
Xerox Data Systems XEr~ox~
701 South Aviation Boulevard
EI Segundo, California 90245
213 679-4511

lntroductlo: To APL (A Programming Language)

by Dennis Taylor
Xerox Data Systems

The rearetw0 \v a)7s t o 5 U C c inc t 1Y des c rib e APL :
(1)	 APL is an interrretiv~, time-sharing, problem-solving

1a]1g U age; a 11 d
(2)	 APL is an interactive implementation of Iverson notation.

(1)	 lV}lat does "i11terpretive lt mean?

In an interpretive environment, the system
doesn't wait until a program is .completed to compile
it into object code and execute it. Instead the
system interprets each line of input as it is written
to produce code which is immediately executed.

Spea k i 11 gin g e 11 era 1 i tie s - - com p i 1 e y s are ill 0 r e
e f fie i e 11t t han i n t e r pre t i \T e s)7s t ems ; bu t. t 11e compet i t i v e
advantage b c c ome s less for .i.n t c r a c t i.v c r cqu i r crnc n t s .
APL produces extremely tight code - and is, in fact,
more 'efficient' than many of the compilers offered
today.

(2)	 l\Tha~ IS a "problem-solving" language?

A problem-solving La ng u a g c is one wh i.c h does n o t
r e q II ire t h e II S e r t 0 k11ow any t }1i ngab 0 U t t 11 e c 0 illput e r
or. its programming languages. The c ompu t e r is treated
as a "black b ox " - - into wh i c h is put a p r ob l em (in
the user's own job-oriented Lang u a g e) and f r om rwh i c h
is received an answer (again, in the user's language.)

The	 attributes of a good p r o b Lem s o l v i ng languagev

are:

QUICKLY TAUGHT EASY TO LEARN
EASY TO USE MACHINE INDEPENDENT
}1INIMU1'-! TYPING TI}1E IMMEDIATE RESPONSE
A UTO}IAT ICE RROR eRE CK I NG EASY CORRECTION PROCEDURE
LIBRARY CAPABILITY VISUAL FIDELITY

1

Xerox is a reclstereo tfiHlernar" 01 Xerox COfPoration

(3) What is Iver~on notation?

In 1957, Dr. Ken Iverson was an Assistant Professor
at Harvard, t e ac h i ng ma t h ema t i c s and c ompu t e r science.
He began a book on computing applications, but f ourid he
needed to develop a new notation to be able to write on
topics such as s o r t i n g and mac h i.ne organization. l le
had a need for a clear and concise way to describe the
algorithms he was attempting to define. The resulting
notation is today called Iverson notation -- and it is
a strongly algorithmic language.

2

SA~1PLE TEHr~rINAL USAGE

APL operates in three mo d c s , In "desk c a l c u l a t o r ' mode, expressions
may be entered for immediate execution. In 'tlfunction definition"
rn 0 de, e x pre s s i 0 11sma y b e c 0 TIlbin e dill top r 0 g r a t:l san d s tor e d for f u t u r c
use. ,t Fun c t ion e d i tin g " TIl0 d cal low S U 5 toe d i t fun c t ion? pre v i 0 U sly
stored.

J

Let's sit down at a terminal and examine the properties and capa
bilities of APL. The student's problems are indented about one-half
inch f r om the left margin; the APL response is left-justified on the
page.

DESK CA LeU i.vro R

4

1

10.38

2+2

7-6

1.73 x 6

As mentioned earlier, APL is
a p r ob l c mc s o l v i n g language. This
means that a user can enter a

.pro b l e m as s i mp lc (or complicated,
depending on how you look at it)
as 2+2 and get a simple 4 in return.
Ivhat 0 the r s y 5 t e m e xis t s wher e t his
type of interaction is possible?

Notice that there are no "format"
statements, no I/O statements, and
there is no need to "type" data as
real or integer.

10

116.8

8

2+3+5

16 x 3

4 +8+2

+ 4.3

We can even present a number
of scalar values to be operated upon

.by separating them with native APL
operators.

