
HA , f.\

A GENERALIZATION OF APL

JAMES ARTHUR BROWN

A GENERALIZATION OF APL

by

JAMES ARTHUR BROWN

B.A., Gannon College, 1965

M.• S., Syracuse University, 1969

DISSERTATION

Submitted in partial fulfillment of the requirements for the
degree of Doctor of Philosophy in Systems and Information
Science in the Graduate School of Syracuse University,
September, 1971

Approved _

Date _

ii

Copyright 1971

JAMES ARTHUR BROWN

ERPATA

The following correct knavn teclmical errors but not minor typ(XJraphical

errors.

pg 40 after line 12 add the line:

ElJ/i& undefined

pg 40 line 16

for each scalar integer I,

not QBQ~I<QHQ+pB

QHQ~I<QHQ+p~

IXJ 45 line 7

integer scalar instead of numeric

pg 45 line 14 substitute + for -

IE ?: - p ,!l XllEJl ((1 I~)+(P , H) 9 H

rather than (p ,3.) - ld.)

IXJ 52 line 7 add

element vector.

vector operand.

A scalar: is extended to the dimension of a

PJ 57 line 6 should read:

Z + ~ ((-l+QHQ + pH) + QHQ - 1 pH) 9 R

rather than Z ~ ~ ((-l+QBQ + pH) -tPH) ~ R

pg 58 line 6 should read

Fannal description: 0 origin dependent:.

PJ 80 line 6 should read:

Fonnal description: 0 origin dependent

ERRATA (continued)

pg 103	 line 7 should read

set of rank N-M arrays joined along M nevv coordinates.

W 121	 line 4 should read

Fonnal description: 0 origin independent

W 121	 line 5 should read

Z + 7 ~[QRQ]	 ([QRQ] ~) 0 • ~ T H

W 126	 last line should read

2 2

pg 206	 line 6 insert parens to read

~ X 9 (v'Z') v'Y'

W 209	 line 22 substitute + for - to read

[6] (~o) z +	 « 1 IL) + (p,R) + L) 9 R

This list doos not contain errors occurring in the text which do not alter

the rooaning of a passage.

iii

PREFACE

This paper presents a generalization of APLo It is

presented as a notation not as a computer implemented

programming language although implementation considerations

are eluded to. The fact that the body of the work contains

2*8 pages is not an implementation consideration.

For completeness some of the sections present APL

functions or concepts unchanged from APL\360 (which is used

as the standard for comparison). Parts of many pages are

blank for two reasons. First, starting new sections and

function descriptions on a new page make reading and

reference easier. Second, this work was prepared entirely in

APL using a text editor.

I would like to acknowledge the following people who

read selected chapters of this paper and provided valuable

suggestions. Ted Edwards, Control Data Canada; Bill Jones,

Syracuse University; Dick Lathwell, IBM Philadelphia

Scientific Center; and Bill Newman, Syracuse University.

Special thanks go to my advisor Dr. Garth Foster who

struggled diligently through drafts containing illegible

definitions and muddled examples yet still managed to prompt

some of the more significant discoveries~ Finally I want to

thank my wife Karen who prepared the index to this paper not

to mention many midnight meals.

iv

CONTEr~TS

PREFACE iii

Chapter 0: Introduction

A o Notation 1

B o APL Breaks the Rules 3

Co Where do we go from here: The Problem 4

D. Where do we go from here: The Solution 5

El!l Guidelines 10

Chapter 1: Primitive Functions and the Value Domain

A o Introduction 11

B~ The Meta Language 12

C~ Constant Functions, Arrays 16

Do Display of Simple Arrays 20

E 3 Primitive Functions and Simple Expressions 24

F 0 Scalar Functions 24

GG Compound Functions and Compound Expressions 28

11 0 Function Presentation
 32

1 Mixed Functions 360

J Q General Arrays
 59

Ko Mixed Functions (cent.) 67

La Display of General Arrays
 74

M Mixed Functions (cont$) 76

No Scalar Extension on General Arrays 86

0

v

o. Operators

P. The Scalar Product Operator

Q. Other Operators

R. Another Mixed Function

S. Indexed Functions

T. The General Array Extension Method

u. Remarks

Chapter 2: Defined Functions and the Name

A. Introduction

B. The Name Domain

c. Functions in the Name Domain

D. The Defining of Functions

E* Defined Functions

F. Display of Defined Functions

G. Headed Defined Functions

H. Branching in Defined Functions

I. Manipulating Function Descriptions

J. Defined Functions and Evaluate

K. Arrays of Functions

Chapter 3: APL Potpourri

A. Introduction

B. Magic Syntax

c. Call by Name

87

89

91

100

103

110

129

Domain

, 31

131

134

147

150

157

158

169

172

174

177

185

186

198

, t ,
eo e & 204

E. Recursive Functions 211

vi

F Specification in the Name Domain 214

Go Active and Passive Expressions 217

H$ Multiple Functions 221

I~ Filling in the Void 233

J~ Scalar Extension 237

KQ Interval Revisited 240

L~ Operand Reversal 242

Mo Vacant 243

N~ Primitive Variable Functions 245

O~ Expression Separator Functions 246

o

Chapter 4: Conclusion

Ao Summary 248

B~ Implementation 250

Co Further Research 252

D~ Final Remarks 256

Appendix 1: Summary of Modifications 257

Appendix 2: Primitive Scalar Functions 263

Appendix 3: Generating Well Formed Expressions 265

REFERENCES 271

INDEX OF IDENTITIES

INDEX 275

274

Chapter 0

Introduction

One of the best measures of a civilization is its

developement of notation systems for expressing ideas in

wr i ting. 1,1ost common is the written form of spoken

languages. But these notations are subject to ambiguity,

idiom, and imprecision.

When an idea must be precisely written, the notation

used tends to become symbolic in that special graphics are

assigned well defined meanings. One problem with the modern

sciences is that each branch uses its own set of symbols and

worse each uses the same symbol to stand for different

functions. Even the symbol + is not sacred and is often used

for the logical OR predicate when arithmetic is not also a

requirement. In algebra the same symbol may be used over and

over again for different functions. For example, x is used

to denote the product function in different groups. This is

not bad if the functions themselves are the objects of study

and it shows that the meanings assigned to symbols are

indeed arbitrary and may be changed if desired. However if

specialists are to communicate with each other tvith ease, a

common notation is needed. This problem was underscored by

the advent of the general purpose computer. A notation

common to the computer and to the users of the computer was

2 c

required ID The first attempt to solve this problem was to

invent new notations called programming languages which

mimicked existing notations (eog~ arithmetic) 0 Thus the rule

"multiplication before addition" was incorporated in almost

all programming languages (and why not? it can be

convenient and everybody knows of it)o When new functions

were included (like exponentiation) they were given a

position in the hierarchy$ A simple Fortran compiler had the

following hierarchies:

assignment lowest

addition and subtraction

multiplication and division

exponentiation

everything else highest

where everything else included user written subroutines

[Leeson 13]0 This isn't so bad and is easy to remember. But

if more functions are included (logarithm, relationals,

etc.) the table becomes large and bothersome to remember.

Many of the rules used in mathematics are artificial

and are only for convience. When they cease to be a

convenience and become a nuisance, then perhaps they should

be put asidee A programming language ignoring these rules

would involve more forgetting than learning~

3

APL is a notation created by K. E. Iverson and

presented to the pUblic in 1962 in his book "A Programming

Language" [Iverson 10] ,from which the shorthand name arises0

(some claim that the name APL has its roots in the Greek

word aT~a meaning simple [McDonnell 15]c Everyone knows that

an APLITE is a simple rock.) This notation has cast out the

old precedence rules of mathematics allowing functional

richness to coexist with simplicity of evaluation. Its

integrated use of arrays permits sUbjugation of unnecessary

detail. Its descriptive p0y.ler was sho~ln in 1964 when "A

Formal Description of System/360" appeared in the IBM

Systems Journal [Falkoff ~t.al. 7] with the actual

description taking under 20 pages.

Then 1966 saw the advent of an experimental APL time

sharing system and soon the habits of people at IBM's

Yorktown Heights began to include APL as a research tool.

This experimental system evolved into the present APL\360

which is now a program product of the International Business

Machines Corporation [IBM 9)~

APL has become an object of study and implementation by

computer manufactures and universities. Interest in APL

continues to grow and the question may be asked: "Where do

we go from here?"

4

APL is one of the most powerful notations for computer

programming in existence todayo It is simple to learn

because its rules are few and simple~ It is amenable to

mathematical analysis because it is self-consistent~

Yet the notation clearly indicates directions for

generalization which will simplify or complete existing

concepts~ Other extensions are prompted by particular

applications of the notationG

Many areas of study use data structures not easily

represented by the simple rectangular arrays of APL~ For

example the study of formal systems often gives rise to tree

structures~

The power of the notation is not available for function

definition or modification. Expressions may be written but

only the values and not the expressions themselves may be

manipulated. It is desirable that one function be able to

treat another function as data~ It should be possible to

implement function definition as an APL function~ It should

be possible to implement other language to APL compilers as

APL functions~ These desires become requirements when one

postulates APL as the native language for a machine,

The purpose of this paper shall be to discuss these

problems and to propose solutions for thern~

5

This paper presents a generalized APL notation. While a

knowledge of APL\360 is not a prerequsite for reading this

paper, it is required to distinguish between what currently

exists in APL and what is being proposed. A concise

presentation of APL may be found in "APL\360 Reference

l-1anual" [Pakin 18]. A more recent pUblication designed for

self-teaching is "APL\360 An Interactive Approach"

[Gilman,Rose 8] • This volume contains a supplement

describing the most recent improvements to APL\360.

Appendix 1 to this paper summarizes the changes to

APL\360 which are proposed. The generalizations fall into

four classifications:

1.) Syntax

2.) Arrays

3.) Names

4 .) Functions

Generalized Syntax

The syntax of APL\360 may be characterized as follows:

a.) Precedence is positional - functions within an

expression are evaluated from right to left

6

subject to parentheses.

b.) Context sensitive - a function defined within

the notation (a primitive function) may be

used for two different functions depending

upon the existence of two operands (with

infixed function symbol) or one operand (with

function symbol on the left) G A function

described by a set of expressions (a defined

function) may have zero operands0

The generalizations proposed here involve first a

closer tie between primitive and defined functions so that

the notation becomes functionally extensible. The notation

is in no way made syntacticaly extensible0 A function syw)ol

used to name primitive functions or an identifier used to

name defined functions may be used to denote any or all of

four functions depending upon the existence of zero, one on

the right, one on the left, or two operandso To do this

requires only a small modification to the present

parentheses rules The second generalization of syntaxe

permits functions having no result to exist within an

expression. The bracket notation for array indexing is

deleted and replaced by a more selective dyadic function for

indexinge Lastly, a defined function may have a function

index~

These generalizations simplify the syntax of the

7

notation by uniformly treating primitive functions and

defined functions as instances of the same class of objectso

Generalized Arrays

The arrays of APL\360 are simple rectangular

arrangements of scalar arrays (i.e. values of the arraY)e

Scalar arrays may be one of two types: numeric or character.

While arrays of mixed type are not permitted in APL\360,

they are well defined. Therefore the inclusion of such

arrays, as done here, is not really an extension 0

The first generalizations to arrays proposed are the

definition of new scalar types. Most notable is the program

scalar which permits expressions and functions to be treated

as data. The inclusion of this scalar (along with one

function and one operator) implies a significant broadening

of the capabilities of the notation. It permits functions to

define and modify other functions and solves the other

problems mentioned earlier, but it has unexpected benifits

as well. A "call by name" facility is achieved by passing

program scalars as operands to defined functions.

Multiprogramming of APL functions is an immediate

consequence of arrays of program scalars and is achieved by

exploiting the already existing parallelism of the notation.

The second generalization is the obvious extension from

arrays of scalar arrays to arrays of arbitrary arrays. The

properties of such arrays really arise from the functions

8

defined on them and it is the functions which are of primary

interesto

The Name Domain

Names in APL\360 stand for either functions or

variables (or other extra-lingual objects not considered in

this paper) ~ Mention of a variable name usually implies a

reference to its associated array. The exception is a name

occuring as the left operand of a specification. ~1ention of

a function name implies evaluation of the expressions

comprising the function definition.

The generalizations proposed in this paper make

functions and variables sub-classes of the same set of

objects (appropriately called variable functions)G A defined

function is a name associated with a scalar program array.

Mention of any name usually implies evaluation of its

associated arrayo In this case the name-array pair is said

to exist in the value domain$ Again the exception is a name

occuring as the left operand of a specificationw In this

case the name is said to exist in the name domain and it is

not in general important that any array be associated with

the name G Expressions are permitted on the left of

specification and they evaluate to arrays of name scalars*

Functions occuring in such expressions must be defined for

name arrays and generally mimic functions in the value

dornain~ Using the same function symbols in both domains

9

makes the new functions easy to remember but increases the

sensitivity of expressions to their context.

These concepts already exist in APL\360 but are hidden

by the use of the special bracket notation used for array

indexing.

Generalized Functions

Some functions defined in APL\360 have been trivially

extended to include the new data types in their domain. Some

functions previuosly defined on scalars or vectors are

extended to include higher rank arrays. Functions are

defined to create and manipulate general arraYSe

A general array extension method is developed which

uses definition of a function on vectors to extend the

function to array operands. This method makes definition of

functions on arrays easy and more importantly may itself be

used to extend functions to arrays in non-standard waYSe The

existence of this method motivates the definition of

functions only on vectors in the early parts of Chapter 1a A

small number of new functions have been defined to permit

special action on the new data types.

10

The determination of just what constitutes good APL or

what extensions or generaliztions are in the APL spirit is

largely a matter of taste. The following guidelines are

followed in this paper:

1~)	 Existing definitions are preserved whenever

possible - extend don't change.

2~)	 The useful identities are preserved whenever

possible. Identities are used to infer the

properties of general arrays.

3~)	 The introduction of special syntax is avoided

keep it simple. The temptation to include new

heirarchies of punctuation (i.e. braces, bars,

vinvulae, etc~.) is resisted. The use of the

semicolon (;) as a low precedence spearator is

expunged~

, 1

Chapter 1

Primitive Functions and the Value Domain

In this chapter the computational subset of the

notation is developed. The basic data objects are defined

and their properties are exploited by the functions defined

on them. When the significant feature of an operand to a

function is its value (the data object which it defines)

then the operand is said to be in the Y~1Y§ gQID~!D. The

majority of the functions described in this chapter already

exist in APL and are trivially extended. Notable exceptions

are the functions to create and manipulate general arrays;

the scalar product operator which applies functions

uniformly to sub-levels of general arrays; and the general

array extension method for defining vector functions on

array operands.

12

The following meta-notation is used throughout this

paper in verbal descriptions and formal definitionSe A

certain basic knowledge is assumed here. It is presumed that

the meanings of the terms function, operand, etc* are

already known even though some of them are formally defined

later~ Following the list of meta notations are some simple

examples which justify the assumption~

Q - a dyadic function (one with two operands) 0

M - a monadic function (one with one operand on the

right)~

~ - the left operand of a function~

H - the right operand of a function.

Z - the result of applying a function to its operand

(i~ee the result produced when the function is

evaluated) $

~ - an empty vector~

~ - any scalaro

Q - any unit array~

K - any vector~

o - an array of 2 dimensions~

EI - a function index.

QE~ - the index origin~

ERQQ X - a scalar which is the product of all the elements

in the numeric array X (=1 if X has no elements)w

13

+~ - identically equal (the objects pointed to are the

same objects). the symbol ++ may be read "is".

+/+ - not identically equal (the objects pointed to are

different). the symbol +/+ may be read "is not"o

IE X XH~~ y g~£~ z - this is the expression of the

conditional and has the value y if X is true (X++l)

and the value Z if X is false (X++O) and is

otherwise meaningless. If the ~~~g clause is

omitted or "E..lt..§.~ undefined" is written then the

value is meaningless in the case X is false. X is

called the antecedent, Y is called the consequent,

and Z is called the alternative.

£Qd~4E X - this predicate is true if X is a scalar and false
t·

otherwise.

X 4~Q y - this is the expression of the conjunctive and is

defined in terms of the conditional.

x dl1.!2	 Y ++

I.E.	 X x.[J.~ll.

IE y Xg~~ true (i.e. 1)

