A
Dictionary of
APL

Kenneth E. Iverson



ACKNOWLEDGMENT
I am indebted to numerous colleagues for minor corrections and
major ideas arising from their reviews of various drafts of the mss.,
chief among them being R. Pesch, E.E. McDonnell, D.L. Forkes, J.A.
Cramer, K.B. Iverson, P. Cooper, and R.H. Chamberlain.
I am also indebted to J.A. Gershater for infinite care and patience
in producing printed copies of the drafts.

©1986, K.E. Iverson. This book or parts thereof may not be re-
produced by any means without the express written permission of the
author.

Printed in Canada
July 1986
Publication Code: 0402 8607 E2



A DICTIONARY OF APL

I LETTERS AND WORDS

Il GRAMMAR

A.

Nouns
Numeric and literal
Tokens and pronouns
Arrays
Open and boxed

B. Verbs
Monads and dyads
Ranks of verbs
Degenerate cases
Agreement

C. Adverbs

D. Copula

E. Dialogue

F. Comparatives

G. Terminology
Standard names and synonyms
Other considerations

H. lIdentities and proofs

l. Parsing and execution

J. Verb definition
Local and global names

11l DIALECTS
Bracket-semicolon indexing

B. Indexed assignment

C. Bracket axis notation

D. Canonical function definition
Niladic functions

E. Comments and statement separators

F. Permissive treatment of

single-element arrays
IV VERBS
V ADVERBS

REFERENCES and TABLES

10

10
11

12

13
13
14
1y

15

16

16

16
34

u5






A DICTIONARY OF APL

APL is a formal, imperative language. Because it is imperative, a sentence
may be called an instruction, and may be executed to produce a result. In
iltustrations used here an instruction will be indented, and the result of its
execution will be shown on the following line without indentation. Thus:

3+u

2x (3+4)
1y

Because it is formal and unambiguous, APL can be executed mechanically by
a machine called a computer or, strictly speaking, an APL computer, or APL
system. For this reason it is also called a programming language, a phrase from
which its name derives.

Like any living language, APL has dialects, resulting in part from evolution
that has rendered certain constructs obsolete, but also from the limitations and
special characteristics of the many different computers on which APL systems are
implemented. Although this introduction includes a brief discussion of dialects, the
reader may find it necessary to consult manuals for specific systems, or the APL
Standard promulgated by the International Standards Organization [1].

APL originated in an attempt to provide consistent notation for the teaching
and analysis of topics related to the application of computers, and developed
through its application in a variety of topics, and through its implementation in
computer systems. Extensive discussions of the history of the language may be
found in The Design of APL [2] and The Evolution of APL [3], and in the
publications cited therein.

A dictionary should not be read as an introduction to a language, but should
rather be consulted in conjunction with other material that uses the language in
some context of interest to the reader Even the general section on grammar,
which may be intelligible even to the beginner, should perhaps be studied only
after a certain amount of other exposure to the language.

On the other hand, a dictionary should not be used only to find the
meanings of individual words, but should also be studied to gain an overall view of
the language. In particular, the grammar may be profitably reviewed again and
again in the light of increased knowledge of the language, and the study of groups
of related verbs and adverbs can reveal important relationships otherwise easily
overlooked.

I: LETTERS AND WORDS

In addition to both cases of the letters of some native alphabet such as
English (used for names) and the ten decimal digits (used in numbers and in
names), the APL alphabet includes six Greek letters, fifty-four graphic symbols,
and nineteen composite symbols formed by superposing a pair of graphic symbols.
Nearly all of the graphic symbols occur (in at least one orientation) in some table
of commonly-used symbols in English dictionaries, such as the Table of Symbols
and Signs in The American Heritage Dictionary [4]. At least half are familiar from
their use in English and in arithmetic.

On most APL systems, the name Jav denotes a list whose elements include
the alphabet. Many systems print the two English alphabets in other than
lowercase and uppercase italics, often using uppercase and uppercase
underscored.

Every "primitive" verb and adverb (i.e., those defined in the dictionary) is
formed from a single graphic, composite symbol, or Greek letter. Consequently,
symbols do not conflict with the choice of names for pronouns, as do the reserved
words (names of primitives represented by letters of the English alphabet)
commonly used in programming languages.

In any use of symbols it is convenient to have pronounceable names for
them. Because of the many different uses commonly made of the same symbol in
different endeavours, the best-known names usually reflect a particular use of the
symbol rather than a name for the symbol itself. For example, in the cited table
from [4], "resistivity”, and ' multtplled by" are given for p and x, rather than

"Greek rho" and "St. Andrew's cross".



In this dictionary, we attempt to provide both a name for the symbol (in
Table 1: Alphabet) and for its general use in APL {Sections IV and V). Table 4
provides synonyms for possible use in particular contexts. The three columns of
Table 1 provide the APL symbol, a name for the symbol, and a transliteration
scheme for use with the ASCIl character set [5] widely provided on computer
terminal devices. The last nineteen APL symbols (beginning with a) are called
composite symbols because they are commonly entered by superposing two simpler
symbols (as in n with ¢ for a), and are often named by the pair composing them
(as in circle-bar for o).

A student of any language should be alert to, and exploit, clues provided
by knowledge of other languages, as well as clues provided by the appearance of
the symbols themselves. For example:

o The appearance of the symbols | and [ suggests their use for minimum and
maximum, and the similarity of L to the letter L suggests "lesser of”; the
pair 4 and ¢ are used for take and drop.

o Greek-English correspondences are also significant, as in 1 for integers
(1), and in p for repetition (3py4) or reshape (2 3p16).

o 1 is used for base-value {as in 1011 8 6 7 <> 1867) because its shape
suggests a base, and T is used for the inverse function.

o v is used for or because v is the initial letter of the corresponding Latin
vel, and A is used for and because of its graphic relationship to v.

Words are formed by scanning a sequence of letters of the APL alphabet
from left to right according to the following rules:

1. Quotes are treated much as in English: everything between an opening
quote and a closing quote forms a single word. However, a pair of adjacent
quotes following an opening quote represents the quote character itself, and
does not act as a closing quote; ‘'can''t' is the five-character word
commonly used as an abbreviation of the six-letter word 'cannot'.

The remaining rules are used after applying the rule for quotes.
2. A delimiter terminates {and is not included in) any word that precedes it.

3. Every letter that is neither a macron (7), dot (.), quad (0), space ( ),
digit, nor letter of the native alphabet, is a one-letter word, and also
serves as a delimiter.

4, The space is a delimiter uniess it falls between two numbers, that is, words
that begin with a digit or a macron, or with a dot followed by a digit.

Word-formation is defined formally by the function L in Section V.

Any of the words ¢, w, and &, or a word that begins with the symbol [ or a
letter of the native alphabet and continues with further letters, digits, macrons or
dots is a name, and may be assigned a value by means of a copula («) as discussed
in the section on grammar.

A word that is not a name is called a token. A token is either meaningless or
has a fixed referent. For example, the tokens 3.14 and 314e” 2 and 253 and 'pi!
are meaningful, but 3..14 and 2 and 'pi and 2k3 are not.

A meaningfui numeric token may be a list formed of two or more numbers
separated by spaces, where a number may be a real number or a complex number
formed by two real numbers separated by a 5.

A real number is either simple or an exponential number formed from two
simple numbers separated by an e. A simple number may be formed of one or two
macrons {representing infinity and minus infinity), or contain at least one digit
and at most one dot and one macron (which denotes a negative number and must be
in the leading position).

I1: GRAMMAR
APL has five grammatical elements:

1. Nouns, such as the numbers 3 and 5.6, alphabetic characters or literals
such as '+' and '4' and 'a' and a nil denoted by a.

2. Verbs, such as + (addition) and | (magnitude) that act upon nouns to
produce results that are also nouns.



The nouns to which a particular verb applies are called its arguments (a
word adopted in its sense of theme, or subject). A verb may have two
distinct (but usually related) meanings according to whether it is applied to
one argument (to its right) or two arguments (to its left and right). For
example:

2:5
4

Ty
.25

3. Adverbs, such as / and ¥, that act upon verbs or nouns to produce a verb.
For example, +/ is a {derived) verb called plus across that sums any list of
numbers to which it is applied, and x/ is a verb that yieilds the product
across all elements of a list. The nouns or verbs to which a particular
adverb applies are called its arguments.

4. A copula, denoted by the arrow <, and used to assign a name to a noun,
verb, or adverb. For example:
area<4x8
3+area
35
sum<+/
sum 2 3 4
9

The arrow plays the same roIe as the copulas "is” and "are” in English; it is
usually read as "is", as in area is four times eight” for area<ux8, and
"(the verb) sum is plus across” for sum<+/.

A name assigned to a noun will be called a pronoun, and one aSS|gned to a
verb may be called a proverb (pronounced with a long o as in "pronoun” to
distinguish it from the existing English word).

S. Punctuation, provided by paired parentheses that specify the sequence of
execution just as they do in elementary algebra. Sentences must appear on
separate lines, and no punctuation is used to separate them.

A. NOUNS

Nouns may be classified in four independent ways. numeric or literal; token
or pronoun; open or boxed; arrays of various ranks. Arrays of ranks 0, 1, and 2
have the special names, item, list, and table, or, alternatively (in mathematics)
scalar, vector, and matrix. The four classifications are elaborated below.

Numeric and literal. Numbers are written as 2 and 2.3 and 23e2 (for 2300) and
275 (for a complex number), and a negative number has a leading macron, as in
3.2; literals are enclosed in quotes, as '4' and 'a' and '+!'.

Tokens and pronouns. A name that has been assigned to a noun will be called a

pronoun. Tokens that refer to nouns include = and and e (denoting infinity,
munus infinity, and the boxed empty Ilst <11), as well as other numeric items and
IlbL) (>uuL| as 3.u4e2 and 2 3 »}, and uhara ter items and lists (S‘uuh as ‘'a' and

tcab'). A phrase that produces a noun (such as 3x4 or ¢'abcd') may be called a
noun phrase.

The nil (denoted by Rr) serves to extend all verbs and adverbs to a universal
domain by providing results for arguments outside the normal domains. The value
nil is also assigned to any name or token not otherwise assigned.

Arrays. A single entity such as 2.3 or 2.3j5 or 'A' or '+' is called an item.
The verb denoted by a comma (and called catenate or before) chains its arguments
to form a list whose shape (given by the verb p) is equal to the number of items
combined. For example:

date«1,7,7,6

Pdate
N
worde's' , gt ,ty!
pword
3
dword (¢ is the verb reverse)
was
ddate
6 7 7 1

The expression spl produces an array of shape s from the list 1. For example:



(3,4)pdate,1,8,6,7,1,9,1,7

3
7
6

e
0o~
-

NN

table«2 3pword,'b','a','t’
ptable

2 3
table

saw

bat

The number of elements in the shape of a noun is called the rank of the noun;
thus a noun of rank 2 is a table, of rank 1 is a list, of rank 0 is an item, of rank
3 is a 3-dimensional or rank-3 array, etc. Moreover, each position of the shape is
called an axis of the array, and axes are referred to by indices 0, 1, 2, etc. For
example, axis 0 of table has length 2 and axis 1 has length 3.

The last k¥ axes of an array a determine rank-% cells or k-cells of a. For example,
if:

a<«2 3 uplabcdefghijklmnopqrstuvwx'

a
abcd
efgh
17kl

mnop
grst
uvwx

then the list 'abcd! is a 1-cell of a, the two separate 3 by 4 tables are 2-cells of
a, and the individual letters are each O-cells of a.

The rest of the shape vector is called the outer shape or frame of the array
relative to the cells of rank k. For example, if Pbis 2 3 4 5, then b has the
frame 2 3 relative to the cells of rank 2 (and therefore of shape 4 5), has a
frame of 2 3 u relative to 5-element rank-1 cells, a frame of 2 3 4 5 relative to
cells of rank 0 (that is, scalars), and an empty frame (signifying an item) of cells
of rank u.

The number of cells in a frame is the product over its shape, and if one or more of
the elements is zero, the number of cells is zero; the frame is then said to be a
zero frame. Since the product over an empty vector is 1, an empty frame is not a
zero frame.

A cell of rank one less than the rank of a is called a major cell of a, and major
cells play an important role in the discussion of nouns and the application of verbs
to them. For example, the verb from (denoted by {) selects major cells from its
argument, as in:

0{a 1{a
abecd mnop
efgh grst
Ikl Uvwx

0{o{a 2 1{0{a
abcd ijkl

efgh
1{2{0{a

Moreover, the verb grade (denoted by 4) provides indices to { that bring major
cells to "lexical” or "row- major” order. For example:

ned 3p3 14 27 9320314
n

- WWN W
(= BRNS
w 4FOOFE
N

WWWN
N ==



'abcdefg' A 'cafe!
1032

Negative numbers (as in ~1-cell and ~2-cell) are also used to refer to cells whose
corresponding frames are of the rank indicated by the magnitude of the number.
For example, the list 'abcd' may be referred to either as a ~2-cell or as a 1-cell
of a, and each of the two separate 3 by U4 tables are called either “1-cells or
2-cells of 2. The “1-cells of an array are its major cells, and an item has a single
major cell, itself.

Open and boxed. The nouns discussed thus far are called open, to distinguish
them from boxed nouns produced by the verb box (dencted by <)}. The result of
box is an item, and boxed nouns are commonty (but not necessarily) displayed in
boxes. For example:

<'here!

Box allows one to treat any array (such as the list of letters that represent a
word) as a single entity. For example:

letters<«'l was here'
pletters
10

dletters
ereh saw I

words«(<'I'),(<'was'),(<'here')

Pwords
3
__%ﬁgg_l - - (2 ﬁ)@zﬁgﬁi ‘fwords
|herellwasl|ll :I} {was”herel

B. VERBS

Most verbs are limited in their normal application, and the class of nouns to
which a verb normally applies is cailed its domain. For example, the verb minus
(in the expression -n) applies only to a numeric argument n, and the expression
-'n' is meaningless; the domain of minus is limited to numeric arguments. The
domain of : is further limited in that :0 and 40 are meaningless.

Every verb is extended to a universa! domain by assigning result cells made
up of nils {n) when a verb is applied to arguments outside its normal domain For
example, the resultof 4 0 5 ¢+ 0 is A 0 A,

Monads and Dyads. Most verbs have two definitions, one for the monadic case (one
argument), and one for the dyadic case (two arguments). |f one of these
definitions is omitted, the corresponding case of the verb has an empty domain In
any sentence, the dyadic definition of a verb applies if it is preceded by a suitable
left argument, that is, any noun that is not itself an argument of a dyadic adverb
Otherwise the monadic definition applies.

The monadic case of a function is also called a monad, and we may speak of

"the monad :" used in the expression :w, and of "the dyad :" used in the
expression Giw.

