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A COMPUTER GALLERY OF MATHEMATICAL PHYSICS

Proceedings SEAS Anniversary Meeting 1985, Yolume 1,
SHARE European Association, The Netherlands, 1985, pp. 611-620.

Greg CHAITIN
IBM Yorktown Heights, USA

Abstract

A sampler of the fundamental equations of mathematical physics is presented, by means of com-
puter programs which provide working models of intcresting physical phenomena, including

a satellite going around the Earth according to Newton,

the propagation of an electromagnetic wave according to Maxwell,

the same satellite going around the Earth according to Einstein,

an electron moving in a onc-dimensional potential according to Schrddinger, and

sums over all histories according to Feynman.

These computer programs are like experimental laboratories in which one can play with physical
phenomena, and most of them generate motion pictures of the simulated happenings, which helps
to make these exotic phenomena more familiar and understandable. The programs are presented
in APL2, and each is less than a page long, showing how close APL2 is to the mathematics of
general relativity and quantum mechanics. Our intent is to transmit some of the basic ideas of
mathematical physics to people who know liztle physics or mathematics, but who feel comfortable
on the computer.

Outline

Goals

Why APL2?

The APL2 Workspaces:

« NEWTON: Particles and Action ar a Distance
. MAXWELL: Field Theory

»  EINSTEIN: Curved Space-Time

« SCHRODINGER: Probability Waves

. FEYNMAN: Sums over all Histories

Conclusions

Goals

A COMPUTER GALLERY OF MATHEMATICAL PHYSICS

A course on mathematical physics for people who know little mathematics or physics, but who
feel comfortable with computers.

Course Book: “The Evolution of Physics” by Albert Einstein and Leopold Infeld.

We supplement the book by providing computer working models of exotic physical phenom-
ena like black holes and probability waves.

The computer programs should be as simplc and easy to understand as possible, and conven-
icnt to modify and experiment with.



Why Apl2?

APL2 is closer to physics!

*  APL2 deals directly with vectors, matrices, and tensors, which are essential for general relativity
and quantum mechanics.

¢  For example, matrix multiplication and inversion are built in.
¢ APL2 has complex numbers, which are essential for quantum mechanics.
*  APL2 s very concise: each of our workspaces is less than a page long.

*  APL2is very interactive: it is easy to modify programs and to experiment with them using the
APL2 Session Manager.

The Apl2 Workspaces

*  Each illustrates a major chapter in the evolution of physics via a computational working model
which produces a “motion picture” of an exotic physical phenomenon.

¢  Six APL2 workspaces:
« NEWTON
- MAXWELL
« EINSTEIN (2 workspaces)
« SCHRODINGER
. FEYNMAN

e Each workspace is less than a page of APL2, showing how well suited APL2 is for math-
ematical physics.

Workspace “Newton”
e [Illustrates Newton’s law of gravity:
«  particles,
«  action at a distance.
e NEWTON draws a motion picture of the trajectory of an artificial satellite orbiting the Earth.
*  We show some frames from this motion picture...

Workspace “Maxwell”

¢ [lustrates Maxwell’s equations for an electromagnetic field propagating in a vacuum.
e No particles: field pervades a region of space.

e No action at a distance: all effects propagate at finite speed.

e  We use the modern vector potential form of Maxwell’s equations: the electric and magnetic
fields are of sccondary importance and are derived from the vector potential ficld.

e  Space is one-dimensional, with the ends joined to form a ring.
e Ficld is a sinusoidal wave form.
®*  We show some frames from this motion picture...

Workspace “Einstein”
¢ lllustrates Einstein’s law of gravity:
«  space-time is curved by matter,

»  small particles move on “geodesic™ trajectories,
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« in a small neighborhood, a geodesic looks like a straight line.
e EINSTEIN draws a motion picture of the trajectory of an artificial satellite orbiting the Earth.
e  Same problem as handled by NEWTON workspace: trajectory should look the same.
e  EINSTEIN workspace is smaller than the NEWTON workspace!
*  We show some frames from this motion picture...

Workspace “Einstein2”
e  Not a working model.
e  Numerically checks Einstein’s field equations

Ry=0

governing the curvature of space-time at a point near the event horizon of a Schwarzchild black
hole.

¢ Numerical results are good.

Workspace “Schrdodinger”

¢ Tllustrates the motion of an electron in a one-dimensional potential according to the
Schrodinger equation.

e  Space is one-dimensional, with the ends joined to make a ring.
¢  Electron is represented by a complex-valued probability amplitude:

. square of the magnitude or absolute value of amplitude at a point is proportional to
probability that electron is there,

« rate of rotation of phase of amplitude is proportional to momentum of electron.

¢ We show some frames from a motion picturc of a gaussian wave packet undergoing free
propagation...

Workspace “Feynman”
e Illustrates same physical situation as SCHRODINGER workspace.

e  Method of calculation used is a Feynman path integral or sum over all histories, rather than
the Schrédinger equation.

¢ Feynman method extends to relativistic quantum field theory, also called quantum
electrodynamics (QED).

e Feynman integrals are also essential in numerical experiments in non-abelian lattice gauge
theory, for example, in quantum chromodynamics (QCD):

«  quarks,
o colors,
o gluons.

¢  Imaginary time converges better than real time.

Conclusions

e Six workspaces illustrating equations of Newton, Maxwell, Einstein, Schrodinger, and
Feynman are each expressed in less than a page of APL2.

e  These six workspaces constitute an entire course in computational physics.
¢  They can be taken in at a glance, and lay bare the logical structure of the calculations better
than is possible in any other programming language.

A COMPUTER GALLERY OF MATHEMATICAL PHYSICS 3



e  They run quickly and are easy to modify and to experiment with.

e They can help to bring some advanced topics in mathematical physics, such as Einstein’s
equations, a little bit closer to the “man in the street” who is comfortable with computers.

Note

Longer versions of this paper are available on request; write to G. J. Chaitin, IBM, P. O. Box 218,
Yorktown Heights, NY 10598, USA.
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Workspace “Newton”—Orbits

0]
1]
2]
3]
y]
5]
6]
71
8]
9]
fi0]
f11]
“[12]
[13]
[1a4]
£15]
£16]
[171
[181]
[191

(ol Mo Nan B an Nan Nan Nan N an N an |

[ol
[11
[21
(3]
Cu]l
L5]

{01l
(1]
(2]
(3]
ful
(51
(61l

tol
[1]

JLOAD NEWTON

VNEWTON[DOIV
NEWTON
D10+0
BODIES+2
ORBIT+50 50p'
G+~.667£710
T+0
DELT+60
M+<6E24 10
V+X+~BODIES 3p0
X[1;0]«1E7
V[1;1]+6E3
STEP+1
LOOP:

» D2 P I DDIIBDVZ2D®DDD

SAVED 1985-01-08 19.04.15 (CMT-5) 2727K(2695K)

Program draws trajectories of point masses.
Subscripts start at 0.

There are 2 bodies.

Initialize 50 by S0 picture of orbit.

C is the gravitational coupling constant.
Initialize time,

The time step delta t is 60 seconds.
Vector of mass of Earth and satellite.
Matrices of velocities and positions.
Initial position of satellite.

Initial velocity of satellite.

Will do 12 times 15 time steps,

and will draw orbit each 15 time steps.

FP+(1BODIES)e .FORCE\BODIES a Get all forces between bodies.

A+>(+/F):M
V«V+AXDELT
X+X+VxDELT
T+T+DELT
DRAW

Cet all accelerations.

Update velocities.

Update positions.

Bump time.

Plot positions of Earth and satellite.

*((12!15)23TEP«STEP+1)/LO0P a Loop until finished.

VFORCELDOIV

F+«I FORCE J
F+3p0

~(I=J)/0
DELX+X{J31-XLI
R«e(+/DELX*2)*.5

3]

R

Force exerted on body i by body j.
Initialize force to zero.

No force of body on itself.

Cet displacement vector delta x.
Cet distance r between bodies.

Pe(CxMLIIxM[J)2R*2)x(DELX+R) n Calculate force vector.

VDORAWLO]V
DRAW

ORBIT[2541LX[0:01s5E5;25+¢LX[0;1]J¢SES]~'E*' = Plot earth.
ORBIT[2541X(1:;01%5E5:25¢LX[1;1]25E5)«'»' a Plot satellite.

+(0=15|STEP)/0
1 ]

*TIME IN HOURS
FRAME ORBIT

VFRAMECLOIV
FRAME PIC

A Draw orbit every 15 time steps.
Skip line.

A
= ', ¥T+60x60 n Convert seconds to hours.
A

A

Draw picture of orbit.

Put frame around picture of orbit.

(-, L0]PIC,[0]"-")," |
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Workspace “Maxwell”—4-Vector Potential Vacuum Field Equations

SAVED

0]
1]
2]
3]
4]

6]
71
81
9]
[10]
[11]
[12]
[13]
[1u]
[151
[16]
[173]
f18]
{19]
(201
[21]
[221]
[23]
[2u4]
[25]

[ N R W W N Ko W W W o |

o]
1]
£2]
[3]
L4l
[5]
[61l

ol
[1]
£21]
3]
)

(ol
€11

YLOAD MAXWELL
1985-02-14 10,39.15 (CMT-5) 2727K(2723K)

VMAXWELLCO1V

MAXWELL A Program does electromagnetic field in vacuum.
DI0+0 A Subscripts start at 0.

DELTA+1 A Granularity of space & time is one unit.

O+li+20 A Rectangular solid of A mu field is 0 time units
MeL+1 @« by (N by ¥ by L) space units wide

A«0 N M L up0 A and has 4 components at each point of spacetime.
A(O0; 5 52]+~(+02:2N)x2002x(\N)*N AR A mu at time 0.
Af1;3::2]+-(102:W)x2002x((~DELTA)Y+\N)+N a A mu at time 1.

T+1 A Initialize time.

LOOP: n Loop gets A mu at time t+1 from it at time t & t-1.
X-(14{0140T;:3:))+ (101340 T5:5:3)+C1902140T;:5::])
Yo(T1¢L01A0T;55:0)4( 12 JAC T35 1)4( 200240 T335:3)

ACT+1: 553 )+X+Y-ALT-2:335:J+uxA[ T35

+(0>1+T+T+1)/LOOFP A Continue leapfrog integration.
DA«0 ¥ M L 4 up0 A Get partial derivatives of A mu
DAC:::::01«((140L034)-(714{014))+2xDELTA nwith respect to time ¢t

DAC:::+:11+-((19013J4)-("1¢[114))+2xDELTA awith respect to space x
DAL $2)«-((160224)-("14{214))s2*DELTA awith respect to space y
DAC:::::3)+-((14[314)-("14[314))+2%xDELTA awith respect to space z.
*LORENTZ CONDITION: MAX |DIV| = 02!

r/7,4+/0 1 2 3 4 484 A Check generalized divergence is zero.

F«(0 1 2 3 5 48DA4)-DA A Get P mu nu tensor which contains
T+0 n all components of E and B vectors.
LOOP2: R Draw picture of electric field E
DRAW n and magnetic field B
+(0>T«T+1)/L00P2 R at each time step.
VDRAWLO]IV
DRAW A DRAV assumes M = [ = 1.
tEx* SHOW FL[T;:0:0:1:;01] AR At each time step, DRAW shows each
'Ey' SHOW F[T:;;0:;0;2:0) A of the three components of the
tEz' SHOW F{T:;0;0:;3:;01] A electric field, and each of the
"Bx' SHOW F{T;;0:0;3:2) A three components of the magnetic
'By' SHOW F(T:;3;0:0;1;3] A field. SHOW assumes component
*Bz' SHOW F[T::;0:0:;2:1] a values range from -1 to +1.
vSHOW([O]V
NAME SHOW F R Show E/B component as function of position.
+(A/0=F)/0 A Do not show it if it is identically zero.
L A Skip line.
‘NAME,' AT TIME = ',sTxDELTA a Identify component & give time.
FRAME(-126+25xF)$((pF),52)p'**,51p" A Graph & frame it.
VFRAMELOIV
FRAME PIC m Add position numbers to graph of E/B component & frame
o_v'[0](1|r.u L ‘.('81‘1 19‘”)'1 L] l'llo.PI‘C'lll)'[Oll-' A it.
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Workspace “Einstein”—Geodesics, Newtonian Metric

SAVED

€ o]
L 11
£ 2]
£ 3]
£ 4]
[ 51
[ 6]
[ 71
[ 8]
L 91
[101]

[ol
[11l
[2]
£3]
Cul
€51
£6l

[ol
[11
€2}

ol
C1)

(ol
(11

tol
£1]

JLOAD EINST

1985-01-08 19.0u.43 (GMT-5) 2727XK(2695K)

VEIXSTLOIV

EINST a Program for geodesics in curved spacetime.

0r10+1 A Subscripts start at 1.

ORBIT+50 S50p' ' a Initialize 50 by S0 picture of orbit.

E+~1000 R (f(x+e)-f(x-e))/2e gives partial derivatives.
DELT<+60 A Time interval between first two points in orbit.
C+3ES8 rR Speed of light in meters per second.

DX+( X+1E7 ,( DELTx6E3),0,(DELFxC))-(1E7,0,0,0) a X is the current
STEP+2 n position of satellite in spacetime & DX is the
LOOP: a difference between the current & the previous position.
DRAW X+X+DX+DX-((GAMMA X)+.xDX)+.xDX a Plot next point in orbit.
+~((12x15)2STEP+~STEP+1)/LOOP a Do 12 by 15 times & draw each 15th.

VDRAWLOIV

DRAW X

ORBITL2540;25+01+'E" a Plot earth.
ORBIT[25+LX[11+5E5:;254LX[2]:5E5]«'+«"* a Plot satellite.
~(0=15|STEP)/0 A Draw orbit every 15th time.
L A Skip line.

‘TIME IN HOURS = ',¥X[14]+60x60xC A Convert time to hours.
FRAME ORBIT A Draw picture of orbit.
verolv

Z«G X n Cet the metric ¢ at a point X of spacetime.
2«4 4p0 a It bappens to be a diagonal metric.

(1 182)«("1 "1 T1),1-.0088:(+/34+X*2)*.5

voepXtOlv

Z+-DGDX X n Cet the partial derivatives of G at point X.

Zeaf1 21((G"el21X+2)-(6"c{2)(X+4 UpX)-2Z+«Ex(14)e.=14))52xE

VGAMMALD]IV
Z+GAMMA X a Cet the connection at & point from the partials & the
Z+.5x(BC X)+.x(2 1 38Z)+(3 1 2¥8Z)-(2 3 18Z2+DCDX X) mmetric inverse.

