
APL2 Version 2 Release 1

A Summary

October, 1991

Nancy Wheeler

IBM

APL Products

Santa Teresa Laboratory

San Jose, California, USA

APL2 V2R I Summary ii

Contents

Cooperative Processing I

Cross-System Shared Variables I

APL2 Shared Variable Interpreter Interface 2

The Remote-Session Manager 2

AP 119 - TCP/IP Processor 3

Managing the Tep/ IP Interactions 4

Identifying Share Partners 5

The API ,2 Port Server 5

Files As Variables 7

ON A Syntax for Processor 12 7

Supported Primitive Operations 8

Span' :\ lan:Ig('lllml 10

Internal Memory Management 10

Page Release Performance 10

Use of Extended Address Space in V:\l 10

Workstalion Co",p:llihilil~' II

AP 211: APL2 Object hIe Auxiliary Processor 11

AP 124 - Full Screen Management Auxiliary Processor 12

System Variables and Commands 13

Domain of QUAD ET 13

Reference of Format Control 14

)COPY of System Variables 14

New Character Support 14

Other Enhancements 15

Processor II Ed itor IR

Q\1 F (SAA Query) Callable Interface J9

Processor I () under MVS 15

Restruct urcd Processor I , 16

Calls to Other Languages 17

Guidelines for Writing a Processor II I~ditor 18

ESA Data Window Services 19

SQL Interface I~nhancements 20

A PI,2 Phrases 22

III ~ IJ> I.xtcrnal I-unction 23

New APL2 Fonts 24

Miscellaneous Usability Enhancements 24

G RAPII PAK Functions for new file types 24

External Function Directory 24

OISPLA Y as External Function 25

ATTN External Function 25

PBS External Function 25

I lost System Query 25

APL NOMSG (TSO Only) 26

Lower Case Commands and Messages 26

Contents iii

DECODE Improvement 26

AI' 121 Restriction Removed 26

Appendix A. AI'L2 Version 2 Manuals 27

IV APL2 Y2RI Summary

Abstract

1\1'1,2 Version 2 Release I was announced on September II, 1991. It contains significant enhancements
over APL2 Version I, including cooperative processing, access to files as 1\PL2 arrays, improved space man
agement, workstation compatibility items, and many other new features.

This document contains a summary description of the new function found in this version of 1\P1,2. Due to
its short length, it is not possible to give all the details and complete syntax for each new feature presented.
The manuals for APL2 Version 2 Release I should be consulted for more complete information. The
appendix to this report contains a list of the manuals, with order numbers.

In addition to the author, the following individuals provided sections of this document:

Doug Aiton

Jim Brown

lrik Kane

David Licbtag

Ray Trimble

;\ bstract V

YI APL2 Y2Rl Summary

Cooperative Processi ng

APL2 Version 2 provides new facilities through which separate APL2 sessions can communicate either with
each other or with other non-APL programs across a Transmission Control Protocol/Internet Protocol
(TCP/IP) network. The facilities include interfaces at several different levels of both TCP/IP functional
access and A P1,2 syntax.

There are four major facilities within APL2/370's support for cooperative processing:

• Cross-System Shared Variables

This facility allows a user to share variables with other users on a TCP/IP network using normal i\ PL2
shared variable techniques. It provides APL2's most convenient program-to-program cross network
communication path.

• Shared Variable Interpreter Interface

This interface provides a set of protocols whereby an APL2 interpreter can be controlled through a
shared variable rather than through a terminal or file input. It provides a way for a program to control a
remote session.

• Remote-Session Manager

This function manages the protocols of the Shared Variable Interpreter Interface and allows a user to
carry on an interactive dialogue with a remote interpreter just as if it was a normal local interpreter.

• TCP/II' Auxiliary Processor

This processor allows users and applications to make direct requests to TCP/IP. It provides APL2's
most flexible program-to-program cross network communication path. The interface can also be used
for communication between API2 and 1I01l-API, programs across a network.

Cross-System Shared Variables

API,2 Version 2 permits AP/,2 users to share variables with each other across systems connected by a
TCP/IP network. The users use the DSVO system function just as they would to share variables with auxil
iary processors or users on the same system.

The cross-system shared variable interface requires that both partners have access to TCP/IP to be fully
functional.

It is possible to share variables with users on the same system through TCP/IP, although the performance
will generally be poorer than using normal shared variables. As with normal shared variables, a session can
not share variables with itself across a TCP/IP network.

Cooperative Processing

APL2 Shared Variable Interpreter Interface
APL2's Shared Variable Interpreter Interface provides a set of protocols whereby an APL2 interpreter can be
controlled through a shared variable rather than through a terminal or file input. The normal session input
and output are replaced with a single shared variable over which communication occurs. This shared vari
able, and hence the interpreter, can then be managed by a user or program running under another user id.

The shared variable interpreter interface is started by use of the APL2 invocation keyword SMAPL. If the
S\IAPL parameter is numeric, the interpreter uses it as the processor I)) with which it should share a vari
able. This variable is then used for all input and output to the interpreter. The varia hie is shared within the
interpreter and is not available to, nor will it conflict with, variables and programs being run by the remote
interpreter on behalf of the partner.

Input to the interpreter when using this interface is character vectors for terminal input and pairs of scalar
integers for control signals. Output from the interpreter is nested arrays whose structure is the same as that
produced by the system function DEC. Array output is sent as unformatted arrays. Error messages are sent
back line-by-line rather than as a OEM array (as DEC would do.) All other output is also sent as character
vectors.

Using the shared variable interface to an interpreter has some impact on the use of system resources. For
example, II'S F UL L can happen on any output as the resulting array is prepared for a shared variable
assignment. In a directly controlled session, no space would be required.

Once an interpreter is running using the shared variable interface, it operates normally except that its input
and output is through the shared variable. It is the responsibility of the interpreter's shared variable partner
to manage the variable. The interpreter processes requests until instructed to shutdown either via a shut
down control signal or an) OFFor) CONTI NUE command. When instructed to shutdown, the inter
preter sends appropriate shutdown messages and retracts the shared variable.

The Remote-Session Manager
The Remote-Session Manager is an A»L2 external function that allows a user to carry on an interactive
session with a remote APL2 interpreter running under another user id, perhaps on another system.

RAPL 2 establishes and manages a shared variable communication link with a remote A 1'1,2 interpreter,
using the Shared Variable Interpreter Interface to control the remote interpreter. Once the link is established,
the user can enter A PL2 expressions and system commands and signal attention just as usual except that all
input is passed to the remote interpreter.

o and ~ inputs encountered during execution of the user's expressions, or any programs executed by the
expressions, will be passed back and prompted for locally by RAPL 2. Full screen interactions encountered
during execution of the user's expressions, that is uses of AP 100, AP 124, or AP 126, will occur at the remote
interpreter's location.