Ranks of verbs The notion of verb rank is closely related to that of noun rank: a
verb of rank k applies to each of the k-cells of its argument. This notion will be
introduced by an example using the verb ravel (denoted by a comma), which
ravels its entire argument to produce a list of the elements. Thus:



a<2 3 uplabcdefghijklmnopgrstuvwx'

a
abcd
efgh
1ijkl

mnop
grst
Uvwx

,a
abcdefghijkilmnopgrstuvwx

Since ravel applies to its entire argument, its rank is said to be unbounded,
or infinite; it can also be applied to cells of a specified rank r by using the rank
adverb ¢ in the expression ,9r. Thus:

,92 a
abcdefghijkl
mnopqrstuvwx

pP,%2 a
2 12

The tast result iliustrates a general rule: the shape of a result is the frame
of the argument {relative to the cells to which the verb applies) catenated with the
shape produced by applying the verb to the individual cells. Commonly these
individual shapes agree, but if not, they are first brought to a common shape as
follows:

1. If the ranks differ, they are brought to a common maximum rank mr by
reshaping each argument to introduce leading unit lengths. Formally, an
individual result a is replaced by (u,pa)pa, where uc(mr-ppalpril.

2. If the individual shapes differ (after being brought to a common rank),
each is brought to a common shape by the expression msta, where ms is
the maximum over the shapes. Thus, if the shapes are s1 and s2 and
53, then ms<sifs2[s3. For example, the individual results of 12 3 4
are 0 1and 0 1 2 and 0 1 2 3; the overall result is the table:

0100
0120
0123

The case of a zero frame (which has no ceils to which the function may be
applied) is normally treated as follows: The shape of the individual result is
determined by applying the function to a surrogate argument having the shape
required for the argument cell.

The dyadic case of a verb has two ranks, a left rank that governs the rank
of the cells of its left argument, and a right rank that governs the rank of cells of
its right argument. For example:

petabc!
g<3 up'wakereadlamp!

g
wake
read
lamp

p,%0 1 g
awake
bread
clamp

Finally, each verb has three intrinsic ranks, a monadic rank, a left rank,
and a right rank. This fact often simplifies the definition of a verb. For example,
the monadic case of ¢ is defined to have rank 1, and it therefore suffices to define
its behaviour on lists, perhaps by example, as in ¢'abc' <> 'cha' and
$1 2 3 «>» 3 2 1. The application of ¢ to an argument of higher rank is
therefore completely defined. For example:



da
dcba
hgfe
Ikji

poxim
tsrg
Xwvu

Degenerate cases. The rank of a verb merely places an upper limit on the ranks of
the cells to which it applies, and its domain may include arguments of rank lower
than its nominal rank. For example, ¢ has rank 1, but its domain also includes an
item s as follows: s=$s. Similarly, B (matrix inverse) has rank 2, but is extended
to list and item arguments as follows: (Ba)=Hsa, where the table function ;5 forms
a one-column table from a list or item argument.

Agreement. The two arguments of the dyadic case of a verb must agree in the
following sense: the left frame and the right frame (relative to the particular
verb) must be identical, except that if one frame is an empty list, the single
corresponding cell is used as argument together with each cell of the other
argument.

For example, if pe'abc' and g+«3 up'wakereadlamp' (as in the earlier
example using the derived verb ,%0 1), then in the expression

p,°01g

the shapes of the arguments are 3 and 3 4, the shapes of the cells (of ranks 0
and 1) are empty (the list '') and 4, and the frames are 3 and 3. The result (as
shown in the earlier example) has shape 3 5, the 3 being contributed by the
common frame, and the 5 by the shape of the catenation of individual cells.

The same arguments in the expression

p,%1 1 g
abcwake
abcread
abclamp

illustrate the exceptional case; the left frame is empty, and the single cell 'abc!
is extended to apply to each of the three cells of the right argument.

If one of the ranks is unbounded, the extension of the corresponding
argument will always occur. For example, since the indexing verb from, {, has
zero left rank and unbounded right rank, we have:

pe3 up'abcdefghijkl!

P 2 o{p
abcd ijk1
efgh abcd

17kl

The tie adverb (denoted by a period) can be used to relax the normal
agreement constraints by specifying the number of leading axes of the frames that

must agree, and "freeing” the remaining frame axes to interact independently. For
example:

p€l 2 3
g€l 2 3 y
mep 0 .+ g
m
2 345
3 456
4 56 7
pm 1 .+ m
3 Uy
Pm 0 .+ m
34 3y



C. ADVERBS

Unlike verbs, adverbs have a fixed valence; that is, an adverb may be
either monadic (applying to a single argument to its left), or dyadic (applying to
two arguments, one on each side), but it cannot be both monadic and dyadic. For
example, the adverb / is monadic, is used in expressions such as +/ and x/, and
does not apply to two arguments; the adverb denoted by the period is dyadic, is
used in expressions such as +.x and 0 .x (calied inner and outer product in some
branches of mathematics), and does not apply to a single argument.

Each argument of a dyadic adverb may be either a noun or a verb, and it
may therefore produce as many as four distinct classes of results. For example,
vSn produces a rank n function that applies the verb v to each cell of rank n; ndv
produces a cut that applies the verb v to each of a set of segments cut along the
first axis of the argument in a manner determined by the noun n; v1%v2 produces
the composition of the verbs v1 and v2; and n1%¥n2 yields a constant verb of rank
n2, whose result for each cell is n1.

The adverb ¥ may therefore be referred to variously as the rank, cut,
composition, or constant according to its use, or may be referred to by the single
term on, which is vague enough to roughly cover all of the cases, as in “ravel on
reverse” for ,¥¢, and "ravel on 2" for ,%2.

The most common result of an adverb is a verb, but it may also be a noun or
an adverb. For example, +] produces an adverb, and u+lv w is equivalent to
(0 w)+(v w).

D. COPULA

In addition to certain distinguished names (discussed in the following
section), the names that may be assigned by the copula are a and @ and A and
those that begin with a letter of the native alphabet and (may) continue with
letters or digits, as in ABc+3 and a2+«3, and A2b3<3, or with a macron or dot, as
in Ab"2 and a.b. This restriction prohibits the redefinition of tokens, as in 3«2
or +€2 or +€x.

In the expression (1{'abc')«3+u4, the parentheses force evaluation of the
expression 1{'abc' before the assignment, and the name represented by the
result is assigned the result of 3+4. Thus the name b is assigned the value 7.
Name assignments of the form (n)<x are called indirect.

More generally, if the shape of n agrees with the outer shape of x, then
(n)<«x assigns the name represented by the open of each element of n to the
corresponding cell of x. For example:

nile'abc! n2«<%1(3 2p'pOpip2') X3 4p112
n1 _.n2__ x
abc [ I 0 1 2 3
ipolip1ilp2i u 5 6 7
[ I D I 8 9 10 11
(n1)ex (n2)ex
b po
4567 0123

in other words, (n)«x implies that (>i{n)¢>i{(x for each item i{n of n,
and corresponding cell i{x of x. However, if >i{n is itself boxed (and therefore
not a proper name), it and the corresponding cell are both opened, and
assignment is re-attempted. Thus, if ne(<'p'),(<<tg?),<<<'r' then
(n)<«3p<<t'cat' assigns <<'cat' to p and <'cat' to g, and 'cat' to r.

E. DIALOGUE

Any user of a language will normally wish to control his own pronouns, in
the sense that the value assigned by him to any name will not be affected by
assignments made by others to the same name. On the other hand, one partner in
a dialogue may use a pronoun assignment made by the other, as in:

Walter is coming.
Oh, when will he arrive?

In general, a mutual agreement by two users to share a specific name can be
used to provide communication between them, and such communication (via one or
more shared names) can provide the basis for arbitrarily complex collaboration.



{f one partner wishes to ensure that the other partner has actually
consulted the current value assigned to a shared name before he assigns a new
value, the partners can achieve this by sharing one or more further names, and
using them in a strict protocol to signal and acknowledge dispatches (assignments)
and receipts (uses) of the values of the primary shared name.

APL computer systems that provide for sharing names also provide protocols
that control delivery and receipt of values assigned to shared names, and manuals
for specific systems should be consulted. A good basic statement is provided by
[6]. Most systems limit sharing to names of nouns, and prohibit the sharing of
names of verbs and adverbs.

A set of distinguished names (beginning with O or @) is reserved for
communicating with the APL system that executes APL sentences. Three such
names, used uniformly in dialects, merit consideration here.

As may have been apparent from earlier examples of the execution of APL
sentences, the result of a sentence such as 1 2 3 is automatically displayed, but
the result of a sentence whose execution terminates in an assignment (such as
a<«®1 2 3) is not. Display can be forced by the prefix O<«, as in:

O«a<sdl 2 3
321

the name [0 denoting, in effect, the display mechanism of the system.

The name [ is shared with the terminal driver (that controls the
input-output device). When referred to (as in b<[) it, in effect, denotes the
keyboard, and assumes the literal value of the list of symbols next entered on it.
For example:

a<on

eva can i1 stab evil live bats In a cave
a

evac a ni stab evil live bats I nac ave
Ppa

39

When assigned a value (as in U«d), [ behaves like 0, except that it signals
the terminal driver to suppress the final "carriage return”, that is, it leaves the
cursor at the end of the output displayed. The detailed behaviour of [I«d varies
considerably between different APL systems.

Finally, Dio (called index origin) is not used here, but merits comment
because it occurs in all dialects, affecting the behaviour of the verbs 4, ¥, &, ?,
and 1. If Oio is assigned the value 0, the behaviour in any dialect agrees with
that described here. If Jio«1, then each element of 1w is increased by 1, and
the other functions (which yield or use indices drawn from 1w) are affected
accordingly.

F. COMPARATIVES

In the everyday use of comparisons, a reasonable relative tolerance is
implied. For example, a statement that two three-foot shelf boards are equal in
length would normally imply that they agree to a fraction of an inch, whereas a
statement that two cities are equidistant from a third would normally imply that the
distances agree to within a mile or so.

In APL the comparison a=w is treated similarly, yielding 1 (for true) not
only if @ and w are identical, but also if the difference a-w falls relatively close to
zero. The relative tolerance used in comparisons is specified by the system
variable {ct (called comparison tolerance). If the magnitude of the difference a-w
does not exceed [ct times the larger of the magnitudes of @ and w, then
a=w yields 1.

The application of tolerance in other comparisons {such as <, g€, and %) is
detailed in the discussion of these verbs. Tolerance also applies to the verbs L
(floor or integer part) and, [ (ceiling), which yield integer results, effectively by
comparing the argument with neighbouring integers. Exact comparisons may be
obtained by setting Oct to 0.



G. TERMINOLOGY

Standard names and synonyms. Because of the rather large number of verbs and
adverbs in APL, it is important to choose names for them that are both distinctive
and suggestive. Standard names are used in Sections IV and V, and Table 4 lists
synonyms that may be appropriate in narrower contexts. For example, the verb p
(called shape) vyields the number of elements of a list to which it is applied and is
therefore often called "length”, although such a term would be inappropriate in
geometry, where the length of a list b (better called a vector in this context} is
defined as (+/b%2)*.5.

Although many mathematical terms provide standard names (such as plus,
minus, and times), others are unsuitable for various reasons:

o They have different meanings in different branches of mathematics, and
therefore conflict; inverse is an example.

o They denote special cases only. For example, determinant and permanent
(-.x and +.x) are special cases of the more general term alternant, and
transpose is a special case of cant applicable to matrices only.

o They are rather awkward phrases, such as "divided by" for 3, and "integer
part of " for floor (with no term for the companion concept of ceiling).

° They suggest at most part of a concept, as in "sign” or "signum” instead of
trend. Not only does “sign” fail to suggest the meaning for a complex
argument, but even for a real argument suggests only the way in which the
result is represented, and not a "direction”

Distinct names for the monadic and dyadic cases of a verb are desirable, but
not essential. Thus, axb and axxb are clear when read as "a power b" and "a
times power b" and the phrases "the dyad power” and "the monad power” are as

convenient as "the power function” and “the exponential function”.

When working in a narrow and familiar context, one might find the
suggested standard names bizarre and unnecessary, but in wider contexts come to
accept them as reasonable compromises.

Other considerations. |n mathematics the terms scalar, vector, and matrix are
used for what we have here called item, list, and table; function and operator are
used for what we have called verb and adverb. We will use these synonyms
wherever they seem appropriate.

In verbalizing a written APL sentence, clarity may be gained by observing
that the simple verbs + and -~ (called right and left) have the effect of
coordinating or subordinating conjunctions. For example, a<n: x-n«bxel 2 3
would be read as "a is n divided by x, where n is the reversai of x, and where x
is the list 1 2 3", and ,¥2r3 up112 would be read as "the rank 2 ‘ravel of the 3
by 4 table of integers”.

The occurrence of a copula without 4 may also be read as "where", as in "a
is x tlmes x, where x is 1 2 3", for a<xxx«1 2 3. Because of the common use of
"and” for the verb A in logic, it should probably not be used instead of "where”,
even though it may seem appropriate.

H. IDENTITIES AND PROOFS

Formal identities between sentences can play an important role in the use of
formal languages. In the body of the dictionary we will adopt a rather widely used
scheme for expressing identities: writing one sentence immediately below another
will imply that the second is equivalent to the first. For example:

+/1n

+/01n
5x(+/1n)+(+/01n)
5x+/((n)+(d1n))
.5%x+/np(n-1)
.5xnx(n-1)

The foregoing six sentences state five identities, all of which may be tested
by executing them after assigning some value to n. Moreover, the five identities
together imply an identity between the first and the last sentences, and therefore
provide the well-known efficient calculation (.5xnxn-1) for the sum of a sequence
of n successive integers beginning with zero.

The foregoing example can be elaborated to provide a proof of the identity
between the first and last sentences by writing beside each sentence the basis for
asserting its identity with the preceding sentence. For example:



.5x+/np(n-1)
.5xax(n-1) Definition of x (that is, pXqg is defined as the sum
over p repetitions of g)

Identities are also expressed by placing <> between sentences, as in
+/1n «»> ,5xnxn-1, or by using the verb =, as in (+/1n)=2'n.

I. PARSING AND EXECUTION

A sentence is executed by executing its parts in a sequence determined by
the parsing rules of the language. For example, the sentence 10:3+2 is executed
by first executing 3+2 to obtain a result that is then used to divide 10.

The parsing rules can be summarized as follows:

1. Execution proceeds from right to left, except that when a right parenthesis
is encountered, the segment enclosed by it and its matching left parenthesis
is executed, and its result is used to replace that entire segment and its
enclosing parentheses.

2. Adverbs are executed before verbs; the phrase ,92-a is equivalent to
(,%2)-a, not to ,9(2-a). Moreover, the left argument of an adverb is the
entire verb phrase that precedes it. For example, in the phrase a+.x/b,
the adverb / applies to the derived verb resulting from the verb phrase
+.x, not to the verb x.

3. Verbs are applied dyadically if possible. For example, a-b signifies a
subtraction, but ax-b signifies multiplication of a with the negative of b.

One important consequence of these rules is that in an unparenthesized
sentence the right argument of any verb is the result of the entire phrase to the
right of it. A sentence such as 3xplgx{r-5 can therefore be read from left to
right - the overall result is three times the resuit of the remaining phrase, which is
the maximum of p and the part following the [, and so on.

it is also instructive to examine the explicit parsing process. Parsin
proceeds by moving successive elements (or their values in the case of pronouns?
from the tail end of a left stack (originally the given sentence prefixed by a
marker n) to the front of a right stack, and eventually "executing” some eligible
portion of the right stack and replacing it by the single result of the execution.