Unlike ordinary algebra, APL
has no h i c r a r c h y among functions.
The order of execution of a state
ment is from right to left; there
fore every function takes as its
argument the entire expression to
the right of it.

0.333

DOl11AIN

1+3
3333333

5.;-0
ERROR

5+0
A

Notice that accuracy is provided
to 10 decimal d i g i t s (and is carried
i n t ern all y t 0 1 6 dig its .) B)' the wa y ,
you had better start getting acquainted
with APL error messages; the. processor
is quite unforgiving.

13

11

.
8+5

6+5

Onc of the most significant
features of APL is its ability to
work with a r r a y s (and matrices) as
e a s i 1Y a sit doe S \1 i t h sea 1 a r val u e 5

Suppose the ages of your three
children were 8, 6 and 3 and you
wanted to see how old they would be

•

3

3+5

8

8 6 3 + 5

13 11 8

8 6 3 + 4 9 1
12 15 4

8 6 3 + 4 9
i.ssoru ERROR

8 6 3 + 4 9
A

2*3
B

2 1 2 3 4 5*
2 4 8 16 32

25 16 9 4 1 0.5*
5 4 3 2 1

. I

5

106

five years f r o m now. You could
create .a n APL expression for each
child; or you could save a little
time by entering the ages of the
children as an array (or vector)
of numbers (represented s i mp Ly by
leaving spaces b c t we e n the scalar
values) - and produce all three
result? s i mu Lt a n e o u s Ly . ll e r e we
"arc mixing a scalar value and a
vector in an APL expression.

N0 'v sup p 0 sethat i nth e g roc e r y
store you buy 8 units of commodity
A, 6 units of Band 3 units of C;
and next week you buy 4 morc units
of A, 9 units of Band 1 unit of CG
You can d e t e r mi n e how much of each
commodity you have by placing the
'plus' sign between the two arrays
of quantities. This is how APL
rea c t s \v hen 0 per a tin g u p 0 n two
vector quantities in parallel.

BY the \v a y, the dim ens ion S 0 f
the two vectors mu s t be the same
for APL to process their e l e mc n t s
in parallel.

Two commonly-used mathematical
oper~tors are those for raising
numbers to powers and taking roots.
There exists no standard symbol"
for exponentiation (other than
superscript notation,) so APL uses
the star (*). Notice again how
we can mix scalar and vector '
quantities; actually this is done
by APL assuming that the scalar is
a vector of equal c o mp o n e n t s the
same length as the opposing vector~

The ~'1AX (f) and MIN (L) operators
are as useful as the others previously
C 0 v e r c d ~ The r s y Inb 0 1 p l a c e d bet w c c n
two a r g u me n t s will generate as a
result the larger of the two. The L
symbol generates the smaller of the
two arguments. Needless to say, these

4

38 r 15 30

38 38 50

10 12 14 L
6 8 14

6=6
1

6s4
0

6 ~ 1 3 6 4

1 1 0 1

2 + (4=4)
3

2!3
3

2 ! 2 3 1+ 5

1 3 6 10 15 21

! 4
24

?5
1

?5
4

@2
0.6931471806

01"
3.141592654

10 @ 20
1.301029996

50 -operators also app.l..Y to the various
combinations of scalars and vectors:

SCALAR --(- SeA [jAR 0 SCALAR
6 8 20 VECTOR ~- SCALAR 0 VECTOl?

VECTOR VEC1)OR 0 SCALAR.0(

VECTOR + V£'C1'OR 0 VECTO]?

Comparison operations assume
their normal functions and usc the
following symbols: less than «);
less than or equal to (~); equal
to (=); greater than or equal to (~);

greater than (»; and not equal to
(;t). "How close is equal?" is of
importance, and a tolerance of
approximately 1.OE-13 is used (and
is termed fuzz.) Fuzz is used with
all the comparison operations,
which produce 1 for true and 0 for
false. Thus the result of a comp
arison operation can be used in an'.
arithmetic or logical expression.