E~g~ false (i.e. 0)

~~~~	 IE y XR~~ false 

E.~~g false 

The last statement is included to make ~~~ 

meaningless in the case X false Y neither true nor 

false. 



14 

Example of a function and operands: 

2+3 

In this case the function + is recognized to be that of 

addition~ ~ is 2, R is 3 and ~ is 5@ Thus the terms function 

and operand are merely labels for familiar objectso ~ of 

this example could be expressed using the conditional as: 

If..	 It. +~ 3 lli.E..N.
 

IE li +~ 4 'l.!lE.li. 7
 

or 

Since 4N~ is defined in terms of the conditional it is 

not strictly needed~ However the above formulation shows 

that it can be used to limit the depth of recursion of the 

conditional in cases where the recursion is not of interest. 

Some of the meta-notation is parallel to APL functions 

(i~e(! the meta-notation "identically eoual" and the APL 

function "same" yet to be introduced}G) Many functions could 

be made pure APL by sUbstituting functions for 

meta-notation. The meta-notation is used instead of 

functions for the following reasons: 



15 

1.> It is a convenient starting point for 

defining functions and structures. 

2.) Unnecessary circularity of definitions is 

avoided. 

3.)	 Some parenthesis are avoided without loss 

of clarity and with an increase of 

readability. 

4.)	 It focuses attention on the object being 

defined. 

5.)	 The formal definition of a meta is never a 

point to ponder while it is with a 

function. 



16 

The first class of functions to be introduced are 

called constant functions~ A gQD2tsn~ IYll£tiQD (or an ~~~gy) 

is a function whose name and value are intimately associated 

in that the value may be determined solely from the name. 

These functions are the basic building materials for all 

other functionsGl 

A 1i~§~~! fYng~~QD (or !i~g~~l 9~~gY, !ltg~~l) is a 

constant function whose constant value is precisely and 

immediately determined by its manifestation. The simplest 

form	 of literal function is a scalar~ A §£a1g~ is an 

undefined object which may be described as having a single 

value but having no coordinates (i.e$ no direction, no 

structure, empty dimension} 0 

A scalar may be thought of geometrically as a point~ 

Following are scalars of five distinct types three of which 

have literal manifestations representing the y~!~g§ of the 

scalars 0 

Character scalar 

~A!	 the single character A~ Enclosing quotes 

are used so there can be no confusion 

bet\'7een the character W 3 wand the number 



17 

3. The quote character itself is 

represented by two quotes in the usual 

manner. 

Numeric	 scalar 

35 the single number thirty five. 

35 is scalar because it is the number 

which is of interest and not its 

multidigit decimal representation. 

Position	 scalar 

e The position scalar (hereafter called 

the p-scalar). This scalar is used as a 

placeholder when no other type is 

appropriate. 

Program scalar 

Every piece of notation in APL is a 

program scalar. Its mention implies its 

evaluation thus the three scalars 

mentioned above are program scalars. 

However 'A' evaluates to a character 

scalar, 35 evaluates to a numeric 

scalar, and e evaluates to the position 

scalar. 

Name scalar 

This scalar refers indirectly to a 

value. 

Notice that while all values are printed as characters, 



18 

character type values are still distinguished from numeric 

type values by use of enclosing quoteso Since it is useful 

to supress quotes on display of a function result, confusion 

may still exist when reading such a result (but never in 

evaluation)e A §!IDnl§ e~~gY is an ordered arrangement of 

zero or more scalars along zero or more coordinates Theo 

number of coordinates in an array is called its ~gDt* A 

scalar is then a 0 rank simple array~ An array of rank 1 is 

called a ygg~Q~G An array of rank 2 is called a mg~~i~. The 

diID~D§iQn of a simple array is a simple vector telling the 

number of scalars along each of the coordinates of the 

array~ If an array has zero scalars along any of its 

coordinates (i~e~ if a zero occurs in its dimension vector) 

then it is called an gmnty ~~rEY~ In particular the 

dimension of a scalar is the gmnty yg£1Q~ (zero scalars 

along one coordinate} 0 The scalars used in an array are 

collectively called the yglyg§ Q! ~h§ g~~~y~ 

Examples: 

5 3 is a rank 1 array (vector) of dimension 2 

containing the scalars 5 and ~3~ 

o 1 

2 3 

4 5 is a rank 2 array (matrix) of dimension 3 2 

containing the scalars O,1,2,3,4,and 50 

(selecting the values of an array one row 



19 

at a time as above is called selecting them 

in ~Q~ IDgiQ~ Q~g~~). 

'ABeD'	 is a rank 1 (vector) of dimension 4 

containing the scalars 'A','B','e', and'D'. 

A literal array may be considered the written form for 

the value of the array. 



20 

If the printed form of an array is to be an unambiguous 

representation of the array, then the dimension of the array 

and the scalar value at each position in the array must be 

clearly indicated~ Therefore the following display format is 

used: 

1~)	 Dimension display ~ the symbol p followed by a 

vector of integers which is the dimension of 

the arrayo 

2~)	 Value display - A scalar is displayed as its 

literal value~ A vector is displayed as a line 

consisting of its scalar valueso A matrix is 

displayed one row per line~ Each plane of a 

higher rank array is displayed as a matrix 

with one blank line separating planes, two 

blank lines separating hyper-planes, etc~~ In 

this paper all printing is double spaced~ This 

requires some visual compensation~ 

For many arrays, the dimension display is a repetition 

of information contained implicitly in the value display. In 

these cases the dimension display may be elided without loss 

of information~ A scalar may always be displayed without a 

dimension display* A one element vector requires the 



21 

dimension display to differentiate it from a scalar, while a 

two element vector does not require it. In general, if the 

dimension neither contains a zero nor begins with a one, 

then it may be elided. 

In an implementation it may be convenient to always 

elide the dimension display, but when defining functions as 

will be done here, it is important that no ambiguity be 

present. 



22 

The second class of constant functions are 

expressions Since expressions are usually involved with thes 

class of variable functions called primitive functions, they 

shall be discussed together~ 

A Q~iIDitiY§ fyngtiQD is a function which is composed of 

a name and an associated scalar array of type program@ The 

name of a primitive function is a special symbol (i.e~ 

+,~tX1f,etc~) which is called a fgn£~iQD 2YIDQQ!~ A primitive 

function is not a constant function because its name does 

not indicate its description~ In general the value of a 

primitive function depends upon the values of other arrays 

which are called Q~g~~ng§ of the function~ A function having 

two operands is called gy~g!£~ A function having one operand 

is called IDQDggig or gg~~r!=IDQngg1£ [McDonnell 15] 0 A 

function having zero operands is called n!!ggi£$ Using these 

classifications all the arrays previously introduced (i0ea 

literal functions) may be considered niladic functions 

because their value depends upon zero other arrays A$ 

function taken with some particular operands is called a 

§!mn!g ~~~~§§§!Qn or just an g~D~g§§!Qn~ The process of 

determining the value of an expression is called gYElgE~iQn 

of the expression and is considered a mapping of the 

operands of the function into the result This is ano 

important distinction~ A function (say addition +) is a 



23 

mapping and to properly define a function it is only 

necessary to specify the mapping. An expression (say 3+4) 

specifies an application of the mapping to the particular 

operands. Thus an expression is an alternate notation for 

some constant (3+4 is an alternate notation for the constant 

7) • 

Ib~ Q~D~g~ l:Q~IDl QI ~~~mi~!yg EYD£tiQD§ 

dyadic It.fB. 

The function symbol 'tt appears between the 

left and right operands ~ and E 

monadic ~E 

The function symbol appears to the left of its 

single operand R. There is no confusion with 

the dyadic function which uses the same 

function symbol because there is no left 

operand. 

dextri-monadic L~ 

The function symbol appears to the right of 

its single operand L (hence the term dextri-) 

niladic 

There are no operands. 

Thus the number and positions of the operands of a 

function uniquely and unambiguously determine which of the 

four possible functions a function symbol stands for. The 

description associated with the function name must be 



24 

sensitive to each environment in which use of the function 

is to be valid. It will be seen that an effort is made to 

define functions having the same name but differing valid 

syntax, related in meaning so they will be easy to remember. 

However it should be noted that this is an attempt at good 

taste and not a requirement. In these examples it is the 

syntax of the functions which is of interest. The meanings 

of ~fR and fR will shortly be presented. The meanings of ll+ 

and will remain undefined. Dextri-monadic and niladicT 

functions are of little importance till defined functions 

are introduced but are in fact valid forms for future 

expansion of the language. 

A e£gl~~ fYD£tiQD is a function which is defined for 

scalar operands and which produces a scalar result. Appendix 

2 summarizes the primitive scalar functions and gives their 

identity elements. They will not be discussed individually 

except by example. 

Examples 

.;. 5 

.2 

10.;.4 



25 

Scalar functions are extended to take array operands 

according to the following rules: 

For monadic scalar functions (of either type): 

1m) If the operand is a non-scalar array then the 

function is applied to each scalar in the array 

producing a result having the same dimension as 

the operand. 

For dyadic scalar functions: 

1d) If the operands are non-scalar arrays then 

they must have the same dimension and the function 

is applied to scalars in corresponding positions 

in the two arrays producing a result having the 

same dimension as the operands. 

2d) If one operand is scalar and the other is a 

non-scalar array, then the function is applied to 

the scalar operand paired with each scalar of the 

non-scalar array producing a result having the 

same dimension as the non-scalar operand. 

These rules are often called the §9g1g~ §~tgD§!QD and 

they will be formalized after the proper theory has been 



26 

developed~ In the following examples arrays of rank 2 are 

enclosed in a box (i.e. meta D) because there is so far no 

linear representation for such an array. 

Example scalar functions: 

=4 5 6 0 5 

4 5 6 0 5 

4 0 4 777J 

371 

r 3 014 07 

4 3 0 14 (i.e. a 2 2 array) 

4 1 

4 3 

3 0 2 2 r 3 0 4 2 

07 105 -2 06 

3 0 4 2 

o 7 1 Q 5 

(~ +~ empty vector) 



27 

o > 3.14 .7
 

4 3 0 14
 

o 0 

o 1
 

303 I 5
 

152
 

Note that in each case the result has the same 

dimension as the non-scalar operand. 



28 

The APL language does not provide symbols for every 

possible function. In particular no functions of three or 

more operands are permitted by the syntax. The functions 

which are provided (ioe~ the primitive functions) are those 

of general usefulness which can be used to define more 

specialized functions 0 Such a composite function is called a 

~QIDgQYD9 IYD£t!QO and is composed from zero or more 

primitive functions. As an example let A,B, and C stand for 

any three arrays~ Then a candidate for a compound function 

is : 

AxB+C 

since whatever it is, it is defined in terms of primitive 

functionSe It has been seen that given a primitive function 

and its operands, it is never a problem to evaluate the 

function (ioeG just apply the mapping) $ But here it is not 

clear exactly what the operands of the primitive functions 

are This ambiguity is resolved by introducting punctuation 

which describes the function-operand relationship~ The 

symbols used for the punctuation are and) and they 

surround a function and its operands Thus 

0 

$ 

neither (case 1) «AxB)+C) 

nor (case 2) (A x (B+C) ) 

contain any operand ambiguity~ Unfortunately this rule 

implies that the expression 3+4 must be written (3+4)~ 



29 

And in fact a pair of parentheses is introduced for 

each primitive function used. While this is theoretically no 

problem, it is bothersome for people to write or look at so 

many parentheses. One way to limit them is to assign 

precedence to functions to indicate which should be 

evaluated first. Mathematics and traditional programming 

languages do this. But there are too many primitives in APL 

to make this workable so instead the following two 

~g~~Dtb~2~2 ~!imingtiQn tYlg§ are adopted: 

1.} Parentheses which delimit the right operand of 

some function may be deleted. 

2.} Parentheses which do not alter the scope of 

operands for some function may be deleted. 

(i.e. at least the outermost pair) 

These rules impose the following precedence on 

functions: 

If a function occurs immediately to the right of a 

right parenthesis, then it has lower precedence 

than any function occuring in the parenthesized 

expression. Otherwise precedence is positional and 

increases from left to right [Lathwell,~1ezei 11]0 

Using the parentheses elimination rules the previous 

example may now be written: 



30 

(case 1) (AxE) +C 

and (case 2) AxB+C 

Note that a compound function is still a function and 

is considered a mapping of its operands into its result. 

When a compound function is written with explicit operands 

(i~e~ 2 x 3+1) it is called a 9QIDQQYD9 @~Q~g22!Qn and as 

before is a constant. Evaluation of all such functions can 

be considered a table look-up procedure. Thus there is no 

fundamental concept of one primitive of a compound function 

being evaluated before another (i.e* no time relationship). 

The many function symbols are just an unusual syntax for the 

specialized function. However since it is not convenient to 

remember (or compute!) the tables for all possible 

functions, people and computers use algorithms to evaluate 

compound functions and it is these algorithms which suggest 

a time relationship0 

Such an algorithm for evaluating compound expressions 

using the above two rules may now be stated: 

Evaluate functions in order of decreasing 

precedence. 

This statement is actually stronger than required since 

in (AxB)+CxD it does not matter which multiplication is 

done firstQ The algorithm is sometimes called by the 

misleading name "the right to left rule"(iI These rules are 



31 

sufficient to evaluate any expression. The section on magic 

syntax (Chapter 3) discusses this more and shows that the 

order of evaluation described in A Formal Description of APL 

[Lathwell,Mezei 11] does not hold with the generalized 

syntax. 

Examples of compound expressions: 

3x4+1 

15 

(3x4)+1 

13 

- 4+ 1 

5 

(-4)+1
 

3
 

OrLl+10e139 

3 



32 

The section following this one begins the exposition of 

non-scalar functions~ Each function is coded with a letter 

to indicate the degree to which the function differs from 

existing APL functions~ The codes have the following 

meanings: 

I.	 inclusion - a function existing in APL which is 

retained unchanged or trivially extended to 

include new data types or general arrays. 

E~	 extension - a function existing in APL which is 

generalized or altered~ 

! 

A~	 addition - a function not currenetly defined in 

APL 

The functions are generally presented in the following 

format 

1@)	 syntax - a display of the function symbol to 

be	 used for the function and the number and 

positions of its operands~ 

2~)	 english description - a brief sentence 

indicating the task performed by the function~ 



33 

3.)	 conformability - general information about 

what data objects are in the domain of the 

function. 

4.)	 formal description - defines the action of the 

function. 

A formal description is in order whenever the function 

being described can be defined in terms of the meta-notation 

and previously defined functions. 

Some functions in the notation have hidden or implied 

operands as well as those explicitly written. Of chief 

interest is the index origin. 

Particular elements of an array are sometimes refered 

to by a set of one or more integers called the ingg~ of the 

element. For example the elements of a vector would be 

refered to by succesive integers. Any integer may be chosen 

as the index to the first element of a vector$ This integer 

is called the !D9§~ Q~igin and is denoted QRQ in the 

meta-notation. The second element of a vector is always 

refered to by QgQ+l. An element of a rank N array may be 

refered to by a set of N integers. While one could write 

defined functions which used N origins for a rank N array, 

primitive functions always use the same origin for all 

coordinates. The important consideration is that functions 

are sensitive to the index origin and arrays are not. An 



34 

array is an arrangement of objects and is independent of how 

one decides to number the objectso 

When a formal description of one function includes 

previously defined functions then it is possible that the 

description is origin sensitivea Therefore each description 

is labeled as follows: 

1 0 )	 origin free - the index origin does not affect 

the description. 

2.)	 origin independent - the index origin does 

affect the description and is explicitly 

mentioned via the meta Q~Q. 

3 G )	 a-origin dependent - the index origin does 

affect the description but QRQ+~O is assumed. 

Formal descriptions have the following properties: 

1.)	 They are recursive - evaluation of the 

conditionals involves the function being 

described lt 

2~)	 recursion is finite - there is at least one 

consequent or alternative which does not 

involve recursion and all operands declared 

conformable lead to these~ 



35 

3.) they are constructive - the descriptions can 

be used as algorithms for evaluating the 

functions. 

Following each function are examples of its use. All 

examples assume zero origin. Frequent lapses into English 

are included in an attempt to convey the spirit of the 

notation and give some insight into the why of functions as 

well as the what. 



36 

Any function which is not a scalar function is called a 

mixed function. Two important subsets of the mixed functions 

can be isolated. The §~rygty~g fYng~iQn§ [Morrow 17] 

generally manipulate entire arrays without regard to the 

value of the array. The §§l~£t !yn£tiQD§ extract particular 

elements or subarrays of an arrav without regard to the type 

of the elements. The operands of these sets of functions can 

be classified as one of two types~ An operand manipulated by 

a structure function or disected by a select function is 

called a §YQj~£~ Qng~gng. An operand which is used to 

further specify the action of a function is called a £QDt~Ql 

Qn~rgDg. This classification of operands will make extension 

of the functions to new domains easy. Each of the mixed 

functions will be treated individually~ The structure and 

select functions will be identified when they are introduced 

and are summarized in tables 1 and 2 on page 130G 



37 

Size (I) (structure function) 

Syntax:~ ~~ pR 

~ is a simple vector whose components represent the 

number of scalars along each coordinate of E. 

Conformability: B is the subject operand and is any array 

The size function is the APL equivalent of the word 

dimension and pE is sometimes read dimension of R. The 

compound function ppE is the APL eauivalent of the word rank 

since the number of coordinates in an array is the number of 

elements in its dimension vector. The size function is 

useful in defining other functions. For example in the 

discussion of the monadic scalar functions the words 

"producing a result having the same dimension as the 

operand" could be replaced by p~ +~ pH. This will be done 

from here on. 



38 

Reshape (I) (structure function) 

Syntax: ~ +~ ~pR 

The result is an array of dimension ~ whose 

elements (if any) are taken from E in rOv7 major 

order, reusing elements of R if necessary. 

Conformability: ~ is the control operand and is a 

non-negative integer scalar or a non-negative 

integer vector. II is the subject operand and is any 

array having at least one element unless a zero 

occurs in ~ in which case B may be empty. 

Reshape is used to generate arrays of given dimension 

from scalars. The examples of scalar functions contain 

statements which use a meta-notation for arrays: 

Example: 

o > 3 0 14 e7 

4 3 0 14 

With reshape this could be written: 

o > 2 2p 3 0 14 07 4 3 0 14 



39 

Ravel (I) (structure function) 

Syntax: ~ "E-+ .ll 

~ is the vector of the scalars in R taken in row 

major order. 

Conformability: R is the subject operand and is any array. 

Formal description: origin free 

~ "E-~ CfEQQ pE) P E 

In the following descriptions of functions, ravel is 

used in two ways. First as a formal way to treat scalars as 

one-element vectors, and second to display how results are 

calculated when the structure of operands is not relevant to 

the calculation. An extension of ravel will be introduced 

later. 

Examples: 

,2 2p 'ABeD' 

ABeD 

p.2 2p 'ABeD' 

pi 

This is the first example where the dimension display 

is required. It emphasizes the fact that the size function 

always results in a vector, never a scalar. 

4 



40 

Vector Indexing (A) (select function) 

Syntax: ~ +~ ~ 9 R 

~ is an array of elements selected from positions ~ 

in E. 

Conformability: E is the subject operand and is any vector. 

~ is a control operand and is any simple integer 

array. 

Formal description: origin independent 

lli~~ the scalar which is the Lth component of R 
,~'. ,<...J 

~~~~ IE l=PPb XHE~ ~ of dimension p~ such that 

for each scalar integer I, QHQ~IsQRQ+pE

Vector indexing is fundamental to the definitions of

the mixed functions. Most other select functions can be

expressed in terms of indexing.

Examples:

29157 9

7

(2 2p 1 2 1 0) 9 1 5 7 9

5 7

5 1

41

Vector Attach (I) (structure function)

Syntax: ~ +-+ L.,li

Z is a vector made by joining L to a.
Conformability: Land R are subject operands and may be any

vector or scalar.

Formal description: origin independent

~ of dimension (p,~)+p,a such that

I ~ ~ +-+ I 9 ,~ for Qga~I<QflQ+p,~

(I+p,L) 9 ~ +~I 9 ,E for QHQ~I<QRQ+p,E

Vector attach (and its extension to array operands yet

to be introduced) is the fundamental way of joining two

arraYSe In APL\360 this function is called catenate but here

that term shall be given a more restrictive meaning (see

Catenate page 114)

Examples:

1 , 2

1 2

2 3,4

234

1,2,3,4

123 4

Every simple array A can be represented by a cornround

function on scalars using only the primitive functions

42

vector attach and reshape. A vector can be represented as a

compound function as follows:

1.) The empty vector is OpO

2.) A one element vector is 1pQ for ~ any scalar

3.) A vector with N elements is Sl,S2,o.o,SN for

any scalars Si

Given that a vector can be represented, any simple

array A is represented by

(pA)p,A

Where pA is a vector and ,A is a vector.

Thus the statement is verified.

The representation of a numeric vector constant (i.e.

1 2 3 4) is really a primitive functional notation for the

compound function 1,2,3,4.

43

Interval (I)

Syntax:	 ~ +-+ lil.

Z is the length R vector of successive integers

starting at the index origin.

Conformability: B is any scalar integer such that 0 ~ Eo

Formal description: origin independent

lE. Ii = 0 :I:.11.~ll. E


~~~g (\R-l),E+QRa-l
 

Examples: 

\ 3 

012 

\0 



44 
'7' 

(11) .l:. +--+ pl:.Pl1. 

(12) II +~ (pH.)pll 

(I3) pL. +-+ p L. g B. 

(14) .1i. -+--+ P\~ 

(15) f +-+ ,I' 



45 

Vector Take (I) (select function) 

Syntax: Z. -+--+ L,tli 

~ is a dimension ,~vector of the first or last ~ 

elements of li 

Conformability: R is the subject operand and is any scalar 

or vector, ~ is a control operand and is any 

numeric scalar. 

Formal description: origin free 

Z +-+ 

IE l:. ~ 0 'l.f1E.ll 

IE ~ ~ p,ll XHg~ (l~) ~ ,R
 

Elt.Q.E. lit (l!.-p ,E.)p 8
 

g~~~ IE L < 0 XH~~ 

IE ~ ~ -p,E XH~~ «tl~)+(p,R)-L) 9 R 

E-ld.§.-g ( ( , ~ +P , II )p e ), B. 

where e is the previously defined position scalar. 

g~§.g undefined 

Examples: 

2 t 1 2 3 

1 2 

-3t'IFATE' 

ATE 

4 t 3,'A' 

3 A e e 



3 

46 

Vector Drop (I) (select function) 

Syntax: ~ +-+ L,+!i 

~ is R with the first or last ~ elements deleted. 

Conformability: R is the sUbject operand and is any scalar 

or vector, ~ is a control operand and is any 

numeric scalar. 

Formal description: origin free 

Z +-+ 

IE (0 ~ IL.) dli.l2 « I~) $ p, B. ) 

XR~M (~~(x~)xp,g)tR 

lilt.§'E. E. 

Examples: 

2~ 1 2 3 

p1 

3 ~ 'IFATE' 

IF 

4 + 3 t 'A' 

The definitions of take and drop illustrate the 

statement that functions which select elements from vectors 

can be defined in terms of vector indexingo The statement 
? 

will remain true when indexing and the select functions are 



47 

defined for array operands. Of course none of the select 

functions are really needed since indexing could always be 

used. They are convenient in that they represent easily 

understood and often needed special cases of indexing and 

are often less clumsy to use. 

For example given vector V, ttV is not much different 

from 0 9 V except that the former is origin free and the 

latter is a scalar. 1tV is nicer than (-1+pV) 9 v. 



48
 

Vector reduction (I) 
,>. 

Syntax: Z +-+ 12/fi. 

Z is a scalar derived from repeated applications of 

the scalar function ~ on scalars in H 

Conformability: R is any scalar or vector, II is any dyadic 

scalar function. 

Formal description: origin independent 

~ ++
 

IE ~ +~ pE rlig~ R
 

g~~~ IE 0 = pH Xlig~
 

IE identity element I exists for ~ XH~~ I 

gl!.§'~ undefined
 

g~~E IE 1 = pE XRg~ EpR
 

g~~g (QR~ 9 E) ~ ~/1+ll
 

Examples: 

+/1 2 3 

6 

~/1 2 3 

2 

=/01. ' AB' 

1 

+/ 1 2 3 can be considered a shorthand notation for 

(1+(2+3». 



49 

Reduction could have been defined so that it would 

associate to the left and be shorthand for «(1+2)+3). This 

is the reduction originally defined by Iverson [Iverson 10] 

and the two definitions are obviously equivalent for any 

associative function. It is not the right to left rule that 

directs the choice of right associationo Rather the reverse 

is true. Non-associative functions produce uninteresting 

numbers when evaluated from left to right. 1~2~ooo-N would 

be 1 minus the sum of the remaining numbers whereas when 

evaluated form right to left the same expression yeilds an 

alternating sum~ 

Reduction can be considered a device for defining 

dyadic scalar functions on other than two operands. Everyone 

knows that addition can be applied to more than two numbers e 

An algorithm is provided for adding sets of numbers. For all 

associative functions the meaning of reduction is well 

known. +/ is summation, xl is product, rl is biggest, etc~a 

When Q is not associative reduction is still well defined 

and some still have well known rneanings~ -j is the 

alternating sum, but e/ is uncommon@ xl is the APL 

equivalent for the meta-notation EHQQ X for vector X@ The 

equivalence will remain when reduction is extended to 

arrays. 



50 

Vector Scan (I) 

Syntax: ~ -+--+- [2\11. 

~ is a vector of partial reductions of elements in 

!i.. 

Conformability: R is any vector, ~ is any dyadic scalar 

function. 

Formal description: origin independent 

~ of dimension pE such that 

I 9 Q\g +~ ll/(I+1-QEQ)tR 

for scalar integer I, QRQ S I <Q~Q+pR 

Examples: 

+\1 2 3 

136 

-\1 2 3 

112 

=\0 1, tAB' 

001 1 



51 

vector back-scan (A) 

Syntax: Z +-+- 12'li 

Z is a vector of partial reductions of elements in 

li~ 

Conformability: II is any vector, Q is any dyadic scalar 

function. 

Formal description: origin independent 

~ of dimension pH such that 

I ~ ~\ R ++ ~/(I-QHa)~R 

for scalar It Qg~ ~ I <QRQ+pE 

Examples: 

+\1 2 3 

653 

-~1 2 3 

213 

=,0 1,' AB ' 

1 0 0 B 



52 

Vector Base Value (Decode) (I) 

Syntax: Z +-+- bLl..[i 

~ is a scalar which is the evaluation of R in the 

mixed radix Leo 

Conformability: ~ and ~ are any scalar or vector such that 

p~ +~ pH or one of them is a scalar or a one 

element vector. 

Formal description: origin free 

IE ,1 ~-+- p~ XHg~ (~p~)~R 

gL~g IE ,1 +~ pE Xgg~ ~~EpE 

~~Qg IE p~ +~ pH fH~~ +/Ex1~(x~~).1
 

gl!§.g undefined
 

Examples: 

10 1. 1 2 3 

123 

10 10 10 .L 2 

222 

4 23.1 210 

15 



53 

Vector Represent (Encode) (I) 

Syntax: ~ +-+ l!Tll 

~ is the mixed base ~ representation of Eo 

Conforrnability: ~ is any simple numeric vector, H is any 

numeric scalar. 

Formal description: origin free 

IE ~ +~ p~ XH~R E
 

g~~g IE ltL +-+ a XH~~ «-l~~)TO),R
 

~~£~ «-1~~)T(R-(-1t~)IR)t-lt~)~(-lt~)IR
 

Examples: 

2 2 2 T 5 

101 

3 4 2 T 5
 

021
 

2 2 2 T 5
 

111
 



54 

Vector Compress (I) (select function) 

Syntax: ~ +~ It../B,. 

Z. is a a vector of scalars from !l in positions 

corresponding to ones in ~. 

Conformability: ~ is a control operand and R is the sUbject 

operand. They may be any vector or scalar. 

Formal description: origin independent 

I.E	 ~Qd~4.H. L. l:.11E.!l.
 

I.f.. It. XflE.N. ,ll
 

gL.§.g E.
 

~~~~ IE ~Q4~4!l R XH~N ~/(p~)pE


g~Q~ IE p~ +~ pH Xg~~

IE	 0 +~ p~ XHg~ ~

g~g~ (QEQ 9 ~)/QE~ 9 a),(1~~)/1~!1.

gL,§.E undefined

Note how the description is meaningless in case ~ is

not composed of zeros and ones. In case L is scalar the

result is all of g or none of it as ~ is a one or a zero.

Examples:

1/'CAT'

CAT

0/4 5 6

55

1 0 1/5 7 9

5 9

1 0 1/5

5 5

56

Vector Expand (I) (select function)

Syntax: ~ +a+ L.\ll

~ is R expanded to positions corresponding to ones

in l:.

Conformability: ~ is a control operand and E is the subject

operand. They may be any vector or scalar.

Formal description: origin free

~ ~-+

IE	 Q:Q~ltdR lI. 'l.lJ.gli.

IE	 ,1 +-+ p,E Xli~M

IE. L. 'l.l1gli ,11

gb.£g undefined

E.~§'~ undefined

~~~~ IE ~Q4~dR R 'l.llE~ L\(+/~)pR
 

~~~E IE pE +-+ +/p~ 19~~


IE 0 +-+ p~ Xag~ ~

g~~g IE lt~ XHg~ (1+g),(1+~)\1+E

gfL§"~ e t(11-~)\E

~lI..§.g undefined

Identity:

(I6) R +-+ L/~\g for vector operands

Examples:

1 0 1\5

5 e 5

1 0 1 \ 5 7

5 e 7

57

Vector Reverse (I) (select function)

Syntax: Z. +~ <t>.ll

Z is the vector E with elements reversed.

Conformability: R is the subject operand and is any vector

Formal description: origin independent

~ +~ «-l+Qlla+pE)-lPR) g a

Example:

<1>\3

210

58

Vector Rotate (I) (select function)

Syntax: ~ +-+ li<l>l!

~ is the vector H with elements cyclicly rotated.

Conforrnability: E is the subject operand and is any vector.

~ is the control operand and is any scalar integer.

Formal description: origin free

~ ooE--+ « PIi) Ilt.+ 1. ' , P P11) 9 E..

Later when interval (,) is extended to vector operands

the sub-expression l"ppR may be replaced by lpRe

Example:

-lc:P'ABC'

CAB

59

A simple array has been defined as a set of rank 0

arrays arranged along coordinates~ A ggDg~El g~~S~ is the

obvious extension of a simple array and is a set of rank N

arrays arranged along coordinates. The definition of a

general array includes that of a simple array. The

personality of these new objects is determined by the

functions which are defined upon themQ The desire is to

define the existing functions on this enlarged domain so

that the useful identities are retained.

A graphic representation of arrays is now developed as

an aid in discovering the properties of general arrayss The

new representation is that of a singly rooted tree with

labeled nodes. A §!ng!y ~QQ~gg ~~§§ ~!~b l~Q§l§g DQQ§§

(called simply a ~~§g from here on) is a pair of sets (N L)

where N is a finite set of labeled nodes, and L is a finite

set of ordered pairs of elements of N called !in§§ or

Q~sD£h~~$ The first element or each ordered pair is called

the initig! DQ9~, the second the f1n~! llQ9g. Trees have the

following properties

1$) There is a distinguished node called the

~QQt which is the final node for no line.

2.) No node is the final node of more than one

line.

3~) For every node Ni, either Ni is the root or

60

there exists a sequence of lines

Ll i L2,L3 i ooo,LN such that the root is the

initial node of LO and Ni is the final node

of Ln. Ni is said to be at the Nth-level of

the tree.

4~)	 Every node of a tree defines a subtree of

which it is the root~

The following terminology is used when talking about

trees A node which is the initial node for no line isa

~called a !§~f. A tree is §~mD!~ if every node is either the

root or a leaf. If a tree has a node at the Nth level but no

node at the N+1st level, then it is called an N-level tree.

A simple tree is either a O-level or a 1-1evel tree. Figure

1 page 64 pictures a 2-1evel tree with 4 leaves $

Now	 a mapping is made from arrays to trees.

A scalar A is mapped to a tree T(A) consisting only of

its root~ The root is labeled with the dimension and value

of the scalar. (see Figure 2 page 64)

Thus a scalar is represented by a Q-level tree~ Notice

that the size function produces the dimension label of the

root node.

Just as scalars are used to build arrays, scalar trees

shall be used to build array trees~ The extension from

61

scalars to simple arrays is made by going from O-level trees

to 1-1evel trees whose leaves are Q-level trees o

A simple array A is mapped to a simple tree T(A) as

follows:

1.) The root of the tree is labeled pAo

2.) The root is the initial node for EHQ2 pA lines~

3.) The final nodes of the EEQQ pA lines are leaves

(making the tree simple) and are the scalars of A

in ravel ordera

(see Figure 3 page 65)

Notice that as before the size function p produces the

dimension label of the root node$ Since each leaf is a

scalar tree, they are each labeled with a dimension so that

identity (I3) on vector indexing is preserved~ Using the

second example of figure 3:

'B i +~ 1 9 A (definition of vector indexing)

p1 9 A +~ p1 (by 13)

+~ ~ (definition of a scalar)

which is the label on the node~

Each node also has a value~ In the case of a leaf, the

scalar value appears as the second label on the node~ (This

is consistent with the previous definition of a scalar

tree). The value of the root node is the entire array which

the node defines and as such is redundant and may be elided o

The dimension part of the label is not strictly needed

62

because the tree for a rank N array could be drawn in N+l

space. This is not done because of the difficulty in

visualizing the difference between the tree for ,3 in 2

space and the tree for 1 lp3 in 3 space. Thus a simple

array is a Q-level or a 1-1evel tree whose leaves are scalar

trees Q

The obvious way to make the extension from simple arrays to

general arrays is to examine more general trees o

Consider the tree required for a two element vector A

whose first element is 'B' and whose second element is the

three element vector \3 (see Figure 4a page 66) It is not0

clear what label should be supplied for the unlabeled node.

Property 4 of trees says that this node is the root of a

subtree so the label must be 3~. Yet if the node is viewed as

the second element of a vector then to satisfy identity I3

the dimension label should be

p 1 9 A +~ pi by I3

~~ ~ by def. of a scalar

Therefore to satisfy all the requirements the labels

for nodes must be modified to contain two dimensions. First

the dimension seen by functions called the ~Q2~~gn~

glm§D§!QD) and second the real dimension of the array

(called the bigggn giID~n§!QD). Now a general array can be

represented as in Figure 4b page 66~

63

The tree (and the array) defined by the node labeled

~g3g has the property that it looks like a scalar yet has

many values. Any tree whose apparent dimension is g is

called a YU!! t~g~ and the array it represents is called a

ynit grrgy. Notice that the mapping from arrays to trees is

not surjective (onto) but is injective (one-to-one}o In

particular no tree which represents an array can have a node

whose apparent dimension is different from its hidden

dimension unless it is a node defining a unit tree~ It is

possible that an attempt to make the mapping surjective

(isomorphism) could lead to more general arraysQ Further

modifications of the labeling of these trees and/or

permitting multiply rooted trees could also lead to

extensions 0

64

NO

N22

Figure 1

A singly rooted tree with labeled nodes

A T(A)

3 ~: 3

'A ' ~: 'A '

Figure 2

Scalar Trees

65

A

'l 3

T(A)

3 ~

3 , 'B '

2 2p t 4

Figure 3

Simple trees

66

2 :

Figure 4a

Incomplete general tree

2 : 2 :

Figure 4b

General tree

67

K. Mi~~g r~n£~iQD§ (continued)

Just as functions are needed to create simple arrays,

they are needed to create general arrays~ In this section

the basic functions for creating and manipulating general

arrays will be presented. Most of the mixed functions

presented so far can be extended to the domain of general

arrays by substituting the term unit array for the term

scalar in their definitions. They will therefore not be

presented again.

