value
is a numeric value of any shape.

2. R
is the result value. It has the same shape as the argument.

10-2 AK95-02

Read double-precision floating point numbers from a
Multics segment into an APL vector.

Usage

)MFN PICKUP APL PICKUP FLOAT BIN 2
V + PICKUP 'path_name'

where:

1• ' path nam e '
is the pathname of a Multics segment containing the floating
point numbers. The pathname can be relative or absolute.

2. V
is the vector of numbers that is returned.

Notes

The bitcount must be set to 72 times the number of elements.

10-3 AK95-02

apI_ioa_

Permits an APL program to do formated or unformated output using
the ioa subroutine.

Usage

)DFN lOA APL lOA
)DFN lOA NNL-APL-IOA $NNL
)DFN IOA-RS APL lOA $RS
)OFN IOA-RSNNL AL lOA $RSNNL
'control-string' -IOA- apl value list
'control-string' IDA NNL apl v~lue list
R <- 'control string'-IOA RS apl vaTue list
R <- 'control=string' IOA-RSNNL apl_vaIue_Iist

wher e :

1. 'control string'
is an APL character scalar or vector that specifies the ioa
control string. Either the circumflex (A) or APL overbar("253J
character may be used as the ioa control character.

2. apl value list
is-either a single APL value (or expression), or a list of APL
values. A list of values has the form (VAL1;VAL2;VAL3 •..)
where each value is separated from the next by a semicolon, and
the entire list is surrounded by parentheses.

Notes

All character arguments are raveled into PL/I character strings,
no matter what the original APL shape.

All numeric arguments are raveled into a PL/I array of one
dimension, no matter what the original APL shape.

10-4 AK95-02

Read sand conv e r t s a s e gmen t con t a in in g PL/ 1 0 r FOR TRAN n urn be r s
(in character form) into an APL numer ic vector.

Usage

)MFN GET LIST NUMS APL GET LIST NUMS
R <- GET-LIST-NUMS 'path_name'

wher e:

1 • ' pa t h n am e '
is the relative or absolute pathname of the Multics text segment
to be read.

2. R
is the numeric vector that is returned by the function. The
length of the vector is the number of values that were read.

Notes

The d a t a in the s e gmen t mus t be ina for m sui tab 1 e fo r readin g by
PL / IIi s t d irec ted in put . The s e gmen t (0 r mu1 tis e gmen t f i 1 e) i s
opened for stream input and read using list d Lr e c t e d input until all of
the data has been read. A message is printed giving the (1 origin)
index of any values that cannot be converted, along with the bad value
itself. A zero is substituted in the result vector for these bad
val ue s ,

PL/I list directed input permits any white space character
(blank, tab, new line, new page) to be used as a delimiter between
val ue s • Al so, a comrna may b e use d to s epa rat e val ue s • Two ad j acen t
commas cause a zero to be returned. Any of the forms of PL/I (or
FORTRAN) constants may be used; the value may be signed, may have a
decimal point, may have a (signed) exponent, and may be binary or
decimal, fixed or float. Only the real part of any complex values is
used. Since blanks are a delimiter, no blanks may appear within a
single value.

This function can print non-APL error messages; therefore it is
advisable to run in)ERRS LONG mode.

10-5 AK95-02

apl read_segment_

Reads a Multics segment into an APL character vector.

)MFN READ SEGMENT APL READ SEGMENT
R + READ SEGMENT 'path_name'

wher e :

1. 'path name'
is the pathname of the Mul tics segment to be read. It can be
r e l at i v e 0 r ab so 1 ut e ,

2. R
is the character vector that is returned by the function.

Notes

The s e gmen tis readin asacha r act e r v ec tor, con t a in ingas man y
e 1 emen t s a s thereareb yt e sin the s e gmen t • Thus, 1 in e s are s eparate d
by new line characters (octal 012), not the usual apl matrix
convention. The out put 0 f the DC S sys tern func tion may be sub scr ipted
to obtain a new line character in a program.

Wh i 1 e the m0 stus e f u1 fo r m i s pr 0 b ab 1 y tor e ad in t ext se gmen t s ,
no restriction is placed on the type of data that may be read; any
segment is ok.

This is the most efficient method for reading data from segments
into ap l ,

AK9502

SECTION 11

APL SAMPLE PROGRAMS

APL SAMPLE PROGRAMS

The programs presented in this section were written with the
intent of providing programmers, less familiar with APL, an
opportunity to become more familiar with the language.

Many system var iables, system functions, external functions and
standard APL operators are included to demostrate their usefulness
within an APL program.

APL Programming Style

To avoid confusion, the programs are written in an uncondensed
format. Many APL programmers prefer to reduce the length of a program
by condensing the code in each function.

Executing ~ Sample Program

A list of all the functions used by each program are listed
following the 'Description' section. Many functions are not user
de f i ned . If you wish to try running these programs, you must make the
appropriate function definitions. Every external function
definition can be found in Section 10 of the manual. All stream i/o
function definitions are found in Section 9 of the manual. You must
enter these definitions before a program will execute correctly.
The y need on 1 y been t ered on c e i f the y are s av ed in the wo r kspac e wi t h
the calling program. To make a function definition, enter the
definition while APL is at command level. Make sure the workspace is
saved before leaving the APL system, or the definitions will be lost
and need to be reentered before executing the program the next time.

11-1 AK95-02

Card Dealer

Function:

This program deals four hands of thirteen randomly selected
card s ,

Description:

There are two user defined functions in the program. The main
function, DEAL, calls the second function, COMMON, three times
during its execution. This program util izes the APL stream i/o
facility, writing the four hands to the Multics segment 'deck'.