For example, if a«1 2 3, and if ¢ is used to separate the stacks, then the
sentence b<+/2xa would be parsed and executed as follows:

nb<« + /2 x ao

p b« +/2x0123
A b« + /206 x123
Ab<«+ /02 x123
Rb<e+0/2x123
A b« +0 /246
Aab<« o+ /246
Abo €+ /246

A b o <« 12

Ao b« 12

a o 12

o A 12

The foregoing ilustrates two important points: 1) Execution of the phrase
2x1 2 3 is deferred until the next element, the /, is transferred; had it been a
dyadic adverb, the 2 wouid have been its argument, and the monad x would have
applied to 1 2 3; and 2) Whereas the value of the name a is moved to the right
stack, the name b (because it precedes a copula) is moved unchanged. Moreover,
a covert effect of the execution is that the pronoun b is assigned the value 12.

The executions in the right stack are confined to the first four elements
only, and eligibility for execution is determined only by the class of each of these
elements (noun, verb, adverb, copula, parenthesis, name, and left marker).
Consequently, the parsing process can be made clearer by replacing each element
in a sentence by a single chosen member of its class: 1, +, /, and period for
noun, verb, monadic adverb, and dyadic adverb; and the letters a, b, ¢, d, and
e for names. The earlier example would then begin as follows:

Ab«+ /1 +10
Ab <« + /1 + 901
ab <« + /10 + 1
ab< + /01 + 1
nbe+0/ 1+ 1
Ab<«+0 /1

1



The function parse shown in Table 2 is a complete formal statement of the
parsing procedure. Although its details are not relevant here, it can be read by
anyone familiar with APL, or may be entered into an APL system and used to
produce a complete parse as illustrated below:

parse '+/ata<l’
A+/a+a<1o

>
A+/a+a«ol
>
A+/a+ado«l
L4

a+/a+oa<l
L1222
a+/a+ol
>

Aa+/ao+1
>

A+/01+1
>
A+o/1+1
(X2}
Aa+o/1

>
Ao+/1
>

on+/1
L34

ona+l
124

onl

In the foregoing result of parse, the arrow » indicates that the element above it
is evaluated and moved to the right stack, the symbol © indicates that the element
is moved without evaluation (i.e., as a name to be assigned as a pronoun), and
vertical arrows indicate the phrase to be evaluated and replaced by a single
result, as where 1+1 (noun plus noun) is to be replaced by a 1 (a noun).

The parse function is controlled by a table of cases, and a table of
actions:

cases actions
a/+<( + 1 noun ' vv !
. 1 + 1 noun ‘! !
Al/+<( 1 + 1 noun ' vev!
al/+<( 1+ / verb ' v !
Al/+e( 1+ . 1+ verb ' ¥¥¢!
labcde < 1+/. is 22 2
( 1/.+ ) punc ‘vev !
« move 'o!

move '3!

For example, when the right stack is (+1)}+1, the case in the leading row is
satisfied because ( belongs to the (boxed) list in the leading element, + to the
next, 1 to the next, and ) to the last (since an empty list indicates that anything
is accepted). The corresponding action (noun ' v+ ') is therefore executed. It
replaces the elements indicated by the arrows by a single 1, which represents the
noun that results from the execution of +1.

It should be noted that the earliest eligible case is chosen; the moves (from
left stack to right stack) in the last two cases therefore occur only if nothing else
is possible.

J. VERB DEFINITION

The adverb V provides a general means for defining a new verb, as
discussed in Section V. A simpler informal scheme called direct definition [6] will
be adopted for definitions used for exposition in this dictionary. It defines a
function by either one or three sentences, as illustrated beiow:

sqrt: wx.5
sgrt 4 5 6
22,2361 2.4u95

root: wk:a
2 root 64 3 root 64
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£01 1701
01 10

The symbols @ and « denote the left and right arguments. In a
three-sentence definition, the middle sentence is a conditional which is executed
first; the first or last sentence is then executed according to whether the result of
the conditional is 0 or 1.

Since direct definition is informal, its use on any APL system requires a
translation provided by the functions translate and def, themselves defined in
the canonical form discussed in Section 1il. They appear in Table 3, together with
examples of use.

Local and global names. A name may be local to a function in the sense that its use
in the execution of the function has no relation to its use outside the function. For
example, in direct definition, the argument names a and w are local, as are any
names that occur immediately to the left of a copula. For example:

fraxa «1+be2xw

a€bewe3d
£ 2
25
a,b,w
533

A name that is not local to a function is said to be global to it; a name not local to
any function is said to be a global name.

In functions produced by the adverb ¥V, the names a,w,A, and A are local,
and other localizations may be produced dynamically: when any name a is to be
assigned by an expression of the form a«b or (a)<«b, then a is first made local if
it is not not already so. Expressions of the form a «b and (a) <b do not produce
localization.

t11: DIALECTS

The vexing question of what to include in a dictionary as standard, and
what to relegate to dialects is settled here as follows: a construct is excluded if a)
it is anomalous, and itself requires special rules, and b) is obsolescent, in the
sense that its use can be avoided by the use of other (usually newer) constructs
tshat are' at least as convenient. Variations in word-formation are discussed in
ection |.

Anyone beginning to write for a particular APL system should consult the
manual for it, and should probably do so rather early so as to avoid the use of
constructs that it does not include. On the other hand, the use of such alien
constructs may prove beneficial, since they may lead to an improved style of
programming, and may, in effect, be partially or fully incorporated into the dialect
by designing functions to simulate them.

Most dialects do not use nils to extend domains, and a sentence may fail to
execute either because it is ill-formed (for example, 2+ or a< or a<<3) or because
a verb is applied to arguments not in its domain. Most dialects provide a set of
error reports which are used to indicate the type of failure in a sentence. The
error report is normally followed by a display of the sentence, ‘with a caret
marking the point at which execution stopped.

Dialectal definitions are included in Sections IV and V, together with explicit
references to the relevant manuals. Certain dialectal constructions are excluded
from such discussion because they depart too strongly from the grammar defined
here. These excluded topics include strands (which, in effect, allow elision of the
verb 1ink), ambiguous symbols (which allow certain symbols such as / to denote
either a verb or an adverb), and selective specification (such as (c/[alv)ex).

Certain important constructs excluded from standard APL occur in nearly all
dialects and are therefore discussed here, even though such discussion cannot
completely obviate the consultation of other manuals. In each case the major
reasons for exclusion are presented, as are alternative phrasings in the standard
language.

A. BRACKET-SEMICOLON INDEXING

Brackets and semicolons are commonly used for indexing in dialects, and a
good definition may be found in [7]. For example:



Fa€2 3 upi2y

o 1 2 3
4 § 6 7
8 9 10 11

12 13 14 15
16 17 18 19
20 21 22 23

al1;2;1] al1;1 2:1)

al1
21 17 21 13 17

3311
21
Deficiencies of bracket-semicolon indexing include:

a) Anomalous syntax due to the use of two separated symbols ([ and 1)

for the indexing function. In particular, this leads to different
interpretations of phrases such as a(i;1[j], and all in different
dialects.

b} The phrase enclosed in brackets does not obey normal rules. For
example, it has no exp!lut result to which a name can be assigned (as
in alie(j;k)1), and "implied" parentheses surround the portions
separated by semicolons (that is, al2xi;j] «> al(2x1);71).

This form of indexing can easily be expressed in terms of {. For example:
ali;jik] <> (<iojok){a
ali;j;1 <> (<idj){a
ali; ;k] <> (<isedk){a

On the other hand, an expression such as (0 151 232 3){a {that provides
"scattered mdexmg , to yield an array whose major cells are al0;1;] and
al1;2;:] and al[2;3;]) is not easily written in the bracket-semicolon form

B. INDEXED ASSIGNMENT

The effect on the value of the name a produced by an expression of the form
alil<b, is to assign to it a merge of the values of a and b controlled by the index
i. The same effect can be obtained by applymg the merge adverb } to the
selection function i°{, that is, a<b i'"{}

Indexed assignment shares the deficiencies already noted for the related
bracket-semicolon indexing. Moreover, it applies only to the particular form of
indexing provided by the brackets, rather than to any selection function, as in
1 0 0/}t to merge the list I in as the diagonal elements of ¢. Finally, the result
of the expression a[il<b (as assigned to the name ¢ in the expression c«alil<b)
is not the merged result, which can be obtained only by a separate reference to a.

C. BRACKET AXIS NOTATION

Expressions such as $[ila and +/{i]Ja and +\[ila apply the (possibly
derived) function preceding the brackets "along axis i" of the argument a. For
example:

Fa<2 3p116
012
3 45

¢{0la +/[0la +\[0]a
3 45 357 012
012 357

Phrases of the form f{ila can be re-expressed in terms of the rank
adverb. For example, ¢[ila and +/[ila and +\[Zla can be expressed as 6% a
and +/£%k a and +\%k a, respectively, where k<(pPpa)-1i.

Similar remarks apply to a dyad, that is, a,[i] b is equivalent to
a ;%k b —ke(ppa)-i.

A fractional value of i in the expression a,[ilb provides lamination,
inserting a new axis of length 2 between axes Li and [i. For example:

a<«3+b€13

a,l[.51b a
y
1

[T.51b

N o

3
0

vmEWw
N = O

14



The verb ,"’< is equivalent to ,{”.5], and ,""<dk <> ,[7.5+(ppal)-k]
D. CANONICAL FUNCTION DEFINITION

In most dialects, the system function 0fx applies to a character matrix
argument that represents a function in canonical form, and establishes the
definition of the function. The first row of the matrix is called a header; it is a
paradigm of the use of the function (such as 'z<a plus b') followed by a list of
those names that are to be made local to the function, each prefaced by a
semicolon. For example:

m Ofx m
z<a root bj;c root
c<ta
z<bkc

2 root b4 3 root 64
8 y

The major anomaly to be noted in canonical definition is that although Ofx
produces a function (verb), it is itself a function rather than an operator
{adverb). Moreover, it produces a defined function not as an explicit result to
which a name may be assigned, but rather as a "side-effect”, a function with a
specific name determined by the header of the argument of Ofx.

The major deficiencies are:

a) The inability to make self-reference to the function being defined, as
provided by the symbol A in the definition produced by the operator v
by any means other than the explicit name specified in the header.
This makes it impossible to produce a recursive definition in which the
function can be safely renamed. An attempt to make a systematic name
substitution in the argument of 0fx will founder on any use of execute
(2) on pronouns.

b) A branch in canonical definition can specify only a beginning point b,
the subsequent sequence being limited to the specific sequence b+1,
b+2, etc., to the point of the next branch. In a definition of the form
mVd, the branch A< can specify an arbitrary sequence of any length,
as determined by the list I. For example, the expression A< (kp2),4
will repeat (k times) the single line 2, and then finish with u4; and if
11 is any label, then A<>kp<I1 will repeat k times the entire segment
whose beginning is labelled by 11.

Most APL systems provide special editing facilities to make convenient the
revision of functions defined in canonical form. Corresponding editing facilities
can be provided for direct definition by writing editing functions in APL using
Ofx edit Dcer 'f!', where Ocr vyields the matrix that represents the function
named f. However, the general editing facilities provided on modern computing
systems (particularly those with screen terminals) often make such special editing
unnecessary.

APL systems aiso provide facilities for monitoring and controlling the
execution (trace and stop) of canonically defined functions. Simple editing to
insert expressions such as O« or @ (where m is any desired monitoring function
whose explicit result is its argument) can provide equivalent facilities for
functions produced by the adverb V.

Any function definition of the form Ofx t can be mimicked by an expression
of the form femVd. Briefly, for any dyadic function in which display is invoked
only by explicit use of D« and in which branching is made only to labels (and does
not involve the "fall-through” produced by the case >'!'), the expression
corresponding to Ofx t is f«''VYd, where £ is the name of the function embedded
in the "header” in the first row of ¢, and where d is obtained from the remaining
rows (1 0+¢) as follows:

a) Replace each '>' by 'Ose«!.

b) Preface each row that does not begin with the result name (as
determined by the header) by the symbol .

c) Insert a space between the assignment arrow and the name assigned for
any name that is not to be localized.

d) Enclose each row of the resulting table rt, thatis, d«<%¥1 rt.
Niladic functions. The function f defined by Ofx 2 uUp'z<f z<0Oa' is said to be
niladic because the header indicates no explicit argument; it behaves syntactically

as a noun, although its result may vary because of its dependence on the pronoun
a.
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The behaviour of a niladic function is therefore the same as that of a normal
function provided with an argument. If the result of a function does not depend on
the explicit argument, then any argument may be used. For example, if
g;'Oa'V", then the phrase ge is equivalent to the niladic function f defined
above.

E. COMMENTS AND STATEMENT SEPARATORS

Anything following a comment symbol (R) in an expression is ignored in its
execution. Comment can be similarly added to the end of a line by appending
4'This Is a comment!', but can also be inserted anywhere in a line. Thus:

a<wx +'count to n'v 1ne F'length of r'v pr.

Expressions using the statement separator (©) can be mimicked by
expressions using the function left, the primary difference is that the separation
imposed by - foliows the normal rules for order of execution. For example, either
of the following expressions will determine the coefficients ¢ of a polynomial
equivalent to a polynomial with roots r:

neprobenpP20t<«bTix/bos«(11+n)o =+/toperx ktoces+.xp
ces+ . xpAperx . kxtH4se(11+n)o  =+4£L-t<bTix/babenp2-n<pr

Since - is a normal function with simple properties, the phrase b-b can be
simplified to b, and (since p is used nowhere else) the phrase p-p< can be omitted
entirely, allowing the second expression to be simplified to:

ces+ XX, ktH4s5¢(11+n)e  =+4t<bT1x/benp2-nepr

The difficulty with the seemingly-simple statement separator is that it raises
new questions about many issues, such as the behaviour of a branch between
separators, and the interaction between separators and comments. An indication of
the complexity is given by the index entry for "diamond" in Berry [8]; references
are made to eight distinct sections of the manual.

F. PERMISSIVE TREATMENT OF SINGLE-ELEMENT ARRAYS

Most dialects are permissive in allowing one-element lists (and sometimes
one-element arrays of any rank) to be treated exactly as the corresponding scalar.
For example, the shapes of (,2)915 and 2415 are both 5, aithough the shape of
the former should be 1 5.

In dialects which assign ranks to primitive verbs, agreement with the
established permissive definition is obtained by making the rank unbounded, thus
permitting any desired behaviour. In such cases, standard behaviour for a
primitive p can be obtained by imposing the proper rank r, as in psr.

For example, the fundamental definition of inverse base (T) is on a list left
argument and a scalar right argument, and it therefore has rank 1 0. However,
because the extra result axis was traditionally placed first rather than last,
dialects assign it unbounded right rank. Standard behaviour can thus be obtained
by using 791 0. For example, most dialects would yield:

tme2 2 2T12%3
c00O01111
00110011
01010101

whereas 2 2 2791 0 12%3 would yield &m.