68

Conceal (A) (structure function)

Syntax: ~ +-+ eli

Z is the unit array of the array E.

Conforrnability: E is the subject operand and is any array.

Since eR is a unit array, the following identity is

obvious

(I 7) g +.... P eli.

The structure of R is not lost but merely not apparent

(i.e. hidden from the view of some functions - dimension,

reshape, ravel, etc.)0 Conceal is nilpotent on unit arrays

and scalars because neither the dimension nor the values are

changed by application of the function.

Identity:

(I 8) lJ.. +-+ c y.

In terms of the tree representation, conceal sets the

apparent dimension of the root node to I~I.

69

Reveal (A)

Syntax: ~ ~+ =>li

~ is the unit array g with its hidden dimensions

revealed.

Conformability: R is the subject operand and is any unit

array.

Identities:

(19) R ~~~cft Reveal is the left inverse of conceal

(I 10) f:l. +~ C";) !l.

Thus ~ is the array which is concealed in the unit

array R. In discussion of functions, reveal is used to

exhibit the action of functions on general arrays, given

that their action on simple arrays is known Q Reveal is

nilpotent on scalars.

Identity:

(I 11) fi +-+ ::>§.

(proof)

by I9

by 18

In terms of the tree representation, reveal changes the

apparent dimension from g to the hidden dimension~

70

The	 ~~d~d~ predicate may be defined by using reveal and

the	 conditional as follows [Lathwell 12]

~Q4~dE H +~

lE O+~ppR XHg~

lE O+~pp~R LH~~ 1


~~~~ a
 

~~£~ 0
 

The expression R +~ ~H which is true for scalars is not 

an appropriate definition because JR may be undefined if R 

is not a unit array. An expression for the ~Qd~dR predicate 

which does not involve the conditional is presented on page 

90. 



71 

Unit Indexing (A) (select function) 

Syntax: ~ +~ ~ 9 R 

~ is an array of unit arrays selected from 

positions ~ in R. 

Conformability: R is the subject operand and is any array, ~ 

is a control operand and is any O-level or 1-1evel 

array of integers 0 

Formal description: 0 origin dependent 

IE 0 = p p f! 'lllE.!l. «Pl1)l.:::>.I!.) 9 ,!i 

~b.§'~ I.f. 1 = ppl! Xf1g!i. ~ of dimension Pf! such that 

I 9 ~ +-+ (I 9 I:.) 9 11 

for It 0 :s; I :s; PH. 

g!.:.§.E. (p~) p ( tI:.) 9 Ii 

Notice how the use of ~ in the definition imposes 

restrictions on~. If ~ is not simple in line 2 then :::>~ is 

not a scalar and therefore must have dimension PP~o Thus a 

rank-N array is indexed by unit arrays which are the conceal 

of N element vectors~ In particular a vector is indexed with 

unit arrays which are the conceal of one element vectors~ In 

vector indexing scalars are used to index vectors@ This is 

no problem because in case ~ is simple and R is a vector, 

the definition of unit indexing reduces to that of vector 

indexing This is seen because the definitions are identicala 

except when O=PP~e In that case ~ is scalar and: 



72 

«pH)~~~) 9 ,E def. of unit indexing 

+~ «pR)~~~) 9 H by IS 

+~ «pR)~~) 9 B by 111 

+~ (+/~xl+(x,pE),1) 9 R def. of ~ 

~+ (+/~x1+(pR),1) ~ H def. of x~ 

~~ (+/Lx1) ~ E def. of ~ 

+~ ~ 9 R def. of +/ 

Therefore unit indexing is a proper extension of vector 

indexing. 

Examples: 

«cO O),c1 2) 9 3 3 Plg 

a 5 

( c~) 9 9 

9 

Unit indexing allows selection of elements from any 

array. In particular it allows indexing of unit arrays (and 

therefore scalars) yielding the following identity: 

(I 12) !l.. ++ (c E. ) 9 fL 

(proof) : 

(cg> 9 y. 

~-+ « p cg ) ~ :>c g ) 9 , 71 by def. of 9 



73 

+~ (E.J.:Jc~) 9 ,Td by 17 

+~ ( g.lE.) 9 ,{L by 19 

+-~ ( +I grx 1 ~ ( x~ ~) , 1 ) 9 ,ll by def of .1CD 

+ .... ( +/ ~x 1 1- gz , 1 ) 9 ,[1. by def(l) of , 
+~ (+/gxl~l) 9 ,ll by def~ of , 

+~ (+/-gx~) ~ ,Tl. by def* of ~ 

+~ (+Ili) 9 ,ll. by the scalar extension 

+~ 0 9 ,Tl. by defQ) of +1 

++ !!. by defQ) of vector indexing 

Identity: 

(113)	 J 9 K 9 L +~ (J 9 K) 9 L 

This is merely a substitution for ~ in line 4 of the 

description and says that unit indexing is associative. 

An index I to an array E is called a Q~QQ§~ ~D9g~ (PI) 

of R if it selects a single unit array from go Formally 

must be the conceal of a length ppE vector of integers such 

that 

Q!i.Q ~ (J 9 ~I) ~ 
- l+Q!lQ+J ~ pli
 

for each scalar integer J
 

$; s
QE~ J l+QRQ+J 9 PH. 

In particular the only proper index of a unit array is 

ell" The terminology PI will be used to eliminate the 

explicit declaration of the range of indexes~ 

I 



74 

The display of a general array is not as straight 

forward as the display of a simple array because any index 

position may contain an arbitrarily complicated sub-array. 

The following algorithm is used for display of general 

arrays: 

1.)	 If A is simple then display it as before. 

2~)	 If A is not simple, then display in row major 

order as part of the dimension display, the 

index to each position in the array and then 

recursively display the reveal of the array in 

that position. 

For example the array represented by the tree in figure 

4b page 66 is displayed as follows: 

O:p 

B 

1 ~ p 3 

012 

The array is a two element vector and is not simple. 

The first element is at index position zero and is a scalar 

so its dimension display is empty. The index positions and 

dimension are separated by the symbol g~ The second element 



75 

is at index position 1 and is a three element vector. This 

form is a little cumbersome and in an implementation it 

might be desireable to elide some of the detail. It is, 

however, an unambiguous and complete representation of a 

general array. The following properties may be read 

immediately from the dimension display: 

1.)	 The dimension display of a simple array has no 

occurence of the symbol g 

2~)	 The dimension display for a unit array begins 

with the symbol g 

No primitive notation is provided for writing general 

arrays just as no way is provided for writing simple arrays 

or even scalar rational fractions 0 



76 

Entire (A) (select function)
 

Syntax: ~ +~ g R
 

Conformability: R is the subject operand and is any array.
 

Formal description: origin free
 

~ +~ H 

This is not a useful function at this time but later 

the fact that it is size preserving will be useful. 



77 

Same (A) 

Syntax: ~ ~~ ~ ~ R 

~ is 1 if ~ and R are the same array and 0 

otherwise~ 

Conformability: ~ and R may be any arrays 

Formal description: origin free 

IE (~~d~4R ~ dNll ~Qd~4a R ) XH~~ ~ = a
 

E~~g IE (E +~ p~ ~~~ ~ ~~ pH) Xg~~ (~~) - JE
 

~~~g IE p~ +~ DR


Xli~~ A/T for T of dimension x/p~ such that

I 9 T +~ (I ~ ,~) = I 9 ,ll

for each PI I of ,~

g~~~ 0

Examples:

~ = 1 2 3

a

1

- is the APL equivalent of the meta-notation +~ and

could be used in its place~

78

Membership (I)

Syntax: Z. +-+ L.€B..

~ is one or zero as the corresponding element of ~

does or does not occur in R

Conformability: ~ and E may be any arrays

Formal description: origin free

~ of dimension p~ such that

I 9 Z ~~ IE (I 9 ~) - J 9 E

for some PI J of ft lli~~ 1

~ft.Q~ 0

Examples:

'CAT' € 'CAB'

110

1 3 5 € cl 3 5

000

1 3 5 € 3,cl 3 5

010

79

Complement-of (set Difference) (A)

Syntax: ~-+ ~~11.

~ is the vector of elements from E which do not

occur in L.

Conformability: ~ and R may be any arrays.

Formal description: origin free

~ +-+ (,~ll€ft.)/,!i

~~ll may be read as the complement of ~ in R~ Notice

that the structure of the operands is of no consequence.

Examples:

(13) ~ 15

3 4

'AB' ~ 1 2

1 2

The function may be used to delete the blanks in a

character vector.

, '~'NOW IS THE TIME'

NOWISTHETI14E

80

Index-of (ranking) (E)

Syntax: ~-+ L.tg

~ is the array of index positions for elements of R

in ~

Conformability: ~ and II may be any arrays

Formal description: origin free

~ of dimension pll such that

I 9 •~ +-+

IE E. +-+ p~ 'l.[J.~li.

IE ~ +-+ I 9 R Xg~~ cg

E-L.§..g e

g~~~ IE I g .E-+ J 9 ,~ for some scalar J

'lll.gli c(P[:.)TJ

for the smallest J such that I 9 ,E ~-+ J 9 ,~

E.l!.~~ 8

Examples:

1 2 3 1 2 2p 3 1 0 3

o O~pl

2

o 1~p1

o

1 O:p

e

81

1 1:pl

2

(2 2p'ABCD')t'CA'

0: p 2

1 0

1:p2

a 0

g 1 5 6

8 e

This use of the position scalar e corresponds to the

use of the null character 0 in Iverson's discussion of

ranking. [Iverson 10]

In certain special cases index-of may be considered an

inverse to unit indexing.

Identity:

(I 14) B. ++ (R1[1) 9 H.

82

Transpose (I)

The definitions of dyadic and monadic transpose are so

closely related that it is convenient to treat them

together{t

Syntax: Z +~ ~~R (or ~ ++ ~R)

~ is R with permuted coordinates some of which may

be aligned.

Conformability: R is any array, ~ in the dyadic case is any

vector of elements taken from lppE such that

p~ +-+ PPli.

1\/~€lppll

1\/(lr/k)E~ <b is dense)

[Abrams 1]

Dyadic Transpose

Formal description: origin independent

Z of rank 1=QftQ-r/~ such that

I g p~ ++ L/(~=I)/pH

for each I, QHQ~Isr/~

and

I 9 ~ +~ (c~ g ~I) g B

for each PI I of ~

83

Monadic Transpose

Formal description: origin free

~ ~+ (~\PP~)~E

This description differs from that used in APL\360 but

is the transpose defined in the formal description of APL

[Lathwell,Mezei 11]

Examples:

1 0 ~ 2 3p'ABCDEF' (or ~ 2 3p'ABCDEF')

AD

BE

CF

o 0 ~ 2 3p'ABCDEF'

AE

In case ~ is a permutation of tppE or in every case of

monadic transpose Z is said to be ~gYiYglgn~ to R YQ ~Q ~

t[gn§2Q§~. When defining functions there are often many

choices for the arrangements of the dimension vector. Each

of the arrangements is equivalent up to a transpose to each

of the others.

Identity:

(I15) R +~ (tppR)~R

84

5

Grade Up (I)

Syntax: ~ +~ 4 R

~ is the permutation of \P~ which will order R from

smallest to largest.

Conformability: R is any numeric vector. The position scalar

e is permitted in the domain of grade up and is

considered smaller than any number.

Example:

(45) 9 5

(4 5 e 6 -2) 9 5 e 6 -2

e 256

Grade up has the following useful property. If R is any

permutation of tN for some non-negative integer N then 4fl is

its inverse permutation and (4R) 9 R +~ IN which is the

identity permutation. Thus R +~ 44ft.

85

Grade Down (I)

Syntax: ~ +~ 'R
~ is the permutation of lpE which will order R from

largest to smallest.

Conformability: R is any numeric vector. The position scalar

e is permitted in the domain of grade down and is

considered larger than any number.

In case R has no occurance of e the following

definition holds.

~ +~ 4-R

Examples:

(t 5 e 6 -2) g 5 e 6 -2

e 6 5 2

Information about the Grade functions as implemented in

APL\360 may be found in the IBM Systems Journal [Woodrum

2 2] •

86

In this section several methods for applying functions

to general arrays are defined. The most fundamental of these

is the scalar extension for scalar functions~ A direct

generalization of this is the scalar product operator which

extends the same concept to non-scalar functions. Reduction

has already been defined but is generalized. The outer

product is defined as an alternate way to pair up the

elements of the operands for application of the primitive

definitions of functions~ Inner product combines arrays

using two primitive functions.

The Scalar Extension for Scalar Functions

The following definitions of scalar functions on

general arrays assume only the primitive definitions of the

functions~ The extension of the functions to simple arrays

is restated (now formally) providing a self-contained

description.

1 0 Scalar monadic functions: ~ ~~ MH }

IE ~Qd~~R H

~li~~ MR (the primitive definition)

~~~~ IE ~ +~ pR 



87 

Xli~R eM ~R
 

g~~~ ~ of dimension pH such that
 

I 9 ~ +~ MI 9 R for each PI Io
 

2.) Scalar dyadic functions: ~ +~ ~ ~ R 

IE ( £Qd~dR ~ d~~ ~Q4~4E R) XH~~ ~ ~ E
 

(the primitive definition)
 

E~~g lE ~ +~ pk lH~~
 

lE K +~ pH THEN c(~~) II ~E
 

g~£g «pE)p~) ~ B
 

g~~g IE E +~ pE Xgg« L ~ (p~)pR
 

~~~g IE pR ~~ p~ XH~~ Z of dimension p~ such that 

I 9 ~ ~~ (I 9 L) ~ I 9 R

for each PI I of H

~~£g undefined

Notice that a unit array is made dimensionally

conformable to every arrayo

o~ Q~g~s~Q~§

The scalar extension for scalar functions is certainly

one of the important ways to apply functions to arrays. But

it is only one of many possible extensions some of which are

sufficiently useful to deserve primitive existence along

with scalar extensiono A function cannot be allowed to act

88

in more than one way on array operands so new functions are

needed to represent the alternate array extensions~ To

invent new function symbols for them is no problem but is

inefficient of symbols and confusing. Therefore objects

called operators are introduced.

An QQg~g~Q~ is an object which takes functions as

operands and produces a function as its result~ Operators

differ from functions as follows:

1~)	 They are of higher precedence than functions~

The rightmost operator in an expression is

evaluated before any function is evaluated~

2~)	 Both the left and/or right operands of an

operator have limited scope~ That is

parentheses are not needed to limit the extent

of the right operand~

It is interesting that an operator and its operands

could be considered a multi-position symbol for a function

(this has been done in implementations to date) 0 This stand

was taken implicitly in the earlier discussion of the

reduction and scan functions~ The symbols +/ may be taken to

be a 2 position notation for a function which is related to

addition (i.e. an alternate extension of addition on

arrays) 0 Or / may be considered a dextri-monadic operator

which modifies its function operand + to be a new monadic

function called plus reduction~

89

The scalar product operator is a monadic operator which

has three definitions, one each when it is applied to

monadic and dextri-monadic functions and one when it is

applied to dyadic functions. It represents a method for

applying functions to the subarrays concealed in general

arrays. The symbol i is called demi-colon.

1.) Monadic functions: ~ ~~ i MR

~ +~

IE ~ ~~ pE £lig~ c M ~B

~b~~ ~ of dimension pE such that

I 9 ~ ++ i MI 9 R

A similar description applies to dextri-monadic functions.

2.) Dyadic functions: Z +~ ~ ~ Q R

IE ~ +~ p~ XRgN

IE ~ +~ pR ~g~~ c (~~) ~ ~E

g~~g «(pR)p~) 9 Q R

~~~g IE g +~ pH XHg~ ~ ~ D (p~)pE 

g~~~ IE p~ ~~ pH lH~~ Z of dimension p~ such that 

I 9 ~ +~ (I g ~) 9 Q I 9 R 

~~Q~ undefined 



90 

Unlike scalar extension for scalar functions, recursion 

ends when a unit array is reached. In case ~ (or ~) is a 

scalar function then the operator is nilpotent. The 

operator is called the scalar product operator because the 

functions it produces act like scalar functions on the 

outermost level of their operands. A more general 

description of scalar extension will be given in a later 

section. 

Examples: 

9 p c2 3p\6 

~p2 

2 3 

(c 1 2) v , c3 4 

:p4 

123 4 

(c 4 5) 9 - (c'AB'),c4 5 

o 1 

The scalar product operator allows definition of the 

~Q4~dR predicate: 

~Q4~dR R +~ (Cl0) - 9 pH 



91 

Generalized Vector Reduction Operator (I) 

Vector reduction is a dextri-monadic operator whose 

left operand is gDY dyadic function Q Notice there is no 

restriction that this function be scalar or even primitive. 

It represents a way to apply a dyadic function ~ to a single 

array operand. 

Syntax: ~ +~ Q/E 

Conformability: R is any vector or scalar, ~ is gn~ dyadic 

function~ 

Formal description: origin independent 

Z +~ 

IE E +~ pR xa~~ E 