VFRAMELD]V

FRAME PIC R Put frame around picture of orbit.
tir,(-,[1IPIC,[11"-), " 1!
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Workspace “Einstein2”—Curvature Near a Black Hole

0]
1]
2]
3]
4]
5]
61
71
81
91
[10]
[11]
[12]

[ N N N N N N W W o N o )

(K1)
1]
(23

(o]
{11

o1l
[11

ol
[13]

(o]
1]

[el
11
2]

YLOAD EINST2

SAVED 1985-01-08 19.0u4.29 (GMT-5) 2727K(2695K)

VEINST200]17
EINST?2 aflumerical verification of the curvature near a black hole.

0ro+~it A Subscripts start at 1.
'EPSILON = ' ,%E+.0001 A (f(x+e)-f(x-e))/2e gives partials.
tX = 1,¥X+«2 1 1 0 A Point of spacetime near black hole.
't A Skip a line.
"RIEMANN CURVATURE TENSOR =' a Show all the components of the
O«R+R4 X A Riemann tensor at the point X.
roe A Skip a line.
'‘WILL SUM:! A Show the components which are
3 1 2 38R A summed to give the Ricci tensor.
Tt R Skip a line.
'RICCI TENSOR =' A Ricci tensor should be identically
+/3 1 2 3%R R zero according to field equations.
veroav ‘
2+C X A Get the Schwarzchild metric G at a point X,
Z+i up0 R which is a diagonal metric.

(1 18Z)+(-%1-3X(11),(-X[13+2),(-(X[1]1x10X(2])*2),1-%X[1]

vG2(0lv

2+G2 X A Cet the inverse of a diagonal metric, by taking
(1 18Z)+#1 18Z«G X n the reciprocal of each diagonal element.
voeox(alv

Z«+DGDX X A Get the partial derivatives of the metric.

Z+3[1 23((6G"c[21X+42)~-(C c[2I(X+u4 4pX)-2«Ex( 1l4)o, =14 ))+2xE

VCAMMACDOIV
Z+<GCAMMA X A Get the connection from the partials & the inverse.
Z+.5x(62 X)+.x(2 1 382)+(3 1 28Z)-(2 3 1R]Z«DGDX X)

VDGAMMADX(O]V
Z+DGAMMADX X a Get the partial derivatives of the connection.
Z+>[1 2 3J((CAMMA c[21X+Z)-(GAMMA c[21(X+4 upX)-Z+Ex(14)e,.=14))32xE

VR4[O]V
Z«Ry X A Get the curvature tensor from the connection &
2«(1 3 282)+.xZ2+CAMMA X R its partial derivatives.

Z+(-Z)+(1 2 4 3RZ+DGAMMADX X)+(1 3 2 u&Z)-(1 4 2 382)
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Workspace “Schrédinger”—Probability Waves

YLOAD SCHROD
SAVED 1985-01-16 18.48.54 (GMT-5) 2727K(2663K)

VSCHEODCO]V
£ o] SCHROD n Does electron moving slowly in one dimensional potential.
[ 1] 010«0 A Subscripts start at 0.
L 23 I+0J1 A I is the square root of minus one.
[ 31 HBAR~.1 A HBAR Jis Planck's constant divided by two pi.
[ u] MASS+1 A Mass of the electron.
{ 51 DELX+1+N+50 A One unit of space is divided into N pieces, &
[ 6] DELT+1:STEPS+20xN a one unit of time is divided into 20 N steps.
[ 71 X" .5+( .5+ NN
L 8] V+Np0 A Try V+1000,((¥-2)p0),1000 or V+({(L.8xN)p0),(N-1.8x¥)p10
[ 9] ALPHA+*HBARxI
[10] BETA«~-ALPHAX(HBAR*2)*2xMASSx2xDELX*2 A X is @ vector of the N
[11] A«B+lN HNpO n possible positions of the electron ranging from
[12] AL31)«AL:;N-1]+-BETA A ~half to t+half, & V is a vector of the
£131] AL;0)«(+DELT)+(2%BETA)~(ALPHA=2)xV A potential energy of the
[1u4] BL:1)+Bl[:¥~1)<+BETA a electron at each of these positions.
(151 BL:0)+(+DELT)-(2xBETA)-(ALPHA=2)xV a € operates on the Psi field
(161 C+(BA-(-1N)$A )+ .xB=( -1/ )$B A at time t giving it at time t+l.
[171] X0+0 R X0 is the center & SIGMAO is the variance of a wave packet.
£18] K0+30 a K0+"15 goes in opposite direction at half the speed;
£19] SIGMAO«,05 A KO0 determines the momentum of the wave packet.
[20] PST+(+KOxIxX)x(*-({X-X0)*2):(2xSICMA0*2)) R Try PSI+*(02)xIxX
[21] (TIME«0)DRAW PSI+PSI#+(+/|PSI*2)*.5 A Normalize Psi & draw it.
[22] STEP+0 a Count time steps

[23] LOOP:+(STEPS<STEP+STEP+1)/0 a until we have done them all,

[24] PS5I«C+.%PSI A Cet new Psi field from current field.
[25] TIME«TIME+DELT a Bump time.

[26] +(0<201STEP)/LOOP A Draw field

(27) TIME DRAW PSI R every 20 time steps,

[28] +~LOOP n N times altogether.

VDRAWLOIV
[ol TIME DRAW PSI a Draws graphs of probability & phase of Psi field.
[1] ' A Craph of probability
[2] VPROBABILITY(POSITION) AT TIME = ' ,3TIME na is 51 characters wide
[3] t*TOTAL PROBABILITY = *,%+/PROB+~|PSI*2 A & scaled so that
fu)d FRAME( -LSO0xPROB+[ /PROB)$(N 51p'*',50p' ') A largest is always same.
a
A
p

[s51 v Craph of phase is uu

[6] 'PHASE(POSITION) AT TIME = *',¥TIME characters wide, from

£7] FRAME(-12247%x1100(PSI=0)+PSI)$(¥ uup*$*,43p" ') A -pi to +pi.
VFRAMELD]V

o] FRAME PIC f Adds potential & position numbers to a graph,

{11 PIC+~(N Sp']| V=1),(38 1pV¥V)," ', (%N 1p1lN),' t,* ' V|, PIC,*|!

[2] r-+ (03PIC,[O]'~" a & frames it.
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Workspace “Feynman”—Sum Over All Histories

_

YLOAD FEYNMAN
SAVED 1985-01-16 18,44 .24 (GMT-5) 2727X(2663K)
VFEYNMANLO]V
[ o1 FEYNMAN aDoes electron moving slowly in one dimensional potential.
[ 1] 010«0 A Subscripts start at 0.
[ 2] I+0J1 A I is the square root of minus one.
[ 3] HBAR+.1 A HBAR is Planck's constant divided by two pi.
£ ul MASS+1 r Mass of the electron.
[ DELX+DELT+1:H+20 R Unit space & time are divided into N pieces.
[ 6] X«".5¢(.5+18)3N A Vector of N electron positions from -.5 to .S.
£ 7] Veip0 a Vector of potential energy of electron at each position.
[ 81 KO+(18)e .PROP\N n KO gives the amplitude to go from one position
[ sl Ke2% ,x/lpcKO A to another in time 1/H. K is Nth power of KO.
[10] 0 DRAW PSI+»(02)xIxX aDraw initial Psi field= momentum eigenstate.
[11] 1 DRAW K+ .xPSI A Apply K to get Psi after unit time, & draw.
SYPROPLO]V
(o] PROP+«M PROP MQ a Get amplitude to propagate to cell M from cell MO
[1)  SPEED+(DELXx( |M-MO)L(H-|M-M0))SDELT A in time delta t = 1/¥4,
{21 KE+ ,5xMASS*SPEED*2 A Estimate speed, kinetic & potential energy.
(33 PE«.5xV[M]1+VIMO] A To go to imaginary time:
Cu] PROP+«xIx( KE-PE)*DELT+*HBAR AR PROP+*x-(KE+PE)xDELT=HBAR
VDORAW(DO]V
(o3l TIME DRAW PSI a Draws graphs of probability & phase of Psi field.
{11 v A Graph of probability
£21] *PROBABILITY(POSITION) AT TIME = ' ,sTIME @A is 51 characters wide
[3] *TOTAL PROBABILITY = ',%+/PROB+|PSI*2 R & scaled so that
fu) FRAME( -L50xPROB+[ /PROB)d(N 51p'**,50p' ') n largest is always same.
[s51] ' A Graph of phase is uwu
£6] 'PHASE(POSITION) AT TIME = ‘' ,sTIME A characters wide, from
(73 FPRAME(-L22¢7x1100(PSI=0)+PSI)b(N uup'$',83p" ') P -pi to +pi.
VFRAMELO]V
{ol PRAME PIC A Adds potential & position numbers to a graph,
[11 PIC+(¥ 5p']| =), (%N 1pV), " ', (¥ 1pN),* ., | ,PIC,'|"
[2] t-* . folrrc,rol* - a & frames it.
A COMPUTER GALLERY OF MATHEMATICAL PHYSICS 10




AN APL2 GALLERY OF MATHEMATICAL PHYSICS—A COURSE
OUTLINE

Proceedings Japan 85 APL Symposium, N:GE18-9948-0, IBM Japan, 1985, pp. 1-56.

Gregory J. Chaitin

IBM Research, P.O. Box 218, Yorktown Heights, NY 10598

Abstract

A sampler of the fundamental equations of mathematical physics is presented, by means of com-
puter programs which provide working models of interesting physical phenomena, including

a satellite going around the Earth according to Newton,

the propagation of an electromagnetic wave according to Maxwell,

the same satellite going around the Earth according to Einstein,

an electron moving in a onc-dimensional potential according to Schrédinger, and
sums over all historics according to Feynman. )

These computer programs are like experimental laboratories in which one can play with physical
phenomena, and most of them generate motion pictures of the simulated happenings, which helps
to make these exotic phenomena more familiar and understandable.

The programs are presented in APL2, and each is less than a page long, showing how close APL2
is to the mathematics of general relativity and quantum mechanics.

Our intent is to transmit some of the basic ideas of mathematical physics to people who know little
physics or mathematics, but who feel comfortable on the computer. This exposition, however, is
for physicists who may be interested in using it as the basis for a course.
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1. Introduction

This “APL2 Gallery” is an attempt to bring outsiders within touching distance of man’s major
achicvements in his effort to understand the physical universe. Einstein and Infeld’s book The Ev-
olution of Physics [1] does a marvelous job of explaining the major themes of physical theory to
the general public without the use of mathematics. As its authors point out, The Evolution of
Physics is not as casy to read as a novel. Nevertheless, it covers mechanics, electrodynamics, general
relativity and quantum mechanics, the full range of fundamental physics, without requiring any
previous knowledge of physics, and without more mathematics than is used at the checkout counter
of a supermarket. Reading their book is a marvelous experience. And it is amazing to think that
Einstein was personally involved in creating much of the physical theory described in his book.

Another classic in the popularization of science is Feynman’s Messenger lectures on The Character
of Physical Law [2], which was filmed by the BBC and later transcribed into an MIT Press pa-
perback. As Feynman points out in these lectures, nature secems to behave in an essentially abstract
mathematical manner; one cannot open the hood and expose the hidden mechanism of gears and
belts. It is not really possible to appreciate the major aspects of the behavior of the physical uni-
verse, without the use of substantial amounts of mathematics.

This cffort is also based on the premise that the fundamental ideas of physics are simple and
beautiful, and can be appreciated by a large public. The major obstacle is not the difficulty of the
concepts, but rather the unfamiliar mathematical vocabulary employed in formulating them. In
their explanation of Newtonian physics, Einstein and Infeld get around this obstacle by explaining
the basic concepts of the differential and integral calculus in intuitive physical terms without using
the usual forbidding mathematical notation. Later they practically formulate in words Maxwell’s
partial differential equations for the electromagnetic field.

The usual path that leads from the popularizations of Einstein and Infeld and Feynman to within
touching distance of the great intellectual poems of physical theory, is to pursue a course of study
of several years duration, and to work one’s way through a large number of textbooks, textbooks
which must be diligently studied, one by one, in the proper order. It scems unfair to deprive those
of us who cannot do this of the pleasure of being on intimate terms with so much beauty. Here
we try to provide a short cut. Of course, the contents of years of study cannot be poured into one
course. We concentrate on five major triumphs of mathematical physics, associated with the names
of Newton, Maxwell, Einstein, Schrodinger, and Feynman, which illustrate major currents of
physical thought, major themes, major styles in physical theory. And the attempt is made to
achieve precision notwithstanding the mathematical barrier, by presenting the mathematics on the
computer, in APL2 [3-6], rather than in traditional mathcmatical notation. Computer program-
ming is a mathematical language that is rapidly becoming more widespread than traditional math-
ematics, due to the dramatic advent of the era of personal computing.

This “Gallery” may be regarded as a mathematical appendix to Einstein and Infeld’s popularization,
in which computational working models are provided to illustrate the fundamental physical prin-
ciples discussed by them. In each case we also indicate appropriate readings for students that help
to explain the programs.

I would like to thank Neil Patterson and Robert Bernstein for their enthusiastic support and en-
couragement, and I am grateful to IBM’s Research Division for giving me a sabbatical to work on
this project, and to the Theoretical Physics Group of the Physical Sciences Department for its
hospitality. The help of members of the Theoretical Physics Group has been invaluable, and I am
especially indebted to Gordon Lasher, Bruce Elmegreen, Martin Gutzwiller, Philip Seiden, and
Donald Weingarten, and also to Larry Schulman of the Technion in Haifa, who visited this group
the summer of 1984. I am grateful to Donald Orth and Norman Brenner for their help with APL2.
Finally, I want to thank for their paticnce and perseverance those who attended courses on this
material given at the IBM Thomas J. Watson Research Center in the fall of 1984 and the spring
of 1985.
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2. Action at a Distance: Newton’s Law of Gravitation

The first major step in physical theory was due to Newton. He discovered rules for calculating
planetary motion. In Section 2 we shall consider a model solar system, consisting of a finite number
N of point masses interacting with cach other via gravitational attraction. The physical state of this
system is described by 7N real numbers giving the masses and the current positions and velocities
of the N bodies. The force acting on a particle is the sum of the forces on it exerted by each of the
other particles. And the force one particlc exerts on another is proportional to the product of their
masses and inversely proportional 1o the square of the distance between them. A force acting on
a particle has the effect of producing an acceleration, that is, a change in its velocity, which is pro-
portional to the force and inversely proportional to the mass of the particle.