Other basic mathematical functions
include:

COMBINATION: A!B gives the number of
combinations of B things
taken A at a time.

6 7

FACTORIAL: !A gives the number of
distinct arrangements of A
things.

ROLL: ?A selects an integer
•	 pseudo-randomly from the

fir s tAp 0 sit i v e i n t· e g e r s .

NATURAL LOGARITH~1: eA computes logeA.

"PI TI~1ES1f: oA computes mathematical
value of Pi times the operand A.

LOGARITH~1S: A~B computes the log
of B to the base A

5

101
o. 8 Ll 1 8 7 a9 8 4 8

201 2
0.5403023059

100-:-6
0.5

A+-3+1

A
4

CLASS + A

CLASS
10

A
4

CLASS + A
14

A+-140

CLASS + A
150

A
140

NU/·1BERS+-l

NU11BERS
1 2 3 4 5

NUMBERS x

2 4 6 8 10

+/1 2 3 4
15

A+-l 2 3 4

+/A
15

+ IA+1
20

0.4161468365

+ 6

2 3 4 5

2

5

5

(\Vhy?)

CIRCULAR FUNCTIONS: are expressed as
AoX where: eX in radians)

Sin 'x is lOX Arcsin X is lOX
Cos X is 20X Arccos X is 20X
Tan X is 30X Arctan X is 30X

Thus far, we have made no mention
of .r-c t a i n i n g the results of our
evaluations. Assignment of values to
variable names avoids re-entry of
results. The specification (+) symbol
is used instead of the equality symbol
(=) to avoid nonsense statements such
as A=A + 1.

When specification is made (A+-3+1),
no response is generated. The value
of A may be seen by simply typing
its name. Notice that the value of
the variable is retained until a
re-specification is made.

Notice also that we can specify
a variable that contains a vector
quantity (or for that matter - a
matrix.)

•
I tis S 0 met i TIle sus e f lIlt 0 p I.a c e

an operator b e t we e n the clements of
a vee tor a 11d , 0 nee e val u ate d, " red II c e "
the vector to a scalar value. ~ is
the standard symbol for the s u mm a t i on
of the elements of a vector; and -rr is
the symbol for the product of these
elements. This is as far as "standard"
notation goes!

The APL operator for reduction is
the S yIn b 0 1 /. The 0 per a tor is'" r itt e n

6

x/A
120

r/A
5

l / A
1

l' 0 1 / 10 20 30
10. 30

00100/123 L1-5

3

A+ 1 2 3 6 2

(A;::3)/A
3 6

o 0 0/1 5 7

~he null vector)

CHAR+- 10 12 1 7

pCHAR

4

\ 6
1 2 3 4 5 6

A+t5

A

1 2 345

tot h e 1 eft, and the c 1 e mC n t S (0 r
vector n a me) are wr i t t e n to the
right of the operator.

Another useful concept is that
of COMPRESSION, which also uses the
symbol /, but differently than does
reduction. In compression a logical
(D's and l's) vector is placed on
the left side of the operator and a
vector on the right. The logical
vector must be of a length equal to
that of the problem vector (or can
be a scalar 0 or 1.)

Not ice \'1 hat hap pen 5 ! l, ' a v e
ret urn edt 0 U son 1y tho see 1 :. ,11 t s
which correspond to a "I" in tLe
logical vector. Compression will
be referred to again wh e n w e
discuss function definition.

Two new operators introduced at
this point wo u l d be helpful. The
Greek character rho (p) is the APL
symbol for dimension. Asking the
d i mc n s i o n of a vector is asking h ow
many elements are in the vector.

The Greek symbol iota (1) is
the APL index generator. Stated simply)
lA generates a vector of positive
integers from 1 to A.

7

We have now progressed far
enough to comp a re a 5 i lnp Ie FOR1'RAN
program" (to average an array. of
numbers) with its APL counterpart.