When the user signals an interrupt, RAPL 2 will prompt the user for whether:

I.	 The interrupt should be sent on to the remote interpreter.

2. A local 0 prompt loop should be entered. (To exit this loop, signal interrupt again.

3. A	 shutdown signal should be sent to the remote interpreter (causing a CONTIN UE workspace to be

savcd.)

J\PL2 V2Rl Summary 2

RAPL 2 relinquishes control of the terminal when the remote interpreter retracts its shared variable. This
typically occurs when the remote interpreter receives an)OFF or)CONTINUE system command.

rc+time RAPL2 proc_id

proc _id is the processor ID of the remote interpreter. This value is used as the left argument to DSVO
in RAPL2 's offer to share a variable with the remote interpreter.

time is the number of seconds RAPL2 should wait for the remote interpreter to match RAPL 2 's
share offer. If the remote interpreter does not match the offer within time seconds RAPL 2

issues an appropriate message and terminates. time is optional; the default amount is 30
seconds.

rc is an explicit result indicating whether connection was established, I, or not, O.

AP 119 - TCP/IP Processor
The TCP/IP processor, AP 119, is used to pass direct requests to the TCP;IP product. APIl9 also provides
commands to control how APL2's cross-system shared variable interface uses TCP/IP.

To use A P 119, the user shares a variable wit h the A P and passes vectors of vectors that request various
actions. The first dement of the value assigned to the variable determines which of two types of commands
is being issued:

• ComrnandstoTCPiIP- 'TCPIP'

• Commands to AP 119 - 'AP'

The general lorm of the result is a three clement vector:

• An A P Ill) return code

• A TCP/IP return code

• Data returned by the command

For example, to issue the TCP/IP command GETIIOSTI D, you would assign to the shared variable:

SVl19+'TCPIP' 'CETHOSTID'
(AP119_RC TCPIP_RC DATA)+SVl19

Figure 1 on page 4 summarizes all of the A P 119 commands.

Cooperative Processing 3

Command Syntax

TCP/lP Commands

ACCEPT 'TCPIP' 'ACCEPT socket

BIND 'TC PII)' 'B Il\ D' socket localport local_addr

CI,nSE 'TCPIP' 'CLOSE' socket

CONl\ECT 'TCPIP' 'CON1'\ECr socket rcmotcport remote_addr

FCNT!, 'TCPIP' 'FCNTL' socket command data

GETCI,IENTID 'TCPIP' 'GETCLlE1'\TIIY

CiETIIOSTID TCPIP' 'CiETlIOSTlD'

GET! IOSTNA;\;1E TCPIP' 'GETIIOSTNA\1E'

GETPI :ER :'\A\1E 'TCPIP' 'CiI~TPEER:'\A;\1E'socket

GETS0 C KxA \-m 'TCPI P' 'Cil:TSOCK :\A\1E' socket

GETSOCKOPT 'TCPIP' 'CiETSOCKOpr socket level option

CiIVI:SOCKET 'TCI'IP' 'CiIVESOCKEr socket domain name subtask

USTE:" 'TCP1P' 'L1STE:'\' socket backlog

RI:A[) 'TCPIP' 'READ' socket type

RECV 'TCI'IP' 'RECV' socket flags type

RI-:CVFRO\f TCPIP' 'RI:CVFRO\;1' socket flags type

SEI.l:CT 'TCPI P' 'SELECT num sockets read_mask write_mask exception_mask -

SEl\ [) TCPIP' 'SE;,\D' socket flags type data

SE:\IHO 'TC 1'1 P' 'S E:'\ DTO' socket flags type data family remote...JXlrt remote_addr

SETSOCKOI'T 'TCPIP' 'SETSOCKOpr socket level option option_value

SII UTDOWN TCPI P' 'SlIUTDOWN' socket how

SOCKET 'TC I' I1" 'SOCK1-:'1"

TAKESOCKET 'TCI'IP' TAKESOCKET domain name subtask socket

WRITE TCPIP' 'WRITE' socket type data

A I) Commands

CiETI,PORT 'AP' 'GETLPORT'

SI:TI,PORT 'AI" 'SETLPORT proccssorjd listeningport

Figure I. Auxiliary Processor 119 Commands

Managing the TCP/IP Interactions
In addition to AP 119 and the changes to the APL2 interpreter, two additional pieces make up the APL2
cooperative processing support: a user directory and a port server.

4 i\PL2 V2RI Summary

Identifying Share Partners

The numbers by which cross system shared partners arc identified are specified using an APL2 TCP/IP
profile file. Each user who wishes to share variables across systems must have this profile file, which defines
numbers which will be used to refer to users on other systems with which variables will be shared. A
sample profile is provided with APL2 and contains explanations of the file format.

In :\lVS/TSO, the TCP/IP profile file is a member in a partitioned data set allocated to ddnamc
APL2PROF. Concatenated allocation is supported and can be used to support overriding profile files.

In V:\l/C:\lS, the TCP/IP profile file is a CMS file with filctype APL2PROF. The first file found in the
normal C:\lS search order is used.

The APL2 Port Server

APL2 Version 2 includes a program called the port server which participates in the establishment of commu
nication links across TCP; IP networks. Each system in the network should have a port server running.

Functions of the Port Server
The port server has three functions:

I,	 Accept requests to register users on the same system. This function tells the server which port number a
given user will be using to accept connections from other users. This port number is arbitrarily assigned
to the user by TCPjlP.

2. Accept requests to unregister users.	 This notifies the server that a given user is no longer accepting

communication. This is automatically issued when the user's API.2 session ends.

3. Accept requests from	 remote users who want to know the port number which has been registered hy a
user.

When a user first attempts to usc TCP/IP (either through cross system sharing or AP 119), TCP/IP assigns

the USlT a TCP/IP port number. When a cross system share offer is made, APL2 contacts the port server at

the partner's system to find out the partner's TCP/I P port number.

It is also possible to share variables across systems even if one or both of the systems do not have a port

server running. The AI' 119 command GETLPORT is used to find out what your own port number is. The

command SETLPORT is used to inform the cross-system shared variable facility what your potential partner's

port number is.

Running the Port Server

The port server is an external APL2 function which should he run in a started task on TSO or in a discon

nected machine on CMS. The normal API.2 or API.2AE product can be used to run the server.

The port server is called SERVER. It is accessed as used as shown below.

Cooperative Processing 5

3 11 DNA 'SERVER'
1

SERVER
Enter server port number (default 31415):
Enter server password: SECRET

The server prompts for the port number it should usc. If no response is given, it defaults to using 31415. If
a port other than 31415 is given, then users on the same system need to start A P 119 specifying the same port
number, and users on remote systems will need to specify that port number in their TCP/IP profile files or
usc the AI' lit) SETLPORT command.