)FNS
COMMON CREATE DEAL EOF TIE UNTIE WRITE

VDEAL [0 rv
V DEAL ; Hl ; H2 ; H3 ; H4;

A TIE THE FILE AND OPEN FOR STREAM I/O
[1 J 'D EC K' TIE 1
A CREATE A 'DECK' OF 52 CARDS. COLUMN ONE HOLDS THE RANK OF THE
A CARDS WHILE COLUMN TWO HOLDS THE SUIT.
[2J CARDS + 52 2 p 'AC2C3C4C5C6C7C8C9CTCJCQCKCAD2D3D4D5D6D7D8

D9DTDJDQDKDAH2H 3
..CH 4H 5H6H 7 H8H9HTHJHQH KH AS 2S 3S 4S 5S 6S7S 8S9STSJSQSKS'
A CREATE A MATRIX OF l'S. THIS VARIABLE WILL BE USED TO MASK OUT
A PREVIOUSLY CHOOSEN CARDS FROM THE 'CARDS' MATRIX
[3J CHART + 1 52 p 1
A RESET SEED FOR RANDOM NUMBER GENERATOR USING TIME AND DATE
[4J ORL + (r20) + (r21) + (r25)
A GENERATE 13 RANDOM NUMBERS. NONE OF WHICH IS LESS THAN 1 OR
A GREATER THAN 52. ASSIGN THE RANDOM NUMBERS TO 'ROLL'. EACH
A ELEMENT IN 'ROLL' IS THE ROW INDICE OF 'CARDS'.
[5] Hl + CARDS[(ROLL + 13 ? 52) ;]
A WRITE THE FIRST HAND TO THE FILE 'DECK'.
[6J (,(Hl[;J» WRITE 1
A WRITE A LINEFEED CHARACTER to THE FILE 'DECK'.
[?] ,
, WRITE 1
A HAND rvo ,
[8] H2 + COMNON 1 39
[9) (.(82[;J» WRITE 1
[10] ,
, WRITE 1
lit HAND THREE
[li] 83 + COMMON 1 26
[12] (;(83[;]» WRITE 1
[13] ,
, WRITE 1

Jir HAiiu 4

11 2 AK95-02

[15] (.(H4[;]» WRITE 1
[16]
, WRITE 1
[17] UNTIE 1

V

VCOMMON[O]V
V FINAL + COMMON INC

A EACH ELEMENT IN 'CHART' AT 'ROLL[N]' (WHERE 1 s N s 13) BECOMES
A EQUAL TO O.
[1] CHART[l;ROLL] + 0
A MASK OUT EACH ROW OF 'CARDS' THAT CORRESPONDS TO A 0 ELEMENT IN
A 'CHART'.THE CARDS FROM THE LAST HAND HAVE REMOVED FROM THE DECK.
[2] CARDS + CHART[l;] t CARDS
A CREATE A NEW 'CHART' VECTOR WITH (pCARDS)[l] ELEMENTS.
[3] CHART + INC p 1
A PRODUCE A NEW HAND
[4] FINAL + CARDS[ROLL+(CHART[l;ROLL]

V

)Q

11-3 AK95-02

Graph Plotting

Function:

This program produces a graph by reading a data file containing x
y coordinates and plotting them to the scale specified by the
contents of the APL numeric vector DATA.

Description:

There are fifteen functions in this program, eleven of which are
use r wr itten. The ma i n fun c t ion, PLOT, call saIl t he use r
written functions directly, with the exception of STORE and
CONVERT • The val ue s ret urn ed bye ac h f un c t ion call ed by PLOT are
used as input to the next function.

The variable DATA is a six element vector containing information
pertaining to the scaling and axis labeling of the graph.

DAT A [1] : Min i murn x coo r din ate in the in put f i 1 e . Thi s val ue i s a
f eat uret0 the use r , for the pur po s e 0 f v e r i f yin g the d a t a •

DATA[2]: Minimum ycoordinate in the input file. This value is also
for data verification.

DATA[3]: At every DATA[3] space on the x-axis, number the axis at
that point, if space permits.

DATA[4]: At every DATA[4] space on the y-axis, number the axis at
that point.

DATA[5]: Every space on the x-axis is an increment of DATA[5]. eg.
DATA[5] + 0.25 means each space is an increment of 0.25.
There fo r e, the val ue 1 wo u1 d r e qui r e 4 spa c e s . If DAT A [5] +

0.75 then the value 3 would require 4 spaces.

DAT A [6] : Ever y spaceonthe y- a xis i san inc r emen t 0 fDA TA [4] •

To get the most accurate graph possible, you may need to readjust the
values in DATA. Range restrictions are done automatically, so graph
space is maximized, regardless of DATA values. That is, if the
ma x i murn val ue in the d a t a f i 1 e i s 10 and the min i mum is - 5, 0 n1 y the
values between -5 and 10 are printed.

11-4 AK95 02

)FNS
CONVERT GET LIST NUMS- -SECTIONS STORE

INPUT
TIE

LIMITS MATRIX MAXMIN PLOT
UNTIE WRITE XSIDE YSIDE

POINTS

A THIS FUNCTION, THE DRIVER, REQUIRES ONE CHARACTER VECTOR AS AN
A ARGUMENT. THE ARGUMENT SPECIFIES THE NAME OF THE INPUT FILE
A CONTAINING THE DATA.

'YPLOT[OJv
V Z + PLOT FILE ; V ;

A CALL THE REST OF THE FUNCTIONS.
[lJ Z + V POINTS (XSIDE YSIDE MATRIX SECTIONS LIMITS MAXMIN

(V + INPUT FILE»
'Y

A THIS FUNCTION TAKES THE FILE NAME PASSED TO THE DRIVER FUNCTION
A AS ITS ARGUMENT. THIS FUNCTION CALLS THE EXTERNAL FUNCTION
A GET-LIST-NUMS TO READ NUMERIC VALUES FROM A MULTICS SEGMENT
A INTO AN a*O VECTOR.

'YIN PUT [0 J'Y
V Z + INPUT FILE ; TEMP ;

A STORE THE DATA IN THE VECTOR 'TEMP'
[lJ TEMP + GET LIST NUMS FILE
A RESHAPE THE VECTOR,-SUCH THAT COLUMN
A COLUMN TWO CONTAINS THE RESPECTIVE Y
[2J Z + «(pTEMP) f 2),2) p TEMP

V

ONE CONTAINS X VALUES WHILE
T! L'I T rttr C!
.. £.1 LJ V U &J •

A THIS FUNCTION TAKES THE DATA MATRIX AS ITS ARGUMENT. THE
A MAXIMUM AND MINIMUM VALUES ARE COMPUTED IN THIS FUNCTION.
A ELEMENTS 3, 4, 5, AND 6 OF 'DATA' ARE SET TO THEIR
A ABSOLUTE VALUES.