APL	 FORTRAN

DJ~1ENSION X(N)

READ 2 , N , (X(I),I=l,N)

X-<-1.10 2	 FORMAT ()

SUMX = 0.0

DO 3 I ::; 1 , N

(+/X)+pX	 3 SU~'1X = SU~1X + X(I)
....... " ,

5 . 5	 A\'E = SUMX / FLOAT N
PRINT ~- , AVE

4	 FOR~1A1' ()
STOP
END

FUNCTION DEFINITION
VC+AVR X Let us now examine the procedure

[1J C+(+/X)fpX by which we can -augment the set of
[2J V .standard APL operators with some of

our own "functions." The del (V)
character signals function definition

A VR 1 2 3 and is followed by a function name.
2	 The s y 5 t e m res p o n d s wit h [1 J, and wa its

for your first "program" line. Each
successive line is also numbered until

N+ 110 the routine is closed by another V.

AVR N Let us assume that we wanted to
5 . 5 define a function AVR to average a

vector of numbers.

VC+A HYP B	 The next program we may wi s h to
[1J C+(A*2)+B*2)*O.5V	 write is one for calculating the length

of the hypotenuse of a right triangle,
given the lengths of the two sides.

3	 HYP Ll
If the hypotenuse is C, then:

5

3 HYP 5
5.830951895

\ ,I

8

VAVE But APL is an interactive system!
[lJ 'GOOD MORNING' Let's~allow our student to sit down
[2J 'ENTER STRING OF NUl1BERS'at the terminal and "interact" wi t h
[3] A+D some pre-~efined functions. First, a
[4J AVR AV slight revision of the AVR program to

average numb~rs. Notice in [lJ that
literal character strings can be stored
and displayed by simply enclosing them
in single quotes.

In step [3J the quad symbol (D)
is used to denote input from the

GOOD
AVE
f40R1J I NG

terminal, and that input
..··;1 s b e i n gas s i g ned tot h e

in this case
v a ria b 1eA.

ENTER STRING OF NUMBERS In step [4~ we call our previously
0: defined program to average numbers;

27 58 3 5 107 the result will be typed out.
40

The closing del (\7) at the end
of step 4 ends t h e function definition
mode and returns us to desk calculator,
or immediate executioTI J mode. Once the
AVE program is executed, we must call
it out again to re-use it as no return
within the program was provided.

VA CEO B Let's take another simple function
[lJ 'GIVEN A RECTANGLE OF ' one'to calculate the perimeter, area,
[2J 'SIZE ';A;' BY ';B and diagonal of a rectangle. Note here
[3] , PERIMETER: ';2 xAtB that we are using the previously-defined
[4J , AREA: I ;A »B HYP function. The (;) allows us to
[5] 'DIAGONAL: ';A BYP B catenate dissimilar outputs (character
[6J 'V versus numeric values.)

3 CEO 5
GIVEN A RECTANGLE OF
SIZE 3 BY 5

PERI/1ETER: 16'

AREA: 15

DIAGONAL: 5.830951895

\7A l' If we wish to make AVE a repeating
[1] 'GOOD AFTERNOON' function, we must include in the program
[2J t EII,TEE STRING OF NUMBERS'return and test-for-exit statements.
[3J A+D The Branch symbol (~) is used for the
[4J -)-(A=O)/O return and precedes either a statement
[5J AVR A number or a line label. The exit test
[6J +3 in this case consists of comparing the
[7J V input variable loJith zero and branching

to line 0 (exit) if that comparison is
true.

9

AV
GOOD AFTERNOON
ENTER STRING OF NUMBERS
0:

3
0:

110
5.5
0:

o

A branch to statement 0 (which
is non-existent) exits us from the
program. Notice the use of comparison
and compression:

If A=O,	 we evaluate 1·/0 or 0
and branch to 0 which
exits us from routine.

If AID,	 we evaluate % or NULL
and drop through the
test.