~~~~ IE O=pR lllg~


IE identity element I exists for Q rH~~ I


~~~~ undefined
 

E~~~ IE l=pR Xgg~ gpft
 

~~£g CQRQ 9 R) 9 ~ Q/1~B
 

Scan and backscan would be generalized by using this 

definition of reduction. 

Example 

~,/(cO 1),(c2 3),c4 5 

o 1 234 5 



92 

Matrix Product Operator 

The matrix product operator (0) is a dyadic operator. 

When both operands are dyadic functions, the resulting 

function is called inner product. When the right operand is 

a dyadic function and the left operand is the symbol 0, the 

resulting function is called outer product. They each 

represent alternate ways to apply dyadic functions to array 

operands. The extension of inner product to arrays to be 

introduced later represents a generalization to the 

algebraic matrix product. 

Outer Product (I) 

Syntax: ~ +~ L ooQ E 

~ is the array produced by applying the dyadic 

function ~ to all pairs of elements, one from ~, 

one from !i 

Conformability: ~ and E are any arrays, ~ is any dyadic 

function. 

Formal description: origin free 

~ of dimension (p~),pE such that 

( I'i , J) 9 ~ +-+ (I 9 It.) i y. J 9 !1. 

for each PI I of ~ and each PI J of H 



93 

Outer product may be used to generate operation tables 

for functions. 

(13)° 0 +13 

012 

123 

234 

(2,c1 3) 00+ 20,c30 40 

a O~p 

22 

o 1:p2 

32 42 

1 O~p2 

21 23 

1 1:p2 

31 43 

In case ~ and R are simple, the outer product may be 

expressed in either of the forms: 

=>(c~) 12 !1.
 

-:J~ 12 e!1.
 

Yet another form is discussed in Chapter 3 under scalar 

extension. 



94 

Vector Inner Product (I) 

Syntax: ~ +~ ~ ~oQ' R 

Conformability: ~ and R are any vector or unit array. Q and 

~' are any dyadic functions. 

Formal description: origin free 

~ +~ Q/ ~ 9 Q' E 

~ is always a unit array because vector reduction 

always produces a unit array. Inner product will be extended 

to arrays along with other vector functions in section T of 

this chapter. 



95 

Operator examples 

For all operators the functions may be any function 

(i.e. gY§D DQn=Q~iID!~!Y~)~ In particular they may be 

functions resulting from an application of these operators. 

Thus these operators may be used to generate any number of 

new functions related to, but different from, the primitive 

function. The following examples take the same two operands 

(2,cl 3) and «20,c30 40). The first case shows an ordinary 

attach. The next two show attach with the scalar product 

operator and with the outer product operator. The next four 

show the same operators on attach to two levels in all 

possible combinations. 

(2,c1 3),(20,c30 40) 

O:p 

2 

1~p2 

1 3 

2 : p 

20 

3 ~ p 2 

30 40 



96 

(2,cl 3) ¥ ,(20,c30 40) 

a : p 2 

2 20 

1 : p 4 

1 3 30 40 

(2,cl 3)oo,(20,c30 40) 

a O:p2 

2 20 

o 1:p3 

2 30 40 

1 0: p 3 

1 3 20 

1 1:p4 

1 3 30 40 



97 

(2,c1 3) i 9 ,(20,c30 40)
 

o ~ p 2
 

2 20
 

1:0:p2
 

1 30
 

1:1:p2 

3 40
 

o 0 ~ P 2 

2 20
 

o 1:0:p2 

2 30
 

o 1~1:p2 

2 40
 

1 0:O:p2
 

1 20
 

1 0:1:p2 

3 20
 



98 

1 l~O O:p2
 

1 30
 

11:01:p2
 

1 40
 

11:10:p2 

3 30
 

1 1:1 1:p2 

3 40
 

(2,cl 3)0 0 9 ,(20,c30 40) 

o 0: p 2 

2 20
 

o 1:0:p2 

2 30
 

o 1:1~p2 

2 40
 

1 O:O:p2
 

1 20
 



99 

1 O:1:p2
 

3 20
 

1 1:0:p2
 

1 30
 

1 1:1:p2
 

3 40
 

O:p2
 

2 20
 

1:0 O:p2
 

1 30
 

1:0 1:p2
 

1 40
 

1~1 O:p2 

3 30
 

1:1 1:p2
 

3 40
 



100 

Index Generator (Interval) (Odometer) (E) 

Syntax: Z. ++ \R 

~ is the array of all valid indices to an array of 

dimension Ii 

Conformability: H is any vector of non-negative integers. 

Formal description: 0 origin dependent 

lE 0 +~ pH XR~~ cg
 

E~~~ (10 9 R) °0 9 , 11~g
 

10 9 R is the previously defined interval function and 

11~R is recursively the index generator. It is obvious from 

the use of the outer product that p~ ++ pR. 

Examples: 

1 3 

o 1 2 

(13) 915 

\ t 3 

o ~ p 1 

o 

012 



101 
e 

1 ~ p 1 

1 

2: p 1 

2 

(1,3) ~ 15 

012 

t2 3 

o O~p2 

o a 

a 1: p 2 

o 1 

o 2: p 2 

o 2 

1 O:p2 

1 0 

1 1:p2 

1 1 

1 2:p2 

1 2 



102 

Extended interval is called index generator for the 

obvious reason. The term odometer was used for a similar 

function defined by Abrams [Abrams 1] probably because the 

elements taken in row major order count in a base R number 

system. 

An index I is a proper index (PI) of an array Riff 

I€lPE and this may be considered an alternate definition for 

a proper index. Again note that for H a unit array 

1 p B. +-+ 1 E. +-+ c E. 

Identities:
 

(I 16) !1. +-+ (1 PB. ) 9 !l.
 

(117 ) II +-+ Pl!1. (easily proven by induction on p!1.) 



103 

An array R of rank N~l may be thought of as anyone of 

N sets of rank N-l arrays joined along a new coordinate. For 

example a matrix of dimension 3 5 may be considered as 

3 5-element vectors or 53-element vectors. In general an 

array R of rank N~M may be thought of as anyone of M!N 

sets of rank M-N arrays joined along M new coordinates. 

Functions can be defined which act on array R as a 

single entity. But if one is thinking of E as a set of 

smaller rank arrays, it would be convenient to permit the 

functions to act on the smaller arrays as though they were 

the entities. Therefore many functions are equiped with a 

third operand called a fYD£~!Qn inQg~ which is used to 

specify the partitioning of the array. The function index 

(denoted EI in the meta-notation) is usually considered an 

index to the dimension vector of the right operand E of the 

function. As a vector index, its elements may be scalars or 

the conceal of one element vectors but for formal purposes 

the latter is assumed. An indexed function has its third 

operand displayed in brackets and appended to the right of 

the function symbol. 

For functions which are defined on sUbarrays of an 

array it is convenient to allow elision of the index in case 

its value is lppR. Other indexed functions may have other 

defaults but in every case E£ selects one or more 



104 

coordinates of a dimension. With each function will be a 

specification of the range of its function index. 



106 

used to index M and select the Ith sUbarray~ 

Examples: 

c[O] 2 3P16 

o ~ p 2 

o 3 

1~p2 

1 4 

2~p2 

2 5 

e[l] 2 3P16 

o ~ p 3 

012 

1 : p 3 

345 

Identity: 

(118) cE +~ c[tppEJ ~ 

(proof) 

1.}dimension identity: 

pe[ tppBJ 11 

+~ «tppR)~tppR) 9 pR def. of c[] 



105 

0 

Indexed Conceal (A) (structure function) 

Syntax: ~ +~ c[EIJR 

~ is an array of unit arrays derived from subarrays 

of H 

Conformability: R is the subject operand and is any array 

EI is any subset of lppH~ The order of the elements 

in EI is relevant~ If EI is elided it is taken to 

be lppR 

Formal description: a-origin dependent 

~ of dimension <EI-1PpH) 9 pE such that
 

I 9 ~ +~ c(Ii ,t(-pEI)+pM) 9 M
 

where
 

M ~~ (4«lPpE)€EI)\1+EI)~R
 

for each PI I of ~
 

Although the description is involved, the function is 

simple. The indexed dimensions are hidden and the resulting 

subarrays are concealed. The dimension of each subarray is 

EI ~ pEG This means that the order of the elements in EI is 

important and that the subarrays concealed in Z are 

equivalent (up to a transpose) to the subarrays of R~ The 

transpose in the description moves the indexed dimensions in 

the order specified in EI to the right of the dimension 

vector defining the array M equivalent up to a transpose to 

g~ l(=pEI)tpM is then the complete index set on those 

dimensions and defines a subarrayo This index array is then 

united (via 9 ,) in turn with each proper index I of ~ and 



108 

Indexed reveal CA) (structure function) 

Syntax: ~ +~ ~[EIJ R 

~ is the array R with its hidden dimensions 

revealed Indexed reveal is the inverse of indexed9 

conceal~ 

Conformability: R is the subject operand and is any array of 

unit arrays having the property 

p~I 9 R +~ p~J 9 B 

for any PI's I and J of g 

El is a vector of dimension pp~ I ~ E of vector 

indexes selected from the set l(pp~)+pp~I 9 E. If 

EI is elided it is taken to be lpp~I ~ EQ The order 

of the elements in EI is relevant~ 

Formal description: 0 origin dependent 

Z of rank (ppH) + pp~I 9 R such that
 

EI 9 pZ ~~ p~I ~ R
 

(EI~lppE) 9 p~ +~ pH
 

and
 

~ +~ (44«tPpM)EEI)\1+El)~M 

for M such that
 

(I~ ,J) 9 M +~ I 9 ~J 9 R
 

Here M is generated with the hidden dimensions revealed 

on the right, then the inverse transpose of that used in 

indexed conceal is used to distribute them in the result 

dimension. 



107 

+-+ pell 

2.)value identity: 

J g c[ tppRJ !i 

+-+ J 9 c(Jw ,t(~ptppfi)tpM) 9 M 

for M ~~(4«tPpR)EtppR)\1+1PpE)~R 

evaluating M 

M 

++ (4«tPpR)EtppR)\1+1PpH)~E 

++ (41+tPPQ.)~lf by def" of \ 

+-+ (tppg)~H by def~ of 4 

~+ li by 115 

using this result 

J 9 c[lPpRJ !i 

++ J 9 e(Ji ,t(-P1PP!i)+pE) 9 R by def o of c[] 

~ 
+-+ (c~) 9 e«e~)i ,t(-p1.ppH)+p!f> 9 II by J€lpp CeXpl1 

+-+- e( t (~p tppE> tpH.) 9 11 by 112 and def(l) of , 

+-+ c(t(~ppli)+pB.) 9 Ii by 117 

++ e(tpR) g !1 by def. of + 

+-+ eB.. by I16 

+-+ (eg) 9 cB., by J€lppCli 

++ J g c!i. 



110 

Indexed reveal and conceal along with the scalar 

product operator may be used to define a function on array 

operands when given its definition on vector operands. An 

array operand is concealed along an appropriate coordinate 

making it an array of one smaller rank whose elements are 

vectors (though not necessarily simple vectors) then the 

scalar product operator is applied to the functional so that 

its vector definition conforms with the hidden vectors. A 

more general form of this same scheme conceals more than one 

dimension and allows easy definition for the action of a 

function index on a function already defined on array 

operands~ This is the case with indexed unit indexing. 

This basic pattern will be used without further comment 

in many of the descriptions which follow. Understanding of 

the functions on vector operands is assumed so little 

discussion will accompany the function descriptions. 



109 

Examples: 

~[oJ (cO 3), (c1 4),c2 5
 

012
 

345
 

~[lJ (c 0 1 2), c 3 4 5
 

012
 

3 4 5
 

Identities:
 

(I19) E +~ ~[EI]c[EIJ R
 

(120 ) E +~ c[EI] ~[EIJR 



112 

(0 i • 0 1 0 i • 0 3) ~ 3 3 3P127°0 0 

a 2 

3 5 

Note that the second outer product could have been 

written simply 00t ~ If one defined a cartesian product 

function (i) having the definition 

it. ; .fi +-+ L. 0 i t !1.0 

then the above expression could be written 

(0 ; 0 1 ; a 3 ) 9 3 3 3Pl27 

This form has a pleasing similarity to the bracket 

indexing of APL\360 differing only in the possible need for 

extra parentheses. 



111 

Indexed Unit Indexing (A) (select function) 

Syntax: ~ +~ ~ 9 [El] R 

~ is a set of rank (ppE)-pEI subarrays selected 

from H 

Conformability: R is the subject operand and is any array, ~ 

is the control operand and is any Q-level or 

1-level array of integers. EI is any subset of tppE 

such that p~I ~ ~ +~ pEL for any PI I of ~~ If EI 

is elided it is taken to be lppa~ 

Formal description: origin free 

~ +~ ~[EIJ (c~) V 9 e[EI] R 

Identities: 

(I21) ~ g R ++ ~ 9 [lppE] R 

(I22) R ++ L 9 [gJ E 

Examples: 

1 39 [1] 34p'ABCDEFGHIJKL' 

ED 

FH 

JL 

This form of unit indexing eases the selection of cross 

sections of an array. More general cross sections may be 

taken by calculating an index as a cartesian product of the 

desired coordinates. Thus selecting plane 0, rows 0 and 1, 

columns 0 and 3 of 3 3 3pt27 may be written 



114 

J\~ ttach (I)
 

Syntax: Z +~ ~.[EIJ R
 

Z. is t11e array formed b" joining I:. to li. 

The function index is either a scalar or the conceal of 

a one element vector and may be thought of as indicating the 

position in the result dimension along ~mich the operands 

are joined. If E£ is elided it is taken to be 

r/t(pp~)rppR 

There are three distinguishable cases of attach and for 

purposes of clarity each will be treated separately. 

Catenate 

Two arravs of enual rank are attached yielding an 

array of the same rank. 

Conformability: (EI~tpp~)/p~ ++ (EI~lPP~)/pH 

EIE1PP~ 

Formal descrirtion: origin free 

~ ++ ~[EIJ (c[EIJ ~) 9 , c[EI] E 

Examples: 

1 2,[OJ 3 4 

1 2 3 4 

( 2 3p16),2 2p t 4 

0 1 2 0 1 

3 4- 5 2 3 



113 

Indexed Ravel (E) (structure function) 

Syntax: Z +~ ,[El] R 

Conformability: R is the sUbject operand and is any array, 

EI is any permutation of tppB. If EI is elided it 

is taken to be lppE~ 

Formal description: origin free 

~ +~ ,FI~R 

The description is so nearly primitive itself that it 

is questionable if the function is worthy of primitive 

existence~ However its inclusion removes some of the special 

status attributed to row major order. 

Example: 

,[1 oJ 2 3p'ABCDEF' 

ADBECF 



, 16
 

1 2 3 

6,[0] 2 3P16
 

6 6 6
 

o 1 2 

3 4 5 

Laminate 

Arrays of identical shape are attached yielding an 

array of one higher rank. 

Conformabilitv: p~ +~ pE or one array must be a unit array. 

EI must be non-integer in the range (QEQ-1) < EI < 

Q!l(Z+ppli 

Formal description: origin free 

Z ++ J[rEl] ~ 9 , R 

Examples: 

2,3 

2 3 

'ABC',[-~5J 'DEF' 

ABC 

DEF 

tAB C t , [ 0 5] 'D EF ' 



115 

In the description of catenate each operand is 

concealed along the indexed dimension. These arrays are then 

conformable for the scalar product operator which is used to 

catenate the hidden vectors. 

Adjoin 

Arrays which differ in rank by one are attached 

yielding an array having the larger rank. 

Conformability: 1 ++ f(pp~) - ppft or one array must he a 

unit array. 

EI € \(pp~)rppE 

Formal description: a-origin dependent 

IE (pp~)< ppR XHg~ ~[EIJ L V ,c[EIJ H
 

g~~E ~[EI] (c[EIJ ~) i , H
 

In adjoin the indexed dimension of the array of larger 

rank is concealed making the arrays conformable for the 

scalar product operator. An alternate definition would be to 

reshape the array of smaller rank to insert a one in the 

indexed dimension making the resulting arrays conformable 

for catenate. 

Examples: 

1,2 3 



118 

Indexed Take (E) (select function)
 

Syntax: ~ +~ ~ f[El] E
 

Conformability: R is the subject operand and is any array,
 

EI is any subset of \ppR. If EI is elided it is 

taken to be lppR. L is the control operand and is a 

simple vector such that p~ +~ pFI. 

Formal description: origin independent 

~ +~ 

IE E ++ pEL Xll~« H 

g~~E (1~~)t[1~EI] ~[ltEIJ (QRQ 9 ~) ~ t c[ltEIJ R 

When EI is elided, this is the same as the take function 

defined in APL\360. 

Example: 

2+[OJ 3 3P19 

012 

345 

2 2 t[1 0] 3 3P19 

1 2 

4 5 



117 

AD 

BE 

CF 

Here unit arrays are joined by applications of the 

scalar product operator yielding hidden two element vectors. 

The fractional function index then indicates where in the 

result dimension the hidden dimension of 2 should be 

inserted. 

The attach function defined by this triple of 

descriptions is essentially unchanged from the attach 

function defined in APL\360. 



120 

Base Value (decode) (I) 

Syntax: Z. +-+ L,J..!1.. 

Conformability: Land R are any arrays such that 

ltpl! ++ l+pR 

Formal description. origin independent 

~ +-+ (c[-1ttPp~J ~) i J.. c[Q!1..Q] E 

This function is identical with the Base value defined in 

APL\360. 

Example: 

10 10 10 ~ 3 2 P16 

24 135 



119 

Indexed Drop (E) (select function) 

Syntax: ~ +~ ~~[EI] H 

Conformability: same as indexed take c 

Formal description. origin independent 

~ +~ 

IE ~ +~ pEl XHg~ R 

g~~~ (1~~}~[1~E~J ~[1~ElJ (QEQ 9 ~) 9 ~c[1+EIJ E 

When EI is elided this is the same as the drop function 

defined in APL\360. 

Example: 

2 ~[OJ 3 3pt9 

pi 3 

678 

2 2 ~[1 oJ 3 3pt9 

pi 1 

6 



122 

Indexed Compress (1) (select function)
 

Syntax: ~ +~ ~/[EIJ g
 

Conformability: R is the subject operand and is any array.
 

EI € lpp!i, if El. is elided it is ta}~en to be r/lppll. 

~ is a numeric vector such that p~ ++ EI 9 pll 

Formal description: origin free 

~ +~ ~[EIJ (c~)v le[EI] H 

This function is identical to the compress defined in 

APL\360Gl 

Example: 

1 0 1/[OJ 3 3pt9 

012 

678 



121 

Represent (Encode) (I) 

Syntax: Z +~ ~ TR 

Conformability: ~ and R are any numeric arrayso 

Formal description: origin f-r-ee 

~ +~ ~[-1t\Pp~] c[-lttPp~J i T E 
- ( 

This function is identical with the represent defined in 

APL\360. 

Example: 

10 10 10 T 24 135 

o 1 

2 3 

4 5 



124 

Indexed Reverse (I) (select function) 

Syntax: Z +~ ¢[EIJ R 

Conformabili ty: !1. is the subj ect operand and is anv arra~'. 

EI is any subset of lppR, if El is elided it is 

taken to be lppR. 

Formal description: origin free 

IE ~ +~ pEl XHg~ H 

K~~g ~[l~EIJ ~[ltEIJ i ~ c[l+EIJ ~ 

The first ~ in this description is a recursive reference to 

indexed reversal, the second is vector reversal. This 

function differs from the reverse defined in APL\360 in that 

any or all coordinates may be reversed, and when EI is 

elided, all coordinates are reversed. 

Example: 

<P[lJ 3 3pt9 

210 

5 4 3 

876 



123 

Indexed Expand (I) (select function)
 

Syntax: ~ +~ ~ \[El] R
 

Conformability: R is the sUbject operand and is any array.
 

EI€lppR, if EI is elided it is taken to be r/1PpR. 

~ is a numeric vector such that +/~ +~ EI 9 pR 

Formal description: origin free 

~ +~ J[EI] (c~)i \ c[EIJ B 

This function is identical to the expand defined in APL\360 o 

Example: 

1 0 l\[OJ 2 3pO 1 2 6 7 8 

012 

e 8 e 

678 

It is interesting to note that if EI is permitted to be 

a subset of lppE, that the definition still holdsQ If this 

extension were adopted, then the following example would be 

valid: 

(3 3pO 1 1 1)\[0 1] 3 2P16 

e 0 1 

2 Q 3 

4 5 e 



126 

Indexed Reduction 

Syntax: ~ +~ ~/[EI] R 

Conformability: R is any array,E£ is any subset of lppR, if 

EI is elided then it is taken to be lppR, ~ is any 

dyadic function 

Formal description: origin free 

Z +~
 

IE ~ +~ pEL Xli~~ H
 

g~Qg ~/[-l~EI-El>-l+EI] ~ Q/c[-l+EI] R
 

The first ~/ in this description is a recursive 

reference to indexed reduction, the second is vector 

reduction. The expression in the function index of Q/ 

assures that throughout the recursion the index will refer 

to the original coordinates of the array H. This function 

differs from the reduction defined in APL\360 in two ways. 

First any or all coordinates may be reduced. Second when no 

function index is supplied, reduction always produces a unit 

array. 

Example: 

=/[1 2J 2 3 4P124 

o 0 



125 

Indexed Rotate (I) (select function)
 

Syntax: ~ +~ L~[EIJ R
 

Conformability: E is the subject operand and is any array. ~
 

is the control operand and is an integer scalar or 

a simple array of integers of dimension 

(EI~tppE)/pR. EI€lppE. If EI is elided it is taken 

to be r/lppR. 

Formal description: origin free 

Z +~ ~[EI] ~ i ~ c[EIJR 

This function is identical to the rotate defined in 

APL\360. It is particularly pleasing that the general array 

extension method applies so easily in the description of 

this function. E is concealed along the indexed dimension 

leaving an array conformable to a scalar ~ or an array ~ of 

like dimension. 

Example: 

1 0 1 ~ 3 3P13 

201 

012 

120 



128 

Inner Product 

Syntax: ~ ++ ~ ~oQ' R 

Conformability: Land R are any arrays such that 

1tp~ ++ 1tpg, Q and Q' are any dyadic functions. 

Formal description: origin independent 

~ +~ 9 ~/ (C[-1tlPP~J L) i ~' c[QEQ] R 

This function is the same as the inner product function 

defined in APL\360. 



127 

Indexed Scan 

Syntax: ~ +~ ~\[EI] E 

Conformability: same as indexed reduction 

Formal description: origin independent 

~ +~ 

IE g +~ pEl XH~~ R
 

g~~g Q\[-l~EIJ ~[-1+EIJ ~ Q\c[-l+EIJ R
 

Indexed back-scan has a similar description by using 

backscan in place of scan in the above descriptionQ 



name 

reshape 

attach 

size 

ravel 

conceal 

reveal 

~ 

~ 

Z 

Z 

~ 

Z. 

svntax 

+ ...... [;,pB.. 

+ ...... ~, [EIJR 

+ ...... pB. 

........... 
t [E.IJI1 

+ ...... c[EIJE 

+-+ ::>[EI]R 

l:. default El. li 

control subject 

sUbject r/t(ppl!.)rppR subject 

subject 

l.pp{l subject 

tppH subject 

lPp::>I 9 11. subject 

130 
~ 

Table 1 The Structure Functions 

name 

indexing ~ 

entire Z 

take ~ 

drop ~ 

compress ~ 

expand ~ 

reverse ~ 

rotate ~ 

transpose Z 

transpose Z. 

s~'ntax 

+-+ ~g [EIJll 

++ 9 Ii 

+-+ ~+[EIJE 

+-+ ~"'[EIJli 

-+-+ ~/[EIJE 

+-+ l!\[EIJll 

+-+ cI>[EIJlI 

+ ...... ~Q>[EIJR 

.....-+ It.~B.. 

+-+ ~E. 

L. 

control 

control 

control 

control 

control 

control 

control 

default EI 

lppE 

tpp!1 

1 ppE 

r/tpp.t£ 

r/1Pp!l 

tPPff 

r/1.PPl!. 

l1. 

subject 

subject 

sUbject 

sUbject 

subject 

subject 

subject 

sUbject 

subject 

subject 

Table 2 The Select Functions 



129 

A multitude of primitive functions have been presented 

in this chapter. The majority of these functions already 

exist in APL\360 but nearly all have been redefined to some 

extent (the scalar functions being the notable exception) 0 

One could continue to define primitive functions for more 

and more specialized purposes but given a sufficiently 

powerful and general set of primitives these special 

functions may be defined as sets of compound expressions. To 

achieve this, notational existence must be attributed to 

some set of objects corresponding to function symbols and to 

~. g. ~. and EI of the meta-notation. These objects are 

called names. They and functions defined on them shall be 

the subject of Chapter 2~ 

The following page contains a summary of the structure 

and select functions to provide an easy reference for the 

definition of these functions on names. 



132 

any examples in this paper to avoid confusion with the 

meta-notation~ An identifier is an atomic object and its 

multiposition display is not significant* An identifer 

cannot be confused with a character constant because there 

are no enclosing quoteso (This is a stronger reason for 

using quotes for character constants than the one given 

earliero) 

Examples: 

X 

RATE 

L49 

A DgIDg is any identifier or any function symbol and is 

therefore DQt an arrayo A name may be associated with a 

constant array called its gg§Q~iQtiQD and the resulting pair 

is called a Y2~i2Q!g fYD£tiQD. Variable functions which are 

named by function symbols are called ~~iIDi~iyg fYD£~iQn§ and 

have already been discussed. Variable functions which are 

named by identifiers are separated into three classes based 

on the type of the constant arraY$ 1~) if the array does not 

contain a program scalar then the variable function is 

called a Yg~!~Qlgo 2~) If the array contains only program 

scalars, then the variable function is called a ggfiD§9 

fYn~~iQD~ 3~) Any other variable function is called a mi~gg 

y§rlgQlg and is treated syntacticly as a variable~ The term 

variable is used because at different times a name may be 

associated with different constant descriptionS0 This is not 



131 

Chapter 2
 

Defined Functions and the Name Domain
 

All the examples of the preceding chapter involved 

primitive functions with literal operands. All the 

descriptions involved a meta-notation for operands with the 

understanding that any literal in the domain of a given 

function could be substituted for the meta-notation. If all 

possible functions were primitive, then no further machinery 

would be required. But as was stated before not all 

functions are created equal and only the useful and general 

ones are endowed with primitive existence~ It becomes useful 

then to permit one to derive a new function from the old 

ones in terms of general operands as is done in the 

meta-notation and then apply the function as though it were 

primitive. To this end the concept of a variable which will 

play the role of the meta-notation for operands and 

functions is introduced. 

An i9gDt~fig~ is a sequence of alphabetic (A=Z, and 

r 4=~) and numeric (0=9) characters whose left-most symbol is 

an alphabetic The underscored alphabetics are not used in$ 



134 

Specification (1) 

Syntax: ~ ~~ ~~R 

The description associated with the name ~ (if any) 

is replaced by R~ 

Conformability: ~ is any identifier, the position scalar e , 

or the special symbol 0, H is any arrayQ 

Formal description: origin free 

Specification is indeed a unique function o Its 

evaluation is trivial (much like entire) but it has the 

important side effect of either changing a name into a 

variable function, changing the description of a variable 

function (in which case it is often called a 

respecification), or in case e +~ ~ having no effect at all~ 

The clear distinction between the domains permits the 

inclusion of the p-scalar in the name domain without 

arnbiguityQ When L ~~ 0 a display of g is generated 0 

Examples: 

012 

AB 



133 

the same as a variable in the mathematical senseQ In the 

equation 

«X*2)-Y*2)=(X+Y)x(X-Y) 

if the variables ever denote values, they denote "any 

value"o In APL a variable has one particular value (its 

description) 0 The concept of a compound expression is 

extended to include variable functions and a variable 

function used as an operand to some other function always 

requires evaluation. The value of a variable function is the 

array produced when its description is evaluated~ The 

evaluation of a variable is trivial and the value is not 

distinguishable from the description. The evaluation of a 

defined function implies evaluation of the program it 

represents and in general may depend upon other arrays (its 

operands) • 

An operand of a function is said to be in the Y~l~§ 

QQIDEln when the arrays of the operand are the objects of 

interest~ This is the case with the operands of all 

functions introduced so far. An operand of a function is 

said to be in the DgIDg 9QID~!n when the names occuring in the 

operand are themselves the objects of interest. It does not 

in general matter if the names are variables (ice~ are 

associated with descriptions) or not~ 

The obvious link between the value domain and the name 

domain is a function which has one operand in each domain 

and which establishes the association between a name and a 

description~ 



136 

Chapter 3 Section B) The second restriction is that no0 

defined function equivalent to specification is permitted. 

Having established a link between the value domain and 

the name domain it is natural to explore the name domain 

further 0 

A DsID§ 2£g!~r is a dimensionless array in the name 

domain containing a single nameQ Specification is extended 

to allow ~ to be a name scalar and its action is imposed on 

the name composing the scalar. As with general arrays in the 

value domain the differing personalities between a name and 

a name scalar are determined by the functions which are 

defined on them~ In the following pages the structure and 

the select functions shall be defined in the name dornain& It 

is this latter group which recognizes a difference between a 

name and a name scalar. 

In the value domain, after a scalar was introduced the 

first order of business was to define structured arrays of 

scalars The same is done in the name domain. Name scalarsG 

arranged in order along coordinates form a D~mg ~~~g~ which 

has ngm§ gimgD§!Qn. A Yni~ llsIDg includes several names but 

has empty dirnension~ A g§n~~gl D§ID§ Sr~gY has unit names 

arranged in order along coordinates~ As before, functions 

are needed to construct the name arrays out of name scalars0 

And again the problem of symbol pollution arises New,o 

different, exciting (and probably hard to remember) function 

symbols could be invented for functions in the name domain 

but should be avoided if possible~ Fortunately functions 



135 

In these examples as in all previous examples the 

result produced by the function evaluation is displayed It 

turns out to be convienent in an implementation to inhibit 

the display of a result in the case it is a result of the 

specification function. This convention will be follo~red 

from here on and is the reason for introducing the special 0 

symbols 

The fact that specification has H as a result means 

that multiple specifications are possible in a compound 

expression~ Any such expression can be evaluated by the 

algorithm on page 30 without ambiguity~ 

a 

A+tB+O
 

B
 

o 

A 

Thus specification is used to supply a description for 

a name. A more general specification will be introduced 

shortly which permits specification of selected elements of 

a variableo The left operand of specification is considered 

to be in the name domain only in context of the 

specification arrow +. This prompts treatment of 

specification as a special object rather than a function. 

Treating it as a function is only possible with two 

restrictionsQ First no monadic or niladic ~ shall be 

permitted~ If they were defined then a no-result expression 

left of ~ would be interpreted in the wrong domain (see 



138 

These functions may be used in the obvious way to 

produce any general name arraYa 

The important property of the structure functions in 

this domain is that the relevant structure of the sUbject 

operands is the dimension of the names~ The names need not 

be variables; and if they are, the structure of their 

associated descriptions is utterly ignored. For this reason 

the structure functions do not differentiate a name from a 

name scalar and names are treated as name scalars. 



137 

defined in the value domain may be extended to the name 

domain without arrmiguity (again because of the clear 

distinction between the domains). This is in effect trading 

off symbol creation for increased sensitivity to context~ 

Generally the extension of functions to the name domain 

involves restatement of the description used in the value 

domain with the term name array substituted for the term 

array. Therefore the descriptions will not be repeated in 

detail. 

The follo'~ling table sununarizes the st.ructure functions 

which are extended by allowing the sUbject operand(s) to be 

in the name domain. Notice that a control operand and a 

function index are always in the value domainG 

~ l:- EI. !l 

name syntax domain domain domain domain 

reshape ~ +-+ ~pll name value name 

attach ~ ++ l!, [EI Jll name name value name 

size ooE--+- p!i value name 

ravel ~ ooE--+ t [EIJE: name value name 

conceal Z. ++ c[EIJll name value name 

reveal Z. +-+ ~[EIJH name value name 

~ 

ot, 

TABLE 3~ Structure Functions in the Name Domain 



140 

While interpreting the above description keep in mind 

that ~ is in the name domain and that any functions applied 

to ~ (i~e. ~ and p) must be deciphered in the name domains 

This is the reason for the curious notation ~i. It is 

desired to select a name from ~ yet no select functions have 

yet been extended to the enlarged domain. General 

specification will play an important role in defined 

functions and in arrays of functions. It could be argued 

that the case (g ~~ p~) d~~ (~ +/~ pH) should be undefined 

but the definition given is reasonable and useful (see the 

second exarnple)e 

Examples: 

(AtB)~O 

A 

a 

B 

o 

(cA~B)+t3 

A 

012 

B 

012 



139 

General Specification (E) 

Syntax: ~ +~ ~+R 

The descriptions associated with the names ~ (if 

any) are replaced by the arrays in R& 

Conformability: L is any array of distinct names, II is any 

unit array or any array such that pH +~ P~o 

Formal description: origin free 

Z +~ R 

Note that ~ is an indirect reference to the values 

associated with the names in ~. As with the specification 

defined earlier the result is not as important as the side 

effect of associating arrays (i.e. descriptions) with names. 

The following is the assignment rule which specifies hO~7 

arrays in R are associated with names in ~. 

IE ~Q~~da ~ XRE~ ~+ll 

(specification as previously defined) 

~~£g IE ~ +~ p~ XHg~ 

lE ~ +~ pH lli~~ c(~~)+~g 

g~£g (~~)i+ll 

E~QE lE E +~ pE Xli~~ ~+(p~)pR 

~~~E lE p~ +~ pR Xli~a ~ of dimension pR such that 

i 9 Z +~ c(~~i)+~i 9 R

where ~i is the unit name which occurs in index

position i of ~.

E~~~ undefined

142

The select functions are extended to the name domain by

allowing the sUbject operand to be in the name domain.