IV: VERBS

The ranks specified for a function are very important in reading its
definition, since the basic definition is given only for cells of the indicated rank,
and extension to higher-rank arrays follows the general rules for verbs stated in
Section I1.B. For example, the ranks of the verb ¢ are 1 0 1 (monadic, left
dyadic, and right dyadic, respectively), and ¢w need therefore be explicitly
defined only for the simple case of a list. Similarly, the dyadic case need be
defined only for a scalar left argument and a list right argument. For example:

2915 1 392 5p110
23401 12340
89567
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Unless otherwise clear from the definition of a verb, the rank of the result
it produces is the same as the rank of its right argument. For example, the
functions +, -, x, L, and %, all produce scalar results, but a¢?w (as stated in its
definition) does not.

The first line of each main entry contains:

o symbols of the verbs treated

o Ranks: followed by the ranks in the order monadic, left, right, each indicated
by a digit, the symbol = (for unbounded), or % for an undefined case

o the heading v#: followed by the identity element (or * if none exists) for each A
function, as defined in the discussion of # in Section V i
o the names of the verbs (as in Floor/Ceiling; Minimum/Maximum for | [). B
Although these names are suggested for general use, they are often replaced LT
by words suited to a given context.See Section I1.G and Table 4. %

It should not be surprising that many of the names do not have the form of

English verbs; English phrases such as 3 and 4, 3 plus 4, 3 times 4, and por g ::
denote the action by prepositions or conjunctions rather than by verbs, and even )
where a verb is available (as in deny p for ~p) it may be more appropriate to use I
an adjective (as in not p).
Lr
¥
4V
+ - x % Ranks: 0 © 0 véd: 0 0 11 Mate/Minus/Trend/Per; e
Plus/Minus/ Times/Per -
Monad. The following definitions and examples apply: P
Mate +w > (|wxw)iw +3755 <> 3775 .3
Minus W o«> 0-w -7 > 7
Trend xw «> wil|w x3 0 75 «> 10 71
Per W o> 13w 4 > 25
Dyad. These functions are defined as in elementary arithmetic, except that
0:0 is defined as 0, for reasons presented by McDonnell [9]. Most dialects 1
define 050 as 1, and most restrict the domains to real numbers. i\
*x @ Ranks: 0 0 0 vér 1 ox Power/Log; Power/Log e
8.
Monad. The exponential [11] denoted by *w is equivalent to exw, where e is
the base of the natural logarithms, given approximately by: je
v:

*1
2.718281828

The natural logarithm @ is inverse to %, that is, @ <> ®%w <> *xQw.
Moreover, @w <> e®uw,

Dyad ax2 and a*3 and a*x.5 are the square, cube, and square root of a. The
general definition of axw is xwx®a, and applies for complex numbers as well as
real. For the simple case of an integer right argument it is equivalent to
x/wpa; in particular, x/ applied to an empty list yields 1, and a%0 is 1 for
any @, including the case where a is zero. The expression a%w is often read
as "a to the power w".

The base-b logarithm b@w is inverse to power, in the sense that
W <> b®bkw «> bikb®w,

< Ranks: = 0 0 v£: 0 Box; Before
Monad. The result of <w is a scalar encoding of w in the sense that it has rank
0 and can be decoded (by >). Moreover <w differs from w. A box can be
catenated only with another box, not with an open array. See the discussion of

boxed nouns in Section |{, and of their display under 3.

Dyad. The result of a<w is 1 if o is less than 1, and is 0 otherwise See < for
comparison tolerance.
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Ranks: 1 0 0 vi: 1 Cycle; Fore

Monad. If s is a mix (as defined under V), and if s{a replaces i{a by j{a,
and j{a by k{a, and k{a by i{a, then the list i, 7,k is said to be a cycle of
the mix s. Every mix can be conceived as a collection of disjoint cycles of
various lengths, including length one for those elements that do not move. For
example, if s«4 5 2 1 0 3, then s has thecycles 5 3 1 and 4 0 and 2.

A mix ¢ is said to be a cycle representation of a mix s if the cycles of s are
the boxed elements of the vector b«(a=l\a)19%<a<«(pc)|c. For example:

c¢2 4 05 31
(c=L\c) 1%<c
I~ |
|2fiu o]l5 3 1]
1.1 | |

and ¢ is therefore the cycle representation of the mix s«5 2 1 0 3 used
above.

If s is a mix, then <s vyields its cycle representation; 2 is the inverse
function, and sz2<s. The results of both 2 and < are mixes in standard form.

More generally, if the elements of w are distinct non-negative integers, then
(sw)zgw, (1 fw)~w. For example, (€3 5 1)=z<3 5 1 0 2 4. In other words,
the missing elements of 1[/w are first appended to produce a complete
permutation.

Dyad. The result of ag<w is 1 if @ is less than or equal to w and 0 otherwise.
However, the comparison is made with a tolerance specified by the system
variable Oct as follows: a<w is 1 if a-w does not exceed Oct multiplied by the
larger of their magnitudes, that is, if o-w is less than or equal to
Octx(|a)f |w.

Similar comparisons apply to the other relations. For example, o2w is 1 if a-w
is greater than or equal to -Octxi/|a,w, and e>w is 1 if (a2w)a~a=w,

The relations are commonly applied to boolean arguments. For example, ozw is
the exclusive-or of boolean @ and w, and a<w is implication.

Ranks: 1 0 0 vé: 1 Mix; Aft

Monad. The function 2 is the inverse of £, and 2w produces the standard
representation of the mix whose cycle representation is w. See < and v.

More generally, if the elements of w are distinct non-negative integers, then
>w is the mix whose elements are determined by «w in the normal manner, but
whose missing elements (1[/w)~w are treated as cycles of length 1, and
therefore stay fixed. For example, (25 3 1)=0 5 2 1 4 3, and the
corresponding standard cycie representation €23 5 1is 0 2 4 5 3 1.

Dyad. The result of asw is 1 if @ is less than or equal to w, and is 0
otherwise. See < for comparison tolerance.

Ranks: 0 0 O vi: 0 Open; After

Monad. Open (>) is the inverse of box (<), that is, wz><w. When applied to
an open array (that contains no boxed elements), open has no effect. For
example:

><1 2 3 >1 2 3
123 123

The opened elements are brought to a common shape as discussed in Section
I1.B.

Dyad. The result of asw is 1 if @ is less than or equal to @, and is 0
otherwise. See < for comparison tolerance.

Ranks: ~ 0 0 vé: 1 Nub in; Equal

Monad. The function = classifies the major cells of the nub of w according to
equality with the major cells of w, producing an m by n boolean table, where m
and n are the number of major cells of the nub of a (that is, 4a) and of a,
respectively. For example:



a ta =a
allah alh 10010
01100
00001
b +b =b
abc abc 101
def def 010
abc

Formally, =w <> (MCAw)o.=MC w, where MC: ,<% 1 w boxes the major cells
of its argument. Consequently, =s <+ =,s for any scalar argument s.

Dyad. The function = is a rank 0 form of match (2); formally,
asw > a =90 w. See = and <. For example:

+a<«3 5plabcdefghijklimno!

abcde
fghij
klmno
a=0a rbeia
00100 =" T
00100 ]abcde]lfghl]llklmnol
co100 d_____ () I I
b=0b
0 0

Dialects Some define = differently on boxed arrays; it may therefore be
necessary to use @ =90 w instead of a=w

Ranks: = 0 0 vAi: O Nubsieve, Unequal

Monad Nubsieve (zw) provides a boolean list that selects the nub of w, that
is, tw > (2w)fw, For example, =z'abacus' «» 1 1 01 1 1, and
z3 <> 1p1l. Formally, #zw <> (ctic)=1pc<,<%71 w.

Dyad. The result of @zw is 1 if @ is unequal to w, and is 0 otherwise. See <
for comparison tolerance.

Ranks: % ~ ; Match

Dyad The expression azw yields a scalar boolean result; 1 if the arguments
match completely, in shapes, in boxing structure, and in elements. The
comparison of numeric elements is made under the normal rules of comparison
tolerance described under <.

Ranks: 0 = ~ Not; Less
Monad. ~ applies only to boolean arguments, and negates them: ~0 1 <> 1 0.

Dyad. The result of a~w is the array whose major cells are the major cells of «
less the major cells of w. For example:

(16)~7 2 u
01335

a«3 Yp'abcdefghijil'
we2 Yp'mnopabcd!
a~w

efgh

1ijkl1

Formally, a~w <> (~(MC Q)e MC w)fa, where MC: ,<%71 w. The result of
a~a~b is called the intersection of a and b. For example, if a«16 and
b<«7 4 2, then a~a~b is 2 4. The result for any scalar argument s is the
same as for ,s.

L Ranks: % 0 O vAd: 1 0 % % ; And (LCM)/Or (GCD)/
Nand/Nor

Dyad. pag is the least common multiple of p and g, and pvg is the greatest
common divisor. For example:




12v30 12A30

60
12 30:12v30 v/12 30+12v30
25 1
3.6vy 3.6A4
0.4 36

For boolean arguments (0 and 1) the v is equivalent to the logical or, and the
A to logical and. Thus:

pe0 0 1 1

g<0 1 0 1

pAg pvg
0001 0111

Finally, » and » (called nand and nor) are defined only on boolean arguments,
and are converses of A and v, that is:

(anw )= (~aAw) (amsw)s (~ovw)

Ranks: = ~ Right/Left; Right/Left

Monad. + is the identity function, that is, w <> rw. The result of rw has
shape 0 0; its display occupies zero lines.

Dyad. Lleft yields the left argument, and Right the right, that is, ¢ <> a-w
and w <> arw. .

Ranks: 1 ~ Words; Base
Monad. L provides the word formation described in Section {. For example:

L '3 4,5xABC Dfpoil .
=0T -
l3.usi|x|laBcl} |IDEl|r]QI
(N N A AU P AN A

It is equivalent to the function WORDS defined below:

alph<'OabcdefghijklmnopgrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ !

WORDS: (WD(<,w)€9>alph>'_~0123u56789'd', 1>t 1o1111)1%<c w

wD: (141),WD 1+¥1w-]<«2'n WDO w'¥3=nel 3 3 0 2 .x1491w:0€pw:r0

WDO: ''pavl, (+/A\Vv#Irw),+/A\Qvz\Qew([u;]

WD1: (oz0)xa+aWDlovSlwaa<L+B: (L=0)v{1+Bya[2;])A1=Le+/A\Vv#
(T2,B)vwx14v#(1,B«w(3;]110)434w:LxB=0

Dyad. For the lists ¢ and w, the base aiw is the item +/Wxuw, where W is the
list of weights 1+ox\¢a,1. For example:

(a<24 60 60)iw<l 2 3 FHelvyOx\¢a,1 +/Wxw
3723 3600 60 1 3723

More generally, alw <> (1+51¢x\¢a,1)+.x w. In other words, base values
are produced for each 1-cell of o with each vector along the first axis of w.
For example, 10 1012 3P16 <+ 3 14 25,

if a is an item, it is treated as (14pw)pa. Thus, 211 0 1 <> 5.

Ranks: » 7 ; Inversebase

Dyad. For simple cases, T is inverse to the base 1. For example, if
a«24 60 60, then a1l 2 3 is 3723 and @T3723 is 1 2 3. More generally
(since the largest number representable in base ¢ is aia-1), araTw equals
(x/a)|w rather than w. For example, (3p10)T3247 is 2 4 7, and
(3p10)12 4 7 is 247, thatis, (x/3p10)132u7.

For higher rank right arguments, the extra axis representing the individual
elements is placed first. For example:

(3p2)T12%3

00001111
00110011
01010101
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More normal placement of the new axis (i.e., at the end) can be obtained by
using T¢1 0.

Ranks: 1 1 1 Execute; Execute
Monad. The result of 2w is the result of executing the character list w. For
example, ¢'a<3+4' assigns the value 7 to the name a The result of 2'' is
nif.

Dyad. The result of asw is the result of 2w if w is a valid expresswn (that is,
its execution completes properly and produces no nils in its resulit).
Otherwise, the result of aew is the resuit of g2a, which may itself invoke an
error report. Effects may also be produced by any partial execution of w that
has occurred.

Ranks: ~ 2 2 Format; Format

Brlefly stated, the format function produces a character array that represents
numeric results in familiar forms. However, the exact rules for rounding the
numbers, for inserting spaces to align columns, and for replacing leading and
trailing zeros by spaces, become rather intricate.

Monad. If w is an open character array, then w=%w. Although the monadic
rank of & is unbounded, we will first restrict attention to arguments of rank
2

If w is an open numeric, then 3w is, with the exceptions stated below,
equivalent to ((m+1),0pp)sw, where m is the greatest width required for any
of the fields:

Leading zeros preceding the decimal point and trailing zeros following it
are replaced by spaces, except that if all digits are zero, the one before
the decimal point is retained, and the decimal point itself is replaced by
a space.

In extending the definition of ¥ to arguments of rank greater than 2, it is
necessary to choose a value of m for use in the expression ({(m+1),0pp)sw
that is large enough for all of the individual rank 2 cells We therefore define
a dyadic function F of rank 0 2 such that n F w is equivalent to zw if 2=ppw
and if n is the maximum field width required Moreover, if om is the overall
maximum width required for all rank 2 cells of an argument w, then

om F w provides a useful extension to arguments of higher rank.

We adopt this extension as a definition of ¥, with a modification that inserts
rows of spaces between the results for individual cells. Using the subsequent
definition of 3 on boxed arrays, these insertions may be expressed as follows:

If 3=ppw, and if reom F w, then the result of 3w matches the result of
%;<92r, evaluated with Ops<«0C 0 1 0.

If 3<ne¢ppw, then T matches ;<9235 (n-1)w,

The degenerate cases of vector and scalor arguments are defined by the
expression ,38;,w

The normal display of any result r matches the display of 3r. For example:
223pP1100e.+.1 10.x 10 1

0.9 1 1.1
6 1 2

99.9 100 100.1
99 100 101

If the argument of ¥ is a boxed array, a width sufficient for all elements in a
column of the display is allotted for each column, and sufficient height is
similarly allotted to each row. The justification within the allotted space is then
determined by the first two elements of the "position and spacing” system
variable Ops as follows: justify top, centre, or bottom in each row if 0{0Ops is

1, 0, or 1, and left, centre, or right in each column if 1{Cps is "1, 0, or
1.

Space between successive rows and columns is allotted as follows: |2{0ps
spaces between successive rows, and |3{0ps spaces between successive
columns. Finally, each element is bordered by horizontal lines (7 and _)
immediately above and below if 2{[lps is negative, and by vertical lines
immediately to the left and right if 3{0ps is negative.
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For example:

be2 2p(3 Sptab')ol 2>tcd'>'efghij!
Opse-1 1 3

| |
|ababal |1 2}
|babab) |___|
=ababa|

Ops«0 0 0 O
b

ababa

babab 1 2
ababa
cd efghij

Dialects. Display, and the result of 3, differ somewhat among dialects.
However, most control display and the result of ¥ by the system name
Opp (printing precision}, whose value specifies the maximum space
allotted to the printing of each number. They also use Opw to control the
printing width (the point at which the line is broken to continue
indented on a subsequent line); this applies to normal disptay, but not
to the result of %.