The server also prompts for a password which will be required of users attempting to use restricted server
commands, If no response is given, no restricted server commands can be used.

Xote: Currently, no user server commands are implemented.

The A PI,2 invocation option RUN can also be used to start the port server. In this case, the I NPUT option or
APL IN would typically he used to supply the prompt responses.

6 t\PL2 V2RI Summary

Files As Variables

Processor 12 is a new Associated Processor which provides access to a variety of types of files by mainta.ining
an image of the file as an array that appears to reside in the active workspace. This is analogous to the
behavior of Processor II for functions. That processor can create an image of a program (written in any of
a variety of languages) as a function which appears to reside in the active workspace. Neither the program
(for Processor II) nor the file (for Processor 12) is actually within the workspace. This has the following
implications for Processor 12 tiles:

•	 Very large files can he accessed, tiles which may he many times larger than the active workspace. And
yet the access can be done using normal APL constructs such as Compression (c.g. boo1/I' i. 1 e),
l-ach (c.g. p r oc e s s" file), selective assignment (c.g, t r ecno s Eile)+value), and catenation
(c.g. I' i 1 e+T i 1 e. record). These are only a few of many possible operations.

•	 Associations can be retained across) SA VE and) LOA D hut the data is preserved in the file, and may
be updated hy other programs between uses.

Xote: In particular this should he contrasted with the Processor II definition for association with vari
ables in namcsp.iccs. The general rule used hy Processor II is that any time a variable is modified the
new version is a private om: known only to the workspace which was active at the time of modification.

It should also be noted that files, even files newly created hy Processor 12, have an existence independent
of the workspace. Assigning a value to a Processor 12 variable causes (at least conceptually) an immc
diatc and permanent change to the file. This is not aflcctcd by later expunging the variable, and is inde
pendent of whether the workspace containing it is later saved.

Processor 12 variables arc also quill: different from variables shared with file auxiliary processors:

•	 Processor 12 variables contain only the data, and (at least conceptually) all of the data at once. Shared
variables contain both data and control information, and only relatively small pieces of the file data at a
time.

•	 Processor 12 variables are really a path between the workspace and the actual tile. Shared variables are a
path between two programs, one of which in tum is capable of accessing files.

•	 Processor 12 associations can he retained across) SA VE and) LOA D. Shared variable associations

must he reestablished explicitly.

ON A Syntax for Processor 12

The general syntax for name association through Processor 12 is:

('type' 'locator' 'format') 12 DNA 'name'

name	 A name to be used within the APL workspace to refer to the file. The particular name used
has no significance to Processor 12, and bears no required relationship to the name of the
file with which it will be associated. Surrogate names arc permitted, but have no functional
significance.

files As Variables 7

type Two or more characters, the first specifying what class of file support is desired, and the
others indicating how the file is to be accessed. The file classes supported in APL2 Version
2 Release I arc APL files (as used by AI' 121) and operating system sequential files. Read
or write access is supported, along with automatic creation and/or deletion.

locator A character vector indicating where the file is located. For API, files, the locator consists of
the library number and filename (as with A I' 121 files). for sequential files, the locator is an
operating system file name following the conventions of the operating system.

format A character vector which defines the format in which the data is to be viewed by the appli
cation. At present this vector must be empty for API, files and non-empty for sequential
files.

The syntax or the format descriptor for an external variable is similar to that used by
Processor II. It describes the view of the data as it will be seen by the application, rather
than the format of the data as it exists externally.

APL files are always viewed by the APt application as a vector of arbitrary arrays, with
each item of the vector representing one object in the file. Each of the items may them
selves be or any depth or shape. Sequential files are viewed by the l\I'L application as a
vector of arrays in which the sub-arrays arc either character vectors or character matrices.
Each character vector, or each row or a character matrix, represents one record in the tile.

The explicit result of ONA is 1 if the association was successful or a if it raikd. When a is returned, explan
atory messages arc usually queued. These may be seen by entering)MORE at the first terminal input
opportunity or by running with DEBUG(1).

Supported Primitive Operations

Regardless of the file system in usc, the following primitive operations arc defined for external variables sup
ported by Processor 12:

Default display

Each

Outer product

Pick

Indexing

Pick assignment

Indexed assignment

Catenate

Shape

file

fun"file
file Lun'ive r
filel fun"file2

yaro .Fun file
fileo.fun yar
filel o.fun file2

file[i]
iDfile

(i:Jfile)+array

file[i]+array
iDfile+array

filel+filel,carray

pfile

APL2 V2Rl Summary 8

Compress i/file

'l'ake itfile

Drop i.j,file

Xote: The functions referred to in Each and Outer product can be arbitrary primitive, defined, or derived
functions, Since they are invoked repeatedly with one item of the array at a time, there is no immediate
requirement that the entire array truly reside in the workspace. But if the invoked function produces a
result, the full accumulated result returned hy the derived function will be a normal variable stored in the
workspace.

When using the above operations, only the portion of the file needed to perform the function is brought into
the workspace, Operations other than those defined here will either attempt to bring the entire lile into the
workspace or give DOMAIN ERROR.

hies As Vartablcs 9

Space Management

The usage of memory by APL2 has been effected in several areas:

• Workspace storage management

• Page release management

• Location of the APL2 product in the V:\l virtual machine

Internal Memory Management
In APL2 Version 2, a new algorithm is used for management of memory within the workspace.

The primary purpose is to increase performance by reducing the amount of paging and garbage collection
that is done. In particular, the larger the workspace, the better the performance improvement. Preliminary
tests han; shown as much as a 50'% reduction in CPU time for an application. The improvement is
expected to he greatest for applications manipulating a lew large arrays as opposed to many small arrays.

One of the side effects that you will see is a small increase in the size of saved workspaccs. In addition, the
amount of storage in lise while running 1\PI.2 will increase slightly. Some increase in workspace size may he
necessary to avoid [liS F UL L. The performance benefit should offset this increase in the size of the work
space.

Page Release Performance

Some users of large workspaccs on lightly loaded systems have in the past observed a performance problem
whose symptom is a large total CPU time (and corresponding elapsed time) with a much smaller virtual
CPU time. The problem has been traced to operating system overhead when 1\PL2 releases real pages that
arc not currently needed. l lowcvcr this same operation has been very helpful on heavily loaded systems.

The new workspace storage management should in most cases address the root cause of this problem. But jf
you should experience it, you can run with SYSDEBUG (8) to completely disable page releases.

Use of Extended Address Space in VM
The 1\P12 product has been re-organized in Version 2 such that most of the product can run above the 16M
line when under VMjX1\ or VMjESA. The parts of the product that must run below the 16M line are
packaged separately and total less than .25:\1 in size.