Unlike the structure functions, the select functions are

defined only for names having descriptions (i.e~ variable

functions) or for name arrays. In case the sUbject operand

of a select function is a name (say N) associated with an

array (say A), then it is treated as a simple name array

defined as follows 0 The size of the name array is pA~ The

names in the name array are the names of unit arrays in

corresponding positions of A.

For example suppose N+ 2 3p\6 is evaluated. Then the

name array used when N is the subject operand of a select

function could be pictured as follows:

NOO NOl N02

R10 Nil N12

Names as above are never really created but it is a

convenient memory device for understanding how the functions

evaluate~ Notice that each name is associated with a

position in N. Now the select functions may be defined

assuming that the subject operand is a name array and then

the definitions are the same as in the value domain with the

term name array sUbstituted for the term array. Therefore

the descriptions shall not be repeated. A table of select

141

(A,B)+ct3

A

: p 3

0 1 2

B

~ p 3

a 1 2

(2 2p A,B,C,D)+ 2 2pt4

A

o

B

1

c

2

D

4

The p-scalar may be used to force conformabilitye

(E, e ,F)+-t3

E,F

o 2

The following expression can be used to directly

interchange two unit arrays.

(A,B)+B,A

144

~Jame Entire

(9 A)+O

A

000

Name Take

(4tA)+'ABCD'

A

ABC	 Note the use of the p-scalar in the

name domain to form AO A1 A2 e

IJame Drop

(2~A)+7

A

017

r·Jame Compress

(1 0 1/A)+-5 6

A

5 1 6

r'Jame Expand

(1 1 0 l\A)+'ABCD'

A

ABD Note the use of the p-scalar

143

functions would be pointless because the right operand is

always in the name domain and the function index and left

operand (if any) are always in the value domain. Therefore

each select function shall be discussed by example.

Assume the following specifications have been evaluated

just prior to each example:

A+t3

B+2 2pt4

C+2 2P14

Name Unit Indexing

(2 0 9 A)+ 5 6

A

615

This example will be discussed in detail because all

other select functions are defined in terms of unit

indexing. First, A is a name and not a name array. Therefore

it is treated as the name array which could be pictured

AD Ai A2

The 2 0 name index of that is A2 AO~ Then applying the

general specification function is like applying the two

expressions:

A2+5

AO+6

and the resulting value of A is as described.

146

((0 g [OJB),O 0 ~C)+O

B

0 0

2 3

C

a 1

2 a

145

r~ame Reverse

(<j>A)+'ABC'

A

CBA

Name Rotate

(1 q>A) +- tAB C '

CAB

Name Transpose

(0 0 ~B)+ 8 9

B

8 1

2 9

Since the result of a select function is a name array,

a compound expression on select functions is well defined.

A+'l10

(3+SfA)+- 91 92 93

A

o 1 2 3 4 91 92 93 8 9

Combinations of select and structure functions are

valid if the operands to each function are conformable and

if the resulting name array is an array of distinct names.

148

may not in general be clear \~lhich expressions comprise the

definition. This prohlem may partly be solved by supplying a

notation which emphasizes the relationship of expressionsa

Therefore an expression separator symbol 0 is introduced. An

occurrence of this symbol on a line is to mean that the

expressions so separated are related for purposes of

definition but are separated for evaluation~ The occurrence

of a 0 which does not separate two expressions is ignored.

The previous example may now be \~7ritten as follov-7s:

V+ 12 6 7 3 15 10 18 5

MEAN+(+/V)fpV 0 DSQ+(V-MEAN)*2 0 VR++/DSQfpV

VB

23 0 75

Now the definition is distinguished from the setting of

its operand and the displaying of its resultQ Observe that

the expressions of the definition have been evaluated in

sequence proceeding from left to right. The decision to

evaluate in this order is somewhat arbitrary~ It emphasizes

the fact that 0 is punctuation and not a function. Choosing

a right to left evaluation could tend to imply some special

significance which does not exist~

Of the many remaining objections to this method of

definition, three are outstanding. First a definition may be

comprised of a large number of expressions and an attempt to

make them colinear is neither practical nor desireable~

Second, the variables which are operands and the variables

147

Frequently the description of a function in APL

notation requires a set of expressions evaluated in

sequence. This is certainly true when defining specialized

functions from the primitive ones. For example consider

defining a function to calculate the variance VR of a

vector of numbers V. It could be defined as the following

set of expressions which may be divided into three groups.

The first expression defines the (implied) operand of the

function; the next three calculate the result; the last

expression displays the result.

V+ 12 6 7 3 15 10 18 5

MEAJI/+(+/V)fpV

DSQ+(V-MEAN)*2

VR+-+ / DSQt p V

VR

23 0 75

Of course the above definition could be expressed in

one line but in general that is not al~lalrs possible and even

when it is the one-line syndrome tends to cloud a

definition. A set of expressions such as the above is a

perfectly valid method for calculating a variance* There

are, however, some formal and pragmatic objections to be

aired~ First, there is no clear distinction between the

definition of the function and its evaluation and in fact it

150

A g~fin~g fYD£11QD is a variable function whose

description is a program scalar defined by one or more

compound expressions. Evaluation of a variable of type

program then implies evaluation of these expressions and is

the non-trivial case of variable evaluation mentioned

earlier. Such a function has two properties of interest: its

description, and the evaluation of its description for given

operands.

The intent is to have defined functions

indistinguishable from primitive functions as far as their

behaviour is concerned so that the language becomes

functionally extensible. This means that any mention of the

function name (in the value domain) with appropriate

operands must imply evaluation of the function. Yet for a

defined function to be really valuable there must be a way

to retreive the unevaluated description for inspection and

manipulation. This implies making arrays of type prograro

more tangible (i.e. in that they are in the range and domain

of some functions).

One problem in including a new type to the notation is

that the domain of each primitive function must be examined

to see if it should be extended to include the new type.

This matter can be disposed of quickly in this case. The

structure and select functions are extended such that their o

sUbject operands may contain arrays of type program. No

149
D

which are intermediate results are not distinguished.

Informal operands as these are called implied operands.

Applying the function to many sets of operands implies

repeating the definition that many times because the

definition and its evaluation are inseparable. Lastly, there

is no way to indicate a recursive evaluation.

Clearly what is needed is a way to associate a name

with the expressions such that a mention of the name

implies evaluation of the expressions~ Such a variable

function is called a defined function and is discussed next.

152 t;.

Define (A)

Syntax: ~ +~ ~E

g is the program expression for the expressions

represented in the character array R

Conforrnability: II is any character or program array.

Formal description: origin free

IE E of type program 19~~ E

E~~~ IE l~ppE XaE~ the scalar program expression for II

g~~g V ,R.tDt

The program expressions are not evaluated and therefore

need not be meaningful or syntacticly correct. There is in

general no means provided to both define and evaluate a

program expression in the same compound expression. However

the description of a variable may be specified by one

expression, then evaluated by another:

V+V'A+B'

A+B+3 0 V

6

B+4 0 V

7

Thus the define function together with specification

may be used to assign to a variable a program description

consisting of an arhitrary nU~Jer of expressions which are

called !!U~§ of the function. The lines are associated with

151

other functions are extended. Thus function perturbation

caused by the new type is minimized. A further

simplification is that no special notation is introduced for

program constants. This means that every array having

elements of type program arise from the evaluation of some

expression. Therefore there is need of a function which will

take an operand of some other type and evaluate to a

program.

154

Definition-of operator (A)

Syntax: ~ +~ 68

Z is the unevaluated program description of R

Conformability: II is any single function (including the

primitive functions)

The definition-of operator is only valuable if some of

the elements of R are of type program (since otherwise the

description and the value are identical) ~ The operator is in

no sense an inverse to define because it is an operator ,

and it evaluates to a program and not to characters. It is

similar to the special form QUOTE of LISP [~1cCarthy,et.al.

16]

Examples on primitive functions

MINUS+~-

MINUS 5

5

8 MINUS 5

3

This shows in a more dramatic way that the description

of a (primitive or defined) function is sensitive to it's

context.

153

successive integers called !~D§ DgID£§~§. The first

expression is assigned line number 1. There seems to be no

reason to make the numbering origin sensitive. Line numbers

are significant in conjunction with the branch function yet

to be introduced.

If the description of a function is to be

computationally useful there must be a means to extract it

from the function. It is clear that no function can perform

this task because i ts operand '~lould be the function vlhose

description was desired. But the mere mention of the operand

implies its evaluation prior to the evaluation of the

proposed function. Therefore an operator is required.

156

While an unheaded function appears to have many

shortcomings, it is a fundamental object in the notation.

Every expression written in the notation may be considered a

literal unheaded defined function having one line~ Thus the

expression

2+3

is a literal unheaded defined function having a result.

A set of expressions written colinearly and separated by the

expression separator symbol, 0 ,may be considered a literal

unheaded defined function having several lines.

Other than this, the principle value of an unheaded

defined function is that it is always in the domain of the

evaluate function yet to be introduced a

155

Now it is possible to define a variable function which

calculates a variance.

VAR+V'MEAN~(+/V)fpV 0 DSQ+(V~MEAN)*2 0 VR++/DSQfpV'

This statement defines the function but does not cause

evaluation of the expressions. The same function could have

been defined by using the character array G having the

following description:

G

MEAN+(+/V)+pV

DSQ+(V-MEAN)*2

VR++/DSQfpV

VAR+VG

Using this defined function, a variance may be

calculated on many sets of data without repeating the

definition. By convention the function value produced is the

value (if any) of the last expression evaluated~ Thus any

function defined as above is niladic and returns a result if

the last expression evaluated returned a result0 This type

is called an YDb§gg~g Q§iingg ~gDg1!Qn to distinguish it

from another type to be presented shortly~

V~12 6 7 3 15 10 18 5

~R

158

Defined functions as presented in the last few sections

provide a means for associating a name with an ordered set

of expressions. The function thus produced is niladic

because its operands may only be implied. The function may

or may not produce a result; and if it does, the result must

be the last value calculated in the function~ A name which

is specified within the function retains its assigned value

after function evaluation is cornplete~

For example consider the function VAR previously

defined~ Its operand V is implied and must be assigned a

value prior to evaluating VAR. The result VB must be (and

is) calculated producing the function result~ It is assigned

to a name inside the function only to suppress a display of

the result. The function result is a proper operand for

other functions so a standard deviation could be calculated

by the expressions:

V+12 6 7 3 15 10 18 5

(VAR)*o5

4 8733971720

For the function VAR, the extra names used to hold

intermediate results may be useful

MEAll

157

The display of a program arra~r is a display of each

expression in the function~ The form of the display is

unspecified except that it must be an unambiguous

representation of the expressions in the functione In an

implementation it is convenient to display a function in a

one expression per line formata It is also convenient to

display the line numbers$ This form shall be used in this

paper. It may be useful to attempt a display which reflects

the original character form of the function description if

it is known. The definition-of operator produces the

unevaluated program description of a function and is

therefore the ordinary way to request a function display.

The example of the previous section "vQuld be displa~led as

follows:

I:1VAR

[lJ MEAN+(+/V)fpV

[2J DSQ+(V=MEAN)*2

[3] VR++/DSQfpV

A function is said to be !Qgt~~ if display of its

description is inhibited. All primitive functions are

locked In an implementation it may be desirable to provideo

a mechanism (outside the language) which 'viII lock a defined

function.

160

2~) The names of the formal results and the manner

in which their values form the actual result.

A fQrIDgl rg§g!t is a name which potentially

becomes associated with an array during

function evaluation. When function evaluation

is complete this array becomes (at least part

of) the actual result~

3.) The valid context of the function. The

arrangement of the formal parameter(s) in the

header determines whether the function is

dyadic, monadic, etc. Q

4$) Names which are bounded on this function and

on referenced functions $ These are called

!Q£g! ngIDg§~ A name is local to a function if

its value (if any) exists only while the

function is being evaluated. A name which

exists outside the function is called a glQQ~1

DgID§e A local name may be thought of as

qualified by the function name in that it is

distinguished from a global name having the

same identifier. An action on the local name

does not affect the global name and the global

is said to be §hggQ~§Q by the local. A local c

name in a function is global to any functions

159

In the general case the intermediate results may be of

only passing interest within the function yet their value

will remain after evaluation is cornpleted*

These properties may be considered features or

handicaps depending upon the desired use of the function.

They are all features if the function is really a shorthand

for entering expressions one by oneo If however the

criterion is to mimic the primitives then this type of

defined function fails~ Therefore a second type of defined

function is introduced called a headed defined function$

A h~gg~g g§tingg fgD£tiQD is a defined function whose

first expression is not subjected to ordinary evaluation but

rather is a prototype expression which exhibits the

essential features of the function~ This first expression is

called the fYD£t1QD h§gQg~ and contains the following

information.

1 G)	 The names of the formal parameters and the

manner in ,·,hich actual parameters are

associated with them A ~Q~ill~! 2~~~m§t§~ isQ

the name of a general operand to the functionm

Its use is similar to the meta-notation for

operands. An g£tg~1 29~~mg~gr is an array

whose value hecomes associated with the formal

parameter during a particular application of

t11e function ~

162

A	 function header has the following syntax:

EO + El _ [FI] E2,NO,N1

where

EO +~ The expression of the formal result. If the

function is to have no result EO and ~ are

elided.

E1 +~	 The expression of the formal left operand. If

the function is monadic or niladic El is

elided.

+~	 The placeholder for the function name. This

may not be elided. The occurance of this

symbol distinguishes headed functions from

un-headed functions~

PI +~	 The expression of the formal function index.

If the function is not indexable, then [PI]

is elided
 m

E2 +~	 The expression of the formal right operand *

If the function is niladic or dextri-monadic

E2 is elided.

o
NO +~	 The list of local names separated by blanks~

An integer occuring in this list of names is

161

referenced by this function.

5.) Names which are bounded on this function only.

These are called §~ri£!!~ !Qg§l n~IDg§. A

strictly local name has all the properties of

a local name except that it is not global to

referenced functions. That is a mention of the

name in a referenced function refers to the

global definition.

164

this function$ The symbol _ may tend to become lost among

the multitude of names and expressions in the header but it

can be useful to envision filling in the blanks at every

occurance of with the name of the variable associated ~lith

the function description~

El and E2 are of the form ~ or ~+R where E (if

included) is any valid expression in the value domain and ~

is any array of distinct names created by use of structure

functions only. The names occuring in ~ are considered local

unless they occur in the list N1 in which case they are

strictly local. Upon evaluation of the function one of the

following actions occurs for each permitted orera~d:

1.)	 If an operand is supplied (say B) then the

specification L+B is evaluated.

2.)	 If no operand is supplied but H is included

then the specification ~+E is evaluated~ (i.e.

R is a default operand)

3~)	 If no operand is supplied and E is not included

then no specification is performed and the

names in ~ remain undefined. Note that + is

still written.

163

taken to be a local origin (i.e. the index

origin for this function and for referenced

functions) •

N1 +~	 The list of strictly local names separated by

blanks. An integer occuring in this list of

names is taken to be a strictly local origin

(i.e. the index origin for this function

only).

Clearly no name may be declared both local and strictly

local, nor can more than one index origin be specified. Any

variable appearing in a defined function which is neither

local nor strictly local is a g!QQs1 YE~1~Ql§ to the

function although it may be local to a function which

referenced this function.

The operands E1, FI, and E2 are called the formal

parameters of the function. Their arrangement about the

determine the valid syntax for the function. When the

function is to be evaluated, the name of the function is

presented in context with operands called actual parameters~

Generally the actual parameters are in the value domain and

the formal parameters are in the value domain~ Parameter

substitution is then very much like specification except

that the names in the formal parameters are local.

An occurance of the symbol _ in any expression other

than the function header implies a recursive reference to

after all the program expressions in the description have

been evaluated and the resulting value becomes the value of

the function~ Names occuring in EO are considered local

unless they occur in the list Nl~ The names have no

166

descriptions at the start of function evaluation unless they

duplicate names appearing in Ei, FI, and E2. The facility to

default operands which are not supplied allows definiton of

related functions of differing syntax in a single

description.

167

The previously defined function VAR vvhich computes a

variance is repeated below defined as a headed defined

functiono Recall that the function header is a prototype

statement and not an expression and therefore does not have

a line number. It is convenient however to call it line a

and this shall be done. Note that all variables are local

and the operand is actual so the function acts like a

primitive monadic function.

11 VAR

[OJ VR+ V;P-1EAN DSQ

[1J MEAN+(+/V)fpV

[2] DSQ+(V-MEAN)*2

[3] VR++/DSQfpV

VAR 12 6 7 3 15 10 18 5

23 0 75

The following example shows a function MINUS which acts

like the primitive ~ and one which acts like reduction where

the default function index is r/lppR instead of tppR.

168

MINUS+ ~t(A-B)+(A+O) B'

5 MINUS 3

2

MIlIUS 6

6

This example shows how the formal result of a function

is evaluated in the value domain. Recall that the header is

not itself evaluated and that therefore the +'s are not

specifications.

REDUCE + ~ t Z+F [I+r/tppAJ A 0 Z+F/[IJ At

ll+ REDUCE 2 3P16

3 12

Here the left operand of reduce is the unevaluated

description of the function +. This description becomes

associated with the name F during evaluation and F/[IJA is

then plus reduction.

169

The expressions of a defined function are evaluated in

index order. This is a somewhat arbitrary (though

convenient) choice. It is often desirable to specify some

other ordering perhaps even one which causes repeated

evaluation of some expressions. To this end a function is

defined which is meaningful only when evaluated in the

context of a defined function and which specifies a

departure from the standard sequence of evaluation.

170

Branch	 (I)

Syntax:	 ~E

This function has no result but specifies the line

number of the expression in the defined function ~

to be evaluated next~

Conformability: R is any array.

In the following (somewhat less than formal)

description, N is the largest line number in the defined

function Q.

IE 0 € pH rli~~ evaluation of this expression continues

g~£~ lE (QEQ) 9 ,R) € 1=QEQ=tN then evaluation of this

expression is abandoned and evaluation of line (QRQ

~ ,R) commences

~~£~ function evaluation terminates with the evaluation

of the function result (if any)

A common	 way to terminate function evaluation is ~o.

A branch most commonly occurs at the left end of an

expression in which case a branch to an empty array is like

branching to the next expression in sequence. It is often

bothersome to keep track of line numbers in a function

especially when its description is being changed~ Therefore

another type of local object is defined called a label~ A

171

1~Qg! is a local constant which is named by an identifier.

Any program expression in a defined function Q (including

the function header) may be of the form

lIidentifier~expression" in which case the identifier is

taken to be a local constant whose scalar integer value is

the line number of the expression. As usual a label is local

unless it appears in the list N1. Branching and labels are

also permitted in unheaded defined functions and the labels

are local. Notice that a label (and its ~) is attached to an

expression but not part of the expression. Later when rules

for synthesizing expressions are presented, labels will not

be considerec1.

172

The definition-of operator when apr1ied to a function

produces a scalar of type program. This is not an

appropriate result if the purpose is to modify the

description rather than to aisplay or rename it. Therefore a

function is presente6 which rroduces the character

representation of a scalar.

Character Form (A)

Syntax: ~ ++ Tli

~ is a character array which represents the scalar

llQ

If E is numeric, then Z is a vector; if E is a program,

then ~ is a matrix with one row per line. This function

along with definition-of is an inverse to define up to

equivalent expressions. Let F+VG Then T6F is a character

matrix which has the same expressions as G expressed in a

one line per row format with each line in some cannonical

form (iGe~ some blanks deletec, etc.)= The evaluation of the

APL notation is not sensitive to the exact cannonical form

and it is therefore not specified other than to say that it

ought to match the tiisplay format.

Identity: for function F

F +~ VT~F

173

Inclusion of this function is consistent with limiting

the number of functions defined on the program domain. It

permits modification of function descriptions using more

general text handling functions. In an implementation it

would be reasonable to disallow application of this function

to locked functions. Its application to numbers gives a

convenient way to do numeric to character conversions.

174

There is generally no way provided to both define and

apply a function at the same time~ This may be attributed to

the difficulty of syntactically determining the operands of

the function. For more discussion on this topic see Chapter

3 Section B~ In the special case where the function is

niladic and therefore has no operands, immediate evaluation

is possible. Therefore the following function is defined.

Evaluate (Execute) (Unquote) (?)

Syntax: ~ +~ ~E

~ is the result (if any) of evaluating the program

expression R.

Conformability: B is any program array for a niladic

function or is a character array which represents a

niladic function.

This function does not exist in APL\360 but has been

the topic of much discussion [Watson 21] . Evaluate is an

unusual function in that it mayor may not have a result

depending upon the expression evaluated. It is specifically

defined on program arrays. Then a niladic function D may be

defined from a character array G and immediately evaluated

by the expression:

~D+~G

Recall that the result of specification is its right

175 ...

operand. If there is no need to assign a name to the

function then the following expression is sufficient:

J..VG

Since this is perhaps the most common use of evaluate,

the function is extended to include the capabilities of the

defined function when it is applied to character arrays~

Therefore ~G is equivalent to ~VG~

Since every unheaded defined function is niladic, they

are all acceptable to the evaluate function. This is the

principle value of an unheaded function~

Examples:

An important use of ~ is the creation of names. The

following function creates names consisting of the character

'N' followed by a positive integer and then assigns to the

name the value of the integer.

~NAMES

[OJ N~I

[1] I-+-O

[2] Ll~~(N<I-+-I+l)/O

[3] ..L'N',(TI),'+I'

[4] ~L1

176

NAMES 20

N15

15

N7

7

The character vector formed in line 3 is an unheaded

defined function having one line.

The evaluate function is sometimes called unquote

because of the following identity:

~'any expression' ~~ any expression

Thus the evaluate treats a character array like a piece

of APL notation in that the mention of ~ and its quoted

operand is much like mentioning an expression without

quotes. The symbols ~ for evaluate and T for character form

are due to Jim Ryan [Ryan 20].

177

So far the only non-scalar arrays which have been

considered were those whose elements had descriptions of

type numeric, character, or positiono Arrays of program

scalars have been limited to rank 0 arrays~ There is,

however, no reason to require this limitation~ A non-scalar

array some of whose elements are program scalars is a well

defined object. The only question is how these arrays should

be evaluated.

Since an array of functions is fundamentally just an

array, it would be expected to conform to its operands (if

any) in much the same way as operands of a dyadic functions

conform with each other when conformability is required. As

a simple example consider the vector of functions W defined

by the expression

W+~+,~=

W 5

5 5

3 W 5

8 2

Thus even without a description for evaluating arrays

of functions, the intent of the above expressions is clear.

(The example also demonstrates that while W is an array of

scalar functions, it is not itself a scalar function since

when it is applied to scalar operands it yeilds a 2 element

178

vectors} Following are the formal descriptions for arrays of

functions on array operands. M is any array of monadic

functions, ~ is any array of dyadic functions.

1 a) ~t:t:~y§ Q-t MQDgQl:9 E1!D9!l:QD§ Z +-+ t1 H.

~ +~

IE. fjt1. is scalar X.li.~fl M B.

(the usual definition of /.1)

~~£g IE E ++ pfjM Xll~~

IE E ++ pll lll~~ c MJ ~H

for l.1.J+-=>~l:1.

~l!.Q~ MJ B- for f1J +- (p 11.) p l:iM

E.~§'~ IE 11. ++ pll 'l.f1~11 M (pl:iM)pB..

~l:.~~ IE pl:1M +-+ PH. Xfl-gll

Z. of dimension P!l. such that

I 9 ~ ++ c MI ~I 9 E

for MI+ ~I 9 ~M

for each PI I of R

E.~§.g undefinecl

Arrays of dextri-rnonadic functions have a similar

description.

Since program scalars cannot be both manipulated and

evaluated in a single expression, the names MI and MJ are

specified with the appropriate scalars and these names are

applied to the operands.

In the following description of an array of dyadic

179

functions, the same conformability rules are enforced on a

triple of arrays~ Since the conformability of the operands

does not change from that of a dyadic scalar function, the

following simplification can be made~ If E ~~ p~ make the

replacement ~ ++ (pR)p~$ If E +~ pE make the replacement

~ ++ (p~)pEo these replacements allovl concentration on the

effects of the array of functions and are assumed in the

following description at each level of recursion~

IE ~Q is scalar XggR ~ Q B

(the usual definition of ~)

~~~~ IE ~ +~ p~~ £gE~ 

lE (g +~ p~) d~Q (~ ~+ pE) Xlig~ c (~~) ~J ~ll 

for ~J~~~~ 

g~~E IE p~ ++ pH XR~N ~ ~J H 

for llJ+(p~)p6Q 

g~~g IE (p~ +~ pH) d~~ (p~ +~ p~~) Xg~~ ~ of dimension 

p~ such that 

I 9 Z +~ c (~I ~~) ~I ~I 9 E 

for ~I+~I 9 ~~ 

for each PI I of ~
 

~~~g undefined


In general, the operands of a non-scalar array of

180

functions have less freedom of structure. First of all

shapes must always conform; and then at each step in the

recursion, operands are revealed. It is therefore difficult

to have a primitive in an array take a unit array as an

operand. However this is a small restriction because the

result is concealed.

Examples:

F 5

o O:p

5

o l~p

5

1 O:p5

o 1 234

1 l~pO

181

6 F 2 2p\4

a Ogp

6

o 19p

5

1 O~p

e

1 1~p6

33333 3

To calculate (R+l)xR=l

PM+b+.6

x/R PM 1

The previous discussion includes arrays of defined

functions~ In particular, arrays of niladic functions may be

evaluated in their character form by the evaluate function

in the obvious way~ Examples of arrays of defined functions

are defered till the section on multiple-processeso

While it is possible to define any array of functions,

not all such arrays can be evaluated For example, an arraya

of functions containing both monadic and dyadic functions

cannot be evaluated in either the presence or absence of a

left operand!