Dyad. The expression asw yields a character array; the form of the result is
controlied by @ in two different ways, depending upon whether o is numeric or
character.

If @ and w are both numeric tables, the result of a3w is a table of 14pw rows,
in which groups of adjacent columns (called fields) are determined by each
column of w together with a two-element control vector ¢. The control for field
Jj is given by c<j{a; the element 0{c determines the width of the field, and
1{c determines the number of decimal places used.

If k«1{c is negative, the result is represented in exponential form, as
illustrated below:

(858 "3)% ®;123.45678 .00876543
1.23£2 B8.77E 3

To obtain the exponential form of a number n, it is first normalized to the

equivalent mx10*p, where p is an integer, and 0<|m, and 10>|m. The number
m is then rounded to |k places (as described below) and is suffixed by one of
the forms e gr or e gr, where gr denotes the two digit representation of |p.

The rounding of a number n is determined by k<1{c as follows:
(10%- |k )xL.5+(In)x10% |k

The character string that represents this result is then prefixed by enough
spaces to bring it to the width determined by 0{c, after being prefixed by the
symbol ~ if n is negative.

The width of a field is equal to 1{c, unless 1{c is zero, in which case the width is
one more than the maximum width required to represent any one of the numbers in
the entire column of w.

The degenerate case of a scalar or vector right argument is treated as
,a%8;,w. The degenerate case of a (2-element) vector left argument is treated
as (((1+pw),2)pa)sw, and the case of a scalar left argument @ is treated as
the vector 0,a.

Dialects. Dialects commonly use the ravel of the table left argument
described above, rather than the table itself. For example:

Fae3 2024 .34 T57.684 T0.u45 T134,27

24 .34 T57.684

T0.u45 134,27

24 .34 “57.684

12 33a 0 3%a _
24,340 T57.684 24,340 57 .684
~0.450 T134.270 T0.450 T134.270
24,340 T57.684 24,340 ~57.68u4
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8 2 5 0%a 8 2 0 “2%a

24.34 758 24.34 “5.8e1
0.45 "13u 0.u5 “1.3e2
24.34 58 24,34 "5.8e1

If @ is a character array, the expression a3%w is called format by exampie,
since @ provides a pattern for the result. In the standard case of a single cell,
a is a one-row table, and the last dimension of the table a%w agrees with the
last dimension of a.

Since the left rank of % is 2, the standard case requires a table left argument
a; since that table consists of a single row, the equivalent degenerate case
(,2)%w is commonly used. Degenerate cases of the right argument » are
treated as ,a%8;,w. For example:

a«'Balance is $(55,510.50) on 05/55/55"

a%s23456.714 61184
Balance 1s 23,456.71 on 06/11/84

azy56.78, 10016 11 8u
Balance is u56.78 on 06/11/8u4

a%723u456.714 61184
Balance is $(23,456.71) on 06/11/84

a3 " 456.78 61184

Balance 1is $(u56.78) on 06/11/84
Fr<'555.55's1 0 10.1 100 pr
1 10.1 100 24

A numerical field in @ is bounded by bianks or (on the right) by the first
non-control character following a six, and must contain at least one digit. The
digits in a field are both place-holders and control characters for that field.
Non-digits are decorators, simple, controlled, or conventional:

o A simple decorator may be embedded in a numerical field or stand alone; it
is reproduced in place.

o A controlled decorator is a group of one or more characters immediately
adjacent to a leading or trailing digit in a8 numerical field that contains a
1, 2, or 3 nearer that decorator than a 4 For example:

'CONTROLLED55154N0T NOT543215CONTROLLED!'S1 ~1°.x123 321
123NOT NOT 321
CONTROLLED123NOT NOT 321CONTROLLED

° The dot and comma are conventional decorators; they specify decimal digits
or group separators according to common conventions (as in 23,456.78). A
dot is a decimal point conventional decorator if it either precedes the first
digit or 1s surrounded by digits in a numerical field, and if it is the only
such dot in the field. A comma is a conventional decorator if it is
surrounded by digits in a numerical field. For example:

'5...55.55" ¥ 1 12.3 123.u5

1 ...12.3 1...23.u5 ~ ~
'LF,55,525,,5,RT'S 12345 ~12345 123 123
LF,1,234,,5,RT 1,234,,5 LF,12,,3,RT 12,,3

These conventional dots and commas print as the elements 0{bOfc and 1{ch of
the format control variable Ofc. (The normal value of 0 1{0fcis '.,';
reversal of these values provides printing according to a common European
convention.)

A decimal point not followed by a fractional value isa part of the trailing
decorator, and as such is suppressed according to the rules that apply to any
trailing decorator. For example:

-5125.P0OS's 123 123
123.P05 -123

The control characters have the following significance:

[¢] Leading/trailing zeros: unused positions are filled with 0 from here
toward the decimal point. For example:

'55,550.09'31 0 1000.1
1.00 0.0 1,000.10
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1 For negative values, the decorator text on this side (of the decimal
point) is included and floats (to about the digits of the number);
otherwise, it is replaced by blanks.

The effects of the digits 1,2, and 3 do not depend in any way on the decimal
point. For example:

'THIS1555.55HERE'S 12 ~12

12 THIS12HERE

2 For nonnegative values, the decorator text on this side is included and
floats; otherwise, it is replaced by blanks.

3 Float: for all values, the decorator text on this side floats.

y No float: for all values, the decorator text on this side does not float;

nullifies the floating specified by a 1, 2, or 3 further from this side.
For example:

'>355125,5¢¢ »>5U124,5¢¢ >»5U125 5« 55124 .54«'3 1 "1 o, xy

P123y
123U«< >> 1234 <€ >3 1234ee 1234 <«
>>123u Akhkrkkrkhkk >> 1234 ++1234 <«
5 Normal digit: position available for digit, or for sign decorator (when
supplied and selected by 1, 2, or 3).

6 Field delimiter: next rightward noncontrol character (that is, any
character other than 0123456789.,) starts a new field; needed where
fields are not separated by biank.

7 Engineering format: value is represented in engineering notation; next
rightward noncontrol character (for example, e) separates characteristic
from mantissa. Engineering notation differs from scientific notation in
requiring all exponents to be multiples of 3. For example:

'"1.75E5 VS T155.75E5' % (10%18)ec.x1 1
1.00E0 VS 1.00E0
1.00E1 VS 10.00E0
1.00E2 Vs 100.00Z0
1.0083 Vs 1.00Z3
1.00E4 VS 10.00E3
1.00E5 VS 100.00£3
1.00E6 VS 1.00Z£6
1.00E7 VS 10.00E86

8 "Cheque protection”: unused positions from here to the decimal point are
filled with 2{0fc.

'$558,555,535.50'% 123 12345 1234567
$rhkxkx123,00 S$x%x%12,345.00 $1,234,567.00

9 Conditional zero-fill: effect same as 0 for nonzero values, but blank
when value is zero.

Notes.

a) The digit 6 provides an additional field break at the next non-control
character. This allows, for example, the use of slashes desired in
display of a date as field delimiters as well. For example:

'06/06/05' ¥ 7 11 8u

07/11/8u4

b) The system variable Ofc, referred to under digit 8, contains six
elements whose normal values are the characters: . s Kk ok T

c) If space in a field is insufficient to represent a large element of w, then

an error is evoked if 3{0fc is '0'; otherwise the element 3{0fc is used
to fill the offending field.

d) u{0fc is a "pseudo-blank”; that is, its occurrence in a decorator
displays a blank, but the character does not delimit a field as a blank
would.

Ranks: 0 0 O Pi; Circle

Monad. The expression Ow is equivalent to pixw, where pi is the ratio of the
circumference of a circle to its diameter, and is given approximately by:
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01
3.141592654

Dyad. The expressions kOw and (-k)Ow produce several families of related
functions, circular or trigonometric (for k€1 2 3), hyperbolic (for k€5 & 7),
pythagorean (for k€0 4 8), and complex (for k€9 10 11 12). The
trigonometric functions are based on radian arguments, and the sine of d
degrees would therefore be written as 1 0 0d:180. All apply to complex
arguments.

Corresponding positive and negative cases are inverse in the sense that at
least one of the identities wzk0(-%k)Ow or w=(-%k)0kOw hold (at least within
the principal domains, as defined in [11]). The cases 90@ and 110w give the
real and imaginary parts, and 120w gives the arc of a polar representation.

As a mnemonic aid it may be noted that (except for k=12) the expression kow
is even (that is, kOw <> k0-w) if k is even, and is odd (that is,
kOw <> -kO-w) if k is odd. The definitions follow:

0 1 2 3
(1-wx2)%.5 sin w cos w tan w

(1-wx2)x .5 arcsin o arccos w arctan w -

Y 5 6 7
(1+w%x2)*x.5 sinh w cosh w tanh w +
(T1+wx2)%x.5 arsinh w arcosh w artanh w -

_ 8 9 10 11
(T1-wx2)*.5 (w++w )32 w (w-+w):072 +
-(T1-wx2)*.5 w +w wx071 -

12 13 14 15
(&xw):0751 w *w *wx0 j1 +
*wx0 71 w ®w @wx0 71 -
Ranks: 1 0 1 Reverse; Rotate

Monad. Reverse reverses the order of a list. For example:

dtabe! ¢2 3p'abcdes!
cba cha

fed
Dyad. Rotate cycles the elements of a list as illustrated below:

201<'abcdef?
cdefab

i
efabcd

For example:

+te2 3pl 1 20t 10t
abc bca beca
derf fde efd

Dialects. Dialects commonly depart from this definition in two significant
ways:

1. If s is an item, then expressions such as (,s)¢w and (1 1ps)dw are
treated as equivalent to s¢w rather than contributing outer axes to
the result.

2. Since the dyadic ranks are 0 1, a right argument of rank 1 should be
extended, as illustrated by:

1 2 3¢tabed!
bcda
cdab
dabc

Dialects may yield an error report instead, even in those [5] which
produce the foregoing result when the rank adverb is applied, as in
1 2 3950 1'abcd'.
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Ranks: =~ ~ Upset; Rowel

Monad. Upset overturns its argument as illustrated below:

+t<«3 up'abcdefghijkl’ et
abcd 1jk1
efgh efgh
ijk1 abcd

It may be expressed in terms of reverse as follows: (ew)z&oQuw.

Dyad. Rowel may be expressed in terms of rotate as follows: (cew):zRadyw.
For example:

0 1 2 3et
afkd
ejch
ibgl
Ranks: ~ 1 ~ Cant; Cant

Monad. This function reverses the order of axes of its argument. Thus:

~med 4p112 &m pym
0o 1 2 3 0 4 8 4 3
4y 5 6 7 1 5 9
8 9 10 11 2 6 10
- 3 711

It may be defined in terms of the dyad cant: (8w )z (dr1ppw)quw.

Dyad. If p is any permutation of the axes of array a, then b<pRa is similar to
a except that its axes are permuted; axis I of a becomes axis Z{p of b. For
example:

+be(pel 2 0)Ra<e2 3 up12y
4 8

0 pb
12 16 20 y 23
1 5 9 p{pb
13 17 21 2 3 u
2 6 10 pa
14 18 22 2 34
3 7 11 pP1 0 L4 2 382 3 4 5 6p9
15 19 23 32564

More generally, gla is defined if (pg)=ppa and if the nub of g is a
permutation (of 1, for some n). For example, each of the following vailues of
r, s, and t are valid left arguments of & for a right argument of rank u:

4r€«2 01 2 45«1 0 11 4t<«0 0 0 0
201 10 0

Just as for the case b<pRa where p is a permutation, the ith axis of a
becomes the iI{g axis of b<«gRa. However, in this case, two or more axes of a
may map into a single axis of b, providing a diagonal section of a. For
example:

a<3 3p18 ce3 5p115
1 2 0 1 2 3 u
3 4 5 5 &6 7 8 9
6 7 8 10 11 12 13 14
C 0 ¥8a 0 0 &
4 8 0 6 12

Formally, if i is any complete index of gla (that is, (<i){g8a selects a scalar
element of ga), then (<1i){gRa is equivalent to (<g{i){a.

Dialects Since the elements of the left argument of & are drawn from
in, they commonly depend on the value of Oio, as discussed in Section
t.E.
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Ranks: 0 0 0O vi: 0 Size; Residue

Monad. The definition (wx+w)*.5 yields the size or "absolute value" not only

for a real argument, but also for a complex argument, in which case the result
is the length of the hypotenuse of a right-angled triangle whose side-lengths

alre the real and imaginary parts of the number. For example, |34 is 5, and
"6 is 6.

Dyad. The most famifiar use of residue is to determine the remainder resulting
from dividing a non-negative integer dividend by a positive integer divisor.
For example:

3{0 1 2 3 4 56 7 8
012012012

The definition w-ax{w:a+0=a extends this notion to a zero left argument
(giving the right argument unchanged), to non-integer right arguments, and
to negative and fractional left arguments. For a negative integer left
argument, the result ranges between the argument and zero, as it does for a
positive left argument. For example:

317473 72710123y

10 72710 72710 72

112.5 3.64 2 T1.6
0.5 C.64 0 0.u

However, in order to produce a true zero (rather than a small fraction) for
cases such as (:3)|2:3, the residue is made “tolerant” by the following
definition:

alw «>» w-ax|s if (a20)A([s5)2| sewia+a=0
<> wxo=0 otherwise.
For example:

.112.5 3.64 2 T1.8
0 0.04 0 0

This definition also applies to complex arguments, using the complex
properties of the floor function L.

Ranks: 0 0 O vé: 1 Factorial; Out of

Monad. For a non-negative integer argument, the factorial is defined by
tw > x/1+1w, For example, !4 is x/1 2 3 4, or 24, and !0 is 1. For other
arguments it is defined in terms of the gamma function [11] as
lw «> gamma w+1.

Dyad. The dyadic case of ! is defined in terms of the beta function [11];
subject to the interpretation given below, this definition is equivalent to
alw «> (lw)s(la)x(lw-a). For non-negative integer arguments, a!w yields
the number of ways of selecting @ things from @ things; this accounts for the
name “out of”, and for its use in producing binomial coefficients. For example,
(1n+1)!ne3d «> 1 3 3 1.

For a negative integer i, the expression !'i is not defined, because near a
negative integer the magnitude approaches infinity. Nevertheless, the
definition of a!w can be understood by assuming that these infinite values
occur in the expression for the dyadic definition in the following sense:

1. If @ and w are both non-negative, but a>w, then the term tw-a is
infinite, yielding 0 for the result of a!w. This agrees with the notion
that a things can be picked from a smaller collection in 0 ways.