These laws formulated by Newton gave rise to the so-called mechanical world view. There are a
number of remarkably strange features of Newton’s laws. Some of these problems were known to
Newton himself and upset his contemporaries, and others later troubled Mach and were elucidated
by Einstein. The major cause for amazement that thc world runs this way is concerned with
“action at a distance.” How can two gravitating bodies far away from cach other have an instanta-
neous effect upon one another, without something propagating through the space between them
at finite speed? This objection seems quite reasonable, but Newton's laws postulate instantaneous
action at a distance. And Feynman [2] emphasizes another troubling aspect of Newton’s laws,
namely their abstract mathematical nature and the lack of a mechanism. “Does each planet
measure the distance to its neighbors with a ruler and then use an internal computer to calculate
the square of this distance?” he asks. Another conceptual difficulty is concerned with the fact that
real numbers are employed in describing the physical state of a planctary system. Real numbers in
principle contain an infinite amount of information, but no one has ever measured any physical
quantity with more than about a dozen digits of precision, and floating point numbers in the
computer usually only have about a half dozen or a dozen digits of precision.

Readings
o Einstein and Infeld [1], Chapter 1, “The Rise of the Mechanical View.”
e PSSC Physics [7], for the formulas for centrifugal force and gravitational potential energy
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Newton—Orbits

0]
11
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3]
4]
5]
61
71
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9]
{10]
(11]
£12]
£13)
{14]
[15]
[161
{171
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o]
[11
£2]
3]
[u]
[s5]

[ol
(1]
21
[31
Lul
(5]
[61l

[o]
(1]

JLOAD NEWTON

SAVED 1985-01-08 19.04.15 (GMT-5) 2727XK(2695K)

SYNEWTONLO]Y
NEWTON R Program draws trajectories of point masses.
g10+«0 A Subscripts start at 0.

BODIES+2 a There are 2 bodies.

ORBIT+50 S50p*' ! a Initialize 50 by 50 picture of orbit.
G+.667E10 A G is the gravitational coupling constant.
T+0 R Initialize time.

DELT+60 aR The time step delta t is 60 seconds.
M+~6E24 10 a Vector of mass of Earth and satellite.
V+X+«BODIES 3p0 A Matrices of velocities and positions.
X[1;01«1E7 A Initial position of satellite.

V[(1;1]1~6E3 A Initial velocity of satellite.

STEP~1 A Will do 12 times 15 time steps,

LOOP: and will draw orbit each 15 time steps.
F+«{(\BODIES)»~. FORCEtBODIES A Get all forces between bodies.
Aed(+/F):M A Get all accelerations.

V+V+AxDELT R Update velocities.

X+~X+VxDELT R Update positions.

T«T+DELT R Bump time.

DRAW n Plot positions of Earth and satellite.
+((12x15)2STEP+STEP+1)/LO0OP a Loop until finished.

VFORCELOJV

F+I FORCE J Force exerted on body i by body j.

+(I=J)/0 No force of body on itself.
DELX+X(J;]1-X[I31 GCet displacement vector delta x.
R+(+/DELX*2)}*.,5 A Cet distance r between bodies.
Pe(CxM{I)xMLJ]1+R*2)x{DELX+R) n Calculate force vector.

]
F+3p0 n Initialize force to zero.
A
R

YORAWCOIY

DRAW

ORBIT[254LX[0;0)25FE5325+LX[0;1]+SE5]«"'E" A Plot earth.
ORBIT{2541X[1:0)25E5:25+LX([1;1]25E5])«'*" a Plot satellite.

+(0=15|STEP)/0 A Draw orbit every 15 time steps.
LI s Skip line.

STIME IN HOURS = ' ,3T+60x60 a8 Convert seconds to hours.
FRAME ORBIT R Draw picture of orbit.
VFRAMELO]V

FRAME PIC A Put frame around picture of orbit.

'l"('-"tolpzcitol'-')i'I'
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e ———

14



—

The program NEWTON provides a working model of a “solar system.” It does planetary orbit cal-
culations for point masses, according to Newton's laws:

F=ma

F=Gmm’

r2

The program is given the masses of the bodies and their initial positions and velocities. The units
used are seconds, meters, and kilograms. This is a simplified version with only two bodies and
minimal computer graphics.

More precisely, we simulate an artificial satellite orbiting around the earth. Here are the initial
conditions. The masses of earth and of the satellite are 6 x 10* kilograms and 10 kilograms, re- |
spectively. The earth is initially at rest at the origin of coordinate system. The satellite is initially

107 meters from the center of the earth, which is about 2200 miles above the earth’s surface, and is

traveling at 6 x 10° meters per second (about 13400 miles per hour) perpendicular to the radius ¥
vector connecting it to the earth’s center. |

We use a time step of sixty seconds in the calculation, and draw a motion picture frame every fifteen
time steps, i.e., every quarter hour of simulated time. Altogether, we draw twelve pictures of the
orbit. Thus the total simulated time is three hours.

|
I
We do not have to worry about how to draw a picture of a three dimensional situation, because 5
we have set things up in such a manner that the last coordinate of the position of the earth and the
satellite is identically zero. Each picture of the trajectory is a 50 by 50 array of pixels (picture ele-
ments), in this case single characters. Each pixel represents a square that is 500 kilometers by 500
kilometers. The earth is represented by the letter “E,” and the satellite is represented by an asterisk

g ”

Lines [13] and [14] of NEWTON use some powerful new features of APL2, in particular,
nested arrays. In line [ 13 1], the outer product operator o . is applied to the function FORCE.
The result F is a 2x2 array of three-clement vectors. If there were N bodies, the result would be |
an N x N array of three-element vectors. This nested array gives the force, which is a three-element
vector, between each pair of bodies. In line [ 14 ], the expression +/F adds together all the forces
acting on a given body. The result is a nested vector consisting of N three-element vectors. Di-
viding this vector by the vector of masses gives an N-element vector of accelerations. The disclose
function > is then applied to this nested vector to convert it into a simple N x 3 array. It can then
be used to update the velocity V, which is also a simple N x 3 array.

Here are some frames from the motion picture produced by NEVTON:
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3. The Electromagnetic Field: Maxwell’s Equations

The next major step forward in physical theory was from action at a distance to field theories, in
which effects propagate locally and at finite speed throughout an extended region of space in which
a field resides. In Section 3 we shall give a computer model of a piece of electromagnetic ficld.
Now the mathematical framework consists of a cube in three dimensional space, and each point
within it is associated with two vectors or arrows. Each vector may be represented by a triple of
real numbers. One of the two vectors gives the magnitude and direction of the electrical field at that
point, and the other gives the magnitude and direction of the magnetic field. Just as real numbers
with infinite precision cannot be handled on the computer, neither can the infinity of interor points
of a cube. So instead we consider an N x N x N lattice of points. Each point affects its nearest
neighbors, which in tum affect their neighbors, and so on, and this gives rise to light waves and
radio signals. 2N? vectors and 6N? numbers define the state of the field.

There are a number of sziious problems with Maxwell’s equations. One problem, pointed out by
quantum theory, is that electromagnetic waves also manifest a particle-like behavior called photons,
particularly evident in hard X-rays and gamma rays. The version of Maxwell’s equations we pres-
ent is called the vacuum ficld equations, because it describes electromagnetic waves propagating in
a vacuum. There are no sources of the fields. And the electron turns out to be a very troublesome
field source, because it seems to be a perfect mathematical point. This unfortunately implies that
an infinite amount of energy is stored in the electromagnetic field which surrounds it. Feynman
empbhasizes in The Feynman Lectures on Physics [8] that this problem has never really been solved,
not even in quantum field theory. Problems like this lead some people to suspect that perhaps it
is not really the case that space and time are infinitely divisible and flow continuously. Perhaps
space and time are discrete and come in minimum units or quanta.

Readings

e Einstein and Infeld [1], Chapters 2 and 3, “The Decline of the Mechanical View,” and “Field,
Relativity”, for the concepts .

¢  Feynman, Leighton and Sands [8], for the formulas

Additional References
e Potter [9], on centered integration

e  Moryasu [10], on Maxwell’s cquations in gauge theory
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Maxwell—4-Vector Potential Vacuum Field Equations

01
1]
2]
3]
i)
5)
6]
7]
8]
9]
f101]
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(191
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{251
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o]
(1]
[2]
[31
[u]l
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2]
£3]
4]

(ol
(1]

JLOAD MAXWELL

SAVED 1985-02-14 10.39.15 (GMT-5) 2727K(2723K)

YMAXWVELLLOIV

MAXWELL A Program does electromagnetic field in vacuum,
D10«0 A Subscripts start at 0.

DELTA+1 AR Cranularity of space & time is one unit.

O=N+20 A Rectangular solid of A mu field is O time units
MeL+1 A by (4 by ¥ by L) space units wide

A+«0 N M L 4p0 m and has 4 components at each point of spacetime.
ACO0:;:32)«-(202:N)x2002x( 1 N)=N A A mu at time 0.
AL1:3;:2)e-(3502+N)%x2002x((~-DELTA)+1¥)*N A A mu at time 1.

T+l R Initialize time.
LOOP: a Loop gets A mu at time t+1 from it at time t & t-1,

X+(14L0JA0T;5531)+(10011A0T::55:3)+4(1402J40T5555])
Yo(T1¢00]ALT:55:)1+( T1$L1JALT55:53)4( 1@[2]A[T:::: )
ALT+1;:::)+X+Y-A(T-13;5:J+ux40T555;

+(0>1+T«T+1)/LOCP a Continue leapfrog integration.
DA«O ¥ M L u up0 a CGet partial derivatives of A mu
DAL:3:3:0]+((1¢[0JA)-("1$[0])4))=2xDELTA awith respect to time ¢t
DAL:343331)«-((140114)-("14L114))+2xDELTA awith respect to space x
DAL 333:32)«-((1$60214)-(714{2]4))+2xDELTA awith respect to space y
DAC::33:3)+-((1¢4[3]4)-("1$03]4)):2xDELTA awith respect to space z.
*LORENTZ CONDITION: MAX |DIV| = 02

r/7,)+/0 12 2 3 4 u4{DA A Check generalized divergence is zero.
F«(0 1 2 3 5 u®DA)-DA A Get F mu nu tensor which contains

T«0 R all components of F and B vectors.
LoorP2: A Draw picture of electric field F

DRAW R and magnetic field B

+(0>T+T+1)/L0O0OP2 R at each time step.
VORAWLDIV
DRAW A DRAW assumes M = L = 1.

*Ex* SHOW F[(T;:0:0:;1:0] A At each time step, DRAW shows each
‘Ey' SHOW F(T;:;0:;0:;2;0]) A of the three components of the

tEz' SHOW F[T:;;0;0;3;0] A electric field, and each of the

"Bx' SHOW F[T;;030;:;3;52] A three components of the magnetic

'By' SHOW F[T;;030;1;3] A field. SHOW assumes component

*Bz!' SHOW F[(T;:;030;2;1] A values range from -1 to +1.
VSHOW(O1V
NAME SHOW F A Show E/B component as function of position.
+(A/0=F)/0 A Do not show it if it is identically zero.

L R Skip line.
NAME,*' AT TIME = ',sTxDELTA n Identify component & give time.
FRAME(-L26425xF)¢((pF),52)p'*',51p"' ' R Graph & frame it.
VFRAMELO]V
FRAME PIC m Add pOSlthn numbers to graph of E/B component & frame
l-l.[O](lll ] |’| .(-.” 191”)’ v.v ','l'.PIC.'I') [0]1..- a it.
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This program presents the modern relativistic version of Maxwell’s equations in the form that is
used in quantum mechanics, and which inspired gauge theory. The electrical and magnetic fields
E and B play a subordinate role; the principal actor is the 4-vector potential 4, consisting of the
scalar potential ¢ and the vector potential A.!

Let’s start by stating the Maxwell’s equations in terms of the scalar potential ¢ and the vector po-
tential 4. Then we will restate this in terms of the 4-vector potential 4,.

Here are Maxwell’s vacuum field equations in terms of ¢ and 4.

— U84
E==-Vé- -
B=VxA |
.2
°¢
vip-L 2% _
2 a

2
V24— 1 aA=0

T

Ved— 1 9 _
2 ot

Here is a more explicit version of these equations, written in terms of components:

3¢ 8¢ a¢)_(an a4, aA,)

E=(EoE, E; =-(

éx’ 8y’ oz at’ ar’ at
Thus
op 04, o9 04, ap 04,
E=-
(w*m’@+m’w+m
As for B,

04, 84, 84, o4y, an)

04
= B = zZ -
B=(Bx By B (5y 6z’ 6z ox’' oéx By

Then we have four very similar equations giving the time evolution of ¢ and the components of

A:
i P9 o1 P
2 rt—a 757 =0
ox éy 0z ¢ ot
2 2 22 2
8°A, 0°A, OG°A, 1 0744
s t—3 vt~ 53 -0
ox dy oz ¢ ot
8’4, a4, %4 8’4
y y y | Y _
CRi i i e s wy
ox dy 0z ¢ ot
34, &4, &4 %4,
2t 2t T 0
éx éy dz c® at
! It may be preferable to build up to the 4-vector potential version of Maxwell’s equations that we present here, by
first considering a program for the traditional form of Maxwell's equations based directly on E and B.
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Finally, here is the Lorentz gauge condition again:

e TS SR
ox oy gz 2 ét

Now, let’s reformulate this in 4-vector notation, and let’s take the speed of light to be unity c= 1.
The 4-vector 4, is defined as follows:

Au = (A01 Al' A2’A3)= (¢,A)= (‘f)- Axv Ay’ Az)

We also need to introduce the partial differentiation operator 4, :

o,=(9. -8 _90 _3&
“ ét’ éx’ dy' oz
Similarly, the D’Alembertian operator [ is
2 22 2 2 2
D=(_az—’ _V2)= S5 - az’ - 62’ - 62
ot ot dx dy 8z
From A, is obtained the antisymmetric tensor F,, (i.e., F,, = —F,.), whose six independent compo-
nents are the components of £ and B.