VMAXMIN[O]V
V Z + MAXMIN INFO ; XMAX ; YMAX

[1] XMAX + r / INFO[;lJ
[2] YMAX + r / INFO[;2]
[3J DATA[lJ + L(L / INFO[;l])
[4] DATA[2] + L(L / INFO[;2J)
[5] DATA[5J + IDATA[5]
[6J DATA[6J + IDATA[6J
[7J DATA[3] + IDATA[3J
[8] DATA[4] + iDATA[4]
A ENSURE THAT THE TWO MINIMUM VALUES CAN BE DIVIDED EVENLY BY
A THE INCREMENT VALUES IN 'DATA[S]' AND 'DATA[6]'.
[9J DATA[2] + DATA[2] - (DATA[6J I DATA[2J)

11-5 AK95-02

[11] DONE: Z + XMAX,YMAX
V

A THIS FUNCTION COMPUTES THE GRAPHS UPPER AND LOWER LIMITS,
A COMPLYING WITH THE INCREMENT LEVEL SPECIFIED IN 'DATA'. THE
A MAXIMUM X Y VALUES ARE ROUNDED SUCH THAT THE MAXIMUM VALUE
A ON EACH AXIS IS EVENLY DIVISIBLE BY 'DATA[5]' AND 'DATA[6]'.

VLIMITS[O]V
V Z + LIMITS MINMAX ; TOPX ; TOPY ;

A IF THE MAXIMUM Y VALUE IS EVENLY DIVISIBLE BY 'DATA[6]', GO TO
A LABEL 1.
[1] -+ «DATA[6] I MINMAX[2]) .FNT
A THE MAXIMUM Y VALUE IS NOT EVENLY DIVISIBLE BY 'DATA[6]'.
A ROUND THE MAXIMUM Y VALUE UP TO THE FIRST NUMBER EVENLY
A DIVISIBLE BY 'DATA[6]'.
[2] TOPY + MINMAX[2] + (DATA[6] - (DATA[6] I MINMAX[2]»
[3] -+ L2
A ROUND THE MAXIMUM Y VALUE DOWN TO THE FIRST NUMBER EVENLY
A DIVISIBLE BY 'DATA[6]'.
[4] Ll: TOPY + MINMAX[2] + (DATA[6] - (DATA[6] I MINMAX[2]» - DATA[6]
A THE SAME PROCEDURE AS ABOVE APPLIES THE THE X MAXIMUM VALUE.
[5] L2: -+- «DATA[5] I MINMAX[l]) .FNT
[6] TOPX + MINMAX[l] + (DATA[5] - (DATA[5] I MINMAX[l]»
[7] -+- L4
[8] L3: TOPX + MINMAX[l] + (DATA[5] - (DATA[5] I MINMAX[l]» - DATA[5]
[9] L4: Z + TOPY,TOPX

V

A THE ARGUMENT OF THIS FUNCTION IS THE MODIFIED MAXIMUM AND
A MINIMUM VALUES COMPUTED BY THE 'LIMITS' FUNCTION. THE
A TOTAL NUMBER OF SPACES NEEDED TO CREATE THE GRAPH IS
A CALCULATED HERE.

VSECTIONS[O]V
V Z + SECTIONS XY ; X ; Y ;

A Y (YMAX + ABS(YMIN» t YINCREMENT
[1] Y + (XY[l] + (IDATA[2]» t DATA[6]
A X (XMAX + ABS(XHIN» T XINCREMENT
[2J X + (XY(2] + (IDATA[l]» t DATA[5]
[3] z .. I,X

V

A THE ARGUMENT TO THIS FUNCTION IS A VECTOR CONTAINING THE NUMBER
A OF SPACES ON THE Y AXIS AND X AXIS. THIS FUNCTION CONSTRUCTS
A THE ACTUAL MATRIX. THE AXIS ARE DRAWN AND AT EVERY 'DATA[4]' AND
A 'DATA[3]' SPACE, A '+' IS SUBSTITUTED FOR THE 'I' AND ,-,
A ON EACH RESPECTIVE AXIS.

11-6 AK95--02

M ;
1) x (XMAX + 1) MATRIX. THE ADDITION VALUE
ACCOUNTS FOR THE NUMBERING WHICH WILL OCCUR

VMATRIX[OJv
v Z +- MATRIX XY

A CONSTRUCT A (YMAX +
A OF ONE ON EACH AXIS
A LATER.
[lJ M +- «XY[lJ + 1)~(XY[2J + 1» p , ,
A DRAW THE Y AXIS IN COLUMN 1.
[2 J M[; 1 J +- 'I '
A DRAW THE X AXIS IN THE LAST ROW.
[3J M[XY[lJ + l;J +- '-'

A LET I .FNT
[4J I +- (pM)[lJ
A STARTING AT THE 'BOTTOM' OF THE MATRIX, PLACE A '+' WHERE THE
A TWO AXIS MEET AND THEN ENTER A LOOP THAT PLACES A '+' AT
A EVERY 'DATA[4J' SPACES ON THE Y AXIS. I IS DECREMENTED EVERY
A PASS THROUGH THE LOOP, AS IT SPECIFIES THE ROW THE '+' SHOULD
A BE PRINTED IN. STOP THE LOOP WHEN THE 'TOP' OF THE MATRIX HAS
A BEEN REACHED.
[5J Ll: M[I;lJ +- '+'
[6J I +- I - DATA[4J
[7J ~ (I ~ 1) / Ll
A STARTING AT COLUMN 1, AND THE 'BOTTOM' OF THE MATRIX, START
A PRINTING THE '+' ALONG THE X AXIS. THIS PROCESS IS MUCH THE
A SAME AS THE PROCESS DESCRIBED ABOVE, BUT INSTEAD OF DECREMENTING
A I, IT IS INCREMENTED BY 'DATA[3]' AT EACH PASS THROUGH THE
A LOOP.
[8J I +- 1
[9J L2: M[(pM)[l];IJ +- '+'
[10J I +- I + DATA[3]
[11 J ~ (I s (pM) [2 J) / L 2
[12J Z +- M

V

A THIS FUNCTION IS A TOOL USED BY 'YSIDE' AND 'XSIDE'. IT TAKES
A A NUMERIC ARGUMENT AND CONVERTS IT TO A CHARACTER VECTOR.
~004A THIS FUNCTION WILL CONVERT REAL NUMBER VALUES IN DECIMAL
A NOTATION UP TO FOUR DECIMAL PLACES OF ACCURACY.