10 APU V2RI Summary

Workstation Compatibility

Several new features have been added to APL2 Version 2 to provide increased compatibility with the work
station API ,2 products. These include:

• The API.2 Object File Auxiliary Processor, AP 211

• The Fullscrccn Auxiliary Processor, AP 12-t

• Changes in behavior of certain system commands and variables

• Support for new characters

AP 211: APL2 Object File Auxiliary Processor

Al? 211 provides a facility for storing API,2 arrays in an object tile. The objects may reside in a C\lS tile or
TSO Sequential DASD tile with unkeycd records. Fixed-length records arc used in hoth operating systems.

A I' 21 J uses a single shared variable of any name to control access to a file. t· p to 32767 variables may he
shared with 1\1'211, giving concurrent access to up to J2767Iiles. Implementations of AP211 on PC and
RS '6()()() platforms, however. have more restrictive limits. Portable applications should not usc more than
255 concurrent variables.

Syntactically, the mainframe version of AI' 211 is compatible with all the current workstation APL2 pro
ducts. I lowcvcr, it uses a new internal form for its tiles. Files written in this new form can he identified by
the ASCII characters "21113" in the lirst four bytes of the tile, and arc not compatible with the tiles written
by the current i\ PL2 for the PC.

The APL2/6()()() product uses the new tile limnat. Thus, in addition to source code portability, with
/\PI.2/6()()() data portability is also possible. l-ilcs written by the API.2/60()() version of AI' 211 may he
uploaded to the mainframe and read directly by the mainframe version of A I' 21 I. Datntypc conversions
from ASCII to 1':13CDIC and from lIJ':I~ to J7() Iloating point arc done automatically.

Xote: At present, API.2/6()()() is unable to read the data in a file written by the mainframe A P 21 1 and
downloaded to the RS/6()()(). It can issue all AP 211 commands agains: the downloaded file except GET.

Figure 2 on page 12 contains a summary of the A I' 211 commands. The examples assume that a variable
called S HR 2 11 has been shared with A I' 21 I.

Workstation Compatibility II

Description Syntax

Create a file SHR211+'CREATE' 'Filename' [Rec - size]
Return - code+SHR211

SHR211+'DROP' 'Filename'
Return - code+SHR211

SHR211+'USE' 'Filename' [User - id] [, REA D' I If';RI TE ']
(Return_code Rec - size)+SHR211

SHR211+'RELEASE'
Return - code+SHR211

SHR211+'SET' 'Name' APL2_0bject
Return - code+SHR211

SHR211+'GET' 'Name'
(Return - code APL2_0bject)+SHR211

SHR211+'ERASE' 'Name'
Return - code+SHR211

SHR211+'LIST' 'NAMES'I'ATTS'
Object_info+SHR211

Delete a file

Open a file

Close a file

Save an object

Get an object

Delete an object

I .ist the objects

ligure 2. ,\ I' 211 Operation Codes

AP 124 - Full Screen Management Auxiliary Processor

The I 'ull Screen Management Auxiliary Processor allows you, through an API, application program, to
control the screen format of an 1B\1 3270 Information Display System. In addition, it allows your applica
tion to:

• Define a logical screen

• Format the logical screen into screen fields

• Write to the formatted screen

• Read from the formatted screen

• Read program function and program attention keys

The AI' 124 provided with APL2 Version 2 is upward-compatible with the VS API, version of AI' 124.
Some enhancements have been made, such as the addition of support for color. This AI' 124 is also com
patible with the workstation version of A P 124 wherever possible. However in certain circumstances it is
not possible to provide the same abilities on a 3270-type screen that are available on a workstation.

Your API, application requests screen management services by assigning to the control variable a numeric
scalar or vector that specifics the requested action. In response, the auxiliary processor issues a return code
in the control variable indicating whether or not the requested action was successful.

Figure 3 on page 13 lists and describes the valid operation codes that may be specified to the control vari
able to request service from the Full Screen Management Auxiliary Processor. The table shows the values
that should be specified in both the control and data variables.

12 ;\PL2 V2Rl Summary

CTL VAR IHT VAR Description

0
On

format

Delayed clear of screen

I

l.ficldnum

Format the screen

format Reformat selected fields

2,fieldnum data

data

type

0-255

position

Immediate write to screen

3
30

Read and wait

-l.ficldnum Huflcrcd write to SCrL~n

5,fieldnum Get Data

6,fieldnum Change field type

7,fieldnum Change field color or intensity

S 2 Return screen information

9

III

II
110

Read screen format

Print screen (not avail.)

Debyed alarm

I I I

II 2

Immcdiatc alarm

Cancel delayed alarm

12

16,fieldnum

Set the cursor

at tribute Change input field attr

20 Frase the screen

Figure 3. Screen \Ianagclllcnl Operation Codes

System Variables and Commands

Domain of QUAD ET

The API ,2 V IJU system restricts values in OET to positive integers between 0 and 32767. That limit is
now changed to allow integers between - 3 2 767 and 32767.

This change also effects external routines in that the values they store in the field ECVXCET will now be
treated 3.S sibmcd 15-bit integers.

Workstation Compatibility J3

Reference of Format Control

In AI'L2 Version I, the result from a reference of oFC is extended or truncated to 6 characters, regardless of
the length of the vector specified by the user. This behavior is inconsistent with that of other system vari
ables in the system, and with APL2/PC.

oFC has been modified to always return the user-specified value on reference, if a value has been specified.
As before, if the user has not specified a value, the default 6-character value will be returned.

)COPV of System Variables

III previous releases of AI'L2, the) COPY and) PCOPY system commands did not copy any system vari
ables from the source workspace.

For compatibility with the PC versions of API,2, and to enl1a11ce usability of the mainframe APL2, these
commands have been enhanced to wry the following system variables: OCT, oFC, DID, oLX, oPP,
oPR, and oRL.

As with other copied objects, only the global value will be copied from the saved workspace, and it will
become the global value in the active workspace.

New Character Support

The following new characters can be entered with)PBS ON.

Character Entered As Name oAV

< > diamond x'70'o
I [left tack x' 7 G '

] right tack x' 77'

The diamond, left tack and right tack characters have also been added to the symbol sets shipped with
APL2.

Note: The additional support for these characters is for entry and display only. They still do not have
syntactical meaning in the mainframe version of APL2, and SYNTAX ERROR will be reported if they arc
actually executed.

14 APL2 V2RI Summary

Other Enhancements

A number of additional enhancements have been made in APL2 Version 2. These include:

• The availability of Processor to (the APL2 REXX processor) under l\lVS.

• A restructured Processor II, which includes a number of enhancements.

• New tools and utilities for calling programs in languages other than APL2, including C(370 and PL/I.

• A)EDITOR extension that allows editors to he APL2 external functions.