Fuv=auAv_avAu

Then E and B are determined as follows:

0 ~E —E, ~E
E. 0 -B, B,
Fyy=
E, B 0 —B,
E, —B, B, 0
And the field equations become
04,=0

while the Lorentz gauge condition is
60A0+61 Al +62A2+53 A3=0
Now we discuss the formulation as difference equations. First of all, we make the important deci-

sion that At=Ax=Ay=Az=A . Next, we replace first and second order partial derivatives by
differences as follows:

of _ fx+8)—fx—4)
ox 2A

fx+4A)—-fx) ]_ Ax) - fix—A)
f A A _ fx+A)=2fx)+ fix—A)
oxt A - A?
Then the crucial piece of reasoning is as follows.
ay oy &
e B
ox oy Gz ¢” ot

(recall ¢ = 1) can be expressed as
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Yt +A) -2 +y(t—4A) _
A B
Y(x+A)— 2 +y(x—4A)
A? *
YO +B) =2 +P—4)
A2
Y(z+B)= 2 +yY(z—A)
A2
This difference equation is space and time centered and thercfore highly accurate. Multiplying
through by A2, and rearranging things slightly, we get

V((+A)= -4 —yY(t—A)
+Y(x+A)+ Y+ A)+P(z+A)
+P(x—A)+ Y —A)+Y(z - A)
This yields a “leapfrog” method, i.c., from (¢) and (¢ + 1), we calculate Y(t + 2), then from

Y(t+ 1) and Y(r + 2), we calculate (¢ + 3), etc. This technique is simultaneously used on each
component ¥ = A4, of the 4-vector potential, since these evolve independently.

Now we consider a solution to these equations which is a plane wave propagating along the x axis.

We take
A,=[0, 0, fix— 1), 0]
so that
E=- [0, -‘-%j(x— ), 0]=— [0, —f(x— &), 01=[0, f(x— 1), 0]
and

_ & oo nlo —m
B—[O, 0, L fx z)]—co, 0, f(x— 1))

Thus £ and B are always of equal magnitude and perpendicular to each other and to the direction
of propagation. With this choice of 4, the ficld equations simplify greatly, since

A0=A1=A3=0
and

6A2_5A2__0

dy oz

Thus to verify that Maxwell’s equations are satisfied, it is sufficient to note that
Ody= gy & py = (— = fix = )= = =0
2= 1= h=(—~fx=-0)-f(x-)=
ox
and

Z&,,A,,=62A2=—-6—ay—f(x—r)=0

u

In MAXWELL , we consider for 20 time steps a world with periodic boundary conditions that is
20 x 1 x 1, which essentially reduces us to the case of a onc-dimensional field. And we take
Jix)= ~(20/2x)cos(2rx[20), so that f = sin(27x[20).
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Here are some frames from the motion picture produced by MAXWELL:
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In this picture and the one on the next page, the field strength —1is flush left, 0 is in the middle,
and + 1 is flush right.
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4. Curved Space-Time: Einstein’s Field Equations for Gravity

From Maxwell’s vacuum field equations, we pass in Section 4 to Einstein’s ficld theory of gravi-
tation. In this theory gravity is achieved by a field of local effects rather than by action at a distance.
Einstein’s theory predicts gravity waves, but so far these remain undctected. The protagonist is now
a four dimensional manifold, the space-time continuum, which is curved or bent. Gravity waves
are ripples in the curvature of space-time. Light and small test particles go as straight as they can
through this curved medium, on what are called geodesics, which we show how to calculate. We
also present Einstein’s ficld equations in the form of a computer program which checks whether the
way space-time is bent is okay or not, in a universe that is entirely empty except for a single point
mass. This is the famous Schwarzschild solution describing a black hole and its event borizon.

Our first program, EINST, repeats the orbit calculation that was done in the program NEWTON
in Section 2, and fortunatcly the result of the general relativity calculation is essentially the same
as the one we obtained before. The metric used in this program is an approximate one, and is an
easy consequence of special relativity and the principle of equivalence applied to the gravitational
ficld experienced on a rotating disk. Paradoxically, if this program is improved to use the
Schwarzschild metric, it gives much worse results. The reason better physics gives worse numbers,
is that the mathematical method employed works better in rectangular coordinates than in polar
coordinates.

Readings

» Einstein and Infeld [1], Chapter 3, “Field, Relativity”
¢  Einstein [11], for the merry-go-round

e  Skinner [12], for the meaning of I' and R

¢ Einstein [13], for the formulas for I' and R and the fact that the gravitational time dilation
metric gives Newton’s equations of motion

e [Eddington [14], for the meaning of curvature

¢  Penrose [15], for a geometrical statement of the field equations

e  Harris [16], for a discussion of different approximations to the Schwarzschild metric
e  Unséld [17], for a summary of relativistic cosmology

Additional References
¢ Rindler [18]
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Einst—Geodesics in Rectangular Coordinates

JLOAD EINST
SAVED 1985-01-08 19.04%.43 (GMT-5) 2727K(2695K)

VEINSTIOIV
L 0] EINST A Program for geodesics in curved spacetime.
£ 1] 0r10+1 A Subscripts start at 1,
[ 2] ORBIT+50 50p' ' A Initialize 50 by 50 picture of orbit.
[ 31 E«~1000 a (f(x+e)-f(x~e))/2e gives partial derivatives.
[ 1 DELT+60 A Time interval between first two points in orbit.
L 5] C+3E8 A Speed of light in meters per second.
L 61 DX+(X+1E7 ,(DELT*6E3),0,(DELT*C))-(1F7,0,0,0) @& X is the current
L 71 STEP+2 R position of satellite in spacetime & DX is the
[ 8] LOOP: a difference between the current & the previous position.
[ 8] DRAW X+X+DX+DX-((GAMMA X)+.xDX)+.xDX a Plot next point in orbit.
[10] +((12%x15)2STEP+STEP+1)/LO0OP A Do 12 by 15 times & draw each 1Sth.

VORAWLOIV
(ol DRAW X

[1] ORBIT[25+0;25+01+'E" n Plot earth.
[21 ORBIT[25+( X(1]%5FE5:25+LX[2125E5]«"'«" a Plot satellite.
£33 +(0=15|STEP)/0 A Draw orbit every 15th time.
fu] L R Skip line.
{51] ‘TIME IN HOURS = ' ,sX[ul:60x60xC n Convert time to hours.
[6] FRAME ORBIT A Draw picture of orbit.
veralv
[0l Z+GC X A Get the metric G at a point X of spacetime.
£11 Z+4 4p0 A It happens to be a diagonal metric.
£21 (1 182)+«("1 "1 T1),1-.0088:(+/34X*2)*.5
voooXxXcoiv
fo] Z«DGDX X R Get the partial derivatives of ¢ at point X.

£1] Zeo[1 23((67c[2]X+2)-(C " =[2](X+4 upX)-Z+Ex(14)o.214))+2xE -

VGAMMALDIV
(0] Z+«CAMMA X a Get the connection at a point from the partials & the
[1] Z+.5x(BC X)+.x(2 1 38Z)+i3 1 282)-(2 3 1RZ+~DGDX X) ametric inverse.

VFRAMELO1V
[ol FRAME PIC A Put frame around picture of orbit.
£:l v, (-, [1IPIC,[20-"),' |
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The program ETR ST does the following. Given two close initial points in space-time, it calculates
the motion of a small test particle according 1o the weak ficld nonrelativistic motion metric resulting
from the principle of equivalence. This is given by the geodesic passing through those points.

More precisely, we calculate the trajectory of an artificial satellite orbiting the earth. The mass of
the earth is 6 x 10% kilograms, which is .0088 meters in units in which G = ¢=1, and the earth is
at rest at the origin of coordinate systemn. The satellite is initially 10’ meters from the center of the
earth, which is about 2200 miles above the earth’s surface, and is traveling at 6 x 10° meters per
second (about 13400 miles per hour) perpendicular to the radius vector connecting it to the earth’s
center. These initial conditions give us the first point on the trajectory. In order to determine a
geodesic passing through it, we need a second point on the trajectory. We get this point by esti-
mating where the artificial satellite will be sixty seconds later, assuming that for the first minute the
gravitational effect due to the earth is ncgligible and the satellite travels in a straight line.

This gives us a sixty second time step in the calculation, and we draw a motion pictuce frame every
fifteen time steps, i.e., every quarter hour of simulated time. Altogether, we draw twelve pictures
of the orbit. Thus the total simulated time is three hours.

The function DRAW draws a picture of the geodesic trajectory. We do not have to worry about
how to draw a picture of a three dimensional situation, because we have set things up in such a
manner that the z coordinate of the position of the earth and the satellite is identically zero. Each
picture of the trajectory is a 50 by 50 array of pixels (picture elements), in this case single characters.
Each pixel represents a square that is 500 kilometers by 500 kilometers. The earth is represented
by the letter “E,” and the satellite is represented by an asterisk “+.”

Below we use Einstein’s summation convention: any term with repeated indices denotes the sum
over all values of this index (1, 2, 3, and 4).

The next function, G, calculates the 4x4 matrix consisting of the cocfficients of dx, dx; in the fun-
damental metric form, which gives the distance ds between two infinitesimally close points in terms
of the differences between their coordinates:

2

These sixteen values of g; as a function of x;, x;, x; and x, define a space-time and determine all its
geometrical propertics. g must be a symmetrical function of i and j. Given a point X in space-time,
G produces the 4x4 matrix of the g at that point. For convenience in defining the particular metric
that we use, let

xl=x
=D
X3 =2
x4=l

Here is the gravitational time dilation metric for a point mass:

ds? = [1- 2m ]dzz—(dx2+ dy? + d2)

/x2+y2+22

Here x, y, z are the usual rectangular coordinates measured in meters, and the mass m and time ¢
are measured in units in which G=c¢= 1.

Let us be more explicit. Since light travels 3 x 10® meters per second, our unit of distance is meters,
and our unit of time is such that the speed of light is unity, it follows that one second is equal to
3 x 108 of these time units. And our unit of mass is the normal one multiplicd by the gravitational
coupling constant G and divided by the speed of light squared. In these units the mass of the earth
is (6 x 10%).667 x 10-19)/(3 x 108 = .44 centimeters, and thus the radius of the event horizon of
the earth, i.e., the Schwarzschild radius of the earth, is 2m= .0088 meters.
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The next function, DGDX, calculates the 4x4x4 matrix consisting of the partial derivatives of the
g, With respect to the x, at a point X in space-time:

Bxk 8y, k

The next function, GAMMA, calculates the connection I' at a point X in space-time, which is also

known as the Christoffel symbol of the second kind. This consists of a 4x4x4 matrix used to cal-
culate the result of an infinitesimal parallel displacement of a vector from the point X:

gsa (a:gua + blgva _ aguv)
ox, 0x, 0x,
s

= 38 y (gua, v+ 8va,u— 8uv,a)

rs, =

1
2
1

Here g written with superscripts rather than subscripts denotes the metric inverse, a 4x4 matrix
which is defined as follows

Ko 1 fi=j
8k & _{ 0ifisj

and which is calculated using the APL2 matrix inverse function B.
Finally here is the equation for a geodesic:

dzxu u dxg dx, -

2 T @ g

Line [9] of EINST and line [1] of GAMMA show how easy it is to express the Einstein
summation convention in APL2 by using the matrix product + . x and transpose &. In order to
sum the product of two terms over a repeated index, it is necessary to transpose the arrays so that
the repeated index is the last index of the first array and the first index of the second array. Then
the arrays are multiplied together using + . x. If the indices are in the right order, it may not even
be necessary to transpose the arrays before multiplying them. Such is the casc in line [93] of
EINST.

Line [ 1] of DGDX uses some powerful new features of APL2, in particular, nested arrays and the
“each” operator ~. The function DGDX calculates the four partial derivatives of the metric ¢ at
a point X. There are four of them because the 4x4 array G is a function of four independent vari-
ables, namely x, y, z, and ¢, the four components of the point X of space-time being considcred.
DGDX does this by creating two four-element vectors of four-element vectors. The first nested
four-element vector consists of four copies of the point X of space-time in question, each one with
a different component incremented by E. The second nested four-element vector consists of four
copies of X, each one with its corresponding component decremented by E. Then the metric
function G is evaluated at “each” of these eight points in space-time, the last four results are sub-
tracted from the first four, everything is divided by 2xE and disclosed 5L 1 2] to give the four
arrays of partial derivatives together in the form of a single simple 4x4x4 array.

Here are some frames from the motion picturc produced by EINST:
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Einst2—Numerical Verification of the Curvature near a Black Hole

YLOAD EINST2

SAVED 1985-01-08 19.0u4.29 (GMT-5) 2727K(26385K)
VEINST2C01V

{ 03 EINST?2 aNumerical verification of the curvature near a black hole.

[ 1] 0ro+1 A Subscripts start at 1.

{ 2] *EPSILON = ',%E+.0001 A (f(x+e)-f(x-e))/2e gives partials.

[ 3] X = ",%X+2 110 R Point of spacetime near black hole.

{ 4] Pt A Skip a line.

[ 5] '*RIEMANN CURVATURE TENSOR =' a Show all the components of the

[ 6] O«R+Ru X A Riemann tensor at the point X.

[ 71 ' a Skip a line.

[ 81 ‘WILL SUM:* A Show the components which are

€ 93] 3 1 2 38R A summed to give the Ricci tensor.

[10] L A Skip a line.

[11] *RICCI TENSOR =! A Ricci tensor should be identically

[12] +/3 1 2 38R A zero according to field equations.
verolv

fol 2«G X A GCet the Schwarzchild metric G at a point X,

11 Z+4 4p0 n which is a diagonal metric.

£21] (1 182)+(-21-2X[11),(-XC11%2),(-(XC[11x10X[2])*2),1-%X[1]
vG2L01v

f£o] Z+GC2 X A Cet the inverse of a diagonal metric, by taking

[1] (1 182)+31 182+C X a the reciprocal of each diagonal element.
voeDXtOav

o1l Z+«DGDX X A Get the partial derivatives of the metric.

1]  Z«2[1 23((G"cl21X+42)-(C c[2I( X+t upX)-Z+Ex(rit)o, =184))32xE
VGAMMALO]V

[o0] Z+GCAMMA X A Cet the connection from the partials & the Iinverse,

{1] Z2+«.5%x(G2 X)+.x(2 1 38Z)+(3 1 282)-(2 3 1R8Z+DGDX X)
VDOGA¥MADXLDOIV

[0] Z+DCAMMADX X a Get the partial derivatives of the connection.

[1] Zeo5[1 2 31((CAMMATc[2]X+Z)-(GAMMA™ c[2]( X+t UpX)-Z«Ex(14)o,=14))32xE
VR4[O1v

[o] Z+R4 X R Get the curvature tensor from the connection &

[11 Z+(1 3 282)¢t.xZ2«CAMMA X A its partial derivatives.

[23 Z2+(-2)+(1 2 4 3RZ+DCGAMMADX X)+(1 3 2 u®Z)-(1 4 2 3%82)
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The program EINST2 checks the Schwarzschild solution of the vacuum field equations of general
relativity numerically at a single point of space-time. This involves calculating the Riemann cur-
vature tensor at that point, and checking that various components sum to zero. More precisely,
we check Einstein’s field equations for g;ravity two meters from the center of a black hole with a
Schwarzschild radius of one meter.