VCONVERT[OJv
V Z +- CONVERT V ; S ; T ; N ; A ; B

A SET THE INDEX ORIGIN TO O. THIS IS NECESSARY TO INDEX INTO
A THE VARIABLE 'N'.
[1] OIO -+- 0
A IF THE VALUE IS NEGATIVE, MAKE THE FIRST ELEMENT OF THE
A OUTPUT CHARACTER VECTOR, 'A', A '-'. IF THE VALUE IS POSITIVE,
A MAKE THE FIRST ELEMENT OF 'A' A BLANK.
[2J ~ (V < 0) / NG
A HANDLE A POSITIVE VALUE.
[3] A +- i i

. [4J ~ START
A HANDLE A NEGATIVE VALUE.
[5 J NG: A+-' -,

11-7 AK95-02

[6] v + v x 1
A INTI AL I ZE 'N'.
[7] START: N + '0123456789'
[8] B + "

A DOES THE VALUE HAVE A DECIMAL PORTION? IF NO, PROCESS INTEGER.
A ELSE, ASSIGN THE DECIMAL PORTION TO'S' AND SET THE FIRST
A ELEMENT OF THE CHARACTER VECTOR, 'B', TO ' ,
[9] -+ «1 I V)
[10J S + 1 I V
[llJ B + '.'
A IF A DECIMAL PORTION EXISTS, PROCESS IT IN THIS LOOP.
A MULTIPLY THE DECIMAL VALUE BY 10. THE FIRST DIGIT IN THE
A DECIMAL VALUE WILL BE TO THE LEFT OF TH DECIMAL POINT AFTER
A DOING THIS. E.G .344 x 10
A NOW'S' IS EQUAL TO 3.44. TH~ LAST OPERATION IN LINE [12J
A IS 3.44 - .44 OR (S - (1 I 3.44». THIS GIVES US THE VALUE
A 3, WHICH IS ASSIGNED TO THE VARIABLE 'T' •.
[12 J LO: T + S - (1 I (S + « 1 IS) x 10»)
A JOIN THE CHARACTER 'N[(LT)J' WITH THE VECTOR 'B'.
[13J B + B,N[(LT)J
A CONTINUE THE PROCESS DESCRIBED ABOVE UNTIL THE DECIMAL PORTION
A IS LESS THAN 0.00009.
[14J -+ (S > 0.00009) / LO
A PROCESS THE INTEGER PORTION OF THE INITIAL VALUE. IT IS MUCH
A THE SAME OPERATION AS THAT DESCRIBED ABOVE, EXCEPT THAT THE
A VALUE IS BEEN MULTIPLIED BY 10 INSTEAD OF BEING DIVIDED BY 10.
[15J L1: V + (V - (T + (10 I V») f 10
[16J A + A,N[(LT)J
[17J -+ (V > 0) / Ll
A JOIN THE DECIMAL VECTOR TO THE INTEGER VECTOR. THE LAST
A ELEMENT OF 'B' IS DROPPED AND THE REMAINDER IS JOINED TO THE
A TRANSPOSE OF 'A[lJ' TO 'A[(pA)J'. THE RESULT OF THIS OPERATION
A IS JOINED WITH 'A[O]'.
[18] Z + A[OJ,(~(l + A», (-1 + B)
A RESET THE INDEX ORIGIN TO 1.
[19 J 010 + 1

V

A THIS FUNCTION TAKES THE MATRIX CREATED BY 'MATRIX' AS ITS
A ARGUMENT. THE Y AXIS IS NUMBERED AT EVERY 'DATA[4J' SPACE.

VYSIDE[OJv
V Z + YSIDE M ; YS ; YM ; TEMP ; BLANKS ; I ;

A CREATE A VECTOR OF BLANKS.
[lJ BLANKS + 10 p , ,
A 'YM' BECOMES EQUAL TO THE MAXIMUM NUMBER A Y AXIS NUMBER MAY
A REACH. 'Y2' IS TEH MINIMUM DATA VALUE.
[2J YM + DATA[2J + DATA[6J x «pM)[lJ - 1)
[3J YS + DATA[2J
A CREATE A MATRIX OF SPACES. TO ENSURE THAT EVERY NUMBER BETWEEN
A YMIN AND YMAX CAN BE PRINTED, THE CHARACTER LENGTH OF EACH VALUE
A IS COMPARED. THE LENGTH OF THE LARGER OF THE TWO IS USED IN

11-8 AK95-02

A THE CREATION OF THE TEMPORARY MATRIX. THE TEMPORARY MATRIX WILL
A BE USED AS A TEMPORARY BUFFER FOR THE AXIS NUMBERS. LATERs WHEN
A ALL THE NUMBERS HAVE BEEN CONVERTED AND PLACED IN THE TEMPORARY
A MATRIX s THE MAIN MATRIX AND THE TEMPORARY MATRIX WILL BE JOINED
A ALONG THE Y AXIS.
[4] -+ ((p(CONVERT YS» > (p(CONVERT YM») / Yl
[5] TEMP -+- ((pM)[1]s(4 + (p(CONVERT YM»)) p , ,
[6J -+ Y2
[7J Yl: TEMP -+- ((pM)[lJ s(4 + (p(CONVERT YS»)) p , ,
A SET 'I' TO THE NUMBER OF ROWS IN MATRIX 'M'.
[8J Y2: I -+- (pM)[lJ
A 'TEMP[I;J' IS REPLACED BY THE CHARACTER REPRESENTATION OF THE
A Y AXIS NUMBER VALUE. IF THE CONVERTED VALUES LENGTH IS LESS
A THAN THE NUMBER OF COLUMNS IN 'TEMP's IT MUST BE PADDED WITH
A BLANKS.
[9J Ll: TEMP[I;J + (((pTEMP)[2J - p(CONVERT YS)) t BLANKS)sCONVERT Y~

A DECREMENT 'I' TO THE NEXT ROW THAT REQUIRES A Y AXIS NUMBER ..
[10J I -+- I - DATA[4J
A COMPUTE THE NEXT Y AXIS NUMBER.
[llJ YS -+- YS + (DATA[4J x DATA[6J)
A QUIT WHEN THE 'TOP' OF THE MATRIX HAS BEEN REACHED.
[12J -+ (I ~ 1) / Ll
A JOIN A COLUMN OF BLANKS TO THE TEMPORARY BUFFER TO SEPARATE
A THE NUMBERS IN 'TEMP' FROM THE AXIS IN 'M'.
[13J TEMP -+- TEMP s«pTEMP)[l]sl) p , ,

A JOIN THE Y AXIS NUMBER LABELS TO THE MAIN MATRIX.
[14J Z -+- TEMP. M

V

A THIS FUNCTION TAKES THE MATRIX WITH THE LABELED Y AXIS AS AN
A ARGUMENT. THE X AXIS IS LABELED IN THIS FUNCTION. A TEMPORARY
A MATRIX 'TEMP' IS CREATED TO STORE THE NUMBER LABELS AS THEY
A ARE COMPUTED AND CONVERTED TO THEIR CHARACTER RESPRESENTATION.