182

Evaluation of a mixed variable (i~e. one containing

both program and non-program arrays) is possible only if the

programs are niladic. Then the result of evaluation is an

array identical to the variable description except the

programs are replaced by their evaluated results.

If every function in an array of functions may have a

function index, then the array may have a function index.

The rules for general specification govern the mapping of

the specified index onto the array of functions.

Examples: 1 e t Iv! + h. +/ , h. ep and R+(c2 2p14),ct3

M[O] R

Op2

2 4

1 ~ p 3

210

f.1[1 a] R

Op 2

1 5

1~p3

2 1 0

183

M[(cO 1),OJ R

O~p

6

1 ~ P 3

210

The operators scalar product, inner product, outer

product, and reduction apply to arrays of functions without

change. For example the outer product on an array of

functions may be used to produce an array of operation

tables.

~,

AM-+-~+t~X

:::> (\ 4) o Aft-I t 4
0

0 1 2 3

1 2 3 4

2 3 4 5

3 4 5 6

o 0 a 0

a 1 2 3

024 6

o 3 6 9

Ordinary outer product applies functions to all pairs

of elements one from each operand~ This concept may also be

184

applied between a function array and its operand(s)$ This is

called the fYng~~QD Qy~g~ U~Qgg£t and may be monadic,

dextri-monadic, or dyadic. A suggested notation for these

function is respectively ~ ~oo ; Qoo H t and ~ Qoo R

[Edwards 6]. For the dyadic case, scalar conformability is

required for the operands.

These functions are not really needed because the

scalar product operator on an array of functions produces

this same effect.

Examples

PM+~+t~-

~ i PM 2 3

2 3

2 3

~8 i PM 2 3

10 11

6 5

185

Chapter 3

APL Potpourri

This chapter presents a mixture of topics which may be

classified in three general groupss Sections B-E contain

discussion and elaboration on topics already defined in

chapters 1 and 2. Sections F-I contain new functions and

their applicationSe They are presented separately because

they may be accepted or rejected independently of the rest

of the notation~ Finally, sections J-O present

generalizations for consideration which are not actively

proposed as a formal part of this work~ Some have been

proposed elsewhere and are included for completeness, others

originate here but are set aside for the stated reasons~

186

It has been stated that any valid APL expression may be

evaluated unambiguously by the rules given on page 30. Yet

at first glance, it appears possible to write expressions in

the notation which are impossible to evaluate or which are

ambiguous. This section will discuss the impact on the

notation of defined functions which are valid in more than

one context and will show that every combination of symbols

defines either an expression which may be unambiguously

evaluated or a statement which is invalid. Two conditions

are isolated under which alleged expressions cannot be

evaluated It will be shown that a well formed expression is0

not necessarily valid and that a specification can alter the

syntax of an expression.

For an example of an expression impossible to evaluate

let M be a function having a result and having a monadic

description, and let X be a function having a result and

having a dextri-rnonadic description (see page 23). Then how

is the expression

(case 1) M X

to be evaluated? It appears that each requires evaluation of

the other for its operand e As an examrle of an apparent

ambiguity let F be a function having a result and having

both a niladic and a monadic description, and let G be a

187

function having a result and having both a monadic and a

dyadic descriptionG Then how is the expression

(case 2) F G V

to be evaluated? Both F niladic - G dyadic and F monadic - G

monadic appear to be valic1 combination.s G

Dealing with problems of syntax such as these requires

a more formal description of what constitutes a legal

expression. In the following discussions of syntax, an

expression is assumed to be represented in a cannonical form

using the symbols (,), [, J, Vt FO, P1 where V is a

variable, a literal array, an identifier not having a

description, or an array resulting from a function

evaluation , FO is a function or a primitive function which

does not produce a result, and F1 is a function or a

primitive function which produces a result~ Recall that a

variable function whose elements are program scalars is

called a function, all others are called variablesQ

The following set of rules may be used for the

synthesis of fully parenthesized expressions in the

cannonical form~

188

Non-terminal symbols

~z~ - an expression

~o - an expression with no value

gl - an expression with a value

END - a function with no result

[tll - a function with a result

Terminal Symbols

(,), [,] tV, FO, F1 (same as the cannonical form) and

A an empty string

Complete parentheses synthesis rules.

The following substitution rules may be used to

transform the root symbol (~~~) into expressions in the

cannonical form. The rules are presented in the following

form:

N~NT

where N is a non-terminal symbol and NT is a

combination of terminal and non-terminal symbols which may

be substituted for N. The rules are numbered for easy

reference. In case several substitution rules involve the

same N, alternate NT's are listed and numbered on the same

line separated by the symbol I~ The symbols ~, f, A should

not be confused with their usual use in the notation.

189

(~~E) - the root symbol

(1 - 3) ~Z~ -+ (~~~) ~ a I &1

(4 - 8) ~ 0 -+ A I ~~ 0 J [tl a (~ 1) f (~ 1) ~tl a I (~ 1) Etl 0 (£ 1)

(9-10) ~o ~ (~O)(~O) I ego)

(11 - 1 4) ~ 1 ~ E~ 1 I Etl 1 (J21) I (~ 1) ~~ 1 I (~ 1) [til (~ 1)

(15-18) ~1 -+ (~O)(~l) I (~l)(~O) (~1) I V

(19-20) r~o ~ PO FO[~~~J

(21-22) rtll -+ Pi Fl[~~~J

Any expression derived by these rules and by

application of the parentheses elimination rules is called a

~§1! tQ~m§g ~~g~~§§~QD. Appendix 3 gives a set of rules

which classify the terminal functions of the generated

expression as N. M, X, or D for niladic, monadic,

dextri-monadic, or dyadic respectively and which include the

parentheses elimination rules$ The explosion in the number

of rules is principly caused by the formalization of the

rather heuristic rule which allows parentheses not altering

the scope of operands for some function to be deleted.

When these rules are used to determine the

classification of an expression, they are used with

foreknowledge of what result is desired (i.e~ synthesis not

analysis) $ If one applies the wrong rule then he will find

no path leading to the desired result~ Rules which would

classify expressions by analysis are possible and would be

useful in an implementation.

190

A string of symbols selected from the terminal symbols may

fail to be a well formed expression in only a few ways:

1~)	 If it contains unbalanced parentheses or

brackets$

2~)	 If it contains pairs of parentheses and

brackets whose ranges intersectQ

3.)	 If it contains a function index bracket

divorced from a function symbol~ (Brackets are

not used for indexing as in APL\360$)

4$)	 If it or any parenthesized part of it defines

more than a single arraYG

This last case is legislated so that expressions may

properly be called compound functions. (functions have a

single array as a result or no result at allm) Note that the

rule only applies to a complete expression or a complete

parenthesized sUb-expressionm

If an expression contians neither a specification nor a

defined function which alters global variables, then it is

said to contain a §Yn~g~ ~~~Q~ if it is not well formed. If

an expression does contain a specification, then some

"magic" can occur and the concept of a ~",ell formed

expression is not so useful For now consider expressionsa

191

which have no embedded specifications.

The following statements fail to be well formed

expressions:

V FO (V by 1

(V Fi[V)] by 2

V[] by 3

V V by 4

The following are well formed expressions:

V P1 V

(V FO) FO

Pi FO V V

This last is well formed despite the occurrence of V V

because V V is neither a complete expression or a complete

parenthesized sub-expression. Appendix 3 gives the

right-derivation of these expressions and classifies the

functions. Evaluation of FO V gives no result leaving P1 V

remaining for evaluation.

192

Now the original two cases from page 186 may be

examined~ Case 1 in cannonical form is

F1 P1

There are two possible parenthesized expressions from

which this one could have been derived:

(F1 (F1» and «F1) P1)

and therefore the functions may be classified as

(Ml (N1» and «N1) Xi)

Applying the parentheses elimination rules from page 29

gives

Ml Nl and (Nl) Xi

The first of these is then the correct classification

of the original expression M X. Thus it is not possible in

the notation to write a monadic followed by a

dextri-Monadic, and evaluation is impossible only because

neither function has a niladic description (The samee

argument holds if X is dyadic so this does not involve a

departure from APL\360e) The expressions have proper syntax

but the functions do not have matching descriptions~ Any

193

such statement is said to contain a g~fin~~iQn ~~~Q~.

Case 2 in cannonical form is

Pi Pi V

Two possible parenthesized forms are

(Fi (Pi(V») and «(F1) P1 (V»

and therefore the functions may be classified as

(Ml (Ml (V») and «N1) D1 (V)

Applying the parentheses elimination rules from page 29

gives

M1 Ml V and (N1) Dl V

The first of these is then the correct classification

of the original expression F G V. The second is the other

possible meaning. Notice that the parentheses which remain

in the second expression are needed to specify function

precedence other than increasing from left to right. This

does involve somewhat of a departure from APL\360 in that a

niladic function as the left operand of a function requires

parentheses. These parentheses would be called superfluous

194

by some [Breed 2] and the resulting syntax ambiguous. Yet

can parentheses which define the number or scope of operands

for a function be superfluous?

The existence of parenthesized expressions having no

value gives rise to another syntatic departure from APL\360~

In APL\360, to say that "the rightmost function whose

operands are available .$. is evaluated"[Lathwell,Nezei 11]

is' equivalent to saying that functions are evaluated in

order of decreasing precedence (see page 30)$ This is not

true in generalized APL and an example is:

(V FO V) Pi V

Since P1 appears immediately to the right of a right

parenthesis, it has lower precedence than FO. Therefore FO

is evaluated first and gives no result. P1 is evaluated

second and is monadic. Thus F1 is not evaluated first even

though it is rightmost and its operand is available~ The

classification of this statement appears in Appendix 3.

Given the classification of an expression it is then

possible to determine the function of highest precedence and

so evaluation of the expression can begin with evaluation of

that function. Clearly the next function to be evaluated

must be the one of next lower precedence~ However this may

not be the case (1) ~ This unexpected {and perhaps

195

disturbing) condition occurs because evaluation of the first

function may change the syntax of the statement. This bit of

magic may occur if the function in question is a

specification or is a defined function which specifies

global variables. For example consider the following

expressions the last of which is classified:

MEAN+5

Z+- 0 5 xA +B '

But this defines three arrays. One from V D1 M1 V V1 M1 V

and two V's~ Therefore this would appear to have a syntax

error. Yet during evaluation of the expression MEAN is

respecified to be of type program and is therefore

reclassified as cannonical type Fi. The expression is then

evaluated as though it were classified:

V D1 V Di Mt V Dl M1 V

This expression does not contain a syntax error and may be

evaluatecl.

Syntax errors may also be introduced during evaluation

of an expression.

196

REV+~¢ 0 A+ 2 2pt4

REV[OJ A~OpREV+5

This statement could be classified

F1[V] V Dl V V1 V Dl V

This does not contain a syntax error$ Yet during evaluation

REV is respecified to be of type numeric and now the

statement contains brackets divorced from a function and a

syntax error is introduced $

Thus the apparent syntax of an expression as separated

from evaluation is not necessarily the same as the actual

syntax during evaluationG Thus, the classification of any

expression is valid, in general, only until the first

function is evaluated. This is why a right-derivation is

used in all the examples~ After a specification or a defined

function which alters glohal variables has been evaluated,

the remaining expression must then be reclassified~

Therefore the syntactic analysis of an expression in the

generalized APL notation is intimately tied to the

evaluation of the expression.

Even without this requirement the dynamic structure of

arrays in APL would make compilation of expressions (in the

usual sense) difficult in that the declaration of array

structure and data types may change during evaluation~ For

197

this reason implementations to date have been interpreters

(an interpreter alternates between analysis and evaluation

where a compiler analysis entire sets of expressions before

any evaluation). The generalizations proposed in this paper

imply that even the syntax of an expression may change

during evaluation and this makes compilation of the notation

even more painful if possible at all. This could well mean

that the notation is inherently interpretive!

198

The APL notation has been designed such that the actual

operands of a function are evaluated and the result is used

wherever the corresponding formal parameter occurs~ This is

sometimes referred to as a Q~l! QY yglgg$ (early programming

languages referred to the invocation of a function or

subroutine as a call~) Therefore in one sense only constant

values may be parameters to a function* Yet it is frequently

desirable to specify a function or an expression as an

actual parameter to a function such that this function or

expression is not evaluated upon invocation but rather is

evaluated at each occurrence of the corresponding formal

parameter~ This is usually called a £~1! QY n9m§~ There are

various ways to achieve this in the generalized notation.

First, a function reference or an expression may be

passed as a character constant then evaluated where needed

by the evaluate function~ For example consider a dyadic

function SUM which adds up terms of a series from N=O to the

integer specified as the left operand, where the right

operand is the expression for the Nth of the series

(expressed in characters in terms of N)~

200

This function does the call by name as advertised but

there are some objections to the method 0 In the first

example a constant series is specified (constant Nth term) ~

It is somewhat painful to pass a numeric in its character

form especially if the numeric is the result of some

expression rather than literal (of course the character form

function could be used)~ If one had a function and wished to

pass to it the character Ie' by name then the operand would

be written W'iC'!~~

A user of the function must be aware of the local names

used in the function and be careful not to use them. For

example:

TERM+4 0 3 SUM iTERM'

is invalid while

TER+4 0 3 SUM ~TER~

is perfectly valid~ This is because TERM is local to SUM and

the local value is used in the evaluationo

A final objection has to do with the function SUM

itself$ The function is designed with the fore-knowledge

that call by name using evaluate is to be used Q Often in the

notation, a function may be designed assuming a scalar

operand and yet it works properly for array operands (this

is because of the orderly way in which scalar functions are

extended to arrays) 0 It would be elegant if a function could

be designed expecting a call by value and yet work properly

199

~SUM

[oJ SUM~LAST TERMjN

[1] (SUM , Iv) + a

[2J L1~7(LAST<N)/O

[3] SUM+SUM+~TERM

[4J N+N+1

[5J -+L1

Let F and G have the following definitions:

fj,F

[OJ Z+_

[1J Z+-2+N*2

/1G

[0] Z+_V

[1] Z+2+V*2

3 SU]..1 • 4 '

16

2 SUM 'F'

11

2 SU]..1 'G N'

11

2 SUM '2+N*2'

11

202

11

TERM+4 D 3 SUM1 TERM

16

There are several points of interest here~ First, the

call by name property lies with the actual parameter to the

function and not with the formal parameter or with the

function itself~ Second, the function is (at least

supposedly) designed to expect values yet it works properly

if given a function or expression which produces a value. In

fact if given an array of Nth terms, the function would

evaluate an array of sums~ The key is that both define and

definition-of evaluate to a program description which is

passed and a description is always a constant~

Thus, call by name is really a misnomer for it is not

the name which is of interest at all but rather the

description associated with the name. The last example shows

that the problem with conflict of names is reduced Thea

following example shows that the problem is not eliminated.

TERM+2 0 2 BUM1 V i TERM+N*2 w

Here the description passed still involves a name and

the local value is active and therefore the expression is

invalid$ The following expression is worse yet because it is

not invalid but gives erroneous results~

SUM+2 0 2 SUM1 ~'SUM+N*2'

203

The next example shows that the conflict of names can

always be reduced to affect only a single name by using

strictly local variables and a secondary function to

calculate the Nth term~

~SUM2

[OJ SUM~LAST _ TERM;;N SUM LAST £1

[1] (SUM,N)~O

[2J Ll~~(LAST<N)/O

[3J SUM+SUM+ NTH TERM

[4J N+N+1

[5J ~Ll

6NTH

[OJ TERM+ TERM

[1] TERM~TERM

Here the only possible conflict can occur with the name

TERM~ This scheme also works with evaluatee

Therefore when functions and expressions are not

special objects in a language, call by name is not

essentially different from call by valuem

204

, w ~
Q 0 0

Perhaps the greatest shortcoming in the notation is the

lack of an explicit conditional function. While much of the

meta-notation has been assimilated in the notation, the

conditional is conspicuous in its absence because of its

frequent use in descriptionsQ In this section some of the

problems associated with the attempt to define such a

function are discussed along with some methods for

circumventing the problem.

The	 conditional may be characterized as follows:

1~)	 It is a triadic function (antecedent,

consequent, and alternative)Q

2.)	 Evaluation of the antecedent determines which

of the other operands is evaluated Q

The fundamental problems in attempting to define a

conditional function in the notation are:

1.)	 The syntax does not permit triadic functions.

Supplying a special syntactic type for this

one function would not be an elegant solution.

205

2.) Operands to a function are always evaluated

before the function itself is evaluated. But

in the conditional one operand is by

definition not evaluated and need not even be

a well formed expression.

This does not mean that the effect of a conditional

function is lost to the notation for it may be acheived in

many ways some of which shall be described in the pages that

follow.

206

Evaluate may be used to gain the effect of the

conditional The statement0

might be reali zed by the expressb n

.L X ~ V1Z')VIYi

This formulation uses indexing to select from a two

element vector of expressionso The vector may arise from

define (v) applied to a character operand (as is done here)

or from definition-of (~) on a defined function. The

unselected expression is never evaluated and neeq not be a

valid expression~

The definition of Interval from page 43 could be

realized by the following function.

~INTERVAL

[0] I+ R

[1J I+~(R=O) 9 V'(~R-l)tR-1~?1't~'tOU

(Z+~?R is a scalar function and produces a random integer

Qg~sZ<QRQ+R hence ?1 is the index origin~)

207

When conditionals are nested, one is faced with

writting very long lines containing quoted expressions which

themselves contain quoted expressions to many levels. Using

the character form of an expression is not appealing in any

case~

208

The statement

may be realized in a defined function by using

branching as follows:

~X~Ll 0 C~y 0 ~L2 0 Ll~C+Z 0 L2~etcQ

where C is the value of the conditional

The first branch calculates either to an empty vector

or to Ll~ If X is true (=1) then Y is evaluated and the

second branch skips evaluation of Z. If X is false (=0) then

evaluation of Y and the second branch is skipped and Z is

evaluated. In either case line L2 is the next evaluated.

Since branching is a function without a result and

since

(EO) El (EO)

is a well formed expression, a shorthand version of the

above formulation can be given as

(~L2) C+Y (~X+Ll) 0 Ll~C+Z 0 L2~etc~

209

This is little better than the original, but shows a

use of an embedded branch~ In this expression, X false means

quit expression evaluation earlyG Thus the total expression

need not be well formed yet no error is detected~

The definition of interval could be realized by the

following function:

~INTERVAL

[oJ I+ R

[1J -+-(R=O)-tLl 0 I+tO 0 -+-0 D Ll~I+(_ R·~l)~R~l-?l

(This function has 5 lines counting the header for

writing several expressions on a single line is merely a

topograpgic consideration~)

Nesting of conditionals is moreconvenienent than with

evaluate. For example, the definition of Vector Take from

page 45 could be realized by the following function:

I1TAKE

[OJ Z+L R

[lJ -+-(L~O).rL1

[2J (-+-O)Z~(tL)~ ~R(~(sp,R)+L11) D Ll1~(~O)Z+Rt(L=PJR)pe

[4] Ll~~(L<O)~L2

[5J ~(L~-p,R)~L21

[6J (~O) Z+«t !L)+(PJR)-L) 9 R

[7J L21~(-+-O) « !L+p,R)p@)tR

[8J L2~'UNDEFINEDt

210

The use of branching to acheive the conditional has

some interesting properties. First the labels used make it

easy to tell which IE goes with which g~Q~. Second,

statements may be combined in non-standard ways. (e.g. the

~~~g clause of one conditional may be the XH~~ clause of 

another~) 

Thus it has been shown that the inability to define 

triadic functions and the evaluation rules for operands to 

functions do not exclude the functional abilities of the 

conditional from the notation. 



211 

The term ~gQy~§iyg byngtiQD refers to a function which 

is defined in terms of itself and can therefore only be 

properly applied to a defined function~ Either an unheaded 

or a headed defined function may be used to define a 

recursive function~ A good example of recursion is the 

factorial function o It is such a common example that no one 

is concerned with the factiorial so there is nothing left to 

look at but the techniques! The following is an unheaded 

recursive function for factorial N~ 

fjFA CTl 

[1J -+(N=O 1)/0 

[2J F+FxN 

[3J N+N=1 

[4J FACT1 

This function is recursive because on line 4 it refers 

to itself~ Since it is unheaded its operands are implied and 

must be set prior to evaluationo In this case the variable N 

is the operand and the variable F leaves the result variable 

and must be initialized to 1 externally to the function~ It 

cannot be initialized inside the function because the global 

nature of N implies that the partial factorial be computed 

before recursion~ The last line evaluated is line 1 which is 

a branch and therefore by convention the function has no 



212 

24 

result~ So an extra expression is required to display the 

resulto 

Example: 

F~l 0 N+4
 

FACT1 0 F
 

FACTi generally lacks any similarity with the ordinary 

definition of the factorial $ 

The headed version is far superior in this case (and in 

almost every case) 0 

6FACT2 

[OJ F+N 

[lJ F+l 

[2J ~(N=O 1)/0 

[3] F+Nx(N=l)_ 

Notice that the function is dextri-rnonadic and matches 

the usual mathematical syntax for the factorial (which is no 

great advantage)~ Line 3 is a translation of the expression 

N! +~ Nx(N=1)! The fact that F and N are local means they do 

not collide with F and N of the recursive call so the result 

variable may be initialized within the function. The 

recursion is denoted by the placeholder and so is 



213 

independent of the function name. 

Example: 

4 FACT2 

24 

Neither function will terminate if the operand is other 

than a non-negative integer~ 

There is a subtle difference between these functions 0 

Suppose the following expressions are evaluated: 

Ql~~FACTl 

Q2~~FACT2 

Then Q1 is a function having the same description as 

FACT1 and therefore they are the same function~ A similar 

statement is true for Q2 and FACT2~ Yet Q1 is not recursive 

while the others are! This is because Ql does not refer to 

itself in its description (it still refers to FACT1)e 

Therefore any recursive property of an unheaded defined 

function must be considered transiento When the placeholder 

symbol is used to specify recursion in a headed function 

then the recursion is a permanent property of the function 

and is preserved when the program scalar is given a new 



214 

In Chapter 2 arrays of names were used to define a 

selective form of specification. At no time, however, was a 

name array itself associated with a name~ There appears to 

be no reason to continue this embargo. Therefore a 

specification is considered which has the same syntax as 

value specification (Z ++ ~+ll) but which has both operands 

in the name domain. At the moment a right operand of a 

function is in the name domain only if it is already part of 

an expression left of specification$ Its definition is the 

same as simple specification except that R is an array of 

names e The extension to general specification is avoided so 

no array contains both name scalars and other scalars~ The 

effect of the function is to permit naming of sUbarrays of 

an arraYa 

Example: 

V+t10 0 (W+5t8+V)+~t3 

V 

01234 0 1 289 

The above example has defined W to name a sUbarray of 

V. The description of W is a three element vector of name 

scalars~ The mention of W in the value domain implies an 

indirect reference to the values named. 

W 

o 1 2 



215 

J 

The value specification in this example is a trick to 

get the expression (W+5~8tV) into the name domain but alters 

V as though the name specification were not written. This is 

because the name specification has its right operand as its 

result A further refinement of names introduced in the nextG 

section along with a new function will remove the need for 

the value specification. 

The treatment of names (as opposed to name scalars) in 

the name domain is modified such that mentioning the name of 

a name array is equivalent to mentioning the array itself. 

This is required so that 

W+'ABC' 

remains an indirect reference to V rather than a 

description replacement. 

A name array fails to act like an ordinary variable in 

two ways. First, when it is the left operand of a 

specification, it has stronger conformability requirements0 

Using the previous w, note that when W is respecified, the 

right operand must conform to the dimension of W or be a 

unit arrayG 

W+O 

V 

012 3 4 0 0 0 8 9 

W 

a 0 a 



216 

Second, a named name array is dependent upon the rank 

and, to a lesser extent, the dimension of another variable. 

If V is respecified to be other than rank 1, or less than 

dimension 8, then both attempted reference and specification 

of Ware invalid. 

Examples 

N+2 2pt4 0 (DIAG+O O~N)+9 10
 

N
 

9 1 

2 10 

DIAG 

9 10
 

but N+tl0 0 DIAG is invalid.
 

Specification in the name domain adds a new breadth of 

naming conventions to the notation and careful consideration 

of its impact will be required~ The fact that it is strongly 

rank and dimension dependent is unfortunate~ It would be 

useful, for example, to name the diagonal of a rank 2 array 

independently of its dimensions $ Since the name array 

essentially indexes the referenced arrays, it is possible 

that a solution to the above problem is tied to a more 

general indexing function~ 



217 

When a variable function used as an operand is 

evaluated, the resulting expression is normally viewed as 

being detached from the name of the variable. Such an 

expression is called a Q~§§!yg expression in that its use as 

an operand of some function can never affect the description 

of the originating name of the expression. Any expression 

written in the notation or produced by functb ns introduced 

thus far are passive. An operand of a function is called 

ggt~y§ when it is altered by the function evaluation. An 

active expression is used in the notation to describe an 

indivisibility of function evaluation and specification. The 

description of an active operand to a function becomes the 

result of the function evaluation. The evaluation and 

specification are considered a single action$ 



218 

Activate (A) 

Syntax: ~ +~ g+ 

~ is the active expression of ~ 

Conformability: ~ is any expression valid in the name 

domain. 

Activate is the only dextri-monadic primitive defined. 

This syntax is chosen to suggest a similarity with 

specificationo The display convention also reflects this 

similarity in that display of a result is suppressed in case 

it is the result of the activate function or any function 

one of whose operands is activated. 

The function is used for two widely differing 

applications. First it provides an easy way to denote 

expressions in the name domain and therefore may be used for 

subarray naming~ The name arrays from the previous section 

may now be generated without respecifying any values: 

(W+5~8tV)+ 

(DIAG+O O~N)+ 

For these examples the fact that the result is active 

is not relevant~ 

The following examples show active expressions used as 

o~erands: 

A+5
 

1+A+ (the successor function)
 



219 

A 

6 

5 6 

A+B+5
 

(A+)+B+
 

AtE 

10 10 

Activate has been used above to avoid writing a name 

twice. Another scheme proposed for doing this is A++l to 

mean A+A+1 [Ryan 20]. An active expression for 5fA would not 

be possible in that notation. Using activate both 5fA+ and 

(A+)fS are valid and do not require a special syntax to 

explain a monadic looking specification. 

In case both operands of an active expression are the 

same, the order or number of activations is not important 

for two reasons. First the operands are evaluated before the 

function and second there is at most one result of the 

function. Thus the following expressions are equivalent: 

B+B+ 

,) (B+)+B 

(B~)tB+ 



220
 

\.. 

If an active variable is used as operand to a function 

having no result, then the variable name is detached from 

its description. In a sense the value of the variable is 

~~s~§g~ The expression 

~+ 

will erase A (because ~ has no result) but has the 

unfortunate side effect of branching. A new primitive could 

be defined but the following defined function is sufficient. 

~ERASE 

[OJ R 

Then the expression 

ERASE A+ 

will erase A. 

None of the examples given here are exciting uses of 

activate The real significance of active expressions will$ 

be made clear in the following section on multiple 

functions~ 

The denotation for activate does not conflict with the 

similar notation used in a function header, because a 

function header is not an expression. 



221 

The array orientation of APL notation implies a 

parallelism of actions. For example in the evaluation of the 

statement 

(2 3p16)+2 3P16 

the implication is that six additions are done 

simultaneously producing six results. In a digital computer 

the computation may indeed be done serially but this is 

transparent to the notation. Parallel computers have been 

designed and it would seem that APL may be a useful language 

for them. 

A well formed expression may be invalid only because 

the parallelism defines a ~~g§ condition. For example the 

expression 

(0 1 0 9 A)+t3 

must be considered invalid because the value of 0 9 A at its 

completion is ambiguous. In an implementation on a serial 

computer (like APL\360) this condition is expensive to 

detect and an invalid expression as this may in fact be 

evaluated. Knowledge of the implementation (or a little 

experimentation) would allow one to predict the value of 

o ~ A. However use of such an implementation shortcoming 

could produce different results on different APL systems. 

The real implications of parallelism are not striking 

till arrays of defined functions are considered. If the 

defined functions (and any functions referenced by them) 



222 

have no common implied operands, (i*ea global variables) 

whose values are respecified, then they are not essentially 

different from primitive functions and evaluation of each 

function is independent of the others~ Although conceptually 

the functions are evaluated simultaneously, there would be 

no way to tell in an implementation if this was in fact the 

case Q If, on the other hand, two functions in an array 

mention a common variable and if at least one of the 

functions respecifies the variable, then evaluation of the 

array may be ambiguous. This ambiguity is in general 

difficult to detect. 

For example consider the array of unheaded defined 

functions defined from the character array G: 

G 

(0 9 A)+O 

(1 g A)+l 

(0 ~ A)+2 

~~c[1JG 

First note that the expression does indeed indicate 

evaluation of an array of functions~ The conceal hides each 

row of Gi the scalar product operator applies evaluate (~) 

to each hidden row simultaneously. This is not the same as 

~G 

which causes evaluation of the rows in sequence (the latter 

expression is even valid)~ The function array evaluation is 



223 

ambiguous for e={actly the same reason as 

(0 1 0 9 A)+ t 3 

TIle two expressions (0 1 0 ~ A)+2 3 and ~.1c[1JG are 

essentially equivalent and demonstrate in a dramatic way the 

hidden parallelism of APL. 

If any meaning is to be given to such arrays of 

functions, there must be a notation provided to state any 

dependencies existing among parallel functions which makes 

their synchronization explicit and unambiguous~ Such 

synchronized functions are so~etimes called a §y§tgm of 

functions * 

Conceptually each function in an array is advancing in 

its evaluation simultaneously with and independently of each 

of the other functions in the array. Synchronization may be 

achieved by permitting a function to delay conditionally at 

some point in its evaluation. 



224 

Wait (A) 

Synta}~: ~ +-+ f!.wll 

~ is lL 

Conformability: ~ and II are any arrays~ 

The evaluation of this function may be described as 

follows G If ~ and E are different arrays then evaluation of 

the function is delayed, if R and ~ are the same array then 

the value of the function is this common valueQ 

The wait function may be used to cause one function to 

remain dormant till another has computed some required 

result$ Function 1 waits during evaluation of the expression 

A+O 0 -+-( lwA)/Ll 

Function 2 causes function 1 to resume evaluatb n by 

evaluating the expression 

A+l 

in which case function 1 branches to L1$ The wait function 

implies a calculation to test equality every time H is 

respecified. 

Use of active operands may cause an implied wait. If 

function 1 is evaluating the expression 

l+A+ 

then if function 2 evaluates 

2+A 



225 

its evaluation is delayed till function 1 completes its 

active use of A* The inseparability of the function 

evaluation and the respecification of A implies that a 

parallel reference or specification of A must be pendant* 

The wait is implied over evaluation of a single function and 

so muy seem a bit restrictive. However the following section 

shows that this is no restriction at all~ 



226 

The following example is a modification of a model 

proposed by Dijkstra [Dijkstra 5 pg.53] and consists of N 

defined functions which are looping as described in figure 

50 Each function has a section which may run in parallel 

with any of the other functions. Each also has a critical 

section and the constraint imposed is that only one function 

may be in its critical section at any given time. 

non-critical section 

1
 
enter critical section 

~ 
critical section 

~ 
leave critical section 

Figure 5 Looping Defined Functions 

Dijkstra's solution involved introduction of 

synchronizing primitives [Dijkstra 5 pg.67] which combined 

inseparable function evaluatD n and specification of special 

objects called semiphores, with delay of evaluation. Here 

this combination is avoided. The delay is embodied in the 



227 

wait function (w), with the other properties existing as 

active expressions (see Activate)~ No declarations or 

special objects are used Q 

The following pseudo-function is a prototype for the N 

defined functionSe 

I1PROCESSi 

[0] 

[ 1 ] £1 ~ NOt/CRITICALi 

[2 ] EllTER i 

[3 ] CRI'llICALi
 

[4J iLEA VE Q+
 

[ 5 ] -+Ll 

A real function is derived by sUbstituting a positive 

integer sN for each occurance of i in the pseudo-functiono 

To avoic] confusion in the following discussion, 

functions PROCESSi shall be termed processes and the 

functions they reference shall be termed functions 0 The 

program vector PROCESS is defined to be a length N vector of 

these processes (i~e~ evaluating PROCESS implies evaluating 

the processes in parallel) 0 The actual computatn n done in 

the critical and non-critical sections is not of interest 

here and shall not IJe specified. 

The actual synchronization is done by the EIJ~PE7R anc1 

'\ 
LEAVE functions. There is only one copy of each of these 

functions and the integer i is passed as an operand 0 Of 



228 

course one function may be invoked several times at once by 

several processes (as with + in array addition) 0 The 

controlling functions are defined as follows: 

~ENTER 

[0] I 

[1J (Q+},I 

[2J IwFIRST 

6LEAVE 

[OJ Q+I _ Q 

[1] Q+l~Q 

The parallel process is initiated by evaluating: 

Q+,l 0 (FIRST+1tQ)+ D Q+\O 0 PROCESS 

The global variable Q is a queue and is the vector of 

process numbers desiring use of their critical sectionsc Q 

empty (as it is initially) means no process is in its 

critical section. Q non-empty means process ltQ is in its 

critical section and the processes l~Q (if any) are waiting 

to enter their critical sections. 

The ENTER function places a process on the queue. 

Notice that Q is used actively on line 1 and so the 

catenation and the respecification of Q are inseparable. 

This is not equivalent to Q+Q,I for using the latter two 

processes could then define the following sequence: 



229 

process number action 

1 evaluate Q,l yielding expression EXPl 

2 evaluate Q,2 yielding expression EXP2 

3 respecify Q as EXPl 

4 respecify Q as EXP2 

Process 1 would then be lost from the queueo 

After a process is entered on the queue, the function 

waits till the process nUMber is first on the queue. FIRST 

is a global variable defined as a subarray name for the 

first element of Q~ Thus the processes are encountered on a 

first come first serve basis and no process will ever be 

locked out. 

The function LEAVE merely deletes the process nuw~er 

from the queue~ Notice that the expression Q+l+Q is used e 

Since only one process can be in its critical section at one 

time, only one process can evaluate LEAVE at one time~ 

However an ENTER and a LEAVE could be evaluated at one time. 

Why then is there not danger of a race condition as before? 

The answer is simple but has far reaching implications~ 

When evaluation of LEAVE is requested by PROCESSi, the 

operand Q is used activelyG Therefore any attempt to 

reference or specify Q by another process is pendant over 

the entire evaluation of the function LEAVE Q This is why the 

wait implied by active use of an operand for a single 

function is not a restriction$ The single function may be a 



230 

defined function of any complexity. 

This simple case could in fact have been written such 

that each critical section used an active operand to block 

the others. While this would meet all the requirements of 

the problem, the order in which processes entered their 

critical sections would be unspecified (although first come 

first serve would be a reasonable choice for 

implementation). 

If the processes described here were computing systems, 

then the critical sections might include access to an I/O 

channel shared among them. 



231 

Changing the ENTER and LE~VE functions can change the 

entire personality of the systerne For example using the 

following ENTER and LEAVE functions a system is defined 

where M~N processes are permitted in their critical sections 

at the same time~ 

l:lElvTER 

[0] I 

[lJ ~(M~p(Q+),I)/O 

[2J IwPIl?ST 

l:lLEAVE 

[0] Q+I ~ Q 

[1J ~(M>pQ+I~Q)/O 

[2J FIRSTM+-1~FIRSTM 

This parallel process is initiated by evaluating 

Q+t~l 0 (]?IRJ..c)T~1tQ)+ 0 (FIRSTf4+11tQ)+- 0 Q+10 

PROCESS 

Here if fewer than M processes are in their critical 

sections, a new one may enter, otherwise a new process waits 

till it is first$ When a process leaves its critical 

section, if there are more than M in queue then a new 

process is granted enterance by rotating its number into the 

first posi tion of Q by using the subarray name F.IRSTP1 o 

Again if the processes were computing systems, M might 



232 

represent the number of I/O channels shared by them. 

A priority system could be defined by having ENTER sort 

the waiting processes according to priority. In general the 

full power of the notation is available to specify any 

special requirements a system may have whatever their 

complexity. 



233 

In this section another data type called YQ~g is 

proposed It is presented separately because its value to0 

the notation is independent of the other topics in this 

paperc A YQ!g §g~1~~ has no literal existence but is 

produced in two ways: 

1G)	 on attempted evaluation in the value domain of 

an identifier having no description0 (a value 

error in APL\360) 

2~)	 on evaluation of a defined function having a 

result if that result is never specified. 

(sometimes a value error in APL\360) 

In the generalized notation a statement is said to 

contain a yg1y§ g~~Q~ in either of the following cases: 

1 ~ ) the void scalar occurs as operand to a 

function which does not have void in its 

domain 0 

2.) the value of an expression after complete 

evaluation is voide 

This second case means that a display of void is always 



234 

an error 0 

The obvious question is to ask what functions shall be 

extended to include void in their domains. The answer is 

easy; none of them. That is, void used as an operand to any 

function introduced so far implies a value error. However 

two new functions are defined which do include void in their 

domainstl 

Exist (A)
 

Syntax: Z. + 3 B.
 

Conformability: H is any array.
 

Formal description: origin free
 

IE R is void XggN 0 

~Y..§'IJ. 1 

Default-of (A)
 

Syntax: ~ ~~ ~ j R
 

Conforrnability: ~ and II are any arrays.
 

Formal description: origin free
 

IE R is void Xg~~ L 

gl!.§.E. Ii 



235 

These functions make it possible to test if an 

identifier has a description or if a function defined to 

have a result, really produces a result$ More importantly 

they provide a more general means for defaulting parameters 

of a defined function~ (see page 164) 

The following defined function uses the function header 

to default its left operand: 

6MINUS 

[0] Z+ (A+O) B 

[ 1 ] Z+A-B 

tfuenever this function is invoked without a left 

operand, the expression ~~o is evaluated~ 

Using default-of this could be written 

I1MIlifUA.) 1 

[0] Z + (A+) B 

[1J 2+(0 3 A) B= 

'~Jhenever this function is invoked wi thout a left 

operand the formal parameter is left without a description~ 

(Recall that a formal parameter written in the function 

header in the form ~+ implies that the actual parameter is 

optional and is not the activation of that parameter.) 

This is an important distinction~ If one tried to write 

a times/signum function, one would be at a loss to choose 



236 

the proper default value to put in the header because any 

number is a valid left operand of multiplication. However 

using exist it could be written: 

~TIft1ES 

[OJ Z + (A+) B 

[1] -+(3 A)-tL1 

[2J (-+0) Z+AxB 

[3J L1:2+ (O<B)-O>B 



237 

A number of schemes have been proposed for generalizing 

the conformability requirements for scalar dyadic functionSD 

The question arises as a practical matter from problems 

encountered in actual programming in APL\3600 First, there 

is confusion about tIle (unpublished?) rules for 

conformability of a one element array with other arrays~ 

This is allowed in APL\360 because so often one element 

vectors occur where scalars are desired While convenient inm 

an irnplern.entation, such an extension llas not been allo\ved in 

this work~ Second, there are circumstances where it is clear 

what non-conformable operands to a scalar function ought to 

mean. A common example is applying a vector to each row or 

column of a rnatrix~ 

One of the earliest published attempts to provide a 

solution came from So Charmonrnan [Charmonman 4]0 His 

proposal (which shall not be restated) solves the above 

stated problem but suffers some serious drawbacks 0 It tends 

to ignore the shape of operands and the shape of the result 

is somewhat arbitrary; comro~utative scalar functions do not 

commute under the extension~ 

Abrams [Abrams 1] proved the following theorem 

concerning arrays ~ and R conformable for scalar functb n ~: 



238 

By extension one could use the expression on the right 

as a definition for scalar functions. This allows applying 

vectors to columns of an array but not to rows (a slight 

modification allows rows but not columns). A problem in 

common with Charmonman's proposal is that everything is 

conformable making errors difficult to detect. 

The following proposal [Breed 3] is a compromise which 

relaxes conformability requirements without removing them. 

Following is his formal definition for A ~ B for ~ a dyadic 

scalar function. The formulas are rewritten below in the 

notation of this paper. 

1~	 M+«OrCppB)-ppA)pl),pA 

N+«(Or(ppA)-ppB)pl),pB 

2 0	 U+«lpM)+(M=l)xpM) 9 M,N 

V~«lpN)+(N=l)xpN) 9 N,M 

length error unless U ~ V 

3.	 X+(~M=1)~«1M=1) 9 U)p(411=pA)~A 

Y+(WN=1)~«~N=1) 9 V)p(4Wl=pB)~B 

R + X Q Y
 

where scalar extension as defined holds.
 

Simply this means that the operand of smaller rank has 

its dimension vector extended on the left with 1's. The 

resulting arrays conform if the dimension vectors are 



239 

elementwise equal or one is a 1$ Finally each dimension 

equal to 1 is extended to match the dirnensD n of the other 

operand causing a replication of the first array along that 

coordinate. 

This scheme has the following features: 

1.)	 It is a superset of the current scalar 

extension rules. 

2 0 )	 Commutativity and associativity are preserved 

where they exist between scalars o 

3@)	 Outer product may be defined in terms of 

scalar extension~ 

A oo~ B +~ «(pA),(ppB)p1)pA)~((ppA)pl)~pB)pB 

This proposal appears to embody all the requirements of 

a generalized scalar extension; using it the vector inner 

product description (page 94) could be written simply Q/~ ~' 

Hi its application to arrays of functions does not seem to 

be a problem; and it is formally pleasing to see the closed 

outer product definition~ 



240 

Interval has already been extended to vectors of 

non-negative integers. The observation was made that ta 

counts in a base H number system. This statement suggests 

yet a further extension. Since counting in a negative number 

base is well defined, it should be possible to define 

interval for vectors containing negative integers. One 

possible definition for scalar integers is: 

IE R=O Xg~~ ~
 

~~~K (lR-xB),R+QRQ-1


The extension to arrays would use this definition for

scalars in the description on page 100. This description is

obviously the same as before on positive integers.

Examples:

t-10

o 1 2 3 4 5 6 7 8 9

Thus \-10 counts negatively from 0 to 9. Under this

definition for non-negative integer N l-N in origin QEQ is

the same as ~tN in origin QRQ-N

241

Interval on arrays is even further removed from

counting as seen by the following exarnple~

~ 1 - 2 2

o 0

1 1

o 1

o 1

The representation for a number is along the leftmost

coordinate. A base value shows which numbers are

representec1 11l

2 2 J. :)t-'2 2

o 1

2 1

This illustrates the fact that negative radix number

systems represent a set of integers skewed about zero~

Thus this extension does not behave as hoped It maya

still be considered for inclusion in the notation in its own

right~ It does produce the mixed radix representation of a

dense set of integers.

\

242

Often in an expression, some parentheses could be

eli~inated if the left and right operands of a function were

reversed~ There are numerous examples of this phenomena in

this paper. For example the parentheses in the definition of

vector scan

~/(I+1)tH

could be eliminated if the operands of take were reversed.

It has been proposed [Liu 14] that an operator be provided

to do this. Choosing (only for the moment) as the

operator, the above expression could be written

~/R;tI+1

But very little is gained. The expression is one

character shorter and this is about the best to be expected.

The statement is no clearer and is perhaps even harder to

read. Therefore this extension is rejected. Parentheses (as

any LISP user will agree) are not really so bad.

243

Abrams [Abrams 1] proposed that the intent of an

expression and not the literal expression itself should be

evaluated Thuso

o 9 5 2f1 0

has the undisputed value Se This view is rather forced

since the APL machine which he proposes will distribute the

select function and will indeed evaluate the expressD n m

IIowever the intent of any expression is subject to

interpretation (no pun intended) where the literal

expression is not~ In the notation as defined here, the

expression

o 9 5 2.;.1 0

must be considered invalids The question is then what could

be added to the notation to make such an expressb n legal?

Earlier the concept of a value error was formally

introduced into the notation under the guise of a new data

type called void~ It is tempting to try to do the same with

other forms of errors Therefore a domain error scalar0

called vacant and denoted v is postulated0 vacant is the

result of a scalar function on operands not in the domain of

that scalar function~ As with void, display or specification

of an array containing vacant is always invalid~ Admiting

vacant into the domain of the select functions solves many

of the problems Thus 5 2f1 a results in 5 v and0

o 9 5 2f1 0 is 5, while 1 9 5 2~1 a is a domain error ItQ

244

appears that vacant ought to be in the domain of the scalar

functions so that

o ~ 0 3 + 5 2 T lois still defined.

The main objection to this extension is that the danger

is present that detection of an error will occur far from

its cause, making the cause of the error difficult to

determine.

245

Variable functions have been divided into two groups:

defined functions which are named by identifiers and

primitive functions which are named by function symbols A$

pri~itive function is treated much like a constant because

no way is provided to change its description~ But this

changelessness is more a matter of taste than a requirement~

Allowing function symbols to be respecified with new

descriptions would make them variable in a truer senseo This

is specifically rejected for two reasonso First, the

standardization of symbols is a practical necessity for a

widely used notation The functional ability of the notation9

is enhanced by use of commonly distributed defined

functions~ Second, if it really is desirable to interpret a

symbol at one time as + and at another as v then a defined

function is suitable when defined once as

SYM+~+

and again as

SYM+~v

246

14

In chapter 2 a new punctuation symbol 0 was introduced

as an expression separator It is interesting to note thatG

the symbol could be treated as four functions one with each

of the four operand contexts [Rubin 19]0 The four functions

may be described as follows:

1 0 }	 A right operand (if any) is ignored

2 0 } A left operand (if any) is returned as a

result. Only a function with a left operand

has a resulta

Examples:

A+3 0 A~5+6 (0 dyadic with result 3)

Z~Z*o5 0 ~(A<O)/O (0 dextri-monadic with result ~5)

1,A+ 0 ~(A<O)/O (0 niladic with no result)

These functions may be characterized as follows:

1.)	 They do not separate expressions but rather

join expressions to make a single new

expression.

2 e }	 Evaluation of the original expressions

247

proceeds from right to left~

3Q)	 Display of results in intermediate expressions

is suppressed.

4 e)	 Intermediate expressions may be neither

labeled nor branched to~

The functions 0 differ from the punctuation 0 in each

of the ways listed aboveo The fact that the functions

provide a single expression is not in itself objectionable~

The different order of execution is not traumatic since the

order chosen for 0 punctuation is somewhat arbitrary~

Inhibiting the display of results implies that the functions

do not genuinely mimic the punctuation~ The functions could

be designed so that a right operand would imply a display

but this would also imply a display of the result of a

specificatione

The original purpose of 0 was to emphasize the

relationship between expressions yet keep them separate for

evaluation~ Making 0 a function defeats this purposee Thus,

the proposal is rejected primarily because of the branching

and labeling restrictions it would impose~ Some of the more

interesting uses of the symbol (the conditional) become

invalid~

2 L~ 8

Chapter 4

Conclusion

TllC generalizations to I1PL prOI)osed in t11is

dissertation fall into four classifications:

1 •) Syrl ta.}~

2 •) Arrays

3 •) I'James

iJ •) Functions

The syntax is generalizeQ to permit functions in four

operand contexts to exist for pri~itive functions and

clef inec1 J\n expression or a11Y complete

sul)-expression of C1n e2-:nression is treated mucll liJce a

function in t}lat it evnluates ei thcr to a single array or to

no result at all.

Arrays nrc e::·:tencleu J))T allo~>linq Il10re scalar types a.nu

by c1efil1ing arrays eacll of vvllose elemerlts Flay De an array of

an~! ranJ~.

of narnes (in the name ~omain) as

separated fron arrays (in the value dOMain) is recognized.

FUl1ctions c1efi11ec'1 ()n 11ar1CS are generally i11sensitive to

arrays assnciCltctl ~.\li t 11 t11C~ llaMas.

249

Functions are defined to create and manipulate new

scalar types and general arravs. Functions previously

define~ on vectors are extended to arr~ys by use of general

arrays for arrav indcxin0. A define~ function is treated

muc!1 liJ:c a priJ"1iti~Te aT1lc1 nn)T clcscribe any of four functions

by use of defnult operands. ~ function inde)~ is permitted

with a define~ function ~nd in general nay be a vector.

For the purpose of this work APL\360 has been taken to

be a c1e facto stanllarcl for AI)L. A (le'tailed S1.lrnrn.ary of t11e

ch~n~es to APL\360 which are proposed is presented in

Appen(1i): 1.

1'he prol1osRls 't~7hicI1 t1El~1e heen put for',Y:l.r(l l1cre may be

ac10pted in "'ltlole or in part al tl10Ugh tr1cre are c1epenc1encics.

These suqqestions have been Made with the prine focus on the

langlla<}e an(l not on its inplern.entation; r'orcove.r, trlcre are

still are~s for futher consideration in the language in

adclition to ~d}l\J.t is c1iscussec.l in this paper. ?\t t11is tir.'e it

is appropriate to COMment on irplenentation and further

work.

250

In keeping wi th tIle spiri t of APL the generalizations

are presented as a notation not as an imple~ented

prograMrling language. Prol)lem,s of irlplern,entation have been

generally iqnored. However it is the feeling of the author

that all the concepts in chapters 1 and 2 may be implemented

in a straightfor\vard ~anner. Certainly the uniformity of the

syntax should ease syntax analysis.

IMpleMentation of functions on general arrays would

propably mimic quite closely the descriptions given for theM

here. In particular the scalar functions should be amenable

to a siMple recursive evaluation algorithm.

An easy way to represent a general array on a

conventional computer would be to store in row Major order a

set of pointers (addresses) to t~e arrays in each position

of the general array. Each indicated array would either be

one of the scalar typeq or another array of pointers. In

case all the scalars of a si~ple array were of the same

type, a conpact representation of t~e array (as with all

arrays of APL\3GO) would provide storage optiMization. The

use of descriptors separated froM the values as proposed by

AbraMs [~braMs 1] is clearly indicated.

The trent~ent of proqraM scalars has not implied

constraints on what the computer representation of

expressions should be so long as a character representation

eqlli~lalent to tIle original clescription is al',vays obtainable.

251

Proper implementation of arrays of

implies multiprogramming of functions~

synchronizing primitives of chapter 3

may be more difficult.

Implementation of named na~e arrays

in the name do~ain) should probably be

study of the implications of the concept.

functions merely

Inclusion of the

(activate and wait)

(i.e.	 specification

pendant on further

252

C Q Further Research

Certain aspects of the generalized notation seem to beg

for further extension and a number of problems have not been

considered at all.

The position scalar

Prominent in this set is the position scalar e • It is

in the domain of the structure and select functions and very

few others.It arises because arrays containing scalars of

ditrerent type are permitted* In some applications it could

be useful if e were treated as a universal identity for the

scalar functions~ That is e in a operand of + would act

like a zero, while 8 in an operand of x would act like a

one~ Then an expression like

1+1 0 1\3 4

would be valid as it is in APL\360G Unfortunately like

the universal solvent that can't be stored, the p-scalar

would be difficult to detecta Neither = nor - (which is

defined in terms of =) could detect it~ Worse - would not

really be identically equal since every occurrance of e

would be treated as a onea

Unit indexing

A more tenable use of e would be to postulate the

following identity for unit indexing

e 9 H ++ e

253

then

1 3 e 9 'ABCDE' +~ ED 9

and

(EtA) ~ B

would be an array of the elements of A which occur in B

with e elsewhere*

unit indexing itself seems to need a further extension.