Below we use Einstein’s summation convention: any term with repeated indices denotes the sum
over all values of this index (1, 2, 3, and 4).

The function G calculates the 4x4 matrix consisting of the coefficients of dx, dx; in the fundamental
metric form, which gives the distance ds between two infinitesimally close pomts in terms of the i
differcnces between their coordinates:

ds2 = gydx,dx-"- i

These sixteen values of g, as a function of x,, x,, X, and x, define a space-time and determine all its
geometrical properties. g must be a symmetrical function of i and j. Given a point X in space-time,
G produces the 4x4 matrix of the g; at that point. For convenience in defining the particular metric
that we use, let

1
i

Xy

)
X3

X4

~D DN

Here is the Schwarzschild metric for a point mass:

ds* = (1—1;"_)d12_ L;m-}-rz(sinzﬁ dp’ + do?)
(1)

Here r, 6, ¢ are the usual spherical polar coordinates, measuring, respectively, distance from the i

origin in meters, inclination from the z axis in radians, and angle around the z axis in radians. And

the mass /m and time ¢ are measured in units in which G=c= 1. J
!

The next function, G2, calculates the metric inverse, which is a diagonal 4x4 matrix defined as

follows:
y_ ) lifi=j
S { 0 ifiskj

In EINST we simply calculated the metric inverse by using the APL2 matrix inverse function B.
In EINST2 we take advantage of the fact that the Schwarzschild metric is diagonal to get a more
accurate metric inverse by simply replacing each element in the diagonal of the metric by its recip-
rocal. This additional accuracy was not needed in EINST.

The next function, DGDX, calculates the 4x4x4 matrix consisting of the partial derivatives of the
g; with respect to the x,:

O _
axk gl'l'k

The next function, GAMMA, calculates the connection T at a point X in space-time, which is also
known as the Christoffcl symbol of the second kind. This is a 4x4x4 matrix used to calculate the
result of an infinitesimal parallel displacement of a vector from the point X:

s l 08ua , O8va Oy
rs, == B AR
2% cx, 0x, 0x,
=
- ?g (gua v+ 8va,u— Suv, a)
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The next function, DGAMMADX, calculates the 4x4x4x4 matrix consisting of the partial derivatives
of the connection components at the point X:

The next function, R4, produces the Riemann curvature tensor, which is a 4x4x4x4 matrix used
to calculate the change in a vector at X after parallel displacement around an infinitesimal

parallclogram:

u _ ar?a + ar.lr‘b

u r u r
sab + rra I“sb =i rm

éxb axa
u u U U -r
= _rsa,b’*’r:b,a'*‘rrar:b" rbr:a

A space-time is flat if and only if all the components of the Riemann curvaturc tensor are identically
0.

Finally, we calculate the Ricci tensor at the point X in space-time

Ruv = R:va

which is a 4x4 matrix obtained from a 4x4x4 submatrix of the Riemann curvature tensor, and we
check Einstein’s vacuum ficld equations, i.e., that

Ry=0

As before, line [12] of EINST2 and lines [ 1] of GAMMA and R4 show how casy it is to ex-
press the Einstein summation convention in APL2 by using the matrix product + ., x and transpose
X. Lines [1] of DGDX and DGAMMADX take advantage of two powerful new features of APL2,
nested arrays and the “each” operator ~

Here is part of the output produced by EINST2:
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WILL SUM:

] 0.1250000005  1,250000049871 70.2500000046
o 0 1.910826012876 o

L] [} 0.0008C0000E0 O

0 [+] 0.00000CCCCES  ©

] <] 1,906712790E73 ©
0.2899999972 ¢ 75,000000025E71 0,2500600006
0 [} 0.000000030E0 O

0 [} 0.00CO0000C0ED O

(] 0 0.0008C0000E0 O

(] ¢} 0.00000000CE0 O
0.1770183589 ~0.2540366968 0,000000000EC ©.177018255

0 [} 0.00000000CE0 O

[ [} 0.00000000C8EC O

] 1} 0.00CCD0000E0 O

0} 1] £.0000000C0EY O
0.086250000021 ~0.02125000008 ~2,125000008£°2 O

RICCI TERSOR =

8.1001259875710 1.91082u4812E79% 0.0000CC00ED C.00CCO0GCOED
1.909712790E79 T5.668318456E°9 0.00Q0C000E0 0.000C0GOGOED
0.000000000EC 0.000000000E0 1,708890%9E”8 0.08000000CED
C.000000000E0 0.000000000E0 0.00000000E0 5.784812167E711

At the point of space-time under consideration, the components of the Ricci tensor are at least
seven orders of magnitude smaller than the relevant components of the Riemann curvature tensor.
This is therefore an excellent numerical verification that the Schwarzschild metric satisfies Einstein’s

vacuum field equations.
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5. Quantum Probability Waves: Schriodinger’s Equation in One Dimension

In Section 5 we leave classical physics for quantum physics, a strange world full of probability
waves propagating in many dimensional phase spaces, and interfering constructively and
destructively with each other. Usually probabilities are real numbers between zero and one.
Probability zero means impossible, and probability onc means certain. The kind of probability
which appears in quantum mechanics is very strange indeed, for it is a complex number, whose
magnitude or size is proportional to the traditional probability or degree of propensity, but whose
direction represents the phase of a wave. To distinguish them from normal probabilities, the
complex-valued probabilities occurring in quantum physics are called probability amplitudes.
Normally, if there are two different ways in which something can occur, then the overall probability
of occurrence is the sum of the individual probabilities, and is greater than either one of them. But
in quantum physics the situation is quite different. If two probability amplitudes that are added
together have the same magnitude but opposite directions, then they cancel out and give a zero
overall probability of occurrence. And the hydrogen atom according to Schrodinger’s equation is
a kind of musical instrument, whose discrete spectrum of energy levels corresponds to the different
frequencies of sound generated by the instrument. It consists of a central proton surrounded by
waves giving the probability amplitude that the electron is at any given location.

My original goal was to present here a working model of the hydrogen atom, but unfortunately it
seems that much too much computation is needed and this is quite impractical. So instead of doing
time evolution according to the Schrédinger equation in three dimensions, we work in one dimen-
sion.

Readings

¢ Einstein and Infeld (1], Chapter 4, “Quanta.”

e PSSC Physics [7], for the de Broglie wave length of a particle

e PSSC Physics [7], for the Bohr hydrogen atom

¢  Bom [19], for a summary of the formalism of quantum mechanics

e  Polkinghorne [20], for a summary of the formalism of quantum mechanics

Additional References

¢  Eisberg and Resnick [21]

¢ Potter [9]

®  Gerald and Wheatley [22]

®  Goldberg, Schey and Schwartz [23]
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Schrod—One Dimensional Time Evolution

JLOAD SCHROD
SAVED 1985-01-16 18.48.54 (GMT-5) 2727X(2663K)

VScHRODLOIV
[ o] SCHROD a Does electron moving slowly in one dimensional potential,
[ 1] Qro+o R Subscripts start at 0.
2] I+0J1 A I is the square root of minus one.
L 31 HBAR+.1 A HBAR is Planck's constant divided by two pi.
€ 4] MASS+1 R Mass of the electron.
[ 5] DELX+15N+50 a One unit of space is divided into N pieces, &
C 6] DELT+1+STEPS+20xN A one unit of time is divided into 20 N steps.
£ 71 X" .5¢( .5+1N)¥
[ 8] V+Np0 A Try V+1000,((¥#-2)p0),1000 or V+«((L.8x¥)p0),(N-L.8x¥)p10
[ 9] ALPHA+sHBARXI
[10] BETA+~-ALPHAX(HBAR*2)+2xMASSx2xDELX*2 R X Is a vector of the N |
[11] A«B+Hl HNpO A possible positions of the electron ranging from !
[123 A[:1)+A[;N-1)+-BETA a -half to t+half, & V is a vector of the ’
131 AC:01«(#DELT)+(2xBETA)-(ALPHA+2)xV A potential energy of the ’
C143 B[ ;1)+B(;N-1)+BETA A electron at each of these positions.
[15] BU{;0]+(*DELT)-(2xBETA)-(ALPHA+2)xV a C operates on the Psi field
[16] Cr(BA-(-1N)PA )+ . xB+~( - 1N )B A at time t giving it at time t+1.
[17] X0+«0 A X0 is the center & SIGMAO is the variance of a wave packet.
[181 K0+30 A K0+~ 15 goes in opposite direction at half the speed;
[19] SIGMAO+,05 R K0 determines the momentum of the wave packet.
[201] PST+(*KOxTIxX)x(*x-((X-X0)*2):(2%xSICMA0*2)) A Try PSI+*(02)xIxX
[21] (TIME+«D)DRAW PSI«PSI+(+/|PSI*2)*.5 AR Normalize Psi & draw it. 3
[221] STEP+0 R Count time steps
[23] LOOP:+(STEPS<STEP«STEP+1)/0 a until we have done them all.
[24] PSI«C+.xPSI A Get new Psi field from current field.
[25] TIME«TIME+DELT R Bump time.
[261] +(0=20|STEP)/LOOP A Draw field
£271 TIME DRAW PSI A every 20 time steps,
£28] ~LooP a N times altogether.

VDRAW[O1V l
£ol TIME DRAW PSI n Draws graphs of probability & phase of Psi field. !
£1] to A Graph of procbability
[2]) *‘PROBABILITY(POSITION) AT TIME = ' ,¥TIME a is 51 characters wide
[3] '*TOTAL PROBABILITY = ',%4+/PROB+|PS5I*2 A & scaled so that
[u4) FRAME( -1 S50xPROB=J /PROB)$(N S1p'*',50p' ') a largest is always same.

]
A
(]

£51 v Craph of phase is 4u
[61] "PHASE(POSITION) AT TIME = *,3TIME characters wide, from
{71  FRAME(-12247x1100(PSI=0)+PSI)S(H uup'£',u3p® *) A -pi to +pi.
VFRAMELO]IV
[o] FRAME PIC A Adds potential & position numbers to a graph,
€11l PIC+(N S5p°| V='),(%N 1pV),* ', ', (%N 1p1lN),* *,*' ', *|*,PIC,'|"
[21 ‘-4 [01PIC,[0]'-" A & frames it.
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Introduction

This program provides a one-dimensional working model of a quantum-mechanical particle moving
in a potential. We use centered integration, which requires implicit solution of the difference
equations, to get good numerical results. Boundary conditions are given for a Gaussian wave
packet to propagate freely, and to scatter against a square barrier and inside an infinite well.

How does quantum mechanics describe the state of a particle by means of the complex valued wave
function y, which possesses both a magnitude and a phase or angle at each point at which it is
defined? The square of the magnitude of { at a point is proportional to the probability that the
particle is there. And the rate at which the angle of  changes with position, i.e., the rate at which
¥ rotates as position varies, is proportional to the momentum of the particle. (Rotation clockwise
goes in one direction, counter clockwise moves in the opposite direction.) Also, the rate at which
the angle of i changes with time, i.c., the rate at which § rotates as time varies, is proportional to
the energy of the particle. (We have just stated the Schrodinger equation in words, in view of the
relationship between momentum and energy given by p?/2m = (nv)/2m = mv?2.) The Heisenberg
uncertainty principle is reflected in the fact that if the velocity of a wave packet is known exactly,
then ¢ is a uniform rotation whose magnitude does not change as a function of position, so that
the position is completely uncertain. Contrariwise, a spatially localized wave packet will contain a
mixture of frequencies, that is, of momenta, and will spread with time.

Computational Technique
Here is Schrddinger’s differential equation £ = Hy on a line:

nr &
_hoY), o (_ +V)
i ot 2m ox

Le.,

& _ 1 W o .p
= — |14
FTaRT ( 3m g2 Y
This yields the following time and space centered finite difference equations:

'l’x,t-i—l - V’x,:
At

1

_ hz |I’x+|,t+l - 2'I’x,t+l +'l’x—l,r+l '//x+1 = 2Vx r‘*“/’x—-l r
2m
ih

2(Ax) 2(Ax)
+ % (Vx'»(’x, +1 + Vx‘[/x, r)

This can be expressed as the following system of linear equations:

Vert,(=B) + Ve i+ 28 =L V) o+ Vot il -B) =

Vet AB) + Ve A= 284 5 V) + 0 4B)

where
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Thus we are led to a matrix formulation of the time cvolution of the wave function i according to
the Schrodinger equation: the matrix A4 times the column vector of  values at time ¢+ 1 is equal
to the matrix B times the column vector of i values at time &

Vo, 14+1 Yo,
A : =8l :

VN1, 141 YN-1,1

where matrix 4 has the following clement at row i and column j:

{—B ifj=i+1lori—1
1 _a er_ :
E'l'zﬁ 2Vi ifj =i |

and matrix B has the following element at row i and column j:
{ﬁ ifj=i+1lori—1
1 a ee
—_ Ly =
Al 28+ > i ifj=1i

Thus the column vector of ¥ values at time ¢+ 1 is equal to (the inverse of matrix 4) times matrix
B times the column vector of ¢y values at time &

i
t
{
\
’.
!
y
!
'/’o, =+1 '/’0, r i
D =478 ;
VN1, 141 ¥a-1,: I
{
The program SCHROD deals with a one dimensional “world” one meter long in which the position |
x goes from —.5 to .5 with periodic boundary conditions. We simulate this world from =0 to }
t=1, ie., for one second. We take Ax= 1/50 and Az = 1/(20 x 50), but we only draw a picture of
the wave function i every 20 time steps. Thus the one meter space is divided into 50 cells, and the !
one second time is divided into a motion picture with 50 frames. Each frame is in two parts, a :
drawing of the probability as a function of position, and a drawing of the phasc as a function of 1
position, in which the positions are given as cell #'s going from 1 to 50. Along with each frame, N
we print the total probability, and this value, which should always be exactly unity, is indeed very
accurately conserved.

SCHROD would be quite gruesome if it were not for a new APL2 feature, complex numbers, which
are indispensable in quantum mechanics. Most APL2 primitive functions have been extended to
accept complex numbers, and a number of new circle functions © have been added to deal with
them. Inline [ 7] of DRAW, 110@ is used to obtain thc imaginary part of the logarithm of a
complex number, which is its phase. This is actually provided as a separate circle function, 120.
It is also very convenient to be able to obtain the inverse of a complex matrix by using 8. This
occursinline [16] of SCHROD.