VXSIDE[OJv
V Z -+- XSIDE M XS XM TEMP I

A 'XS'
[lJ XS + DATA[l]
l't 'I' .FNT
[2J I -+- M[(pM)[lJ ;J 1 '+'
A CREATE A TEMPORARY VECTOR OF BLANKS.
[3] TEM P -+- (1. ((pM) [2 J + 1» p , ,
A 'XM'
[4J XM -+- DATA[lJ + DATA[5J x «pM)[2] - I)
A IF THERE IS INSUFFICIENT SPACE TO PRINT EACH NUMBER ON THE
A X AXIS. DON'T PRINT ANY NUMBER LABELS.
[5] -+ «p(CONVERT XM» > (DATA[3J - 1» /STOP
A 'X'
A X AXIS.
[6] MAIN: X -+- CONVERT XS
A 'INC2' .FNT
[7] INC2 -+- pX

11-9 AK95-02

A IF LENGTH tx' IS ODD, 'INC' ~FNT

lit ELSE 'INC'
[8] + «1 I (pX) f 2) > 0) / OD
[9] INC + -1 x «(pX) f 2) - 1)
[10] + GO
[11] OD:INC + -1 x « (pX) f 2) - 0.5)
lit ODD LENGTHED NUMBER LABELS ARE CENTERED UNDER THEIR RESPECTIVE
A '+' APPEARING IN THE 'M' MATRIX. EVEN LENGTHED NUMBER LABELS
A ARE CENTERED WITH THE 'BEST FIT' METHOD. NEGATIVE NUMBERS WILL
A HAVE THE EXCESS CHARACTER TO THE LEFT OF THE '+' WHILE POSITIVE
A NUMBERS WILL HAVE THE EXCESS CHARACTER TO THE RIGHT OF THE '+'.
A THE NUMBER LABELS ARE TRANSFERRED TO THE TEMPORARY VECTOR ONE AT
A A TIME.
[12] GO: TEMP[l;(I - INC}] + X[INC2]
[13] INC2 + INC2 - 1
[14] INC + INC + 1
A IF THE NUMBER LABEL HAS BEEN TRANSFERRED, COMPUTE THE NEXT
A NUMBER LABEL. ELSE, TRANSFER THE NEXT CHARACTER IN THE NUMBER
A LABEL TO THE TEMPORARY MATRIX.
[15] + (INC2 ~ 1) / GO
A COMPUTE THE NEXT NUMBER LABEL.
[16] XS + XS + DATA[3] x DATA[5]
~ ADVANCE TO THE NEXT LOCATION ON THE X AXIS.
[17] I + I + DATA[3]
A IF THE END OF THE X AXIS HAS BEEN REACHED, QUIT.~005

[18] + (XS S XM) / MAIN
A JOIN A BLANK LINE TO THE 'BOTTOM' OF THE MATRIX 'M'.
[19] STOP: M + M,[2]«(pM)[1],1) p , ')
lit JOIN THE X AXIS NUMBER LABELS TO THE MAIN MATRIX.
[20] Z + M.[l]TEMP

V

A TO THIS POINT, THE GRAPH HAS BEEN CREATED AND IS READY TO HAVE
A THE DATA PLOTTED. ROUNDING OF VALUES IS SLIGHTLY DIFFERENT
A FOR POSITIVE AND NEGATIVE VALUES. NEGATIVE VALUES ARE ROUNDED
A DOWN WHILE POSITIVE VALUES ARE ROUNDED UP. THIS REDUCES THE
A APPEARANCE OF GRAPHIC INCONSISTENCIES BETWEEN NEGATIVE AND
A POSITIVE VALUES.

VPOINTS [O]V
V Z + V POINTS M ; X ; Y ; I

[1] I + 1
A GET DATA FROM DATA MATRIX 'V'.
[2] L1: X + V[I;l]
[3] Y + V[I; 2]
A ROUND THE VALUES TO THE RULES SPECIFIED ABOVE.
[4] + «DATA[6] I (IY» ~ (DATA[6] f 2» / L2
[5] Y + (xl) x (I x (xl» - (DATA[6] I (IY»
[6] -.. L3
[7] L2: I + (xy) x (I x (xl» + (DATA[6] - (DATA[6] I (II»)
[8J [.3~ + ((DATA[5] ! (!X» ~ (DAT.4[5] f 2» ! £4
[9] X + (xX) x (X x (xX» ... (DATA [5] I (I X))

11-10 AK95-02

[10J + L5
Lt t l L4: X +- (xX) x (X x (xX» + (DATA[5] - (DATA[5] I (Ix»)
A SCALE THE X AND Y COORDINATES.
[12] L5: Y +- «pM)[lJ - 1) - «DATA[2J t -1) + Y) t DATA[6]
[13 J X+-(M[(pM) [1] - 1; J 1 ' +') + « DATA [1] t -1) + X) t DATA[5]
A PRINT AN '*' AT THE CORRECT SPECIFIED BY X AND Y.
[14J M[Y;XJ +- '*'
A WHILE DATA IS NOT EXHAUSTED, CONTINUE PLOTTING THE POINTS.
[15J + ((I +- I + 1) ~ (pV)[lJ) / Ll
A THE FINAL PRODUCT IS RETURNED !
[16J Z +- M

'iJ

A THIS FUNCTION IS OPTIONAL. IT STORES THE GRAPH IN A MULTICS
A SEGMENT. THE STREAM I/O FACILITY IS UTILIZED, SO GRAPHS MAY
A SENT TO A PRINTER IF DESIRED.

'iJSTORE[O]'iJ
'iJ STORE M ; I

[1] I +- 1
[2J 'PLOTS' TIE 1
A APPEND A LINEFEED CHARATER TO EACH ROW OF THE GRAPH BEFORE IT
A IS WRITTEN TO FILE.
[3] Ll: (M[I;],DCS[ll]) WRITE 1
[4J I +- I + 1
[5 J + (I s (pM) [1]) / L 1
[6] UNTIE 1

'iJ

)Q

11-11 AK95-02

APPENDIX A

GLOSSARY

array
a value with any number of dimensions. Generally the terms
scalar, vector, and matrix will be used when possible; the term
array covers all values.

composite operation
a class of operations whose result is defined in terms of
r e pe ated a ppl i cat ion s 0 f 0 ne 0 r two s cal aroperat0 r s toone 0 r
two arguments. The shape of the resul t is defined by the
particular composite operation, not the scalar operatorCs).
The four composite operations are inner product, outer product,
reduction, and scan.

diamond line
any n um be r 0 f s tat emen t s, inc 1 udin g ze r 0, e a c h s e pa rat e d by a
diamond. Contains no label. See "line."

dyad ic
taking two arguments - a right argument and a left argument.

explicit result
a value created as the primary (perhaps sole) result of
evaluating an operator or function or pseudo-operator.

explicit subexpression
an expression that is contained in a larger expression and is
delimited by matching parenthesis. Short for "explicitly
delimited subexpression."

