IBM Philadelphia Scientific Center
 Data Processing Division

AN INTRODUCTION TO APL FOR SCIENTISTS AND ENGINEERS

K. E. IVERSON

PHILADELPHIA SCIENTIFIC CENTER
IBM CORPORATION
TABLE OF CONTENTS
INTRODUCTION AND REFERENCES 1
EXPERIMENTATION 2
SYSTEMATIC EXPERIMENTATION 3
MULTIPLICATION AND OTHER FUNCTION TABLES 4
GRAPHS AND BAR CHARTS 5
INDEXING AND CHARACTERS 6
EXPLORING FUNCTIONS OF ONE ARGUMENT 7
DEFINING NEW FUNCTIONS 8
RELATION TO VECTOR ALGEBRA 9
MONADIC FUNCTIONS 10
ORDER OF EXECUTION 11
EVALUATION OF SERIES 12
FUNCTION DEFINITION 13
HIGHER-DIMENSIONAL ARRAYS 14
INNER PRODUCT 15
LINEAR EQUATIONS 16
CURVE FITTING 17
SELECTION FUNCTIONS 18
ITERATION 19
IDENTITIES 20
PROOFS 21
REFERENCE MATERIAL 22
TABLE OF ERROR REPORTS 23
TABLE OF SCALAR FUNCTIONS 24
TABLE OF MIXED FUNCTIONS 25

This is an introduction to APL addressed to the scientist or engineer and designed to exploit any previous acquaintance with the very similar notation of vector algebra. A careful study of these pages should bring the reader to the point where he can begin to make serious use of APL in some topic of interest to him. The use of an APL terminal in this study, while not absolutely essential, adds greatly to the depth and interest of the work.

The pleasure and efficiency of learning by experimentation is not sufficiently appreciated, and the first six pages are designed to encourage this type of use of a terminal in learning APL. However, some readers are much inclined to experiment and to depart wildly from any prepared text; this cannot be proscribed but often wastes time. Undecipherable results obtained from the terminal by radical experiments or by mistyping may be either ignored or resolved with the aid of the four pages of reference material provided at the end of the paper.

It is usually advisable to attempt some independent use of the language rather soon, returning to a study of the language itself only to resolve difficulties and to open up new avenues of use. However, the reader may wish to consult APL in Exposition [1] for examples of use in a variety of areas, and the $A R L \backslash 360$ User's Manual 「2] for a fuller exposition of the language itself.

REFERENCES

1. Iverson, K. E., APL in Exposition, IBM Philadelphia Scientific Center, Technical Report 320-3010, January, 1972.
2. Falkoff, A. D., and K. E. Iverson, APL 3 360 User's Manuabl, IBM Corporation, 1968 .

EXPERIMENTATION

A. Simple expressions:
$3+4 \quad$ Carriage Return

7
$3 \times 4.7 \quad$ Carriage Return
14.1
B. Determine the meanings of the following eight functions (whose locations on the keyboard are identified by shading of the keys):

\cdots	2	3	\leq	=	$\frac{2}{6}$	7	7 v $\hat{1}$ - \div 8 9 0 + x					
TAB	? 0	ω W	\underline{E}	ρ R	T	Y	\pm	\underline{I}		$?$	$\stackrel{+}{\leftarrow}$	
) CK		$\begin{array}{lll}\alpha & \Gamma \\ A & s\end{array}$	$\frac{L}{D}$	F	$\stackrel{\nabla}{G}$	$\stackrel{\Delta}{H}$	$\stackrel{\circ}{J}$	1 K	L	[
SHIFT		C Z	$\xrightarrow{2}$	\cap C	U V	$\frac{1}{B}$	\top N	1 M	;	:	1	

```
    For example, enter
    3-4
to verify that - represents subtraction, and
    3\div4
0.75
to verify that % represents division.
```


SYSTEMATIC EXPERIMENTATION

```
A. On single quantities:
1
    2|1
    2|2 Vary one argument systematically.
O
    2|
1
B. On lists of numbers:
    3|11 2 % 3 4 4 5 6 6
    3|-3 -2 -1 0
    1 2 0 1
        Negative sign (uppercase 2) is
        distinct from the minus sign used
        for subtraction.
C. Use names for convenience:
    X*5
2 5
    S+1 2 3 4 4 5 5 6 7
    3|S
1 2 0 1 1 2 0 0
    S*3
1
    S\timesS
1
```



```
D. Explore the functions of page 2, part \(B\) for negative numbers. For example:
\begin{tabular}{llllll} 
& \(T+S-4\) \\
& \(T * 2\) & & & \\
4 & 1 & 0 & 1 & 4 & 9
\end{tabular}
E. To correct any entry before striking the carriage return, backspace to the point of error and strike the attention button (which "erases" everything from there to the right) and continue typing. For example:
\[
\begin{array}{lllll}
S+1 & 2 & 4 & 4 & \\
& & v & & \\
& & 3 & 4 & 5
\end{array}
\]
```