While it is a replacement for the bracket indexing of

APL\360, it is not an equivalent replacement~ There is no

way to mi~ic the elision of a coordinate which in APL\360

implies the selection of all elements along that coordinate.

Indexed unit indexing uoes select all elements along

unindexed coordinates but the resulting array is short by a

transpose of being identical to the APL\360 notation~ In the

absence of such an extension, the bracket notation for

indexing could he retained in an implementation solely for

convenience even though 9 is more pleasing formally~

A different extension to unit indexing would perwit

selecting of elements on other than the top level of an

array.

Functions on General Arrays

Only a few new functions have been defined on general

arrays. Further study may indicate that more primitives are

required to efficiently manipulate the arrays~ This is

particularly true in the case of uniformly structured

general arrays (i.e~ arrays where all the sub-arrays on a

254

level have identical structure} 0 It should be possible to

first implement these new functions as defined functions

using the notation of this paper. For exa~ple a defined

function to determine the depth of an array (i.e. the

maxirnu~ number of levels as defined in chapter 1) could be

written as follows:

~DEPTH

[0] D+ A

[1] +((CtO) - ~pA)tD+O

[2J ~(D+(tO) ~ ,A)/O

[3J D+(_ l~tA)rl+ _ ~o 9 A

Type Determination

It is often useful for a function to adjust its action

depending on the data type of arrays presented to it as

operands~ The inclusion of arrays consisting of different

scalar types makes it difficult to test for the type of an

array. It may therefore be necessary to provide a primitive

for the purpose. Such a prinitive could return a particular

element of the type or perhaps merely an integer.

Multiple Functions

The synchronizing functions (wait,activate) proposed

for multiple functions provide basic regulation of parallel

255

functions but have some shortcomings. It is not easy to

cause a function to wait on multiple conditions. There is no

primitive ability for one defined function to terminate,

interrupt, or cause a branch in another defined function.

Proper programming conventions, however, can provide these

abili ties~

Files

Perhaps the biggest deterrent to use of APL in many

applications is the lack of a large data capability (a file

system)~ This is largely an imple~entation proble~ and could

be solved without modification to the notation by permitting

(by declaration) large general arrays whose values were

recorded external to the conputer* Adding READ and WRITE

functions to the notation in the spirit of traditional

programming languages would not be an elegant solutionQ

System coromands

Further study into the relation of the system commands

of APL\360 to the notation is required. Perhaps they should

be included formally in the languages Or perhaps the

implementation environment should be altered so they are not

needed at all.

256

This paper has presented for consideration a

generalization of the APL notation. The concepts developed

extend and complement the existing capabilities of the

notationo General arrays permit easy representation of data

not amenable to rectangular structures (i.e. trees, lists).

Including functions in the domain of variables makes the

notation functionally self-extensible and makes

consideration of APL for the native language of a computer

more realistic.

It has been said (by Alan Perlis) that there is an

inherent danger in extending APL in that the extensions may

corrupt rather than improve. Whether or not the proposals

made here are in good taste and in the spirit of APL in the

ultimate analysis is in the hands of the users~ The attempt

has been made to preserve the essence of APL by preserving

identities while extending the notation and the domain on

which it is defined~ It is hoped that the ideas presented

here will stimulate further discussion and study of APL.

257

Appendix 1: Summary of Modifications

A~	 Syntax

The only change to the syntax of the notation is the

requirement to parenthesize a niladic function used as the

left operand of a functiono The syntax is generalized in two

ways:

1 0 >	 A function symbol or function name may be used

in any of four contexts depending upon the

existence of zero, one on the right, one on

the left, or two operands~ These types are

called respectively niladic, monadic,

g§~t~!=mQn~gig, and dyadics

2.)	 Expressions having no value (no result after

evaluation) may be embedded within expressions

and may in a sense be left operands to niladic

or monadic functions, or right operands to

niladic and dextri-monadic functions~

The order of evaluation of functions is unchanged for

expressions valid in APL\360. However the existence of

embedded expressions of no value requires a more restrictive

description of the order$ A function occuring immediately to

the right of a right parenthesis has lower precedence than

258

any function occuring in the parenthesized expression.

Otherwise precedence is positional and increases from left

to right~ The evaluation rule then merely demands that

functions be evaluated in order of decreasing precedence.

B. Arrays

The variety of arrays is increased by the inclusion of

three new data types. The QQ§!t~QD §Qglg~ e , is used as a

placeholder in arrays when there is no reason to chose

another scalar$ A Q~Qg~~m §Q~!~~ is the description of some

functione A n~IDg ~gg~g~ is an indirect reference to some

value. Arrays whose scalars are of different types are

3permitted An array which is composed of scalars is called a

simple array. An array whose structure is hidden and which

is treated as atomic is called a Yil!t ~~~~y. An array

composed of unit arrays is called a ggDg~~l ~r~sY. A general

array is the regular, structured equivalent of a ragged

array~ An array whose rows of different length may be

represented as a general vector whose elements are the rows

of the ragged array0

c~ Names

Names are treated more uniformly via the introduction

of the Y~~!~Ql§ ~gngt~Qn concept which treats both functions

and variables as name-array pairs. A fYng~~QD is a name

259

associated with a program array, all other variable

functions are called variables Names may exist0

independently of arrays in the name domain0 The n~ID§ gQm~~n

is recognized only in the left operand of specification (and

in Chapter 3 in the left operand of activate) 0 Specification

may be used to define both functions and variableso Arrays

of name scalars are produced by functions defined on names~

These name arrays allow selective respecification of values

of variables and allow splitting of a value among several

names 0 Selective respecification is not new to APL\360 since

it exists under the guise of the triadic-looking indexed

specification. Splitting of a value among names is new and

is vital to the parameter substitution rules for defined

functions~

D$ Functions and Operators

A g~f!n§g fYng~!Qll is a name associated with a program

scalar~ An Yn=h§~g§g ggf~n~g bYDgt!Qn is niladic and is a

collection of associated expressions A h~gg§g g~!!n§g0

~gngt~Qn is a collection of associated expressions the first

of which is called the ~~n~~1Qn h~gg§~e The function header

defines the valid context of the function, specifies the

default operands, and declares sets of names as lQg~l n~m~§

or ~t~!gtbY !QQ~l n~m§§$

260

The following list of primitive functions are present

in APL\360 or are trivially extended to include new data

types or general arrays. They may be located in the paper

via the index.

Size pll

Reshape l!pli

Attach ~,11

Base Value ~.l[i

Represent ~Tli

Compress l!./11.

Expand L.\H.

Reverse <J>B.

Rotate ~<1>R

Membership l!.EB..

Transpose is?H. and ~ tslli

Grade Up 4ft

Grade Down wa
Branch -+-3.

The following operators are included as above

Outer Product It. 12 ll.0 e

Inner Product f:. Q.Q.' !1.

261

The following functions exist in APL\360 but have been

altered or extended~

Index~of It.tJi array left operands

Interval t.{f vector operand

Ravel ,11 function index permitted

Take It,t!l. function index permitted

Drop It,-rfl. function index permitted

Specification !d+ll left operand name arrays

The following operators are included as above

reduction when unindexed, always produces a scalar0

When indexed, any or all dimensions may

be reduced

scan I2\Jl same as reduction

The following functions do not exist in APL\360

Conceal ell creates unit arrays

Reveal JE.. extracts array for a unit array

Unit Indexing ~ ~ R replaces bracket indexing

Entire ~ Ii an identity function

Same lL - !1 =1 if operands are identical

Complement-of set difference

Activate create an active name

262

Define 'V!1. create a program scalar

Evaluate loB. evaluate an expression

Character form TH. character representation

Exist 3 11 =1 if name has a value

Default-of ld. 3 B. defaults operands

Wait l!wli suspends evaluation of expressbns

The following operators do not exist in APL\360

Scalar Product applies functions to concealed arrays

Definition-of !:ill produces an unevaluated variable

description

263
Appendix 2: Prinitive Scalar Functions

D R I~ ESU £17

+l?
+2 2

R

-R
-, 2

Minus R
2

D

+

L D 11 RESULT

L+R L pIllS R
3+2 5

L minus R
3

xR
- 1x 0

SignlIm

3 1
of R
0 1

x

fR
f5

Reciprocal of Ii
o 2

LI?
L3 0 14

Floor of
2 0 7

R
3 3

L

r I? Ceiling R
r3 D 14 2 0 7 L~ 2

r

e to the Rth
2r,718281828

power *

eR
68*R

natural log of R
+-+ R +-+*6JbR

IR r-'1agni ttlc1e
'-20718

of 1/
2 0 718

!R
~ It +-+

Generalized
Gamrrta(R+l)

factoria

?R Random roll froIT tR ?

OR
01

PI times R
3 0 141Sg265 L+

o

t"JR
-1 +-+

l~Jo t
o

F?
...... 0 +-+ 1

LxR L tirnes [~

4x4 0 5 18

L fIr L divi(led by R

4-!-3 1,,333333333

LLI~ Minimum of Land R

3L4 3

LrR Maximum of Land R

3f4 4

L to the Rth power
l 41!'t213562o

Log R to the base L
(~R)f~L

LIR L residue of I?
L~O R=LxLRfL
L=O It

L~R R t11ings L at a time
L~R (~H)f(%L)x~Ro<L

2 ~ 5 10

(dyadic is non-scalar)

LoR Lth circular function
(see table on next page)

264

A And L R LI\R LvR L'1(R L¥R
v Or

Nand 0 1
 1 010*
¥ 1Nor 1 0 0

1 1
0 1

01 1 0

< Less RELATIONS
s Not greater Result is 1 if the
= Equal relation holds; o if
~ Not less it does not.
> Greater
;t Not equal

The Circular Functions

-L oR
(1-R*2)*o5

Arcsin R
Arccos R
Arctan R

(-1+R*2)*o5
Arcsinh R
Arccosh R
Arctanh R

o (1-R*2)*.5
1 Sine R
2 Cosine R
3 Tangent R
4 (1+R*2)*fJS
5 Sinh R
6 Cosh R
7 Tanh R

Identity Elements

D ELEMENT
x

+
T

*
I
•

o
v

"
*
IV'

r
L

=

1
o

1 (right only)

o (right only)
1 (right only)
a (left only)

(none)
(none)

a
1

(none)
(none)

1 (left only)
(smallest number
(largest number

o (right only)
1 (right only)
o (left only)
1 (left only)
1
o

representable)
representable)

265

The following rules may be used for synthesis of

partially parenthesized expressions with functions

classifiecl @l

lIon-terminal Symbols

- an e}~pression~~12

~ZO - an expression with no value

~~1 - an expression with a value

~o - an expression with no value and no operands

~1 - an expression with a value and no operancls

~BO ... an expression with no value and a right operand

~Bl - an expression vli th a value and a right operan(1

~LO - an expression vlith no value and a left operanc1

~!11 - an expression with a value and a left operand

~!:BO - an expression ~li th no value and two operancls

!2~Bl - an expression with a value and two operands

~~1 - an expression as left operand of a function

rtl0 - a niladic function with no result

Etll - a niladic function with a result

EMO - a rn,onadic function wi th no resul t

EMl - a monadic function with a result

E~O ~ a dextri-~onadic function with no result

E~l - a dextri-Monadic function with a result

EQO - a dyadic function with no result

EQl - a dyadic function with a result

266

Terminal SyMbols

()[]VA as before

NO a niladic function with no result

1111 a niladic function 'vi th a result

MO a Monadic function with no result

llf1 a Monadic function wi tl1 a result

XO a dextr i -rr:onac1ic function vli th no result

Xl a dextri-monac1ic function with a result

DO a dyadic function with no result

Dl a dyadic function with a result

The Rules

J2~E -the starting expression

(1-3) ~~!: -* ~~O I g~1 I (~2S~)

~(4-8) ~~O A I ~o f f;BO I ~~o I ~~BO

(9-11) ~~O .. (~~O)~~O ~~O(~ZO) I (~ZO)

(12-15) ~~1 .. ~1 I ~Bl ~~1 I ~~Bl

(16-18) ~~1 -+ ~~l(~[;O) (f;~O)~~l I (~~1)

(19-22) ~o -+ ~O f!O I ~BO ~~O I !::U 0 I (£;0)

(23-26) !;'!JdO -+ ~r:O ~!:!O ~~BO ~!:! 0 !:!~1 E~O I (~~O)

(27-29) ~BO -+ ~EO ~BO ~BO ~:r:BO [MO ~Bl

(30-31) ~BO -+ rNO ~~Bl I (gEO)

(32-34) ~~BO -+ ~I=BO ~~BO I ;g;~ 0 ~BO I ~~O ~~BO

(35-36) ~!:-BO -+ ~:&!BO ~BO I ~~1 ~QO ~B1

(37-38) ~LBO ~ I:~1 EIdO g~Bl (~1BO)

267

(39-42) ~1 -r ~1 go I ~Bl ~~O I ~BO ~!:!1 I rU1

(43=45) ~~1 -+ ~~B1 ~!:!o I ~~BO ~1!1 g~l &1!O

(46) ~~1 ~ ~f;l E~O

(47-50) ~Bl ~ ~BO g~B1 I ~E1 f;~BO I rM1 ~Bl I [Ml ~~Bl

(51~53) g~Bl -+ ~I:!BO ~~Bl I ~b!B1 ~~BO I ~~o gEl

(54=57) ~I4Bl -+ ~~1 t;go (~~B1) I 1!~1 I !!!:;1 EQl gEl

(58) gLB1 -+ ~B1 JZQ1 ~~B1

(59-60) ~!;!1 ~ (~~1) I V

(61=62) Eli ° a+ 110 }!O [~~!:]

(63~64) EtIl -+ ~ll 1111 [~~!:]

(65=66) [MO -+ l10 !~JO [~~r]
(67=-68) t:Ml -+- Alt fill [~zr]
(69-70) E~O -+ xo xo [~~!:]

(71=72) E~1 -+ Xl Xl[£;~~J

' (73-74) rQO -+ DO DO[~~j2J

(75=76) EQl -+ Dt Dl[~~!:J

268

Example derivations and classifications giving the rule

numbers

V P1 V

£;z~

2 -+ ~Zl

15 ~ ~!tBl

58 -+ ~~1 EQl ~~Bl

56 0.+ ~~1 EQl ~~1

60 -+ !:!~1 EQl V

75 ~ ~~1 Dl V

60 -+ V Dl V

(V FO)FO

~~!:

1 -+ ~l;O

9 -+ (~l;O) ~~O

5 -+ (~~O) ~O

21 -+ (~~O) Etl°

61 -+ (£;~O) NO

7 -+ (~~O) NO

25 -+ (~~1 ~~O) NO

69 -+ (~~1 XO) NO

60 -+ (V XO) IvO

269

F1 FO V V

~Z~

2 .-+ ~~1

13 ~Bl""*

49 -+ EMl ~Bl

47 -+ EMl ~BO ~I:!Bl

56 -+ rMl ~BO ~~1

60 -+- 11:Ml gBo V

30 -+ £:Ml EMO ~~Bl v

56 -+- EMl [MO L~1 v

60 -+- EMl rNO v v

65 -+ EMl MO V V

67 -+- fIJ1 1~10 V V

r

270

(V FO V) P1 V


~~~ 

2 e+ ~~1 

17 -+ (~~O) ~~1 

13 -+ (~~O) ~Bl 

50 -+ (~ZO) rMl E~Bl 

56 (~~O) !::Ml ~~1-+ 

60 -+ (~~O) rMl V
 

67 -+ (~ZO) Ml V
 

8 -+ (~I.!BO) Mt V
 

37 -+ (~~1 EQO ~I:!B 1 ) flI1 V
 

-+
56 (~~1 t:QO ~gl) Ml V 

60 -+ (~~1 [QO V) ],11 V
 

73 -+ (~~1 DO V) Ml V
 

60 -+ ( V DO V) flIt V
 



References 

271 

1 Q AbraMs,PoS o [19701~ sn 4E~ M~gh!ng~ Report No~ 114 

Stanford Linear Accelerator Center, Stanford 

University (February) AD706 741 

2. Breed,LQM o [1971] ~ 

NO$ 6 (March) 

Correspondence, ~E~ QYQt~ Qy~g Vol. 2, 

3~ Breed,LGr-1~ [1971] 0 IIGeneralizing APL Scalar Extension"o 

dE~ QYQt~ QYsg Vola 2,No~ 6 (March) 

4~ Charmonman,Sa [1970] $ "A Generalization of APL 

Array-orientec] Concept" a 4l:~ QYQ,t§ QY§!Q Vol 

(September) 

2, NO(J 3 

5. Dijkstra,E(j)~~Je [1968] ~ "Cooperating Sequential 

~~Qg~f!mm!ng ~~ngy~g§§, Acadernic Press, New 

Processes" 

York, 52-76 

6~ Edwards,EoHo [1971] 

Canada 

Personal correspondence, Control Data 

7~ Falkoff,AoD Gl ,Iverson,K,E, and Sussenguth,E o II 0 [1964] Ii) "A 

Formal Description of sysrrEM/360" G) ~~N ~:l§:t;~m·§ J:QY~]}9:1 

Vol. 3, ~Joo 3, 198-262 



272 

8.	 Gilman,L.,Rose,A.J. [1970]. dE~/360 ~n !nt§~~gt!y§ 

~gQ~Qggh, John Wiley and Sons, New York 

9~ IBM Corporation [1969]. 4E~\360 Q§~~§ M~nY9!' Form No. 

GH20-0683-0, White Plains, New York 

10.	 Iverson,K.E. [1962]. ~ ~~Qg~smming ~~ng~~g§, John Wiley 

and Sons, New York 

110 Lathwell,R.H. and Mezei,J.E. [1971]. ~ EQ~ms1 Qg§g~~2t!QD 

Q! dE~\360, Draft of a Philadelphia Scientific Center 

Report (~1arch) 

12.	 Lathwell,R.H., Personal correspondence, IBM Philadelphia 

Scientific Center 

13.	 Leeson,D.N. and Dimitry,D.L. [1962]. ~~§!£ ~~Qg~~mm!ng 

~QD~§Q:t2 §:DQ thg ~~M 1620 Cornputer, lIolt, Rinehart and 

Winston, New York 

14 01 Liu,Y. [1971]. "Reverse Operator in APL", ~QmI21!t!.ng 

~§nt~~ H§~§ Vol. 4, No.4, Syracuse University (March) 

15.	 McDonnell,E.E., Personal correspondence, IBM 

Philadelphia Scientific Center 



273 

16G McCarthy,J~,et$al~ [1962]0 ~!~~ 1~2 E~Qg~~mmg~~§ M2nY~1, 

MoI~T~ Press 

17~ Morrow,LoA~, Personal correspondence, IBM Philadelphia 

Scientific Center 

18~ Pakin,S~ [1968]~ dE~\360 B~~~~gn~§ M~ng~1, Science 

Research Associates, Inc01 Chicago, Illinois 

1ge Rubin,W~B@,Personal correspondence, Syracuse University 

20. Ryan,J. [1971] Generalized Lists and Other Extensions,0 

4.EIL Q1!Qt§ Qygg Va 1 3, 1,10 ~ 1 (June) 

21 0 \'Vatson,D0,McEwan,A c [1970] 0 "APL\360 B§£l1;r§.§g~L dEl! QYQ:t§ 

QggQ VOls 2, No.2 (July) 

22 41 ~voodrum,L0JaJ[1969]o "Internal Sorting with 1·1inirnal 

Comparing"@ ±'~N ~Y:§!:§m§ ~Q!dfn~! Vol 8,No o 3 189-219 



274
 

INDEX OF IDENTITIES 

11 44
 

I2 44
 

13 44
 

I4 44
 

15 44
 

16 56
 

17 68
¢I 0 • 

18 68
 

19 69
 

110 69
 

I11 69
 

112 72
 

.. 
113 73
 

I14 81
 

I15 83
 

116 102
 

117 102
 

118 107
 

119 109
 

120 109
 

121 111
 

122 112
 



275 

I~JDEX 

Activate It:~- 218 

Active Expression .. ~ ~ • .. • 217s • ~ • 

Actual Parameter .. ~ • 0 ~ ~ 159e ~ ~ G ~ 

~ ~ ~ e ~ • ~ .. 0 $ • ..Adjoin L, [EI JR 115 

Apparent dimension .. ~ 0 • 62o ~ .. .. ~ 

Arrays of functions 117~ 0 .. <!I ~ .. .. \t) 

Attach "lL,[EIJE 41,11L~ 

Backscan 

Base value 52,120 

Branch -+fi ~ ~ .. ~ .. ~ .. ~ .. * .. $ ~ .. • .. 170 

Branching .. • .. ~ .. ~ .. 0 0 ~ rn 169~ ~ ~ ~ 0 ~ G 

Call by name .. ~ .. .. @ .. ~ 198~ • 0 0 • ~ .. .. 

Call by value c ~ ~ ~ 0 .. .. .. .. e @ ~ • Q 198
 

Catenate L, [EI J[i .. 41,114~ • e ~ • e e • 

... .. • .. (! .. <0) •Character forro~ T!i 172 

Complement-of ~~!l .. ol> $I 0 79.. • .. • 

• \t) ol> • • ~ ~ a •Compress l!/[EIJB 54,122 

Conceal c[EIJ[i 68,105$ e 0 ~ 0 ~ e .. .. • • 

Conditional 13,204-210 

Decode (see Base value) 

Default-of 234 

Define 152 

Defined function 150 

Definition-of 154 

Demi-colon 9 (see Scalar product) 



276 

Display of defined functions 157 

Display of general arrays •• ~o •• 74 

Display of simple arrays ~ ••• e $. 20 

Drop 46,119 

Encode (see Represent) 

Entire 9 li ~ ••• ~ ~ ~ ~ ~ $ 760 ••••• ~ •• 

Erase 220• Q • $ ~ @ • 0 • 0 ~ ~ • Q .0. Q • • • • • .0. 

Evaluate 174• • • • • e e • • • • ~ • • • • • • 

Execute (see Evaluate) 

Exist e ~ • • G • e _ • • • • • • • • s • • 234 

Expand 56,123• • 0 • • • • $ • • • • • • • 

Expression separator o 148 

Formal parameter 159• • • • • • • ~ • 0 ~ • $ ~ • 

• • • • • e _ • G • • e • • • 0Function header 159 

Function Index 103,162• • ~ • • ~ ~ • • • ~ • • • @ • • 

General array 59• • • 0 ~ • • $ • • • • • • • • • • 

General array extension method • 110 

Global name . ....... . . . ... .... 160
~ ~ 

Grade down o ••• 0 s •••••••• =. 85 

Grade up 

Headed defined function 158 

I-lidden dimension 

Identifier • • $ ~ • • • 0 • • • .0. 131• ~ • • • • ~ 

Index generator 100,240• • • • • • • Q • • • • 

Index-of • ~ • • •• 80••••••• e • • 

Indexing 40,71,111 

Inner product 94,128 



277 

Interval 

Label 

Laminate 

Local name 

Matrix product 

Membership 

Meta-notation 

Name 

Odometer 

43,100,240 

170 

116 

160 

92 

78 

12 

132 

43,100,240 

Operators ~oa~~~~O~~0.~.Gm.O~~0G 87
 

Order of execution 0m~e$ee*0.~~~ 30
 

Outer product ~.~~~~~ ••• ~a~~ 

Parentheses elimination rules 

Passive expression 

Position scalar 

Precedence of functions 

Primitive function 

Program scalar 

Ravel , [EI Jll 

Recursive functions 

Reduction a [EIJR 

Represent 

Reshape 

Reveal :)[EIJli 

Reverse Q>[EIJE 

Rotate !d¢>LEIJE 

Same 

92 

29 

217 

17 

29 

22,132 

17 

39 , 11 3 

211 

48,91,126 

53,121 

38 

69,108 

57,124 

58,125 

77 



•••• 

278 

Scalar extension ,.e •• ~o •• ~ •• e.~~ 25,86,237 

Scalar Product i aQee.~~$ •• ~. 89 

Scalar types .@ .... $O •• ~ •• ~ •••• ~ 16 

Scan l2 \ [ E£ ] E ~ ,. ••• (J ~ •• (I ~ COl ~. 50, 127 (J • (J 

Shadowed name ~o ••••••••••••• ~~~ 160 

Size Pll. (iI G> .. ~ e ~ • '" eo. 0;» a • Gl •• ~ e • e 37(I 

Specification ~+E ••••• 0 ••• G.$~ 134,139 

Specification in the name domain 214 

Squad 0 (see expression separator) 

Strictly local name •••••••••••• 161 

Syn tax • €I (I 11I (I e • (I' 23, 1 86(II (II 0 •• (J l!l 

Take L. t [ El. ] 11 45, 11 8 (J ••••••• (I 

Transpose ~~H .~ •• ~.' •• (JI.e •••• 82 

Types of scalars ~.o ••••••• e 16 

Un-headed defined function •• ~~. 155 

Unit array •••••• <11 ••••• "'<1113.63•••• '11 

Unit indexing ~9 [EIJH •• l!l~.G. 40,71,111 

Unquote (see Evaluate) 

Vacan t oil ~ I!> " () ••• 0 ... (J (I " •• ~ •• Q til .... Gl 243 

Variable function 132 

Void 233 

Wait 224 



279 

BIOGRAPHICAL DATA 

Name: James Arthur Brown 

Date	 and Place of Birth: December 23, 1943 
Erie, Pennsylvania 

Elementary School: Jefferson School, Erie Pennsylvania; 
St~ Peter's School, Erie Pennsylvania 
Graduated 1957 

High	 School: Cathedral Preparatory School 
Erie, Pennsylvania 
Graduated 1961 

College: Gannon College, Erie, Pennsylvania 
B"A., 1965 

Graduate Work: Syracuse University, Syracuse, New York 
Graduate Assistant 
!·1. S ~, 19 7a 



, 