2. If infinite values occur in both numerator and denominator of the
defining expression, they are assumed to cancel. This can be seen in
the values in the following function table:

i0 .1ie(17)-3

OCO0OrOOO0O
oOrProoco
ORN=SOOO
PLWRLROOO
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Ranks: 0 0 0 v#: Floor/Ceiling;
Minimum/Maximum

Monad. The expression Lw gives the floor or integer part of w. For example,
L3.1 «> 3. However, the implied comparison with integers is tolerant (see
<), and the definition of Lw is therefore the largest integer that does not
exceed w+lOct. The ceiling [w is defined by L"-w or, equivalently, -L-w. For
example, [2+10% 14 <> 2 for a normal setting of Oct.

The definitions of floor and ceiling on complex numbers are rather involved,
and the interested reader should experiment with them on an APL system, or
consult McDonnell [10].

Dyad. alb yields the lesser of 2 and b, and alb yields the greater. For

example, 3L4% is 3, and 3L 4 is 4. Complex numbers are not in the normal
domain of [ and T.

Ranks: ~ 1 ~ Nub/Raze; Take/Drop

Monad. 4w selects the nub of w, that is, all of its distinct major cells. For
example:

w rw +3 p+3
ABC ABC 3 1
ABC DEF
DEF

Formally, 40 <> (zw)fw,

vw razes w to produce a list of all elements obtained by opening and
ravelling each of the elements of ,w. For example:

Fwe?2 3p° abci::2 2p ' PQRS!

labc | | PQl labc|

|___1lrs| I___I
j__1

1771

{PQ| labcl|Pq|

IRSI |RS}

v
abcPQRSabcPQRSabcPQRS

Formally, vw <> >,">/ "> w

Dyad. If (pa)=ppw, and if all elements of @ are non-negative, then the shape
of r<astw js a; if 7 is any complete (boxed) index of both r and w, then
(i{w)zi{r; if 1 is an index of r only, then i{r is an array of fill elements,
zeros if w is numeric, spaces (' ') if w is character, and <'!' if v is boxed
For example-

Fweld 4p112 2 24w 3 64w
0 1 2 3 01 ¢c 1 2 3 ¢ O
¥ 5 6 7 4y 5 ¥ 5 6 7 0 0
8 9 10 11 g8 91011 0 O

More generally, @ may have negative items, which cause selection from the
trailing end of the corresponding axes, and if (pa)<ppw then o takes the
(-pa)-cells of w as defined by a+w <> >a4<¥(-pa) w For example:

2 T24w 3 "Btw 2

tw

23 o 0 0 1 2 3 0123

6 7 6 0 4 5 6 7 4 56 7
0 0 8 9 10 11

As ilfustrated by the case 3 “64w above, the fill elements are placed in the
leading positions in the case of a negative argument.

Drop is defined similarly, and ave drops elements from w, from the trailing

end if the element of o is_negative. If (pa)=ppw, then the shape of cyw is
ol (pw)-|a. For example, "2 2vw <> 1 2p2 3.
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Dialects. Because of permissive treatments of left arguments such as
(1 1,pv)Pv as a vector, dialects commonly treat the left rank of these
verbs (4 and +) as unbounded. Moreover, kt0pa usually treats the
empty argument Opa like a itself, "filling” wnth 0 or ' '. For example,
340P15 «»> 0 0 0, and 340p" abc! <>

Ranks: Grade/Downgrade; Grade/Downgrade

Monad. If w is a list of real numbers, and if g«dw, then ¢ is the grade of w in
the sense that g{w is in ascending order. For example:

rg<fpweld 14 213 3 glw
14305862 1123334

Moreover, elements of g that select equal elements of w (such as 1 4 and
0 5 6} occur in ascending order.

If w is a table, Aw grades the rows, that is, it grades the base value of the
rows, using a base larger than the magnitude of any of the elements. For
example:

w(-u39311427932031‘%

rg<hw g{w
31 N 103 2 279
2789 314
320 314
314 320

Higher rank arguments are graded as if their major cells were ravelled.
Formally, Aw <> Ab191;w-b<1+/, |w.

The definition of downgrade (V) is like that of upgrade, except that (Vw){w is
in descending order.

Dialects. In most dialects the results of A and ¥ depend upon the index
origin Oio, as discussed under dialogue in Section |1.E.

Dyad. If ¢ is a list, then afw grades w according to the "collating sequence”
specified by a. Formally, cdw <> Aciw. For example:

a«'abcde' Hwe! labelled!
alw

50145543

Acw ahw (cho){w
127 36 045 127 36045 abdeelll

In particular, since @ls yields pa for any scalar s not in @, then (chw){w
places all elements of w not in @ at the end, in the same relative order that
they have in w.

If a is a table of two fonts such as:

a
abcdefghijklmnopgrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ

then cdw grades w in dictionary order, that is, using the ordering of the fonts
(as specified by the columns) as a secondary ordering within that specified by
the rows. For example:

@ (apw){w
cabal baker
Baker Baker
baker cabal

Since dyadic grade is extended to higher rank arguments in the same
systematic manner that monadic grade is, we will state its general behaviour in
terms of a list right argument only.

The result of apw is based upon a ranking of the compiete indices of @ in w.
Because earlier axes of a provide secondary ordering within the ordering
imposed by later axes, the ranking is based upon the monadic grade of the
table of reversed complete indices. For example, using the two-font alphabet o
and the value we'abcABC', the indices, reversed indices, and ranking are:
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rm

i ¢i 401
031425

BPRPRRPROOO
NP ONRO
NRONRO
BRROOO

For any argument not in @, the complete index is taken as pa. Formally, then,
apw <> pdasw

where I:((pa)Td1 0(,a)iw)+(~wea)xd0 1pa gives the indices of w in a.

Finally, if a value s occurs more than once in @, its index is taken to be the

minimum over all of its possible indices. For example if ppais 3, and the

indices of 5 are 2 3 4 and 1 5 2, the index is taken as 2 3 4|1 5 2, that

is, 1 3 2.

Alternative formal definitions of dyadic & and examples of its use may be found
in [14], and in the original paper [15] cited therein.

Dyadic downgrade (V) is defined analogously.
Dialects. Most dialects exclude a scalar right argument from the domains

of A and ¥, and also introduce a dependence upon the index origin Oio,
as discussed under dialogue in Section [I.

Ranks: ~ 0 ~ Raze in; In
Monad. The expression ew classifies each element of the raze of w according to
membership in the open of each of the elements of w, to produce a boolean
table of shape (pvw),pw. For example:

welabc'slde'a'al

yw €w
abcdca 101
100

110

010

110

101

Formally, €ew <> §(<vw)e®> Ruw

Dyad. The result of cew is 1 if o belongs to w in the sense that v/ae.= ,u.
For example:

‘cat'e'abcd!
110
Ranks: = = in

Dyad. If b<agw, then the ones in b indicate the beginning points of
occurrences of the pattern a in w. For example:

teo! € tcocoal (0 10.+13)€ Y|io,+i<15
1010~ 100 B

000

001

If @ and w have the same rank, then pb is 1+07 (pw)-pa, and if X is any
complete non-negative index of b, then (<k){b equals az(pa)+kvw. If a and
w differ in rank, the one of lower rank is first extended by leading unit axes.

Ranks: 0 1 0 Count; Index

Monad. The verb 1 "counts” in the sense that 1n yields a list of the first n
integers beginning with zero. Thus, 13 is the list 0 1 2. Moreover, 1''ppl
yields the indices of a list I (in that Iz (1! 'ppl)(l), and 1">pa y|e|ds the
boxed indices along all axes of any array a, and {1"'>pa yields all indices of a
(in that a=({1">pa){a).
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Dialects. Many dialects treat any one-element argument as a scalar,
rather than allowing it to provide an outer shape. Thus 1pv<2 3 u4 §
yields the four-element list 0 1 2 3 rather than a 1 by 4 table.
Moreover, all dialects provide dependence on 0io for both the monadic
and dyadic cases, as discussed under dialogue in Section I}.

Dyad. If j«aiw, then j is the index of the first occurrence of @ in o (that is,
wzj{a), unless w does not occur in «, in which case j equals pa. Formally,
(alw)}=+/A\ae 2w, except that a scalar left argument is not permitted.

(]

Ranks: » ; Index

Dyad. The functionl is defined in terms of €, and i<«a1w yields the index in
bewega of the first 1, or the value pb if w does not occur in @. Thus:

A B ALB
012012 4y 5 11
345345 20 Ar¢B
120120 3 5
453 453
P Ranks: — 1 ~ Shape; Reshape

The monadic shape and dyadic reshape functions are simply related; cpw
produces a result of shape @ from the elements of w, and therefore azpapuw,
For example:

rr<2 3pge'abcdef!
abc
def

Pr gs.r ppr PP3
2 3 1 2 0

The last examples (ppr and pp3) illustrate the fact that the rank of an array
is the shape of its shape; and that the rank of a scalar is 0, implying that its
shape is an empty list; and that (10)p,3 produces a scalar result. The result
of pa is an empty vector, since nil is a scalar.

If the number of elements in p equals the number of elements in an array of
shape s (that is, x/s), then (,spp)z,p. If (p,p)>x/s, then only the first
x/s elements of ,p are used; if (p,p)<x/s, then ,p is replicated. For
example:

p<2 3p'abcdef!

2 2pp 3 5pp 3pa
ab abcde ARA
cd fabcd
efabc
? Ranks: 0 0 O Roli; Deat

Monad. The function roll is named from the analogy with rolling a die to choose
one of a set of numbers with equal probability.

Dyad. The function deal is named by analogy with dealing from a pack of
cards. The result of @?w is a list of length o, ali elements being distinct. The
population drawn from in each case is 1w. See Berry [8] for details of the most
commonly used pseudo-random number generator.

Dialects. See Section Il.E concerning dependence on Qio.

, 3 Ranks: -~ 7 Ravel/Table; By/Over

Monad. Ravel (,) ravels the elements of its arguments in "normal” order. For
example:

Fo«2 3 uplabcdefghijklmnopgrstuvwx!
abecd
efgh
ijkl
mnop

grst
uvwx
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,a
abcdefghijhlmnopgrstuvwx

Normal order means that the results are ordered by cells; that is, the elements
of i{w precede those of j{w if i<j; the "2-cells (0{0{w, 1{0{w, etc.) are
similarly ordered within the ~1-cells, and so on.

The result of ,w is a list of all elements of w; its shape is 1px/pw. In
particular, the ravel of an item is a one-element list.

For a non-scalar argument, the expression ;uw produces a ravel of each of the
major cells of w, thatis, (;w)=,971 w. For a scalar argument, the result is a
table of shape 1 1; the result for any argument is therefore a table. The
complete formal deflnltlon therefore involves two applications of ,971, the

second one producing an effect only in the case of a scalar. Thus:
(sw)s=, ,9 1 w. For example:
50 1 2 5 2 2 2p18 P52
0 0123 11
1 4 56 7
2

Dyad. The expression c;w catenates the major cells of @ and w. For example:

+ae2 uplabcdefgh' rwe3 up'ijkimnopgrst’ a5
abcd 17kl abcd
efgh mnop efgh
grst 1jk1
mnop
grst

If either argument is an item, it is first "extended” by the expression
(1,1vpa)pw or (1,1vpw)pa. If either argument is of rank 1 less than the
other, its shape is first augmented by a leading 1, that is, by application of
the expression >,<. The resulting major cells must then agree in shape. For
example:

astar 'ABCD!' 5w
abcd ABCD
efgh ijkl
AAAA mnop
qrst

The related function denoted by the comma is best defined in terms of 5, that
is:

a,w <> a; 8w «> §(Ra);(Rw)

For example:

a,a TAB' ,Q a,tar
abcdabcd Aabcd abcdA
efghefgh Befgh abcdA

Nil is in the normai domain of both , and 5.
Dialects. Most dialects restrict catenatlon to arguments of the same type,
and therefore avoid the introduction of "heterogeneous” arrays that may
contain both numbers and alphabetics, but some [12 13] do not.

Ranks: ~— ~ Box open, Link

Monad. > boxes an open argument and has no effect on a boxed argument. The
expression wzd>w can therefore be used to determine whether w is open or
box ed

Dyad. a>w links @ and w, by boxing ¢ and catenating it to w, first boxing w if
it is open. Thus, (adw)=(<a),>w. For example:

'now'os'is'>'the'>"'time!

| now| |is{|the| |time|

Dialects. In dialects [12 13], 2@ is a form of open (>), and ad2w is a
form of indexing of u by a.
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Ranks: 1 0 Mix index; Mix

Monad. If A/(i=L1i),(i<n),i2-n«14pa, then i is an index of a, and the
major cells of i{a are major cells of a. If (nepi)|1 is also a reordering or
permutation of 1n, then 1 is called a mix of order n, and nli is its standard
form. There are exactly 'n distinct standard mixes of order n, and if S is a
'n by n table of them in lexical order (such that (AS)=z1!n), then i is the mix
index of 1(S.

If w is a mix, then Uuw yields the mix index of (nepw)lw; if it is not, the
result is !n. For example, 3=V 0 1 3 2 4 and 120=U 0 1 3 0 4 and
u=u 1 0 1.

Dyad. If i is an index of 1n<«''ppa, then iYa is p{a, where Up is nli. For
example, (2u14)=0 2 1 3, and (722vU14)=0 2 1 3, and 2VU'abcd' is
'acbd!, and (1!n)Yin is the table of all mixes of order n in lexical order.

Ranks: 1 0 ~ All; From

Monad. The expression {w forms a catalogue from the elements of its
argument. For example:

welht'>'g0'2'gtw! {(2 3p16)>10 11
fw AU

0 10 0 11

hagl | hat| | haw

110 111

2 10 2 11

3 10 3 11

plw u 10| ju 11
223

5 10 5 11

p{(2 3p16)>10 11
232

As may be seen in the foregoing examples, the shape of the catalogue {w is the
catenation of the shapes of the disclosed elements of w, that is, +p"">w, and
the common shape of the disclosed elements of the catalogue is pw.

Expressions of the form {1">s are useful for producing a complete table of
indices of an array of shape s. For example:

17>s<2 3
0 110 1 2|

1 0} 1 1) |1 2]

Portions of such a table of indices are useful in conjunction with the dyadic
case of {; in particular, @z ({1">pw){w,

The case {(<a),<w is called the cartesian product of @ and w.

Dyad. For an integer scalar left argument, a{w selects the major cell of w
indexed by (1+pw)ia, as in 2{a<5 3p115 «> 6 7 8, and
2{a «» 9 10 11; in other words, negative indices select from the tail end.
Since the left rank of { is zero, the shape of o{w for any array of integers @
is (pa),1+vpw. For example:
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i{'abcde'~i<2 2p1 "1 0 "2 i{a

be 3 4 5
ad 12 13 14
0o 1 2
9 10 11

More generally, each element of @ may be a boxed vector, whose successive
elements are (possibly) boxed arrays of integers which specify selection along
successive axes of w. For example:

ae<(<ifel 2),(<il1«¢2 3p16)
b3 6plabcdefghijkimnopgr?
b a{b

Fcei0{%(7,2) b 11{¥(",1) ¢
abcdef ghi ghijkl ghi
ghi jkl Jk1 mnopgr Jk1
mnopgr
mno mno
pgr pgr

For the case of a single-element (i.e., scalar) left argument, this selection
along successive axes can be stated formally as follows {(using only the simple
definition of { given originally for an integer left argument):

FRON: (>0)FR w-n<l+ppuw
FR: (1va)FR (>0{(a){¥( ,n «n-1) w:0=pa:w

It may be noted that (<''){w «> w <> o{w, even for a scalar w.