A-1 AK95-02

expression
a valid combination of APL symbols that produces one explicit
result and any number (including zero) of implicit results.

external function
a program that is separately compiled and exists outside the
active APL workspace. It has a name and a syntactic usage
description in the workspace, but is actually a program written
in PL/I.

function
a sequence of one or more function lines, together with a header,
that defin es a stored APL p r o g r am. The head er defin es its name
and syntactic usage.

function line
a diamond line that can be preceded by a label.

implicit result
a value or effect created as a secondary (perhaps sole) result of
evaluating a pseudo-operator or function. For example, the
explicit result of ((specification) is its right argument. Its
implicit result is the assignment of the right argument to the
name given as the left argument.

implicit subexpression
an expression that is contained in a larger expression and is
delimited by the syntactic rules of APL, and the right-to-left
order of evaluation of APL. Short for "implicitly delimited
subexpression ."

line
a single statement. Contains no diamonds nor a label.

matr i x
a value with two dimensions.

mixed operator
a class of operators that defines the shape of the resul t in terms
of the individual operator and the particular shape of the
argument or arguments. Membership, shape, and reshape are
examples of mixed operators.

A-2 AK95-02

monadic
taking one argument - always a right argument.

niladic
taking no arguments.

operation
any APL construct that can take one or more arguments. The
following are operations: composi te operations, external
functions, functions, indexing, mixed output, operators,
pseudo-operators, system functions. Even though they take no
arguments, niladic functions are considered operations as well.

o pe r ator
a buil tin (not user-definable) APL construct that takes one or
two arguments and returns one explicit result and no implicit
results. An operator is always represented by a single graphic
symbol. See mixed operator and scalar operator.

pseudo-operator
a builtin (not user-definable) APL construct that takes one or
two arguments, may return an explicit result, and may have an
impl ic it resul t , Spec i fic at ion and execute are ex ampl es 0 f
pseudo-operators.

rank
the number of dimensions in a value.

scalar
a value with no (zero) dimensions.

scalar operator
a class of operators that defines the shape of the result solely
in terms of the shape of the argument or arguments, not the
particular operator. In particular, the resul t of applying such
an operator to non-scalar arguments is an extension of the resul t
when applied to scalar arguments. Signum, add, and equal are
examples of scalar operators.

A-3 AK95-02

shape
(as a noun) the vector of dimension extents of a value - the
number of dimensions (rank) together with the length of each
dimension. Also the name of a monadic mixed operator
represented by the rho R symbol.

statement
an expression that is not contained in any other expression; i.e.
an expression that is on a line by itself, or an expression that
is between diamonds.

stop pseudo-variable
see trace pseudo-variable.

subexpression
an expression that is contained in a larger expression.

system function
a builtin (not user-definable) function, with a reserved name,
t hat i sal ways pre sen tin the act i v e wo r kspac e • Lf xis an
example of a system function.

trace pseudo-variable
a variable associated with each user-defined function that
specifies a (possibly empty) vector of line numbers.
Pseudo-variables can appear in the same contexts as normal
variables, except for indexed assignment and localization.
Assigning a value to a stop or trace pseudo-variable causes an
implicit effect when the function is executed, namely, the
stopping or tracing of lines of that function.

type
the r e pr e sen tat ion 0 f a val ue; e i the r c ha r act e r 0 r num eric • A
given value is either one or the other; the two cannot be mixed.

value
a collection of any number (including zero) of character or
numeric elements. A value is completely characterized by its
type, shape, and list of elements.

vector
a value with one dimension.

A-4 AK95-02

APPENDIX B

COMMANDS

This appendix gives descriptions of the Multics commands that
relate to APL ..

B-1 AK95-02

apl

Name: apI, v2apl

Invokes the APL interpreter, optionally loading a saved
workspace.

Usage

apl {workspace_id} {-control_args}

where:

1. workspace id
is-the pathname of a saved workspace to be loaded. The
de fa u1 tis to load the use r ' s con tin ue wo r ks pac e, i fan y ,
otherwise to provide a clear workspace.

2. control args
may be chosen from the following:

-terminal type STR, -ttp STR
specIfies the kind of terminal being used. Possible
values of STR are:

1050
2741
1030
ARDS
ASCII
BITPAIRED

CORR2741
LA36
TEK4013
TEK4015
TELERAY11
TN300
TYPE PA IRED

This control argument specifies which one of several
character translation tables is to be used by APL when
reading or writing to the terminal. Since there are
several different kinds of APL terminals, each
incompatible with the rest, it is important that the
correct table be used. Specifying a terminal type to APL
changes the terminal type only as long as APL is active.
The defaul t depend s on the user's ex ist ing terminal type
(refer to the set tty command, in Multics Commands and
Active Functions-manual (Drder No , : AG92». These
terminal types default to the same APL terminal type:
1050, 2741, CORR2741, ARDS, TN300, TEK4013, TEK4015,
ASCII, LA36, TELERAY11. All other terminal types
defaul t to ASC II. The APL terminal types BITPAIRED and
TYPEPAIRED are generic terminal types that can be used
with any APL/ASCII terminal of the appropriate type.

-brief errors, -bfe
causes APL to print short error messages. This is the
default.

B-2 AK95-02

apl

-long errors, -lge
causes APL to pr int long error messages. The short form
of the message is printed, followed by a more detailed
explanation of the error.

-user number N
sets the APL user number (returned by some APL functions)
to N. The default is 100.

-check, -ck
causes a compatibility error to occur if a monadic
transpose of rank greater than 2, or a residue or encode
wi th a negative left argument is encountered. (The
definition of these cases is different in Version 2 APL
from Version 1 APL).

-debug, -db
causes APL to call the listener (cu $cl) upon system
errors. This puts the user at a new command level. The
default is to remain in APL. This control argument is
intended for debugging apl itself.

-no quit handler, -nqh
c a use s APL to i g nor e the qui teond i t ion • The de fa u1tis
to trap all quits within APL.

-temp dir path, -td path
changes the d irec tory that is used to hold the temporar y
s e gmen t s t hat con t a in the act i v e wo r kspac e topa t h • The
default is to use the process directory.

Note

This command invokes the Version 2 APL interpreter, which
replaces the obsolete Version 1 APL interpreter.