Experiment 1—A Momentum Eigenstate
V is identically zero, that is to say, there is no potential and we are looking at free propagation.
Here is the formula for the initial wave function, which is included in SCHROD as a comment (sec
line [201]):

Yx) = 7 (=5<x<.9)

This has a one-meter wave length and defines a particle whose momentum is known cxactly, and
whose position is totally uncertain. This is also a stable standing wave on this torus, i.c., a mo-
mentum eigenstate. And it is the first momentum eigenstate above the ground state, in which
is a constant.
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How do we expect this system to behave? According to de Broglic, a particle of mass m with

momentum p and energy £ undergoing free propagation in one dimension is described by a wave
function

Y =exp[2ni{ix—vi)]= exp[%(px - Et)]
where

T= -—Z— = waves per unit space (wave number)

v= —f- = waves per unit time (frequency)
It follows that
p=th
and that
E= _1’_2_ TR
2m 2m
Hence
_E_k*
V= A 2m
e,

v = exp[Zni(tx— %2 ‘)] = exP[zn&(x— _;!’:—1 ’)]

Thus this wave propagates with speed

Th
2m

which is precisely half of what one would expect from the fact that
mv=p=1h

The program SCHROD deals with a one dimensional “world” in which the position x goes from
—.5 to .5 with periodic boundary conditions, so that ¢ must be a positive integer for the value of
¥ to wrap continuously around the end of the world. In fact, the initial wave function is the
7 = | case, and we take m=1 and h = .1, so that

h=2nh=6.28h = .628
and
¥ = exp[2n{x — (h{2m)t)] = exp[ 2n{x — .314¢)]

SCHROD integrates the wave function over ¢ going from 0 to 1. In onc unit of time, ¢ will prop-
agate a distance of .314 meters. Since we take Ax = 150, this is about sixtcen of the fifty cells into
which space is divided, which is fortunately what we actually see in the output from SCHROD.

Here are some frames from the motion picture produced by the first experiment with SCHROD:
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FROBABILITY(FOSITION) AT TIME = O

TOTAL FROBABILITY = 1

I v=0 c | -]
| =g F O .|
| ¥=0 2 | .
1 vsz 2 | ol
| V=e [ .l
| V=0 5 | .
I vsgc & | .
I v=c 7 | -
I vs¢ s | |
| wvso o | .
1 v=0 10 | .|
1 vs0 11 | o}
{ V=0 12 | .
| wvsg 12 | .l
1 Va0 1% | s}
| vsc 15 | .l |
I vs0 16 | .l
I wso 17 | .l
I v=0 18 | .
| vs0 318 | .| .
| v=0 20 | .l
| v=0 21 | .
| v=0 22 | «)
| v=3 23 | o]
| =0 2% | 3]
| :¢ 28 | .l 1
| vsc 26 | . !
I pv=c 27 | .
| Va0 29 | .l
| wvs0 29 | 3|
| v=0 20 | .
I vso 21 | .l
{ veo 22 | 1
| sp 23 | .|
I v 323 | .}
| wvso 25 | .
I vs0 26 | ol
I ¥ 237 | vl
| vso 28 | .l
I sg 20 | Y
| v=0 no | .l
] V=0 n1 | ol
| v=p &2 | o
| v=0 &3 | .l
| V=0 &s | o}
| 20 us | o
) vso %6 | .|
I ¥=0 87 | .l
| ¥=0 a8 | .
{ v=0 8§ | .l

In this and all subsequent graphs of probability as a function of position, zero probability is flush
left, and the values have been scaled so that the largest probabilities in any given graph are always
flush right.
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PHASE(POSITIOR)Y AT TINE = O

In this and all subsequent graphs of phase as a function of position, phase —= is flush left, 0 is in
the middle, and += is flush right.
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PROEABILITY(FOSITION)Y AT TI¥E = 1

TOTAL PROBABILITY = 2

| vsg o | .l
I v=0 b | e
1 vso - .l
i Vs 20t .l
1 v=g & 1 -t
[ £ 1 5 .l
1 vs2 & | .}
| v 7 | -1l
! vsg 8 | -
| vse & | .l
1 vsp 0 | .|
! v=o 11 | -
| vso 212 | A3
{ v=0 212 | -
! yso an | .|
{ veo 15 | «]
| vso 12 | .
| vs2 17 | .l
| v=0 38 | .l
| v=0 15 | N
I vs0 20 | .l
| vs0 2 | N
| ¥s0 2 | |
| vso 22 | .|
| vs0 2% | .|
| vs0 2 | -
I vs0 286 | .l
| Vso 27 | .l
| Vvso 28 | .|
| Vsg 29 | .|
I vso 2¢ | .|
| V=0 21 | .)
{ vso 22 | -l
i vso 22 | .
1 ve0 3% | .l
1 wvs0 233 | -]
1 vs0 36 | .|
| vso 27 | *|
1 v=0 38 | « |
1 v=0 29 | . |
I vs0 w2 | . |
| Vso n1 | > |
| Wvag u2 | *
| Vs0 n3 | L |
| V0 nu | LI
| v=0 &5 | . ]
| Vvag us | . |
| vs0 87 | |
I vs0 sg | .|
| V=0 89 | . |
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PHASEV\POSITION) AT TIME =
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Experiment 2—A Gaussian Wave Packet

There is an intimate and important relationship between the information given in the two parts of
each motion picture frame: the graph of the phase indicates the changes which are taking place in
the graph of the probability. If the graph of the phase is vertical, that means that ¥ is stationary.
If the graph of the phase slopes downward to the right, that means that { is moving down the page.
And if the graph of the phase slopes upward to the right, that means that ¥ is moving up the page.
In our second experiment, following Goldberg, Schey, and Schwartz 23], we have a Gaussian wave
packet that is simultaneously broadening due to the uncertainty principle, and moving down the
page due to its momentum. If it had no momentum and only broadened, the graph of the phase
would slope downwards to the right below the peak of the Gaussian, and it would slope upwards
to the right above the peak of the Gaussian wave packet, showing that these two halves of the wave
packet are moving in opposite directions. Since, however, we have made the wave packet move
down the page, the point at which the graph of the phase is vertical lags behind the peak of the
Gaussian wave packet, for it occurs at the point at which the backward spreading just balances the
forward momentum.

Here is the formula for the initial Gaussian wave packet:

2 2
]l/(x) = elkﬂx e—(x—Xg) 1263 (—-Sst _5)_

ko =30
{ xp=0

Og= 05

where

The first exponential gives the wave packet a momentum proportional to k,, and the second one
defines a Gaussian probability distribution with average x, and vanance ¢, As this wave packet
undergoes free propagation, it retains its shape but broadens, i.c., the variance ¢ of the Gaussian
distribution increases. k' = — k, propagates in the opposite direction, and kg’ = ko/2 propagates at
half the speed. It can also be shown analytically and verified “experimentally” (that is, via com-
putation) that the rate at which the Gaussian broadens is independent of the speed at which it
propagates, i.e., independent of A,

The potential energy V is a time independent function of position. In SCHROD as written, V' is
identically zero, that is to say, there is no potential and we are looking at a case of frce propagation.
The program is, however, casily modified to create a square barrier, which illustrates mixed re-
flection and transmission. It is also easily modified to create an infinite well, which illustrates total
reflection. The relevant changes arc included in SCHROD as comments (see line [ 8 1).

Let’s now check the extent to which experiment corroborates theory. We shall calculate how fast
we expect the Gaussian wave packet to propagate, and then we shall look at the the output from
SCHROD 1o see how well it agrees with our expectations.

According to de Broglic, the wave number 7 and the momentum p are connected as follows

We are working with a world in which the position x goes from —.5 to .5, and the initial value of
the wave function ¥ is approximately

¥ = exp[ikyx] = exp[2nirx]
where k, = 30. It follows that

is the number of waves per unit distance, and the wave length is
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This may be verified by examining the graph of the phase of { at time 0 drawn by SCHROD, which
consists as it should of 5 segments. Once we know the wave number 7, the momentum p is de-
termined, for

p=ht =—hz—nk9—=hk0= .1 x 30 = 3 kilogram-meters per second

since = .1 in our toy world. Finally, since mv= p= 3 and the mass m is equal to one, it follows
that the velocity v is equal to 3 meters per second.

That’s the theory. Now let’s look at the facts. Examining the output from SCHROD, we see that
at time 0 the peak of the Gaussian wave packet is at point # 25, and it is at point # 37 at time .08.
Since our total space of one meter is divided into 50 cells,

Ax _ (37—25)/50 space _ .24 space

= = =3 1 d
At .08 time .08 time mmefers per secon

which gives excellent agreement with theory.

Here are some frames from the motion picture produced by the second experiment with
SCHROD:
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PROBABILITY( FOSITIOR) AT TIME = ©
TOTAL PROBAEILITY = 1§

| p=0 0 |- |
| v=0 1 |- ]
| ¥=0 2 |» |
| v= 3 e )
{ V=0 & |« |
| Vso 5 e i
| v=0 6 e |
I ¥=0 7 i
I v=0 8 I~ 1
I V=3 8 | |
I v=0 10 |~» |
I V=0 11 | I
| v=0 12 |= |
1 V=0 13 |+« |
| V=0 15 |« }
| ¥=0 15 |- }
| ¥vs0 16 |« )
I ¥z0 17 |« |
| V=0 18 |= |
| %0 19 |e |
| v=0 20 | |
i v¥=0 21 | . |
] v=0 22 | . 1
! v=0 23 | . |
| v=o0 2% | *|
| v=0 25 | .|
1 v=0 26 | . I
i =0 27 | - |
| =0 28 | - |
1 =0 29 | » I
| ¥=c 20 |- I
| ¥=c 21 |« |
I V=0 22 |» |
] ¥=0 33 |- |
: }
I =0 36 |« I
I V=0 27 |« |
t ¥s0 23 | |
| |
| V=0 &3 |= |
| V=0 82 |= |
| V=0 &3 |» |
| v=0 s |» |
| V=0 &5 |« I
| V0 u6 |» ]
| =G 47 e |
| V=0 ®8 | |
| V=0 &9 |=» !

e . Ot e = b e e _

. —

7 1 e ————— e, pan o bk TR
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PHASE(POSITION) AT TIME = O

I v=g 0 | # |
| ¥=0 1 | # {
I v=¢ 2 | # I
I v=0 3 | 4 |
I vz0 o | # |
| V=0 5 | # I
1 v=0 6 | H] |
1 v=g 7 | ] |
| V0 8 | # }
I v=g 9 I8 I
| v=0 10 | 8 |
I vs0 11 | # I
I v=0 12 | # ]
1 vs0 13 | L] I
| v=0 1% | 8 I
| v=0 15 | ] i
| V=0 16 | 2 i
1 veo 17 | 8 I
{ vs=0 318 | # I
1 v=0 19 | L
1 v=0 20 | § |
| v=0 21 | # I
| ¥=¢ 22 | L] I
1 v=0 23 | 4 |
| v=0 2% | S I
I v=0 285 | 4 |
| v=0 26 | # |
I ¥v=0 27 | # 1
| v=0 28 | H |
| v=0 29 | # I
1 w8 230 | 8 I
| wvsg 31 | # I
| ¥=z0 32 | # I
| v=0 33 | # |
| ¥=0 3% | # I
| v=0 35 | # |
| v=0 36 | ] |
| v=0 37 | § |
| v¥s0 38 | 8 |
| vao 39 | § I
| ¥sg &g | g1
| v=g 81 | # {
I ¥=0 82 | # |
| ¥so 83 | & |
I v=g an | # 1
I ¥=g0 u5 | # {
| ¥=0 46 | # |
| vs0 w7 | # |
| v=o us8 | # |
| ¥so0 us | # |
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PROBABILITY(FOSITIOR) AT TIME = C.0%
TOTAL PROBABILITY = 1

-
P
o
[
o

PRSI S T R 2 N R T I N I 2N I IR O S 4

<
)
-]
w
w
-
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PHASE(POSITION) AT TIME = 0,09

| vso o | # l
| V=0 1| # i
| vsg 2 | # {
I v 3 | 8 |
!ovea s | & |
1 Vs=¢ s | 4 |
I V=0 6 | L] |
} V=0 7 # |
1 v=0 8 | ] |
I vsc a3 | H i
I P23 12 | &1
I vso 11 | # 1
I ¥eo 12 | ¢ |
I ¥s0 13 | 8§ |
I ¥=0 1u | 8 l
I vec 215 | # 1
| v=g 16 | # I
I ¥v=¢ 17 | # |
| ¥sg 18 | # I
| vs5 19 | # I
I vag 20 | # |
| vso 21 | # )
| v=0 22 | # I
| v¥=0 23 | # |
| wv=g 25 | # ]
I v=e 25 | # I
| v=0 26 | 4 |
1 v=g 27 | # |
| V¢ 28 | 8 l
1 V=g 29 | # I
| ¥ 20 | £ I
| p=0 31 | 8§ !
| o¥=0 22 | S |
1 ¥=5 22 | # |
| V=2 24 | £ ]
1 v=6 25 | § |
| ¥=¢ 35 | & |
i v=0 27 | & I
{ ¥=3 33 | ] I
| v=¢ 23 # !
I v=¢ o | # I
1 ¥=0 1 | # |
| v=o 82 | 8 |
I V=0 &3 | # I
| V=0 wnan | & |
| ¥vzo 85 | # I
| v=¢ ag | 8 |
| v=0 87 | # |
| vs¢ 88 | £ I
| V20 89 | 8 |
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FROEABILITY(POSITION) AT TIME = 0.2
TOTAL FROEABILITY =

| Vvs0 o | - |
| vso 1 1 . |
1 vso0 2 | . |
{ veg 2 | . |
| vso & | . |
I vso s | . I
I vso 6 | . |
| vso 7 1 . 1
| v=0 8 | . |
I Vvsgc 98 | . }
| ¥=0 10 | . |
1 yx0 11 | . |
{ v=g0 12 | . |
I v=0 13 | . |
| V=0 18 | . |
I Veo 15 | . |
| V=0 16 | - {
| ¥s0 17 | . |
| v=0 18 | » |
| vs0 19 | . I
| v=o 20 | . |
| v=0 21 | . |
| v=o0 22 | . { \
| veo 23 | . ) '
t v=o0 28 | 3 |
| v=0 25 | C . |
| Va0 26 | |
| =0 27 | e |
] veo 28 | . |
| ¥:0 29 | . |
] v:0 23 | . {
{ v 21 | - i
I vs0 22 | . 1
I veg 233 | . |
I v 23 | « ]
| veg 35 | e
| V=0 356 | . |
| v=0 37 | . |
| v=0 38 | - {
| vsc 39 | = |
| veo s0 | . ]
{ vs0 s1 | - I
| v=0 u2 | . |
1 ¥=0 &3 | . |
| ¥s0 su | . 1
| v=zo &5 | . |
| ¥20 s | - 1
1 vs0 &7 | . |
| t=0 us | . |
1 v=g 83 | . |