• An interface to the Q\lF (SA/\ Query) Callable Interface

• External functions to access FSA Data Window Services

• SQL Interface Enhancements

• A directory of commonly used API,2 phrases

• A function to access help information

• :"cw A PL2 fonts

• Various smaller usability enhancements

Processor 10 under MVS

1\ Processor J () generally compatible with c;\lS is available under TSO in API,2 Version 2. This processor
can be used to call RFXX functions and access REXX variables and constants.

To call a RI·:XX function you must first establish an association with dyadic DNA. The function thus cstab
lishcd is monadic, and its argument is either omitted (i.c. takes no arguments, indicated hy 10), a character
vector, or a vector of character vectors. RFXX variables and constants can also he accessed when 1\1'1.2 is
itself invoked via a RI:XX FXFC.

Some examples, assuming APL2 is invoked from a RI·:XX FXFC:

3 10 DNA 'DELI"ORD'
1

DELWORD 'NOW IS THE TIME' '2 ' '2 '
NOW TIME

2 10 DNA 'RC'
1

RC
0

1 10 DNA 'VERSION'
1

VERSION
REXX370 3.45 31 May 1988

Other Enhancements J5

Also provided through Processor 10 for TSO is the same set of built-in functions already supplied for CMS:

I1EXEC to create and call a REXX EXEC

I1FM to read and write files as matrices

11 F V to read and write files as vectors of vectors

I1F to return information about a dataset.

Restructured Processor 11

Processor I I has been rewritten and restructured to provide new function, better reliability, and extensibility.
Included with this new Processor II an: the following extensions:

•	 Self- Describing Modules

In past, any external routines (other than functions that exist in packaged workspaccs) had to be
described in a l\'A\lES file. With the new Processor II, external routines can be made self-describing,
by prefixing the routine with the necessary :"A\ll~S file information.

Sell-describing modules can he accessed directly by specifying member or load library and member in the
left argument of ONA:

'MEMBER' 11 DNA 'ROUTINE'
or

'LIBRARY.MEMBER' 11 DNA 'ROUTINE'

in which GiSC the: L1:\ K. and argument tags must appear in the self-describing module.

•	 Extensions to the :1:'\1'1'. Tag

The :[:\1'1'. tag in a ;\i\\IFS file or a self-describing module may now also be specified with a member
name or library.member.

•	 I.xternal Niladic I"unctions Supported

External functions my now be niladic as well as monadic and dyadic. A new :VALE:'\CF. tag has been
added to allow specification of the valence.

·	 l ixtcrnal Operators Supported.

External operators written in languages other than API,2 arc now supported. The :VALENCE. tag is
used to specify the number of operands.

External operators associated with Processor II must have :L11\'K. HJNCT[O'J and he prepared to
accept function linkage conventions as described in A PI,2 Programming: System Service Reference On
entry, the operands arc provided as tokens in ECVXTLF and ECVXTRF. No CD({s arc created for
the operands. The external operator routine, however, may usc the X B service call to build CDR's if
the operands arc arrays.

•	 Enhancements for Routines with :L1NK. FUNCTION

:IJNK. FUNCTION routines may have environment routines or be environment routines.

•	 :PARM. Tag

A new tag, :PARM., may be specified in the NAMES file or in self-describing modules. It is effective
only for environment routines which are automatically started. The operand of the :PA RI\1. tag is a
quoted character string (double quotes supported in the string). If the environment routine is automat

16 APL2 V2RI Summary

ically started the character string, prefixed with a 2 byte length field, is provided to the external environ
ment routine using OS linkage conventions.

This enhancements allows initialization parameters to be passed to automatically started environment
routines.

• Additional Information in Parameter List

The parameter lists to non-Al"L routines called by Processor II have been augmented with prefixes or
suffixes with additional information. These enhancements provide a mechanism by which :L1 :\K.
OlUrCT or :1 J:\'K. FU:\,CTIO:\ routines can issue API, service requests, including callback requests.
Further, they allow specially designed external functions with access to the formats of API, control
blocks to access Processor II control blocks or the API, PTI I.

• C\lS Rclocatablc Modules Supported.

In the V:\l,'C\lS environment, rclocatablc load modules arc now supported.
created with the following C\lS commands:

Such modules can be

LOAD routine (RLDSAVE
GENt·IOD module

When loading external routines in the V;\ljC\lS environment, Processor II tirst searches for an existing
C\lS nucleus extension. then a module, then a TEXT file.

• New '1-:1:' Service Request

A IlL:W A PI, sen ice is provided for external routines which an: designed to stay active across replacement
of the workspace. The TI:' service allows such routines to nominate a entry point which will be entered
when A PI, is shut down. Since Processor II deletes all active external routines when the workspace is
replaced () CLEA R,) LOA D,) 0 F F), such routines must take special action to ensure that the specified
entry point is still available at A PI, termination. This can he done by loading the necessary code as a
C\lS nucleus extension, or by rssumg a LOAD (SYC 8) request for it. It is also the user's responsibility to
delete such routines.

• Groups of Packaged :\alOespaces

Packaged namcspaccs may he placed in a load module with an entry point header and thereby packaged
together with other packaged narncspaccs or external routines. The names of objects which arc to he
accessed via IJN A must appear in the routine list describing the collection.

Calls to Other Languages
Two new functions, a utility program, and two new 1·:XECs arc provided to help usc Processor II to call
non-Al'I. programs.

•	 Processor II now supports self-describing routines. Routines arc made self-describing by link-editing

them with a routine description which contains names file information.

The function BUI L DRD can be used to build routine descriptions. BUI L DR D itself can be accessed
using Processor II.

•	 Processor I I supports packages of non-Af'L routines which arc listed in a routine list. Such a routine
list is required to call programs written in languages such as C/370 which require that the main routine
that starts the run-time environment be link-edited with the subroutines. A routine list is also useful for
grouping sets of related routines together.

ou.e- Enhancements 17

The function BUILDRL can be used to construct an object tile containing a routine list. BUILDRL
can also be accessed using Processor II.

•	 Processor II follows the FORTRAN convention of expecting routines to return scalar results in register
O. Cj370 follows a different convention; it returns scalar results in register I.

Through judicious use of a routine list, which can be built with BUI LDR L, it is possible to indicate to
Processor II that a intermediate routine should be called which will in tum call the Cj370 routine which
is going to return a scalar result. The intermediate routine can make the call to the Cj370 routine, and
when it completes, it can copy the scalar result from register I to register O.

A object file is included in APL2 Version 2 which contains just such an intermediate routine. It is called
,.\P2XC:\I:W.