If any of the values of >0{a occurring in the execution of FR is not an open
array, then the selection is made using the complement (with respect to all
indices along that axis) of the indices in its open, that is in >>0{a In other
words, the indices selected are (11)~I|>>0{a-4l«(-n){pw. For example, if
ae< (<0 3),(<<2 71),(<1 0 4) and b<«d 5 6p1120, then the selection made
along the middle axis in evaluating a{b includes all indices except 2 and "1,
that is, it includes 0, 1, and 3, in that order.

Since the middle element in the open of 1«<I5°2K is the boxed boxed empty
vector, the expression i{b selects all along the middle axis, and is equivalent
to the dialectal form b[I; ;K] discussed in Section HI. A.

Ranks: 2 ~ 2 Inverse, Inverse

Monad. For a non-singular matrix m, Bm is the inverse of m, that is, (Bm)+.xm
is the identity matrix io.=i<114pm More generally, Bm is defined in terms of
the dyadic case, as (ie.=i<l1+pm)Bm or, equivalently, by the relation
aflw <> (Hw)+.xa. The shape of Bm 1s ¢pm.

The degenerate cases (vector and scalar) are defined by using the table ;uw
instead of w, although most dialects differ in yielding a result of the same
shape as w, rather than a matrix. For a vector v, the result of ,Bv is
vi+/vx+yv; that is, a vector collinear with v. For a scalar s, the result of ,Bs
is ,sx$s.

Dyad. If the columns of w are linearly independent, and if the first elements of
pa and pw agree, then afw is defined so as to minimize the elements of
re+fdx+dea-w+,xafw, If w is square, it is necessarily non-singular (since its
columns are linearly independent), the elements of r are all zero, and
azw+  xalw,

Geometrically, w+.x0flw is, for vector @, the projection of @ on the column
space of w, that is, the point in the space spanned by the columns of w that is
nearest to &. The most common uses of afw are in the solution of linear
equations, and in the approximation of functions by polynomials.

As in the monadic case, the degenerate cases of w are treated as ;w, and

et

disagreements with most dialects arise as noted under the monadic case.

V: ADVERBS

A monadic adverb produces two different classes of results (usualiy verbs),

one when it is applied to a noun and the other when applied to a verb. The
derived results are therefore referred to by the symbol for the adverb preceded
by n (for noun) or v (for verb). For example, n# refers to the derived verb copy
(for which 2 0 3#'4BC' yields '4ACCC'), and v# refers to the derived verb over
(for which +#2 3 5 yields 10).
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A dyadic adverb produces four main classes of results, referred to by using
m and n for left and right noun arguments, and u and v for left and right verb
arguments.

The ranks are given as they are in the verb table, except that a rank may
depend upon the monadic, left, or right rank of the argument verb v, indicated
by mv, 1v, and rv. As for the verbs, the definitions show the results for
individual cells, and the derived verb applies to arguments of higher rank in the
standard manner discussed in Section |I.B.

n# Ranks: ~ Copy down; Copy down

Monad. In the expression nfw, the argument w is split into its major cells, and
cell i{w is copied i{n times. Thus:

rwe3 3ptabcdefghi! 2 0 24w 2 0 2/13
abc abc 0022
def abc
ghi ghi

ghi

Scalar arguments. |f n has a single element, it is treated as (1+p;w)pn, for
example, 2#13 <> 0 0 1 1 2 2. A scalar argument @ (which has no
"leading" axis), is treated as (14p5n)pw. Thus, 2 0 243 «> 3 3 3 3.

Dyad. In the dyadic case of n#, the argument n may contain negative
elements; a negative element copies major cells from the left argument of the
derived verb rather than from the right. For example:

YABCDEFG' "1 0 1 0 1 0O 0#'abcdefg’
Ace

‘At (T1xs=' '){s<«'now Is the winter!'
nownisatheawinter

v Ranks: ~ 0 v-Down; a-Way v-Down

Monad. In the expression v/w, the argument w is split into its major cells, and
the verb v is applied between them. Thus if 14pw is 3, the result is
(0{w)v(1{w)v(2{w). For example:

rweld 2p16 +Aw
01 (0{w)+(1{w)+(2{w)
23 01+ 23+ 145
4 5 01 +6 8
6 9
o, +fw +.xfw
01,423 0,+4 5 01 +.x 2 3 +,x 4 5
01 9.4 67 01 +.x 23
7 8 23
6 7
7 8
7 8
8 9

Identity elements. If the leading axis of w has zero length (that is, 0=14p@),
the result of v4w is the identity element of verb v. The left identity of v is a
noun I such that I v x yields x for any x in the right domain of v, the right
identity of v is a noun r such that x=x v r. A left identity of a commutative
verb (such that o v @ <> @ v a) is, of course, a right identity as well, and
may be called simply an identity. For example:

1 is a right identity of both $ and % 1 is an identity of x and A
0 is a left identity of | 0 is an identity of + and v

The definition of each verb indicates its identity element (if any), listed after
the symbols v#:. An element is included even though it is strictly a right
identity or a left |dentlty, and in some cases (such as for = and z) if it applies
only over a subdomain (boolean).

Identity elements extend relations of the form (+/a)z(+/kta)+(+/kva) to
include the cases k=0 and k=pa. Thus:
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nX

vy

n/

a«2 35711

k€3 k<0
(+/kra)+(+/kva) (+/kra)+(+/kva)
(+/2 3 5)+(+/7 11) (+/10)+(+/a)
10 + 18 0 + 28
28 28

Dyad. The expression 3 +# v<2 3 5 7 11 produces "running sums” over
successive 3-element groups of contiguous elements of v, therefore yielding
10 15 23. More generally, the major cells of r<a v# w are the results of
viatkvw, for k¥ running from zero to n«(14pw)-a; a domain error occurs if
n<0. For example:

Fme5 4p120 2 +4 m 3 +4 m
0 1 2 3 4y 6 8 10 12 15 18 21
y 5 6 7 12 14 16 18 24 27 30 33
8 9 10 11 20 22 24 26 36 39 u2 us
12 13 14 15 28 30 32 34

16 17 18 19

Ranks: ~ % * Expand down;

Monad. The expression n\w expands the argument w along the first axis,
inserting at each point corresponding to a zero of n, a cell of zeros if w is
numeric, a cell of spaces if w consists of characters, and a cell of the elements
<10 if w is boxed. For example:

1010 1%\2 3 5 101 0 1N\3 up112
20305 0 1 2 3
0 0 0 O
1010 1N\'abc! y 5 6 7
abc 0 0 0 O
8 9 10 11

In other words, n must be a boolean list, and if r<nXw, then wzn#r, and
(~n)4r is an array of zeros, spaces, or boxed empty vectors, of shape
(+/~n),1vpw.

Ranks: ~ % Scan down;

Monad. The expression vhw produces a catenation, along the leading axis, of
the 14pw results (0{w), (v#£0 1{w), (v#0 1 2{w), etc. For example:

pPO100O0 vxm

[Syey-Y
N
cocox
moo
mm o

v/ na\ v\ Ranks: As in # and X As in # and X
with across for down

The expression v/w is equivalent to vAw except that the split is made along
the last axis rather than the first. In other words v/w is equivalent to v#a,

where a is obtained from @ by transposing the last axis to the leading
position, that is, a<(1d1ppw)Rw, or a< 10rw.

For example:

Fwed 4p112 ra«(101ppw)iw
0 1 2 3 0 4 8
y 5 6 7 1 5 9
8 9 10 11 2 6 10
3 711
+/w
6 22 38 +ta
6 22 38

A similar correspondence holds for the other three cases, except that the
leading axis of the result (which, in effect, results from the splitting axis)
must be returned to last position. For example:

201 0/w 2 0 1 Ota 1 OQ2 0 1 0+a
0o 0 2 0O 4 8 0 0
4y 4 6 0 u 8 (TR e
8 8 10 2 6 10 8 8 10
The relations can be summarized as follows:
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(n/w) +80 n# “16rw

(v/w) z vé T16rw
(n\w) = r80 nX\ “16rw
(viw) = r80 v\ "15rw
(an/w) = +380 ant ~“16rw
(ay/w) = av{t ~10rw
un Ranks: rv % x lu % % With/With;

The expression mv w is equivalent tom v w, and m"'v is therefore a monadic
verb resulting from supplying the dyadic case of v with a left argument m.
Similarly, u”n w is equivalent to w u n.

For example:

3%2"@wel 2 3 4 56 7 8
0.000 1.000 1.585 2.000 2.322 2.585 2.807 3.000

*°2 w
14 9 16 25 36 u9 6u

Ranks: mv mv mv Under; Under
This function is equivalent to composition {(u%v) except that the function
inverse to v is applied to the result of each cell. For example, since < and >

are inverses, as are % and @:

p¥>a«tabc'>1 35'abcd! FIJ_> a
|
|

£FNOW

i This result is often called lamination
labcl |1 3| labcd| of a and b, since it combines them
| 1 | along a new initial axis.

3 +5@ u 3 +7e u
2.48490665 12
The function u™v is often called "the dual of u with respect to v", but the
phrase "u under v" is probably better, suggesting that u is performed after

preparatory work by v, and before the task is sewn up by reversing the
effect of v.

The expression u”'v is valid only if v possesses an inverse. The following list
shows inverse pairs commonly used in dialects:

* + - : 0o R+ <H~
@ + - : e+ >H~

Ranks: $3p¢n Constant; Constant
See u¥n for a discussion of the expression n<$3pdn.

Monad. The derived verb m¥n has rank n, and produces a constant individual
result m for each cell to which it applies. For example:

m<'abc!
w2 3p16
mé0 w mdl w me2 w
abc abc abc
abc abc
abc
abc
abc
abc

Dyad. The dyadic case differs only in that conformance of the outer shapes of
the arguments is imposed. For example:
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a<! PQ!

a mé0 1 w o m%0 0 w
abc domain error
abc

Ranks: ~ 1/2 Cut; Cut

Monad. The expression 1%y w applies v to each of a set of segments cut
along the first axis, and assembles the results along a leading axis of length
equal to the number of segments.

Each segment is of the form s<(k+1n){w, and k and n are chosen so that each
segment begins at the occurrence of the delimiter 0{w. In other words, for
each segment s, (j{s)z0{w for j=0 and for no other value. For example:

_1Bcwe worfdg_ea_v_ferldS' 1%puw
| worlds|| onl| worlds| 3
_______ JE I R
FmeS Up16 __1'_65_@ _______ 19(+4) m
01 23 | Il | 6 969
4 5 01 Jo 12 3]|l01 2 3] U6 24
23 45 lu 5 0 1|4 5 0 1]
01 23 12 3w 5§i_______ |
45 01 t |

The expression ~ 19y w differs only in that the delimiters are excluded from
the segments. For example:

T1%<w T1%pw
- 1l 6
|worlds|lon|lworlds| 2
______ N D 6

__1%<m T15(+4) m
- | 6 846
¥ 50 1]j% 5 0 1] 4501
|2 3 u 5]

The verbs 2%v and "2%v differ from the corresponding cases 1%v and ~1%v
only in that the delimiter is the last cell, and marks the end of segments
rather than the beginning. For example:

| worlds|| on worlds| |0 1
| I |4 5

The case 09f w applies £ after reversing « along each axis, and is equivalent
to (G ie,x-pw) OFF w. For a matrix m, the expression GSf m is equivalent
to fed m.

Dyad. For k20, the dyadic cases o k%v w dlffer from the corresponding

monadic cases only in that the delimiters are the 1's in the boolean list a. For
example:

The case 09f has left rank 2, and @ 0%f w applies f to a "rectangle” whose
beginning point in © is determined by 0{a, and whose size is determined by
|1{a. For example:
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usv

a€2 3p0 11 2 2 3 b«2 3P0 11 2 2 73 we2 3 50130

a b w
011 0o 1 1 0 1 2 3 u
2 23 2 273 5 6 7 8 9
10 11 12 13 1y
a 0% w b 0%+ w
6 7 8 8 7 6 15 16 17 18 19
11 12 13 13 12 11 20 21 22 23 2y
25 26 27 28 29
21 22 23 23 22 21
26 27 28 28 27 26

The beginning point is determined by (pw)}(ppu)+0{a; in other words,
negative indexing may be used, and 0{a is extended by zeros to provide a full
index to w. The size is determlned by s, (ps)vpuw-ds<ii{a. Finally, before
application of the function £, the rectangle is reversed along each axis for
which 1{a is negative, as illustrated by the exampie using b above.

Ranks: ¢3pén Rank; Rank

If n is a 3-element list, then u%n is a monadic function of rank 0{n, and a
dyadic function of left rank 1{n and right rank 2{n. in general, n is treated
as if it were ¢3p®n; in other words a single element specifies all ranks, but if
2=pn, the first element specifies the left rank, and the last specifies the right
ranks, both dyadic and monadic.