At this time the wave packet has wrapped around the “end of the world,” and its forward edge has
collided with its trailing edge, producing this interference pattern.
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PHASE(POSITION)Y AT TIME = 0.3

| ¥v=0 o | # |
I v=06 1 | # |
I v=xg 2 | # i
I ves 3 | # |
I vsg s | ] |
I vs0 5 | 4 i
| wv=eg 6 | # |
! P 7 0 # |
| vsso 8 | # 1
[ £ 1] 9 i 2 |
| v¥s¢ 10 | H] |
I P=0 11 | # ]
I v=o 12 | ] |
| ¥=o0 13 | 81
I ¥=0 1s | & 1
| P=0 15 | 4 |
I v=0 15 | 8 |
| ¥=0 17 | # |
| v=0 1% | # I
| v=0 19 | # |
| v=0 20 | 8 I
I v=0 21 | # |
I ¥v=g 22 | # |
| v=0 23 (8 |
I vs0 28 | # |
| w¥=¢ 25 | ] |
| v=¢ 26 | § f
| vag 27 | # |
i v=g 28 | 8 i
| V=g 29 | & {
| vsc 22 | # |
| V=0 21 1§ |
§ =3 2 | # 1
i v=g 23 | # |
I vsg 3s | [ l
| wv=¢ 35 | # |
| v=0 28 | E] |
| v=0 37 | # |
| v=0 38 | # |
| v=o0 29 | # |
I va0 s0 | # |
| vs0 s1 | & |
l v=0 a2 | 3 I
| v=0 83 | é I
| ¢=0 un | # |
| ¥=0 as | L2 |
| ¥v=0 86 | # ]
| W¥eo0 a7 | 2 ]
| Vo u8 | & |
| ¥=0 83 | & |
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Rescaling

We would now like to make these experiments more realistic by rescaling them. In our first ex-
periment we have looked at a “particle” whose mass is one kilogram and whose de Broglie wave
length is one meter in a toy world in which % is one-tenth and in which the potential is measured
in joules. Let’s consider instead the typical quantum mechanical situation of a valence electron.
The mass of the electron is 30 orders of magnitude smaller, its wave length is typically measured in
angstroms A = 10~ meters, its potential is typically measured in electron volts or eV
= 1.602 x 10~ joules, and % is 33 orders of magnitude smaller. So let’s analyze the rescaling nec-
essary if we now consider a typical valence electron and the correct value of &.

First we will analyze the rescaling intuitively with physical arguments, and then we will venify this
analysis by directly manipulating the Schrodinger equation.

According to de Broglie, the wave length associated with a particle is given by

We took 2'=1, #'=.1, and »/ =1, whereas actual values for a typical valence electron are
2=10"=10A, 2= 1.055x 103 10-* joule-seconds, and m, = 9.109 x 10~ = 10-* kilograms.
Le., we have multiplied the wave length by a factor of 10° the mass by a factor of 10%, and # by
a factor of 10%. To compensate for this, let’s multiply the velocity by a factor of a 10¢, so that the
various correction factors are mutually consistent:

(hi1") _g 10733
;». ).' = e—————— 10 T e———
(H%) (m|nt Xv[v') 10739 x 10°

Thus the one meter of space and the one second of time simulated in the computation performed
by SCHROD becomes ten angstroms and 10-? x 10-4= 10~ seconds.

In summary, our calculation applies to the actual electron rest mass and value of Planck’s constant
in a world 10~ meters long that wraps arcund, and we have seen that the wave function § propa-
gates at .314 x 10° meters per second, while the electron which v describes has a de Broglie wave
length of 10 A and travels at .628 x 10¢ meters per second, i.e., approximately one-five-hundredth
the speed of light.

Note that this rescaling also affects the uaits used to measure the energy and the potential. The
kinetic energy of our original one kilogram “particle” was

2 2
_nmv. __ 1x.628° _ .
E= 5~ 5~ .2joules
Since to get a real electron we must multiply the mass m by a factor of 10-* and the velocity v by
a factor of 10%, it follows that the energy E is multiplied by a factor of 10-3+6<2= 10-%, Thus one
joule becomes 10~ joules, which is about 6.25 eV. It follows that our calculation corresponds to
an electron with an energy of about .2 x 6.25 = 1.25 volts.

Now let’s rescale our second experiment by the same factors. l.e., we multiply distance by a factor
of 10°, mass by a factor of 10°, by a factor of 10%, velocity by a factor of a 10¢, time by a factor
of 107, and energy by a factor of 10-'5. Thus the one meter of space and the one second of time
simulated in the computation perforrmed by SCHROD becomes ten angstroms and 10~ seconds,
our calculation applies to the actual electron rest mass and value of Planck’s constant, and the
Gaussian wave packet and its associated electron with a de Broglie wave length of two angstroms,
both travel at 3 x 10° meters per second, i.e., approximately one-hundredth the speed of light.

Since it is very interesting to study the propagation of this wave packet in situations in which
V#0, it is important to note how this rescaling affects the energy and the potential. The kinetic
energy of our original onc kilogram “particle” was
2 2
= Ax3 4.5 joules

2 2
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Since the energy E is multiplied by a factor of 10-'8, which is about 6.25 eV, it follows that our
calculation corresponds to an electron with an energy of about 4.5 x 6.25 28 volts. And if we
took the value of the potential ¥ at a point to be one joule, it must actually be 6.25 volts for the
result of our calculation to apply to the real 7, and k over ten angstroms of space and 10! scconds
of time.

Now let’s rederive these scaling results, by arguing directly from the Schrédinger equation. The
equation that we solve numerically is

W _ 1 [ w2
at iha( 2mp 5(,,x)2fw')

where « = 10 is the factor by which we multiply the true valuc of #, § & 10 is the factor by which
we multiply the true value of the rest mass of the electron, and y ~ 10° is the factor by which we
multiply the true value of the de Broglie wave length of the electron. ILe., «, 8 and y are the scaling
factors for i, m and x. Hence we have

6¢’ = 1 a2 _ hz 52‘/’ + ﬂ‘/z Vlll
ot iho 3),2 2m 5,2 o?

An z cancels out, and we get
W _af_u v |8}
= -1 + vy
B[L :] i\ 2m g2 | &
By

which is the Schrodinger equation with the correct values of # and m, and with ¢ = (2/8y?) ¢ and
V' =(By?*/a?) V. Thus the numerical solution of our equation is also a solution of the correct
Schradinger equation over a period of time ¢ a factor of a/8y? ~ 10~* times smaller and with po-
tential V7 a factor of fy¥/a? =~ 10~ times smaller.
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6. Quantum Field Theory: The Feynman Path Integral and Quantum
Electrodynamics as a Lattice Gauge Theory

Finally, in Section 6 we consider Feynman path integrals and the quantum theory of fields. Here
is a computer model for an electromagnetic field [24]: The setting is now a space-time cube, re-
presented as an N x N x N x N lattice of N points. The electromagnetic field is not the primary
object. Instead it results from a gauge or phase field. The gauge ficld is represented by angles of
rotation specified on each of the links connecting adjacent points in the lattice, and there are 4N
of these links. Thus it is necessary to specify 4N angles in order to specify a particular gauge field
configuration history or path. In the Feynman path integral formulation of quantum mechanics,
one calculates probabilities for experimental results according to the following prescription: a
physical systern may go along any path it likes, in fact it goes along all possible paths! Feynman
gives a formula for calculating how much each path contributes to the overall probability, and how
diffcrent paths interfere constructively and destructively with each other. It is really amazing that
the world bchaves in this bizarre fashion. This is closely related to the “many worlds” interpreta-
tion of quantum mechanics.

The latest efforts in the direction of a unified field theory, called non-abelian gaupe theories, are
similar to the model that we have just described. The principal innovation is that they involve a
richer notion of “phase” than before. For example, instead of the rotations of a circle, one may
consider the rotations of a multi-dimensional sphere.

|
Gravity is curvature of space-time. And electromagnetism is curvature of the fiber bundle of the ,
phase of the Schrodinger wave function. More precisely, the 4-vector potential corresponds to the }
connection of general relativity; it tells how to propagate a phase vector from one position to an- !
other. This is a beautiful analogy; it is not the unified field theory that Einstein was searching for
nor is it a quantum theory of gravity. But it clearly is a high point of contemporary theoretical
physics. Unfortunately, I could not devise a program that performs a meaningful quantum
electrodynamics calculation, and that would be understandable at the level I am trying to reach.
But I believe that the material presented here can be used 1o help bring this pinnacle within sight;
it helps to make possible a deeper understanding of two excellent recent Scientific American articles
on gauge theory (Rebbi [24] and and Bemstein and Phillips [25]), and it can also be used to help
bring within reach some slightly more technical explanations of gauge theory (Moriyasu [10] and
Yang [26]).

Readings

e Einstein and Infeld [1], no reading, since this is a subsequent development
e  Feynman, Leighton and Sands [8], on the principle of least action

®  Hibbs [27], on path integrals in quantum mechanics

* Feynman and Hibbs [28], on path integrals in quantum electrodynamics
e  Misner, Thorne and Wheeler [29], on path integrals in quantum gravity
¢  Rebbi [24], on lattice gauge theory and Monte Carlo path integrals

e  Bemstein and Phillips [25], on curvature and gauge theory

* Eddington [14], on Weyl’s original gauge theory

e Monyasu [10], on gauge theory (more technical)

¢ Yang [26], on gauge theory (more technical)

e  Mattuck {30], on many body physics

Additional References

e  Creutz and Freedman [31], for path integrals in imaginary time

e  Creutz [32], Chapter 3, “Path Integrals and Statistical Mechanics,” for path integrals in im-
aginary time
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*  Maddox [33], for the Dirac equation as a path integral

¢ Gaveau, Jacobson, Kac and Schulman [34], for the Dirac equation as a path integral
® Jacobson and Schulman [35], for the Dirac equation as a path integral

* Rebbi [36]

¢  Schulman [37]
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IllIIl-II.-.Ill---------------------------------------....

Feynman—Nonvrelativistic Quantum Mechanics in One Dimension

JLOAD FEYNMAN
SAVED 1985-01-16 1B.uh .24 (CMT-5) 2727X(2663K)

VFEYRMAN[DIYV .
0] FEYNMAN aDoes electron moving slowly in one dimensional potential,
1] Dro«o AR Subscripts start at 0.

2} I+0J1 A I Is the square root of minus one,

3] HBAR+ .1 A HBAR is Planck's constant divided by two pi.

4] MASS+1 A Mass of the electron.

5] DELX+DELT+1:N+20 a Unit space & time are divided into N pieces.

61 X+«".54(.5+1¥)+N a Vector of N electron positions from -.5 to .5.
7] V«lip0 A Vector of potential energy of electron at each position.
8] KO0+(1\N)o ,PROP\N n X0 gives the amplitude to go from one position
9] Ke2+.x/NpcKO A to another *n time 1/N. K is Nth power of KO.
[10] 0 DRAW PSI+*(02)xIxX pDraw initial Psi field= momentum eigenstate.
[11] 1 DRAVW K+.xPSI R Apply K to get Psi after unit time, & draw.

e e el Eau Eas N an B ol

VPROPLDOIV
[0l PROP+M PROP M0 a Get amplitude to propagate to cell M from cell MO
[1) SPEED«(DELX*( |M~-MO)L(¥-|M~-M0)):DELT A in time delta t = 1/X.
[2] KE+ ,5%xMASSxSPEED*2 A Estimate speed, kinetic & potential energy.
31 PE+ . 5xVI[MI+VIMO] R To go to imaginary time:
fu] PROFP++*Ix( KE-PE)xDELT*HBAR A PROP+*-(KE+PE)xDELT+HBAR
VDRAW[O]V
£o} TIME DRAW PSI n Draws graphs of probability & phase of Psi field.

£11] ' A Craph of probability
[2] '"PROBABILITY(POSITION) AT TIME = ' ,sTIME a iIs 51 characters wide
£31 '‘TOTAL PROBABILITY = *',%+/PROB+|PS5I*2 R & scaled so that
Lul FRAME( -L50xPROB+[ /PROB)$(N S1p*+',50p' ') n largest is always same.
1 1 ] R
]
p

[51 Graph of phase is uu
£61 'PHASE(POSITION) AT TIME = ',3TIME characters wide, from
[7)] FRAME(-L22+4¢7x1100(PSI=0)+PSI)P(N uup'#',u43p® *) A -pi to +pi.
VFRAMELO]V
[01] FRAME PIC a Adds potential & position numbers to a graph,
[1) PIC+(N Sp'| V='),(sN 1pV)," t,t Y (%N 1pl1),* ', * V' PIC,'I|?
[2] -1, [0)PIC,[0]'~" n & frames it.
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This program treats a one-dimensional non-relativistic quantum mechanical situation via a
Feynman integral over all paths = a sum over all historics. We use Feynman’s original formu-
lation, in which time is real.

According to Feynman, the amplitude to get from position a at time ¢, to position b at time ¢, is
given by the following integral over all paths x(7) such that x(z,)= a and x{¢,)= b:

x{py=b
Kb, 1, a, t)) = I O swa g

x(1,)=a

Here # is Planck’s constant divided by 2z (its numerical value is actually 1.055 x 10-* joule-sec),
and S(b, a) is the action over the path from a to b. The action is defined as follows:

3
S, @) = f (KE— PE)dt

L

Here KE = kinetic energy and PE = potential energy. Thus the action S is also (¢, — ¢,) times (the
expected value of KE — PE).

Note that the Feynman approach in a sense includes that of Schrédinger. Let us define ¥(x, ¢) to
be the amplitude to be at position x at time ¢, starting from anywhere at time — co. Then we can -
use the so-called “propagator” K to express in integral form Schrddinger’s equation for the time
evolution of the wave function y:

+-00
v = [ Kxty,0 90,0 &

—d

The usual differential form of the Schrédinger equation is obtained as the limit of

400
ek = [ Kxtren) v &

—da
as ¢ tends to zero.

In order to obtain a finite number of paths, we limit oursclves to positions between —.5 and .5 and
to times between 0 and 1, and we divide the space from —.5 to .5 into N cells, and the time from
0 to 1 into N intervals, so that Ax=At= 1/N. At this level of granularity, therc are N¥ possible
paths. Thus our goal is to calculate the N x N propagator matrix K(x*, x) = the amplitude to reach
cell X’ from cell x in unit time, by summing over all N¥ possible paths in the manner prescribed
by Feynman. In order to do this, we shall start by calculating K(x’, x) = the amplitude to reach
cell X’ from cell x in time A¢.