----~-~------~~~~~~--~~~-------~~~~----~--~~~~~-~------~~-~~-~----~

VR+SORT X
[1J R+10
[2J R-<-R, (X= L/ X) / X
[3] X+(X~L/X)/X

[4] 4-2x O':'pX'V

STRING+8 2 6 2 4 107

2 2
SORT STRING

468 107

STRIliG+-3 8 52

8
SORT STRIliG
3 52

ARRAY+8	 10 75 16 12

ARRAY[3]
75

ARRAY [1 3 5J
8 75 12

ARRAY [54"32 1J
12 16 75 10 8

ARRAY [4ARRAY]
8 10 12	 16 75

ARRAY[~ARRAYJ

75 16 12 10 8

Let's become a little more
sophisticated! A sort program is an
easy one to write if you have mastered
the materi-al up to this point. The
basic ascending sort algorithm we will
use is this:

(1)	 Determine the lowest value of
the vector, and create a new
vector containing only those
elements of the original that
equal those lowest elements.

(2)	 Remove the transferred value(s)
·from the original vector.

(3)	 Repeat steps (1) and (2), only
this time catenate the next
lowest values to the new vector.
When no values remain in the
original vector, the sort is
complete.

The bracket symbols [J are used
to enclose indices (think of array
subscripts) and wh e n appended t o an
array name, generate the values of
those indexed elements.

Now that we have gone to the
trouble of writing a sort program,
we can see that sorting (ascending
or descending) is really a native
operation of APL. The grade-up (~)

symbol and g r a d c d o wn symbol (f), whenv

used in index notation generate the
values of the vector is either sorted
sequence ..

10

Sorting non-numeric data isn't
quit~ as easy -- due to the fact
that the order of special characters
is not well defined.

ORDER+'ABCDEFGHIJKLMNOPQRSTUVWXYZ ()'
Let us ~ssurne the order of

all characters to be used and state
that order in the variable ORDER.

1EXT~'XDS (FORMERLY SDS)t
We define the characters to be

sorted in the variable TEXT. The
operation ORDER1TEXT can now be
used to determine for each elemcn~

J+-OREERlTEXT of TEXT its position in ORDER.

J
24 4 19 27 28 6 15 18 13 5 18 12 25 27 19 4 19 29

We now apply our sort program
K+SORT J (or the native function) to the

numeric vector J, which is a vector

K of the subscripts of TEXT.

4 4 5 6 12 13 15 18 18 19 19 19 24 25 27
K now

27 28 29
represents the ordered

ORDER[J] subscripts from the array TEXT.
XDS (FORMERLY SDS)

The final sorted output can
ORDElh'[K] now be obtained.

DDEFLMORRSSSXY ()
The entire process could have

been more clearly stated with the
statement: ORDER[SORT ORDER1TEXT].

M-<-3 4 p 112 We have discussed scalar and
vector quantities so far. APL can1 2 3 4
also handle matrix manipulations.5 6 7 8

9 10 11 12
The expression DpX yields a

matrix of d i mc n s i on D whose e l eme n t sM+l
(i 1'1 row - b y - row 0 r d e r) are t h.eel e men t s

2 3 4 5 oft :1 eve c tor X.
6 7 8 9

10 11 12 13 Asin 1 J1 !~ c a. ~ C'" 0 f vee tor S, we
can operate upon ma t r i c e s wi t h any

1-4- 1 2 3~+-3 P quantity of a lesser d i me n s i on .
1 2 3 1
2 3 1· 2 Notice that when the righthand
3 1 2 3 argument of the reshape operator (p)

docs not contain enough values to
M+3 5p'THREESHORTWORDS' satisfy the left hand, or dimension,
M argument, the array values arc used

TlfREE cyclically.
SlJORT

WORDS

1 1

N--<-3 4 112P

M+N
2

10
18

4
12
20

6
14
22

16
24

8

7
M[2;3]

1
9

M[1 3 ;