•	 Two new execs, APnlpllL and "\1'2'11'11'1, arc provided to aid developers of non-Al"l . routines.
ApnIPIIL link-edits a routine list, compiled non-Al-L routines, and routine descriptions into a
member of a load library. It can be used on either C;\IS or TSO. Ap2'1P II i\1 generates a module file
from a routine list, compiled non-Al'L routines, and routine descriptions. It can be used on C;\lS.

Processor 11 Editor

User requests to edit API ~ objects can be passed to a Processor I [function. In response to a \j, 1\1'1~2 will
create an association to and call the Processor II function to handle the edit request.

The Processor II function is identified with) EDI TOR 2 name and persists for the entire session unless
changed. The Processor [I function may either reside in an I\PL2 narncspacc or be a non-Al'I. program.

The function is executed as if it had been called directly from the user's current namcscopc. l Iowcvcr, it will
not he associated in the current narncscopc so it's association will not cause name conflicts.

Guidelines for Writing a Processor 11 Editor

When the user enters an expression with a leading \j, 1\1'1,2 will attempt to establish an association with the
function named in the)EDITOR 2 name command. I\PL2 will usc 3 11 as the left argument to
ONA 1\ PL2 will then call the function.

The Processor II function will he passed a character vector containing the user's \j expression. It is the
function's responsibility to parse the vector, interpret the user's request, and respond appropriately. 1\1'1.2
docs not ensure that the \j expression's syntax is valid. It is entirely the responsibility of the Processor II
function to interpret the expression.

Xote: There is one exception to that rule. If the expression indicates a valid request for display of all or
part of a function's or operator's definition using)EDITOR 1 rules, the request will be fulfilled by 1\1'1.2;
the Processor I I function will not be called.

If the editor function resides in a narncspacc, it can usc the EXP function to reach back into the user's
current namescopc to reference or specify object definition(s). If the function is a non-Al-L program, it may
use the external services normally supported for Processor II functions to access the user's namcscopc.

18 APL2 V2Rl Summary

QMF (SAA Query) Callable Interface

The S;\A Query CPI is implemented in Q\lF Version 2 Release 4 as the Q\IF Callable Interface. This
new interface to Q\lF allows a program to start Q\IF and issue Q\IF commands without requiring the
Q\lF environment and ISPF to he present. In addition to regular Q:\lf commands, three additional com
mands are nvailablc in this interface which start Q;\IF (START) and allow the program to set and retrieve
global Q\IF variables (GET GLOBAL and SET GLOBAL.)

The SAA Query CPI is supported in API,2 by a new external function interfacing to the Q\IF Callable
Interface. The function is called DSQCL\ and has the following syntax:

(rc handle data)+DSQCIA handle cmdstr [names values]

hand le An integer identifying the instance of Q\IF to which the call refers.

cmdstr A character vector containing the Q\IF command to be executed.

names A vector of character vectors or scalars which are Q\lF keywords or variable names.

This par.unctcr is required only for the SET
the START conun.md.

GLOBAL and GET GLOBAL commands. It is optional for

val [J e s A vector of variablc values. This can be a vector of character vectors or scalars, or it can be a
vector of numbers, It cannot contain a mixture of numeric and character data.

This parameter is required only if the names parameter has also been specified.

rc A numeric return code.

data A value whose meaning is dependant on the value of rc and cmdstr.

o If rc is () and cmcls t r contained the string 'GET GLOBAL', d a t a will contain the values of
the C)\IF variables requested. 1;01' any other Q\lI; command data will he null.

o If rc is non-zero, dat a will be a four-item nested vector containing error diagnosis fields
from the Q:\lI; Communications Area DSQCo/·U·1.

ESA Data Window Services

APL2 Version 2 provides a low level direct mapring to the Data Window callable services as supported by
other high level languages. The interface provides access to temporary hipcrspaccs as well as page formatted
permanent files which can he viewed through a "window." Services provide for creating, opening, and closing
data objects; opening and closing view windows; and committing or undoing changes.

The support is via a set of Processor II function routines with interfaces which are very similar to those
defined in GC28-1843 MVSj/:SA Callable Services for lligh Level Languages. The function routines use
names that match those of the MVSjESA callable services:

CSRIDAC Request or terminate access to a data object
CSRREFR Refresh an object

Other Enhancements 19

CSRSAYE Save changes made to a permanent object
CSRSCOT Save object changes in a scroll area
CSRYIEW View an object, or terminate an object view

Because of special MVS requirements, the actual buffer used for the interface is provided outside the work
space by the function routines, and a "mirror" is maintained in the workspace. The application interface is
modified slightly to reflect this change.

SQL Interface Enhancements

• Isolation Level Specification

AI' 127 will now accept an additional AP:"'A\1LS parameter, ISOL(RR) or ISOL(CS). Use of this param
eter sets the default isolation level for the entire APL2 session. (The AI' 127 ISOL command may still
be used to change the isolation level during program execution.)

• Subsystem Switching (MVS Only)

A new AP 127 command, SSID is added to permit the setting of the DB2 subsystem ID under
program control.

• PLT under V\1

The PUT SQ I. statement allows SQ 1./DS to block I:\S F RT statements. giving a considerable perform
ance improvement to them when inserting multiple rows at one time. It is used in a manner analogous
to the FETCH command for SI·:l.LCT statements.

PREP 'NAME' 'INSERT INTO TABLE VALUES(:1.:2.:3.:4)'
o 0 0 0 0

OPEN 'NAME'
00000

PUT 'NAME' DATA
o 0 000

PUT 'NAME' DATA
o 0 000

CLOSE 'NAME'
00000

• Matrix Input to AI' 127

Previously, value lists supplied as input data to At> 127 were required to be vectors. To process an
I;\iSERT, UPDATE, or DELETE statement multiple times, AP 127 had to be called once for each set
of value substitutions. The SQL function in the SQL workspace accepted a matrix of data, but it then
created one call to AP 127 for each row of the matrix.

Now, a matrix of data may be passed directly to AI> 127 on the CALL command (and in VM, the
PUT command.) At> 127 will process each row of the matrix as one set of value substitutions. This
reduces the number of calls to At> 127 required to process a matrix of data.

20 ;\PL2 V2RI Summary

• Extended Connect for V\1

The extended form of the SQL CONNECT command, supported by SQL/DS Version :2 and later, will
become the default form in APL:2. To support the extended form of CONNECT, a third parameter to the
AP 127 CONNECT verb is accepted, which specifics the database name. This new parameter eliminates
the need to use the SQLINIT exec to switch databases, and provides the capability to connect to remote
databases in SQL/DS Version 3 Release 3 or later.

In addition, the CONNECT command now returns in the second itcm of the result a three-item vector
containing the server identifier (from the SQLERRP field in the SQLCA control block), ID, and database
name for the current connection.

• CO:\;\!,:CI'OIl MVS

The CONNECT command will now also he supportcd under \lVS, when running DIl:2 Version :2
Release 3 or later.