Monad. A monadic rank of & implies that the function applies to k-cells of its
argument, except that the rank of the cell will not exceed the rank of the
argument, as discussed under degenerate cases in Section I1.B. For example:

we2 3 up‘abcdefghljklmnopgrstuvwx‘

w ’02(0 ouw
abcd abcdefghijkl abcde[ghljkl abcdefghl]klmnopqrstuvwx
efgh mnopqrstuvwx mnopgrstuvwx
ijk1
mnop
grst
uvwx
Dyad. In the expression @ u¥(l,r) w, the outer shapes of @ and w

(compiementary to the shapes of the I-cells and r-cells) must agree unless one
of them is empty, in which case the single corresponding cell is extended to
apply to each of the cells of the other argument. For example:

aetyz!

a,%0 2 w a,¥1 1 w
yabcd yzabcd
vergh yzefgh
vijkl yvzijkl
zmnop yzmnop
zgrst yzgrst
ZUvwx yzZuvwx

Ranks: mv mv mv On; On
Monad. In the simpiest case u%v w is equivalent to u v w. For exampie:

Fy<«e%y wel 3 2ptabcdefghijklmnopgrstuvwx'
bhnt
djpv
flrx

agms
ciou yseR w
ekgw 1

However, this relation holds only because the (monadic) rank of ® s
unbounded; more generally, the rank of the derived function u%v is the rank
of v; that is, the expression u v is applied to each of the cells of w relative to
v. For example:
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Fz€0%2 {2 w zzeR%2 w zz08(RY2) w
bdr 0
ace
hjl
gik

npr
mog
tvx
suw

Dyad. The left and right ranks of udv are both the monadic rank of v.
Therefore a@ usv w is equivalent to (v celll) u (v cellr) applied to each
of the cells of @ and w relative to v (celll and cellr).

mov  udn Ranks: ~ Prefer/Defer; Prefer/Defer

The functions mv and ubn apply the functions u and v to their argument or
arguments after transpositions to defer the axes specified by n (in the case of
uBn) to the tail end, or to prefer the axes specified by m (for m8v) to the
front. For example:

a<«2 3 uplabcdefghijklmnopgrstuvwx’
+~be 2 10ra

am

eq

iu

bn

fr

Jjv

co

gs
Kw

dp
ht
1x

2 16,a
ameqiubnfrjvcogskwdphtlx

bir80 a
1

These axis movements are prescribed by PR: (Ao, (1ppw)~a)§w and
DE: (4((1ppw)~a),a)Rw in the foilowing definitions:

mBy w <> v(>0{a)PR w-g<d3pdom
udn w «> u(>0{a)DE w-Ha<«d3pdon
o mOy w «> ((>1{(a)PR w) v (>2{a)PR w-a<«P3pom
o ubn w <> ((>1{a)DE w) u (>2{a)DE w-Ha<«d3ip>n

Thus, the axes moved (for the cases of a monadic argument, left argument,
and right argument, respectively) by £f8(152>3) are 1, 2, and 3, by

£6(223) are 3, 2, and 3, and by £f81 2 3 or f0(<1 2 3) are 1 2 3
Compare with the rank adverb ¢ for use of the phrase ¢3p¢.

udv Ranks: mv 1v rv Upon; Upon

The monad u is applied to the result of v, that is:

ubv w «> U v W «> Yoy w
Q@ ubv w >y o v ow

For example:

753 |8-357
0 4

m.v Ranks: % , Tie

Dyad. The left argument of the tie adverb specifies the number of outer axes
of the arguments that must agree, leaving any remaining axes free to
contribute independently to the overall shape of the result, as iliustrated by
the examples in the discussion of agreement in Section I1.8.
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n

If the ranks of v are 1 and r, and if z«a t.v b, then the outer shapes are
osa«(-1)+pa and osb<«(-r)+pb. The argument t determines a split of these
outer shapes into tied and free shapes as follows:

ta<trosa fa+tvosa
tbettosb fbetvosb

The tied shapes must agree, that is, taztb; the overall outer shape of the
resuit z is given by ta,fa,fb.

If 2 is an index that selects a single cell of z, then p>i must be pta,fa, fb.
Moreover, each cell of z is defined by:

(i{z)z((<(pta,falt>id){a) v (<(-ptal)d(pfal+(pta)d>i){b

Dialects. Dialects commonly permit o.v for 0 .v.

Ranks: mu * * Ply;
Monad. The function u is applied n times. For example:

@, 2 w > @@ w
S B W e fefefof o
170, 3 w «> 101010 w

The function u. ~ is the limit of the application of u, that is, u. “wis
equivalent to u.k w, where u.k w agrees with u.(k-1)w,

Finally, a negative value of n denotes |n applications of the inverse function;
that is, u. ~1 is the function inverse to u, and u. (-n)is inverse tou.n,
and u. is inverse to u.

Ranks: 2 Alternant; Dot product

Monad. The expressions -.xw and +.xw are, for square matrix arguments @,
the determinant and the permanent of mathematics [11]. The generalization to
arguments other than +, -, and x is based on construing the determinant as
an alternating sum (-#) over products over the diagonals of matrices obtained
by permuting the major cells of w. The formal definition of v.v w is:

uf.{(n-1)a«(n-1n-1)pprev/(<%1 i){w-iep,d1 2;1n4pe(1in)Uined{pw

The details can be examined in terms of the specific case of the determinant
-.xweld 3p19:

w p pi 241
012 012 6 3 2 00
345 021 11
6 7 8 102 22
120
201 00
210 21
12
(<¥1 i)(w pr a -#-ta
ou s 0 0 24 42 30 us [C ] 0
075 24 42
318 30 u8
372
615
[

Since p is the matrix of all permutations of order n, and since I is the same
array with the "column indices” 1n appended, then the rows of (<%1 i){w are
the sets of elements chosen one from each row and column of w. Finally, the
reshape a<«(n-1n-1)ppr places the products pr in an array in which the
elements along each axis alternate in the parity of the permutations which
produced them.

Dyad. The expression a+.xw is equivalent to the dot, inner, or matrix
product as defined in mathematics for vectors (+/axw) and matrices (where
the element in row i and column j of a+.xw is the dot product of row i of a
and column j of w). For example:

123 +.x3 45
26
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v}

a<2 3p16-be3 Up112
a+.xb

20 23 26 29

56 68 80 92

a+.x1 2 3
8 26

For wverbs other than + and x that share the property of applying to items
(i.e., of rank 0) and producing items, the same definition holds for argument
ranks not greater than 2. For example:

a L.+ w a+.l w
1 23 3 3 3 3
4 56 9 10 11 12

0
3
The general definition for arbitrary functions and arguments of arbitrary rank
is:

a u.vw +> uf(T1bra) 1 v w

In other words, the result is reduction by u over the result of applying . v to
the major elements of “18+a and w. For example:

rce 10ra b
03 o 1 2 3
14 ¥ 5 6 7
25 8 9 10 11
(0{c)e.x O{b (1{c) e.x 1{b (2{c) o.x 2{b
0000 Yy 5 6 7 16 18 20 22
03 69 16 20 24 28 40 45 50 55

The final result of a+.xb is the sum over these tabies, which agrees with the
example of a+.xb given earlier.

Since ~18+a moves the last axis of a to the leading position, its overall effect
in the definition of u.v is to "split @ along the last axis”, just as w is split
along the leading axis. This asymmetric treatment of the arguments rests on
the desire to make the simple case of +.x on matrix arguments agree with the
matrix product of mathematics, whose definition exhibits the same sort of
asymmetry.

Ranks: =~ 7 7 Select; Merge
Monad. The result of v}w is a selection from w of the form i{w, where the
index i is obtained by applying v to {1">pw, the "compiete index table" of w.

For example:

Fwe2 3 3p118

o 1

3 4 5

6 7 8

9 10 11

12 13 14

15 16 17
te{1">pw
PL

233
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t Fi<0 JI. i8¢

000 001 00 2 {o 0 of lo11] jo 2 2|
_______________ |----- e =
010 011 012 I1 0 0f Il 1 1] {1 2 2|
_________________________ [
___________ Frei{w
020 021 022 0 u 8

9 13 17

rz0 1 178}w

The foregoing illustrates how the adverb } can apply to any selection function
(in this case 0 1 178) to produce a selection. Since this is the same selection
that could be produced directly as vw (that is, 0 1 18x), it is of no interest
except as it is used in the dyadic case to produce a merge, as discussed under
the dyadic case below.

However, verbs other than selection can serve meaningfully as arguments of
}. For example:

Fgel”L">}e L ot T Ot S
011
3 44 000 001 001
1S 2 Y U N SN R D
0T e N I
3 4y 010 011 011
I v g

qzj{e  |ITTTTTp 4T ITTTT

Dyad. If o has the same shape as the index array v}1''>pw, then @ v} w
produces a merge of & and w, by inserting the elements of ¢ in the selected
positions of w, more specifically, in the positions of @ indexed by the array
v{17>pw. Continuing the example used in the monadic case:

Fa<?2 3p100+16 rmec 01 17°])w

100 101 102 100 1 2
103 104 105 3 101 5
6 7 102

103 10 11

12 104 14

15 16 105

Ranks: * rv 1v ; Swap

Dyad. ¢ vc w <> w v a

43

£
/\



Dialects. Some dialects [12 13] use c for a function called enclose; cw is
equivalent to <w except that wzcw if w is an open item.

Ranks: — 7 7 Define, Define

The monadic case of mVd is determined by m, and the dyadic case by d. For
example:

Fme , 3 wxe (W2 ) ¥ TAw-1 11!

[ N R == """ |
| s<pw]| IIC «a,u|](2,s)pc]|

I

SeCcewe?
r<tabc' mVd 'def!
r

abc

def

1
2

c
abcdef

w
2

The major aspects of V can be inferred from this example: the derived function
executes by first assigning to @ and w the values of the arguments, then
executing the boxed sentences in d in sequence, and then providing as the
explicit result of the function the result of the last sentence executed that
does not begin with a right parenthesis (which is otherwise ignored).

The names a,w,A, and A are local to the function,and other names may be
localized dynamically, as discussed in Section !i.J.

The monadic case of mVd illustrates the use of the symbol A for self-reference,
that is, reference to the derived function being produced. For example:

mVd 2 mVd 3 mVd u
6 2y

The sequence of execution of the sentences in evaluating mVd w is controlled
by a system variable & (local to a function) as follows: A is first assigned the
value of 1pm; sentence >(0{A){m is selected for execution, A is respecified by
A<1vA, the selected sentence is executed, and the sequence is repeated until
A is exhausted, or until a value of 0{A occurs that is not an index to m.

Since A may be respecified within any sentence, any sequence of execution can
be achieved. For example:

Ib*ll {A+>(w20)(233 1; | bl {b«(o,b)w,o;

f«pVe

£ o f1 £ 3
1 11 1331

If sentence k (that is, >k{a) begins with a name followed by a right
parenthesis, that name (called a label) is localized and assigned the value
k¥1pa. Labels are useful in branching, that is, in expressions of the form
A<>35(11512513 or A<l1~12.

Finally, if a is any argument of V, it is treated as ,>a. Consequently, open
arguments can be used, as in 'wx:2'V'wx:al,
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n:v Ad hoc

Most adverbs apply to all functions in a single manner; the ad hoc adverb : *-
applies to particular functions in ways defined for the specific function, and x*
its effects are discussed under each function affected. For example, 1 0:90 a *®

evaluates the sine of a in degrees, that is, in a system having 90 units per
quadrant; %:b x formats x with the "position and spacing” determined by
the value of b.

v] Yoke an
The result of v] is a dyadic adverb that applies to verbs £ and g as follows : rY
LEd

(f vl g w)z({f w) v (g ©))

(o £ v] gw)=((afw) v (agw)) =
1T
2¥
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4+ Pike JIN Macron .

> > ~ Tilde ~

+ Spike Iv. $§ Dollar $

+ <~ _ Underscore

T .T. { Left Paren (

- -I. ) Right Paren )

1 Base .. T. { Left Brace {

- LI- } Right Brace }

U Cup .u. ¢ Diamond <>

< .C. e Jot .0.

n Cap .n. 0 Circle .0.

> .c. + -

v V. 0 Quad LT

< < V Del ..D.

A Caret ~ a Alpha .a.

> > A Delta .D.

2 > € Epsilon e

< <. v Iota Li.

[ Left Bracket [ f Rho ..

1 Right Bracket ] @ Omega w

L Downstile -L. A Lamp .no.

[ Upstile ..L. B Domino =21

| stile LI ¥ Paw "o.

/ Slash / ¥ Hoof "0,

- Bar - ¢ .OI.

\ ] L0~.

+ Greek Cross + L] .O\.

x Cross <X ® LO* .

= = - v~

z =/. »~ A

* Star * *  Tack ..To.

H =_ % Thorn .To.

, Comma ’ v ..DI.

; Semicolon ; A .DI.
Period 1 -,
Colon X A-.

? Query ? » ..D~.

' Quote ’ u] L.

* Dieresis " 3 -

! Exclamation !

The ASCII {5] transliteration scheme in the last column is based upon similarity, English-Greek corre-

spondences, and variants, denoted by an extra dot and varying by rotation about a horizonta! or vertical
axis.

Table 1: APL ALPHABET
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parse l;names;r;u

names<'ABCDE'H2'st',(0=0nc 'st')/'<«2 8p'lai+/.«()''!

r(.u,pl "‘_Z(—'R',(l:' l)/_l

11:1,'0!' ,r

ue(rlioles>cases(;,01),(rl1le%>cases[;,11), (r[2]e¥>cases(;,21),
r{3led>cases(;,3]

+lixsactions[(A/uv0=,%¥2p¥>cases)11;]

move:sHl « 1v14r «(weval(-1ls<0xpl)+l),r~Oe(-pl)tw
eval:w:a='>':s5¢t(1;s5t[0;]1,w]

noun:1-r «'1' f w

verb:lr «'+!' f w

punc:i4r «r(1] f w

Is:14r <t fwdst «((1+sdg, 1+(s<'1'=qer[0])dnames),t«r(2]1),st
Lilkar),a, ((keur1)v (vucw="'v 1) /utr) , uvr40« ((14p1)pt '), w

cases actions
a/+e( + 1 noun ' ¢4 !
. 1 + 1 noun ' +v¥!
al/+«( 1 + 1 noun ' v¥vv!
Al/+e( 1+ / verb ' vy !
Al/+<( 1+ . 1+ verb ' vyy!
labcde < 1+/. is Tyey !
( 1/.+ ) punc 'vvy !
< move 'o!
move '»!

The noun names contains the capital letters 4, B, €, D, E, used as
pronouns in assignments of the form (1)<«1, a case recognized because of the 1
included in the first element of the seventh row of cases (that is, 6{cases).
Name assignments made by previous uses of parse can be expunged by
expunging the symbol table st, that is, by entering Oex 'st!'.

A version of parse that uses only facilities available in all dialects may be
obtained by replacing its last two lines by a single line:

»Iix2actions[(A/ 0 1 1 Rcases v.A'labcdea ()e./+1'e.=zutr)i1;]

and replacing cases by the boolean array cases<®(14p2)Tn, where n is:

342 8 343 343 343 15873 6u 16 16383

2 1 1 3 3 16 15 16383 16383

1 2 2 4 8 15 32 16383 16383
16383 1 1 16383 3 16383 16383 16383 16383

PARSING PROCESS
Table 2
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z<«translate a;b;d;l;m;ng;t

z< 0 O pd<«'abcdefghijklmnopgrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ00
123456789"

nget\be(te«=\"'"""12a)/a

t<« ('« '=10b)>be' 100 aw!

de(T1dlet/1«+\~bed) /b

dllet /1ptetet=dlet

de, ' 1, (vA<\dA,. =8 ) Ade (+/a\d=" ' )dd«(-+\t)o((+/t),pd)+(1,pd)rd
blt/rptet it =t\(te=\"""12b)/beale! !

+>(A/ 3 5 zmel+l«1++/t)/0

be(-+\t)e(l,pb)+(1,Pb)pb

b«b,[Dio](lHJb)'fa

»>(3=m)/11,0pd«d, ' ;0ec!

beb[0io0+ 02134 3]

11:z< (1¢templatel (Dio+2121'awteng),1+m+1m-1;1,b), (m,pd)+{(1,pd)pPd

template

we
wwe
wwed

we
]
»>2+0=
>0-Hw-
>04w<
A

Asa;w
(v/az (pa)+0fx translate w)/'not done' ,0p0ex a<«(+/A\wz': ' )rwel]

For example:

A A
f: o+ 3w fib: z,+/ 24z«fib w-1 : w=1 : 1
3 £y fib 10
3.25 112 358 13 21 34 55
Tha €iimeatinm A ram bhao madifind amn o H 4

The function A can be modified so that if a fu

tiam name Ana PRI
]

. tion name alone is entered
it will first display the definition of the function (in direct definition form),
then allow revision using the editing facilities of the particular computer in use,
and then fix the definition of the revised function.

TRANSLATION TO CANONICAL FORM

Table 3
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