3 4
11 12

1 3 4J

5

2
6

10

/-1 [2 ; J

6 7 8

M[; 2 3J
3
7

11

1
5
9

M
2
6

10

3
7

11

4
8

12

N+-~J.1

N

1 5 9
2 6 10
3 7 11
4 8 12

¢M
4 3 2 1
8 7 6 5

12 11 10 9

e/·1

9 10 11 12
5 6 7 8
1 2 3 4

M+. xN

30 70 . 110
70 174 278

110 278 446

Thc expression M[3;4] selects
.t h e element in the third row and
f 0 U r the 0 1 U ill n 0 f the mat r i x ~1.

More generally, M[I;JJ selects the
TOW(S) d o t c r mi n e d by the elements of
th~ vector I and the column(s)
selected by the vector J.

If the index J is omitted, then
the entire r o w (or r o ws) is (are)
t~ken; if the index I is omitted, the
entire columns arc taken.

The expressions Q,¢ AND e
each transpose the argument about
the axis indicated by the straight
line in the symbol.

The c x pre s s ion J·1 + . x N den 0 t e s
the ordinary ma t r i x product of ~1

and N. Matrix multiplication is
.a COInbin a t ion 0 fad d i t ion and
mUltiplication.

12

M+. =N More generally, any pair of
operators can replace the operators1+ o 0
+ and x in the foregoing expression.o	 L~ 0

If R+J.1a.wN (wh c r c a and w represent
o o L~

any p air of 0 per a tors), the n R [I ; J] i 5

equal to a/M[I;JwN[;JJ.
ft1r • LN

4 4 4
If 8 8
4 8 12

FUNC1'ION EDITING

(A listing of AVE:)

VAVE[OJv	 One of the most important
[1] 'GOOD MORNING' considerations of any programming
[2J 'ENTER STRING OF NUMBERS' language is the ability to make
[3] A+D corrections/modifications to the
[4J AVR A original source programs. In some
[5J V languages it .is necessary to re-key

the entire program (or at least the
(Correcting AVE:) line to be changed.) With APL we

can add or delete lines or change
VAVE[2D10J just one character in any line.

[2J 'ENTER STRING OF NUMBERS'
//////5 Let's return to our first

[2J 'ENTER ARRAY OF NUMBERS' attempt at a program (AVE). You
rem e mb e r t hat we wrot e a not her[3J [3.5J
program (AV) to include the return[3.5]-+(A=O)/O
and exit statements. Let's see[3.6J[4.5J
how easy it is to add these, and[4.5J-+3
also change the word 'string' to[4.6J\7
'array' .

(New listing of AVE:)

VAVE[OJv Notice in the new listing that
[lJ 'GOOD MORNING' all changes have been made, and that
[2] 'ENTER ARRAY OF NUMBERS' re-nurnbering has taken place!
[3J A+D Luckily, we are not in trouble this
[4J 4(A=O)/O time due to our branching to line
[5J AVR A numbers. It is a better practice to
[6] -+3 usc line labels, such as:
[7J V

[3J RETURN: A+-D
[6J -+RETURN

We have now examined each of
the three modes of APL operation:

(1) Desk Calculator
(2) Function Definition
(3) Function Editing

13

.,

I n add i t ion tot h e p rim i t i v e 0 per a t i 0 11 S dis c u ssedin the p ,r c v i au s
pages, Xerox UTS/APL includes a useful fi l c Ln pu t y o u t pu t SystC1H.

FILE I/O

UTS / AP L pro v id e s a 5 c t 0 flo eke d, 1 i bra r y fun c t ion S \oJ hie h per
mit the user to o pc r a t e on more data than may be contained in the cur
Ten t \\'0 r k spa c e. The s e fun c t ion sal Iowan yAP L v a 1u c, \tJ i t hit stypea 11 d
dimensional attributes, to be wr i t t e n to a file and subsequently re
t ricv e d . The f 0 1 10 \\1 i n g e x a In p l o 5 ill U 5 t rat e the u s e 0 f t his f a c I Li t Y.