The CONNECT command in TSO has the following syntax:

DAT+'CONNECT' dbname ~ Connect to remote server
(rc (server sqlid user»+DAT

DAT+'CONNECT' 'RESET' ~ Reset to local server
(rc (server sqlid user»+DAT

DAT+' CONNECT , ~ Obtain connection inrormation
(rc (server sqlid user»+DAT

The s e rve r identifier is from SQLERRP as for V\l, C\lS. The sq 1 id and user will be obtained
from the CURRENT SQLID and CURRENT USER special registers in D1l2.

• D!':CLARE CLRSOR with 1I0LD option

The ability to declare a cursor such th.u its position is maintained across CO\l\lIT is now a part of the

SQL standard. DB2 Version 2 Release 3 supports this extension.

To enable AP 127 for support of this ability, a new AP J27 command, DECLARE, has been defined.

DECLARE 'NAME' 'HOLD' ~ Declare with HOLD option
o 0 0 0 0

DECLARE 'NAME' ~ Declare without HOLD
00000

The DECLARE command precedes the PREP command in the sequence of AI' 127 commands. Ifit is
omitted, the cursor will not be marked for hold.

When the COMMIT command is issued to AI' 127 without the RELEASE option, cursors will no
longer be implicitly be closed or purged by 1\1' 127. If the database system you arc connected to sup
ports the IIOI.D option, cursors marked for 1101,1) will be maintained in position by the database
across CO\1:\lITs. Ifit does not, all cursors will he implicitly closed by the database system, and SQL
errors will result if commands are issued using cursor names marked for HOLD.

• SQ LeA Control Block Format

The SAA SQL standard specifies that a character status indicator called SQLSTATE be provided in addi
tion to the numeric SQLCODE field. This new field will be provided by SQL/DS and DB2 in the SQLCA
as a 5-clement character field following the SQU'JARN field, which is now 11 characters long.

Other LnhilCl\;cmcn15 2 J

AP 127 returns the SQLCA control block as part of the result of the MSC command. The format of
the object returned to the AI' 127 user has been changed to reflect the new structure of the SQLei\.
Instead of two 8-byte character fields, the last 16 bytes of the SQLCA arc returned as an l l-bytc field
and a S-bytc field.

In addition, two new AI' 127 commands have been added to make it easier for application programs to
obtain the contents of the SQLCA. The SQ LC A command returns the current contents of the entire
SQLCA. The SQLSTATE command returns just the SQLSTATE field. Unlike the MSC command,
neither of these commands requires any arguments. Xcw functions corresponding to these commands
have also been added to the SQL workspace.

• Retrieving I lclp Text from SQL/DS

In the SQI ,/DS product, help text is shipped as tables stored in the database system. A new function,
SQLHELP, is included in the SQL workspace in APL2. This function takes a right argument of a
character string keyword. The appropriate SQ L tables arc searched for the help text associated with the
keyword, if any, and the text is returned as a result.

• Symptom Strings under VM

With SQI ,iDS Version 2 Release 2, a new formatting program, ARISSr·1A, was shipped to format SQI.CA
control blocks into symptom strings suitable for use when calling SQL/DS Service.

If the SQ I ,iDS connection is successfully established, A I' 127 will load this program and return its

output as the third item of the result of the AI' 127 MSC command.

APL2 Phrases

AI'L2 Phrases enhances the already proven productivity of A1'1.2. With over 675 distinct API, phrases,
sorted into 24 general categories, AI'L2 Phrases presents a fairly thorough list of one-line solutions 10

common application problems. By having a single repository for AI'I,2 phrases, many of us can take advan
tage of algorithms that others have developed.

This list is in soft copy and can be accessed directly from your workspace. In addition, code can be dynarn
ically inserted into your own code.

To use this utility simply type 3 11 DNA 'IDIOMS',or)COPY 1 SUPPLIED IDIOMS,and
invoke the I DIOMS function.

Once in the function a full screen gives you control over all the idioms. A flag for index origin is supplied
and the display routines allow the user to select the origin of preference. A detailed description of each
screen is available through a HELP function key.

To enable a quicker selection of idioms, 24 categories were created. These categories arc as fol1ows:

Assignment Algorithms
Boolean Selection Algorithms
Boolean Tests General Algorithms
Boolean Tests Numeric Algorithms
Computational Algorithms
Conversion Algorithms
Date and Time Algorithms
External Name Routine Algorithms

22 APL2 V2Rl Summary

I:inancial Algorithms
Formatting Algorithms
Function Algorithms
Manipulating Characters Algorithms
Manipulating Numbers Algorithms
Numeric Range Algorithms
;\umerical Geometry Algorithms
Selecting Positions Algorithms
Sorting Algorithms
Statistics Descriptive Algorithms
Statistics Distribution Algorithms
Structural Algorithms
Text Arrangement Algorithms
Text Change/Select Algorithms
Trigonometry Algorithms
Vcctorizing Algori thms

HELP External Function

Frequently, applications need to present text to their users. This text may be more extensive than it is con
venient to store in the application workspace. If the application resides in a narncspacc, maintenance of the
text may he cumbersome if it is in the namcspacc, In addition, this text may need to he provided in several
national languages. The HE LP function allows applications to retrieve keyed text from an application
dependent I kip File. l lclp I:iles may he national language specific.

An AI'L2 l lclp hie is a normal C\lS file or TSO partitioned dataset member containing Ci\lL-like tags
defining keys which delimit sections of free form text. A l Iclp File may in turn refer to other files containing
more text. The HE LP function can he used to retrieve the list of keys available in a l lclp lilc or the text
associated with a particular key.

~ S,,,,,, for retrieving key

keys+applid HELP "

appl id Character vector of length I to R. HELP uses this as a DDname on TSO or filctype on C\lS.
Ifnot supplied, a default value of AI'L211I:1J) is used. The current value of ONLT is used a the
member name on TSO or the filename on eMS. If a file, or member, in the current national
language is not available, the 1~i\'P file is used.

key 5 Character matrix containing available keys in the Help File.

key	 A character string of length I to 65. A key may contain imbedded blanks. Trailing blanks are
ignored. The application's help file is searched for a record containing a help tag, :IIELI'., fol
lowed by the contents of ke y. All records following the tag up to the next help tag are
returned.

Other Enhancements 23

text	 A character matrix containing the text found after the key.

[: Syntax for retrieving ,\1'12 help

HELP key

key	 A character string containing the name of an APL2 public workspace or external function.
HEL P uses the lB:\l-supplied help file to retrieve the tutorial text for the specified workspace or
function.