It fortunately turns out that we can integrate over all N¥ paths, with only N4 amount of work. This
is done by raising the infinitesimal propagator matrix K, to the Nth matrix power to get the matrix
K. This procedure is justified by the equation

o0
Kz, t+ 241 x, ) = f Kz, t+ 21, , t+A0) K, t+At, x, ) dy

—o

which states that the amplitude to get from x to z in time 2A¢ is the sum of the product of the
amplitudes taken over all intermediate points in the path y; this is essentially the rule for matrix
multiplication.?

But how can we calculate K;? In order to do this, we must be able to estimate the Lagrangian
L = KE— PE in a segment of a path in which the particle has moved from position x to X" in time
At. The obvious estimate is:

2 Another way to calculate the Nth matrix power of K0, is to successively square KO and use the base-two represen-

tation of N to decide which of these squares to multiply together. By using this slightly more complicated technique,
one can calculate K with only order of (log A) A% work (Robert Bernstein, private communication).
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L~ ™y s m — x> V(x)+ V()
2 2(A1)? 2

But taking into account the periodic boundary conditions, we see that in this estirate |x" — x|
should be replaced by

mn ¥ —x], 1-—|xX—x|

since it may be shorter to get from x to X’ by going in the opposite direction and wrapping around
our toy world which is only one unit in length.

Now for test data. First we must decide on the potential energy V as a function of position, which
we have assumed to be time independent. We shall consider the case of free propagation, i.c., no
forces are acting on the particle, and take V to be identically zero:

V=20

Next we must pick an initial wave function ¥ to which to apply the propagator X in order to de-
termine how  looks after unit time. We choose a very simple case, an eigenfunction or standing
wave in which the particle has precise momentum and totally uncertain position:

U(x) = &¥* (-5<x<.5)

FEYNMAN is extremely concise and uses a number of new APL2 features, including of course
complex numbers. In particular, lincs [8] and [ 9] of FEYNMAN show how valuable it is to
be able to use nested arrays and to apply operators to defined functions as well as to primitive
functions. The Nx¥ array X0 and its Nth matrix power K arc obtained quite cffortlessly: X is
the result of using the matrix product + . x to reduce a nested vector consisting of ¥ copics of the
matrix X0.

Here is the result of running FEYNMAN:

AN APL2 GALLERY OF MATHEMATICAL PHYSICS—A COURSE OUTLINE 61

F_



PROBABILITY(POSITIOK) AT TINE = o
TOTAL PROBABILITY = 20
| vs0 o0 | sl
| v=0 1 | el
| vso 2 | .l
| v 3| ol
I vs s | o
) ¥=0 5 | |
| v=0 6 | ol
I veg 7 | .l
| P20 s | ol
| V=0 9 | el
I ¥=0 10 | el
I vs 11 | ol
I vs=0 12 | |
i V= 12 ] .1
| v=0 1 | .|
I v 15 | el
| ¥z0 16 | el
| P00 17 | el
I vag 18 | ol
i v=0 19 | ol
PHASE(POSITIOR)Y AT TIME = O \
| vs0 o0 | % |
| v=0 1 | # |
I v=0 2 | g |
I v=0 2 | # !
1 v=3 & ) & I
i vs5 § | H |
[ £ 6 | # |
| vs0 7 | # }
| vs0 8 | # ]
| vs=0 9 | # !
I vso 10 | # i
I v=0 11 | # I
| ¥= 12 1 8 I
1 v=0 13 | L] ]
{ ¥=0 1% | 8 |
{ v¥=0 15 | # 1
| v=0 16 | § } .
| v2o 17 | 8 !
| v=0 18 | 8 l
I v=0 19 | g1

AN APL2 GALLERY OF MATHEMATICAL PHYSICS—A COURSE OUTLINE 62

_



FROBAEILITY(POSITION)Y AT TIME
TOTAL FROBABILITY = 2,:405201

<

)
(=]
L

Vs 12

Note that the total probability is outrageously different from one. We have already calculated what
the value of  should be after unit time by using the Schrodinger equation (Experiment 1 in Section
5); our result this time differs from the previous one by a large complex normalization factor.
Going to imaginary time (sce the comment on line [ 4] of PROP) improves convergence and

makes normalization trivial, but the physical interpretation of the mathematics is then much more
subtle.
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7. Conclusion

Before posing some queries, we cannot help expressing our amazement that a significant portion
of the spirit of fundamental physics has in some sense been captured in six pages of APL2. In
particular, our calculation of the Ricci tensor is hardly more than half a page. Partly this is a tribute
to APL2-but there are deeper issues involved. Speaking as a computer programmer who has
worked with large COBOL, RPG, and assembly language commercial programs, and speaking as
a systems programmer who has been involved with optimizing compilers and operating systems, [
am struck by the fact that general relativity is in some sense captured by a program of such small
size. This program is minute compared to any real useful computer program that I have ever dealt
with. The moral is, I believe, that general relativity is simple compared, for example, to the com-
plexity of human society as mirrored in the size of the computer programs which service it. Indeed,
the beauty of some of the fundamental ideas of theorctical physics is precisely that they are so
simple and yet at the samc time so powerful and far-reaching.

This enterprise also raises questions of a more fundamental nature. There is a school of founda-
tional thought in mathematics that maintains that what cannot be computed does not exist; this
constructivist foundational tendency in mathematics suggests that there is perhaps more to the
computer based approach to physics than meets the eye. Do real numbers with their infinity of
decimal digits really exist, or is space-time ultimately discrete and finite? Is it possible that the
universe is really a giant computer or a cellular automaton, as Edward Fredkin believes? Tumning
to the more mundane, can computational complexity theory be applied to physics and used to give
lower bounds on the computational effort required to do physics, and maybe even to show that
some physical computations are inherently inaccessible no matter what method is used to calculate
them? Path integrals for ficlds are terribly time consuming, even if Monte Carlo approximation
(sampling) is used. It would be terribly frustrating if physics were to expose the innermost mech-
anism of the world and this proved to be quite simple, but it turned out to be impossible to ever
calculate from it how anything of interest worked!

I would like to end by telling a joke that R. D. Mattuck [30] attributes to G. E. Brown about the -
manner in which physics progresses. In Newtonian physics the two-body problem has an exact
analytical solution, the ellipse, but the three-body problem (carth-moon-sun) can only be approx-
imated numericailly. In general relativity the one-body problem can be solved exactly (the
Schwarzschild metric), but the two-body problem seems too difficult. Finally in quantum ficld
theory, the zero-body problem or vacuum is already too hard to solve! In fact the vacuum is such

a hotbed of activity that according to some reckonings its energy is infinite—can this be right, ask
Feynman and Hibbs [28]?

Readings

¢  Chaitin [38-39], on the size of programs as a measure of complexity

¢ Feynman [2], on how can an infinitz amount happen in an infinitesimal cube

*  Wolfram [40], on physical calculations lacking computational shortcuts

e Mattuck [30], on how many bodies it takes to have a problem

¢  Feynman and Hibbs [28], on the energy of the quantum eclectrodynamic vacuum

e  Series of three special issues on the physics of computation in the International Journal of
Theoretical Physics, vol. 22 (1982)
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RANDOMNESS AND GODEL’S THEOREM

Proceedings Discoveries 85 Symposium, Brussels, to appear.
IBM Research Report RC /1582 (December 1985).

G. 1. Chaitin, IBM Research Division

Abstract

Complexity, non-predictability and randomness not only occur in quantum mechanics and non-
linear dynamics, they also occur in pure mathematics and shed new light on the limitations of the
axiomatic method. In particular, we discuss a Diophantine equation exhibiting randomness, and
how it yields a proof of Godel’s incompleteness theorem.

Our view of the physical world has certainly changed radically during the past hundred ycars, as
unpredictability, randomness and complexity have replaced the comfortable world of classical
physics. Amazingly enough, the same thing has occurred in the world of pure mathematics, in fact,
in number theory, a branch of mathematics that is concemed with the properties of the positive
integers. How can an uncertainty principle apply to number theory, which has been called the
queen of mathematics, and is a discipline that goes back to the ancient Grecks and is concerned
with such things as the primes and their properties?

Following Davis (1982), consider an equation of the form
P(x, n, 1,0y ym) = 0,

where P is a polynomial with integer coefficients, and x, n, m, y,, ..., y, are positive integers. Here
n is to be regarded as a parameter, and for each value of # we are interested in the set D, of those
values of x for which there exist y, to y, such that P=0. Thus a particular polynomial P with
integer coefficients in m+ 2 variables serves to define a set D, of values of x as a function of the
choice of the parameter n.

The study of equations of this sort goes back to the ancient Greeks, and the particular type of
equation we have described is called a polynomial Diophantine equation.

One of the most remarkable mathematical results of this century has been the discovery that there
is a “universal” polynomial P such that by varying the parameter n, the corresponding set D, of
solutions that is obtained can be any set of positive integers that can be generated by a computer
program. In particular, there is a value of n such that the set of prime numbers is obtained. This
immediately yields a prime-generating polynomial

<1~ (R, 7 10 300F),

whose set of positive values, as the values of x and y, to y, vary over all the positive intcgers, is
precisely equal to the primes. This is a remarkable result that surely would have amazed Fermat
and Euler, and it is obtained as a trivial corollary to a much more general theorem!

The proof that there is such a universal P may be regarded as the culmination of Gédel’s original
proof of his famous incompleteness thecorem. In thinking about P, it is helpful to regard the pa-
rameter n as the Godel number of a computer program, and to regard the set of solutions x as the
output of this computer program, and to think of the auxiliary variables y, to y, as a kind of
multidimensional time variable. In other words,

P(x, n, yl’"' , ym) = 0
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if and only if the nth computer program outputs the positive integer x at time (y;, ..., y,.).

Let us prove Gddel’s incompleteness thecorem by making use of this universal polynomial P and
Cantor’s famous diagonal method, which Cantor originally used to prove that the real numbers are
more numerous than the integers. Recall that D, denotes the set of positive integers x for which
there exist positive integers y, to p,, such that P=0. Le.,

Dy = {x1@yp, e, 3)( P 2, proe s ) = 01},
Consider the “diagonal” set

V= {nlnéD,,}

of all those positive integers n that are not contained in the corresponding set D,. It is easy to see
that ¥ cannot be generated by a computer program, because V differs from the set generated by the
nth computer program regarding the membership of 7. It follows that there can be no algorithm
for deciding, given n, whether or not the equation

P(n! n, yh"' ’ ,Vm) = 0

has a solution. And if there cannot be an algorithm for deciding if this equation has a solution,
no fixed system of axioms and rules of inference can permit one to prove whether or not it has a
solution. For if there were a formal axiomatic theory for proving whether or not there is a solution,
given any particular value of 7 one could in principle use this formal theory to decide if there is a
solution, by searching through all possible proofs within the formal theory in size order, until a
proof is found one way or another. It follows that no single set of axioms and rules of inference
suffice to enable one to prove whether or not a polynomial Diophantine equation has a solution.
This is a version of Godel’s incompleteness theorem.

What docs this have to do with randomness, uncertainty and unpredictability? The point is that
the solvability or unsolvability of the equation

P(nv n, TR ym) = 0

in positive integers is in a sense mathematically uncertain and jumps around unpredictably as the
parameter 2 varies. In fact, it is possible to construct another polynomial P with integer coeffi-
cients for which the situation is much more dramatic. )

Instead of asking whether ” = 0 can be solved, consider the question of whether or not there are
infinitely many solutions. Let D,’ be the set of positive integers x such that

P’(x’ 2 Pryees ym) =0

has a solution. P has the remarkable property that the truth or falsity of the assertion that the set
D,/ is infinite, is completely random. Indeed, this infinite sequence of truc/false valucs is indistin-
guishable from the result of successive independent tosses of an unbiased coin. In other words, the
truth or falsity of each of these assertions is an independent mathematical fact with probability
onc-half! These independent facts cannot be compressed into a smaller amount of information, i.e.,
they are irreducible mathematical information. In order to be able to prove whether or not D,’ is
infinite for the first k values of the parameter n, one needs at least k bits of axioms and rules of
inference, i.e., the formal theory must be based on at least k independent choices between equally
likely alternative assumptions. In other words, a system of axioms and rules of inference, consid-
ered as a computer program for generating theorems, must be at least & bits in size if it enables one
to prove whether or not D, is infinite for n= 1,2, 3,... , k.

This is a dramatic extension of Godel’s theorem. Number theory, the queen of mathematics, is
infected with uncertainty and randomness! Simple properties of Diophantine equations escape the
power of any particular formal axiomatic theory! To mathematicians, accustomed as they often
are to belicve that mathematics offers absolute certainty, this may appear to be a serious blow.
Mathematicians often deride the non-rigorous reasoning used by physicists, but perhaps they have
somecthing to leam from them. Physicists know that new experiments, new domains of experience,
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often require fundamentally new physical principles. They have a more pragmatic attitude to truth
than mathematicians do. Perhaps mathematicians should acquire some of this flexibility from their
colleagues in the physical sciences!

Appendix

Let me say a few words about where P’ comes from. P is closely related to the fascinating random
real number which I like to call Q. Q is defined to be the halting probability of a universal Turing
machine when its program is chosen by coin tossing, more precisely, when a program n bits in size
has probability 2" [see Gardner (1979)]. One could in principle try running larger and larger
programs for longer and longer amounts of time on the universal Turing machine. Thus if a pro-
gram ever halts, one would eventually discover this; if the program is 2 bits in size, this would
contribute 277 more to the total halting probability Q. Hence Q can be obtained as the limit from
below of a computable sequence r; < r, < r; < - of rational numbers:

Q = lim Tis
k—oc

this sequence converges very slowly, in fact, in a certain sense, as slowly as possible. The
polynomial P’ is constructed from the sequence 7, by using the theorem that “a set of tuples of
positive integers is Diophantine if and only if it is recursively enumerable” [see Davis (1982)]: the .
equation

Pk, n, y1yee, ym) = 0 !
has a solution if and only if the zth bit of the base-two expansion of 7; is a “1”. Thus D,’, the set
of x such that ‘

P'(x: R, Pryees ym) =0

has a solution, is infinite if and only if the nth bit of the base-two expansion of Q isa “1”. Knowing
whether or not D,’ is infinite for n= 1, 2, 3, ..., k is therefore equivalent to knowing the first k bits
of Q.
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