This causes an empty file, wi t h theCTESTFILEe FCREATE 1
s p e c i f i e d narne, to be created in users
ace 0 U 11t a 11d ass 0 cia ted \\' i t h the n U 111 b e r
'1' for use in subsequent file opera
tions.

A function is available which will in
terrogate the status of current fileFIIV/rIS
ties. This function returns a vector

1 containing the riumbers of all current
open files.

A+ 3 3 p 1 9	 The function· FAPPEND adds a new COln

A FAPPEIID 1	 ponent (record) to a specified file. In
the example the matrix tAt is written to
file .'1 1

•

NON that we have wr i tten something in
FLI/1 1 our file, let's exercise a function

1 2	
I

wh i c h will return the current range of
com p o n e n t numbers. This function re
turns a t wo e l.e me n t vector. The first
element is the first existing component
number in the file and the second ele
ment is one greater than the last COlll

panent number.

B+FREAD 1 1 Information may be retrieved from a file

B with
copy

the FREAD function. FREAD reads
of the specified component from

a
the

1
4
7

2
5
8

3
6
9

specjficd file into the current work
s pac c . An 0 the r F READ 0 per a t ion w.i tho u t
;~ C 0 TIlP 0 n en t n u mb e r 5 pee i fie d \V 0 u 1d c a use

~'e next sequential c omp o n e n t to be read.

'RECORD TI';O' FAPPE'ND 1

FLIM 1
1 3

FREAD 1 2
RECORD TIIO

14

FUI/TIE 1

FUNTIE FNU/,!S

, r TESTFI LE' FTIE 9

'RECORD THREE' FAPPEND 9
FLItt! 9

1 4

«FREAD 9 3),' UPDATED') FREPLACE 9 3

FREAD 9 3

RECORD THREE UPDATED

FDROP 9 2

FLIM 9
3 4

'TESTFILE' FERASE 9

When a file is no longer needed by a
progra~, it may be closed and saved
with the t'FUNTIE" function.'

All currently tied files may be, untied
by making the argument for FUNTIE the
vector returned by FNU~1S.

An existing file is opened and associ
ated with a reference number by the
FTlE function.

Another record is appended to the file.

This expression reads component 3 of
file 9 (TEST FILE), catenates the string
'UPDATED' and replaces component 3 with
the result. FREPLACE then allows us
to rewrite specific components of a file.

Existing components in a file may be
deleted wi t h a function wh i c h operates
in a manner analogous to the drop primi
tive-. This example causes the first two
components of the file to be deleted.
If the argument had been 9-2, then two
components would have been deleted from
the end of the file.

Component number 3 is n ow the only c om
panent in the file.

An unwanted file ma y be deleted with the
function, FERASE.

15

~

ON

[ATTN]
L~

CLR

[
OFF~ [""'-------' --,,--~----._-,-----,----------'--

APL/2141 keybDqrd

SAMPLE APL PROGRAM

Matrix Inversion by Gauss-Jordan EliminatIon

With Pivoting ,

V B+REC A;P;K;I;J;S
[1] -+3x\(2::ppA)A=/pA
[2] ~O=pD~1NO INVERSE FOUND'

[3) P+\K+S+lppA

[4) . A+«Spl).O)\A

(5) A[;Stl]+Sal

[oJ I +-J \ r / J + I A [\ K ; 1]

(7) P(1.I)+-P[I.l]
(8) Arl,J;\S]~A(Itl;\S]

(9 J -+2x\lE-30> (A[l;1 r.r / I.A

• i c J A[1;]+A[1;]fA[l ;1]

[11 J A+A-((-Sal)xA[;l])0 .xA[l;]

! ~ L J A-(-1¢[1)1¢>A

(1 3] P"~l epp

[14J -+5x\O<K+K-l

[15] B+A[;P\\S]

V