B-3 AK95-02

Resets the user's terminal environment to the normal Multics
env ironment, remov ing all 0 f the spec ial at tachments and tr an sl ations
for APL that are put in effect by the apl_start command.

Usage

Notes

See the apl start command for a description of the APL terminal
env ironment. -

B-4 AK95-02

Name: apI_start

Sets up the user's terminal environment as it is when running
APL.

Usage

where:

1. control arg
may be -terminal type STR, -ttp STR to spec ify the kind of
terminal being used. Possible values of STR are:

1050
2741
1030
ARDS
ASCII
BITPAIRED

CORR2741
LA36
TEK4013
TEK4015
TELERAY11
TN300
TYPE PA IRED

This control argument specifies which one of several
character translation tables is to be used by APL when
read ing or wr i ting to the terminal. Since there are
several different kinds of APL terminals, each
incompatible with the rest, it is important that the
correct table be used. Specifying a terminal type to APL
changes the terminal type only as long as APL is active.
The defa ul t depend s on the user t s ex ist ing term in al type
(refer to the set tty command, in the Multics Commands
and Active Functions manual (Order No.: AG92). These
terminal types default to the same APL terminal type:
1050, 2741, CORR2741, ARDS, TN300, TEK4013, TEK4015,
ASCII, LA36, TELERAY11. All other terminal types
defaul t to ASCII. The APL terminal types BITPAIRED and
TYPEPAIRED are generic terminal types that can be used
with any APL/ASCII terminal of the appropriate type.

Notes

The apl start command is used to set up the user's terminal
environment as it is during an APL session without actually invoking
the APL interpreter. After invoking apl start, the appropriate APL
character set translations for the user's terminal type will be in
effect, including the use of an APL graphic character set if the
terminal has one.

8-5 AK95-02

Wh e n in t erac tin g with Mu 1 tic s , the f 0 110wi ng t ran s 1 at ion r u1 e is
used: the APL letters are translated into Mul tics lower case letters,
and the underscored APL letters are translated into Multics uppercase
letters, both on input and output.

The a p1 s tar t commandis par tic u1 ar 1 y use f u1 fo r pre par in g
exec com or -absentee input segments that wish to execute APL
expressions. See also the description of apl_end.

B-6 AK95-02

Name: convert_tsoapl_workspace, ctw

Converts a TSO APL saved workspace, as read into a Mul tics
segment by read tsoapl tape, into a Multics APL workspace. Only
global names and v al ue s are converted; the state indicator (SI) is not
converted.

Usage

convert_tsoapl_workspace path {newpath}

where:

1 • path
is the pathname of the segment to be converted. The
suffix n.sv.tsoapl" is assumed.

2. newpath
is the pathname of the segment in which to place the
conv er ted wo r kspac e • The de fa u1tis to c rea t e the
segment in the working directory with the same entryname
as the TSO APL workspace, but wi th the suffix t1 .sv .apl".

B-7 AK95-02

Name: display_tsoapl_workspace, dtw

Lists the contents of a saved T30 APL workspace read into a
Multics segment by read tsoapl tape. The names and values of all
global objects are displayed. -

Usage

display_tsoapl_workspace path {-control_arg}

where:

1. path
is the pathn arne 0 f the segmen t conta in ing the works pac e
to be displayed. The suffix .sv.tsoapl is assumed.

2. control arg
may be

-long, -lg
1 is t the wo r kspa c e s ys t em variab1e s (DIGI T3 , WIDTH,
etc •) as we 11 as the use r de fin ed 0 b j ec t s . The de fa u1 t
is to list only the user's objects.

8-8 AK95-02

read_tsoapl_tape

Name: read_tsoapl_tape, rtt

Reads an APL SELDUMP tape, such as those created by APLUTIL on
TSO, placing the saved APL workspaces on the tape into segments in the
working directory. The segments are·given the names of the saved
workspaces, with the suffix" .1ibN.sv .tsoapltt, where Nis the library
number of the workspace.

Usage

read tsoapl tape tapeid {filename1
{-:controI_arg s l

where:

1• tapeid

filenamen}

is the tape slot number of the tape.

2. file namei
is the name of a workspace to be read from the tape. The
default is to read all workspaces on the tape.

3. control args
-may be chosen from the following:

-attach description STR, -atd STR
Use STR as the attach description. The default attach
description is "tape_nstd_ tapename -bk 10000".

-density N, -den N
Use Nas the densi ty setting. N must be 200, 556, 800, or
1600. The default is 1600.

-list, -ls
List the names of the workspaces on the tape, without
readin g the wo r kspa c esin to s egment s • The de fa u1tis to
list and read the workspaces.

Notes

The user must have rw permission on the segment
>sc 1>r c p>wo r ks pa c e •ac s, in 0 r de r to get 1ar g er t han normal tape
buffers (tapes created by APLUTIL have 10,000 byte records, which is
larger than the default buffer size).

Since Multics permits only ASCII characters in segment names,
an y del ta character s in the workspace name are tr an s I ated to n d" , and
any underlined delta characters are translated to "D".

B-9 AK95-02

A

accounting information 7-5

add, subtract, multiply, divide 3-15

APL
APL external functions 10-1
character set 1-2, 2-2
communicating with Multics 5-i8
file sharing 6-9
file system 6-9
history of 1-1
Multics file system 6-1
organization of files 6-1
s am p.le pr 0 gram s 11 -1
s t ream I/O 9-1
system functions 7-1
system variables 8-1
terminal I/O conventions 2-8
use of files 6-2
values 3-1

apl command 2-1, B-2

INDEX

B

binomial coefficients 3-17

c

call ing APL 2-1

canonical representation 7-8

catenate 3-23

ceiling and floor 3-18

character set 1-2, 7-9

circular 3-21

closed expressions 3-64

command s B-1
execute 7-11

comments 3-63

ASCII terminals 4 r\
c:.-IV comparison operators 3-i9

assignment pseudo-operator 3-69

ATTN processing 2-12

i-1

comparison tolerance 8-2

composite operations 3-49

AK95-02

compress 3-42

deal 3-44

decode 3-44

delay 7-10

diamond lines 3-65

E

EBCDIC terminals 2-9

editing a line 4-28

encode 3-44

environment parameters 5-1

erase processing 2-11

error handling 4-18

errors 4-19

escape processing 2-13

execute pseudo-operator 3-15

execution flow 4-1

execution termination 4-11

expand 3-43

expressions 3-54
implicit expressions 3-56
right-to-left rule 3-55
subexpressions 3-55

expunge 1-12

F

factorial 3-17

fix 7-13

format 3-41

func tion call s
pend en t 4-21
suspended 4-21

functions 3-68, 4-1
active 1-3
arguments 4-1
call 1-6
ed i ting a 4-26
editing halted functions 4-23
external 5-19, 5-20, 5-21, 5-2:

5-25
apl erf 10-2
apl-get-list nums 10-5
apl-ioa- 10-=4 -
apI-pickup float bin 2 10-3
apI-read segment- 10-0

file manipulation -6-2
locked 4-20
restarting a suspended function

4-23
results 4-1
str eam 1/0 9-1

functions calls
halted 4-21

G

general rules for catenate 3-28

general rules for laminate 3-35

generating algorithm 3-19

glossary A-1

i-2 AK95-02

grade up, grade down 3-39

groups 3-68

I

I-Beam 3-46

identifier s 3-66

index gener ator 3-37

indexing 3-59, 3-70

inner prod uct 3-54

input
character 3-74
ev al uated 3-72

input line processing 2-10
ATTN 2-11
canonicalization 2-11
erase 2-11
kill 2-11

in put pr om pt 2-2

internal codes 2-2

interrupts 4-17
strong 4-18
weak 4-17

K

kill processing 2-11

L

labels 3-63

laminate 3-31

line counter 7-15

lists 3-58

locked functions 4-16

logical operators 3-20

M

magnitude 3-17

matrices and arrays 3-6
character 3-8
matrix divide 3-45
matrix inverse 3-45
numeric 3-8

matrix
divide 3-45
inverse 3=45

maximum and minimum 3-18

membership 3-43

mixed operators 3-21

mixed output 3-61

n am e co un t 7- 16

name list 7-18

names 3-65, 3-66
function 3-67
group 3-67
s yntax of 3-66
variable 3-66

i-3 AK95-02

o

obj ec ts 3-65

oper ator
dyadic scalar 3-12
mixed 3-11
monadLc seal ar 3-11

ope r ato r s 3-1 1
scalar 3-11

outer product 3-53

over str ikes 2-8

P

parameter s
environment 5-1
session 5-2
workspace 5-2

PI times 3-21

plus, negative 3-15

pornography 3-76

power, logarithm 3-16

R

ravel 3-23

rec iprocal 3-16

recursion 4-12

red uction 3-50

reshape 3-22

r esid ue 3-16

results
explicit 3-71
implicit 3-70, 4-19
'output of explicit 3-72

rever se 3-40

roll 3-19

rotate 3-40

s

scan 3-52

session parameters 5-2

shape 3-22

31
clearing 4-23
damage 4-24
exploring 4-22

signum 3-16

state indicator 4-16

statements 3-63

stop pseudo-variables 4-19

suspension 4... 18

sYmbol table 5-5

system commands 5-1

T

tabulating 2-9

i-4 AK95-02

take, drop 3-38

terminal I/O conventions 2-8
ASCII terminals 2-10
EBCDIC terminals 2-9
input line processing 2-10
over str ikes 2-8
tabulating 2-9

terminal type 7-21

time stamp 7-20

transpose 3-41

u

user load 7-22

using APL 2-13

v

values 3-1
elements 3-3
output of 3-3

scal ar s 3-4
scientific notation 3-4

rank 3-2
shape 3-2

oper ator 3-3
type 3-1

v ar i a b 1 e s 3- 67

vectors 3-5
character 3-5
numeric 3-6

workspace 3-79

workspace (cont)
active 3-80
available 7-23
identification 5-10
man ag em en t 5-10
par ameter s 5-2
pas s wo r d s 5- 11
used 7-24

i-5 AK95-0.

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form

TITLE
MULTICS APL
USER'S GUIDE

ORDER NO. G_K_9_5_-_02 -----.!

DATED ~ECEMBER 1985
!

UJ
Z
...J

o
Z
o
...J
«
~
~
o

ERRORS IN PUBLICATION

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

Your comments will be investigated by appropriate technical personnel

and action will be taken as required. Receipt of all forms will be

acknowledged; however, if you require a detailed reply, check here. D

FROM: NAME _

TITLE _

COMPANY _

ADDRESS _

DATE _

w
z
::i
C)
z
o
...J
«
t
=>o
I
I
I
I
I
I
I
I
I
iPLEASE FOLD AND TAPE-

NOTE: U.S. Postal Service will not deliver stapled forms

1111"

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO 39531 WALTHAM, MA 02154

POSTAGEWILL BE PAID BY ADDRESSEE

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM, MA 02154

ATTN: PUBLICATIONS, MS486

Honeywell

NO POSTAGE
NECESSARY
IF MAILED

INTHE
UNITED STATES

w
z

I ...J

I C)

I Z.,.. g
«
c
...J
o
LL

w
Z
...J

o
Z+« g
«
c
...J
o
LL

Together, we can find the answers.

Honeywell
"'nru~U'wellInMr"",,~+i~... ~ys+e-"

U.S.A.; '200-~~ith'si::MS'486,vWaTtf1;';','MA 02154
canada: 155 Gordon Baker Rd., Willowdale, ON M2H 3N7

U.K.: Great West Rd., Brentford, Middlesex TW8 9DH Italy: 32 Via Pirelli, 20124 Milano
Mexico: Avenida Nuevo Leon 250, Mexico 11, D.F. Japan: 2-2 Kanda Jimbo-cho, Chiyoda-ku, Tokyo

Australia: 124 Walker st., North Sydney, N.S.w. 2060 S.E. Asia: Mandarin Plaza, Tsimshatsui East, H.K.

44840, 5C286, Printed in U.S.A. AK95-02

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	01-01
	01-02
	01-03
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	03-25
	03-26
	03-27
	03-28
	03-29
	03-30
	03-31
	03-32
	03-33
	03-34
	03-35
	03-36
	03-37
	03-38
	03-39
	03-40
	03-41
	03-42
	03-43
	03-44
	03-45
	03-46
	03-47
	03-48
	03-49
	03-50
	03-51
	03-52
	03-53
	03-54
	03-55
	03-56
	03-57
	03-58
	03-59
	03-60
	03-61
	03-62
	03-63
	03-64
	03-65
	03-66
	03-67
	03-68
	03-69
	03-70
	03-71
	03-72
	03-73
	03-74
	03-75
	03-76
	03-77
	03-78
	03-79
	03-80
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	04-30
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	05-25
	05-26
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	07-23
	07-24
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	09-01
	09-02
	09-03
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	A-01
	A-02
	A-03
	A-04
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	I-01
	I-02
	I-03
	I-04
	I-05
	replyA
	replyB
	xBack