New APL2 Fonts

A set of All Points Addressable (APA) printer fonts for APL2 arc included with APL2 Version 2. These
fonts may be used with 31\00-3, 3812, 3820, and similar printers. The fonts have a name of 'APL2 DOCLlt·1ENT
FONT I and arc designated as medium weight and medium width. The characters are available in point sizes 6
through 12, 14, 1(" 18, 20, and 24. The code page and character set match that defined in Appendix A of
A I'L2 Programming: Language Reference, and officially known as code page T 1200293.

The following is an example of a DCl-" control statement to allow use of the new fonts in a SC R II'T docu
ment:

.df @APL type('APL2 DOCUMENT FONT') codepage T1200293

Miscellaneous Usability Enhancements
A number of smaller additions to the product have been made to make life a little easier for the A 1'1,2 pro
grammer.

GRAPHPAK Functions for new file types

Although the CRA PH PA K workspace provides extensive capabilities for creating screen images, it's support
for producing file output suitable for printing or transporting to other environments has been deficient. To
ease this problem, three new functions are available in CRAPHPAK.

The first two functions, GSSA VE and CSLOAD, allow applications to build Ci)))):Y1 ADt·1GDF files. The third
function, PRINT38PP, allows applications to produce (J)))):\l LIST3BPP lilcs suitable for printing by
imbedding them in Bookmaster documents.

External Function Directory

Included in the APL2 product are a wide variety of routines which can be accessed using ON A. The product
also includes NAMES tiles for each of these routines so they can be easily accessed; this allows users to not
concern themselves with the location of the routines.

Ilowever, the user is still faced with the burden of specifying the name of the desired routine as an argument
to ONA. Since there arc quite a few external routines in the product, it can be difficult to recall all that are
available. Further, unlike defined functions whose purpose can generally be inferred by examining their
code, external routines arc provided without source code and so their purpose and usage can be unclear.

24 APU Y2RI Summary

The SUPPLIED workspace contains associations to all the external routines in the APL2 product. They
have all been accessed with DNA and arc ready to be used. Users can)LOAD the workspace or)COPY
functions from it.

In addition, the SUPPLIED workspace contains a defined function, LIST, which can assist you in learning
how to use the external routines.

The LIST function lists AP1,2's external routines and prompts the user to enter a routine name. In
response, LIST displays tutorial information which describes the purpose, syntax, arguments, and results for
the function. A null response to LIST's prompt terminates the function.

DISPLAY as External Function

The DISPLAY and DISPLAYG functions an: now available both as APL2 functions in the DISPLAY
workspace and as Processor II external functions, accessible with ONA.

Benefits of using the external versions include elimination of the need to keep a copy of the function in your
workspace, and ability to use a surrogate name.

ATTN External Function
The ATT N routine allows applications to detect whether the user has signalled an attention.

Frequently applications need to protect themselves from interruption during critical sections of code. This
ability is provided by the DEC function and using the ignore attention execution attribute during function
fixing. l lowcvcr, users also frequently need to sit-'llal these applications. The ATTN function allows an
application to run without being interrupted by attentions and yet detect that the user has signalled.

The A TT N function Gin query whether an attcntion has been signalled, signal an attention, or remove an
attention that has been siunallcd. It is provided as an external function available through Processor II and
DNA.

PBS External Function
The PBS routine allows applications to query and modify the user's current)PBS setting.

API,2 needs to be informed whether users' terminals support the seven new API,2 characters or whether
printable backspaces arc required for their entry. Users can indicate whether they can enter the new charac
ters by usc of the) PBS system command. Applications frequently also need to determine whether users
can enter the API,2 characters. Using the PBS function, applications can query, and modify, the user's
setting. It is provided as an external function available through Processor II and ONA.

Host System Query

A P 100 in C;\lS and TSO has been extended to return a character string containing the name of the host
system when it is passed a null character string.

Other Enhancements 25

APL NOMSG (150 Only)

AP 100 under TSO will accept a new built-in command, APL NOMSG command text. The indi
cated command will be executed much as if APL NOMSG had not been specified, except that:

•	 Messages normally controlled by the CONTROL Nor·1SG command within a TSO eLiST arc suppressed for
the duration of the command. When the command completes message display is restored to its prior
state.

•	 The command cannot be another built-in command.

•	 The command cannot be an IS PF I~XFC. (But the ISPEXEC command can be used to invoke such an
LXI~C indircctly.)

This feature will aid is suppressing unwanted messages saying 'TILL ;\'0'1' FRLI·J)" and the like.

Lower Case Commands and Messages

It	 is now possible for users to enter system command keywords in any mixture of upper and lower case.
Workspace names are also permitted in mixed case, as are operating system commands via) H0 ST.

:\ok: Names of objects within workspace- must still he entered in the proper case, since those names arc
case sensitive.

AI')()() for C\lS has also been enhanced to translate commands as if they had been entered from the READY
prompt at the keyboard. On TSO, the operating system itself will convert lower case letters in commands to
upper case, so there is no need to enhance AI' 100 for TSO in a similar way, except for the huilt-in com
mands, which arc now also supported in mixed case.

;\ new message table is shipped with API ,2 Version 2 which contains the product messages in mixed case.
The default ON LT setting will point to this new message table,

DECODE Improvement

The performance of decode has been optimized for the following case:

l,eft argument all 2's

Right argument Boolean

Right argument vector of length 32 or greater

This change removes one of the performance penalties of migration from VS API,.

AP 121 Restriction Removed

Under eMS, a restriction existed that at most 15 AP 121 files could be open at one time. This restriction
has been lifted.

26 APU V2Rl Summary

Appendix A. APL2 Version 2 Manuals

Order :\1I1ll1x.'r Tille

G1I21-1070

G 1121- IO()J

APL2 Licensed Program Specifications

API,2 Application Environment Licensed Program Specifications

(l1l21-I05! APL2 General Information

SI121-I07J An Introduction to API2

S1121-I072

S I 121- ! 06 I

APL2 Programming: Guide

APL2 Programming: I .anguagc Reference

S" 21-1 054

S1I21-I05h

S1121-1ll57

S1I21-I074

A PI ,2 Systems Service Reference

APL2 Programming: Using the Supplied Routines

A 1'12 Programming: l :sing Structured Query lauguagc

GRAPIII'AK: Lser's Guide and Reference

S1121-I05S A 1'1,2 Processor Intcrfacc Reference

I

SI121-I05C)

S1121- 10m

S1I21- !O()2

A 1'1.2 I'ro1,!ramll1ing: vlcssagcs and Codes

AI'I,2 \figration Guide

AI'L2 Installation and Custornization under C\fS

I

S1121-I055 AI'12 Installation and Custornization under TSO

SX26-Jl)<Jl) ,\ 1'1 ,2 Rdl:rence Summary

SII21-1071 AI'I,2 Reference Card

I.Y27-960 I A I' 1.2 Diagnosis

Appendix A. APL2 Version 2 Manuals 27