A. Expressions for tables:

B. Produce function tables for $\Gamma ~ L<=$ and .

To aid in reading the tables you may wish to enter (by hand) the first argument in a column at the left of the table and the second in a row along the top.
C. Examine the tables for patterns and try to see why each function generates the particular pattern.
D. Repeat parts A-C with the vector $T \leftarrow S-4$ replacing S.
E. The outer product (o. + and $\circ . x$ and $\circ . r$, etc.) applies to higher-dimensional arrays in an obvious way. Try, for example:

$$
\begin{array}{llll}
Q+1 & 2 & 3 & 4 \\
Q \circ . \times Q \circ & \times Q
\end{array}
$$

GRAPHS AND BAR CHARTS
A. Graph of a parabola:

$$
\begin{aligned}
& X+1 \quad 2 \quad 3454 \\
& V+(X-3) \times(X-5)
\end{aligned}
$$

$8 \quad 3 \quad \begin{array}{lllllll} & V & -1 & 0 & 3 & 8\end{array}$

$$
\begin{array}{lllllllll}
R+8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0
\end{array} \mathbf{- 1}_{1}
$$

$R \circ .=V$
$\begin{array}{lllllll}1 & 0 & 0 & 0 & 0 & 0 & 1\end{array}$
00000000
00000000
00000000
0000000
$\begin{array}{lllllll}0 & 1 & 0 & 0 & 0 & 1 & 0\end{array}$
$0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$
0 0 000000
$0 \begin{array}{llllll}0 & 1 & 0 & 1 & 0 & 0\end{array}$
$0 \quad 0 \quad 0 \quad 1 \quad 0 \quad 0$
B. Bar chart:
$R \circ . \leq V$

	\leq	5	\geq	7	${ }_{8}^{7}$	$\stackrel{5}{9}$	$\hat{0}$			$\dot{\overline{\dot{x}}}$	
C	${ }^{\text {a }}$	\cdots	U	$\stackrel{1}{B}$	${ }_{N}^{T}$	M					

10000001
1000000011
100000001
100000001
$\begin{array}{lllllll}1 & 0 & 0 & 0 & 0 & 0 & 1\end{array}$
$\begin{array}{lllllll}1 & 1 & 0 & 0 & 0 & 1 & 1\end{array}$
$\begin{array}{lllllll}1 & 1 & 0 & 0 & 0 & 1 & 1\end{array}$
$\begin{array}{lllllll}1 & 1 & 0 & 0 & 0 & 1 & 1\end{array}$
$\begin{array}{lllllll}1 & 1 & 1 & 0 & 1 & 1 & 1\end{array}$
$\begin{array}{lllllll}1 & 1 & 1 & 1 & 1 & 1\end{array}$
C. Graph other functions of one argument.
D. Determine the significance of the function 1 (iota) by the following experiments:

15

1×16	
1000	Pressing the attention button will

-6-

INDEXING AND CHARACTERS

A. Indexing:

$?$ ω a w	$\underset{E}{\epsilon}$	${ }_{\sim}^{\rho}$	$\underset{T}{ }$	$\stackrel{\uparrow}{+}$	$\stackrel{\downarrow}{ \pm}$	1	\bigcirc	$\stackrel{\star}{*}$		\rightarrow
a \bar{C} A S	古	$\underbrace{}_{\bar{F}}$	$\stackrel{\square}{\square}$	\square^{Δ}						!
[(\boldsymbol{x}	n c	V	$\stackrel{1}{B}$	$\stackrel{T}{N}$	1 M];			1

B. Characters:

```
W+'DOG' (If your computer gives no response to
W[3]
                                your entries you may be "in an open quote". Try entering a single quote to escape.)
```

```
W[[3 2 1
```

```
W[[3 2 1
```

```
'*'[[\begin{array}{llllllllll}{2}&{1}&{2}&{2}&{1}&{2}&{2}&{1}&{2}\end{array}]
```

```
'*'[[\begin{array}{llllllllll}{2}&{1}&{2}&{2}&{1}&{2}&{2}&{1}&{2}\end{array}]
```

G

GOD
HEAD CHIEF
C. Plotting:

```
Enter the following:
X+1}2
V+(X-3)\times(X-5)
R+8
RO.=V
    * *'[1+(R\circ.=V)]
    '*'[1+(2\geq(Xo,. X))]
```


EXPLORING FUNCTIONS OF ONE ARGUMENT

A. Negation:

```
        X+3
-3
        P+1 2 3 4 4 5 6 7
        Q+P-4
        R\leftarrowP\div2
-1
lllllllll
-5 -1 -R - 1.5 - - - - . % - - - - . % 
```

B. Explore the following functions of one argument:
\div 1 L「 *
[Note that each of these symbols denotes either a
function of two arguments (as in $X \div Y$) or of one argument
(as in $\div Y$) just as the symbol - denotes either
subtraction (as in $X-Y$) or negation (as in $-Y$) in
conventional notation.]
C. Enter the following expressions:

$T \circ \cdot \times T$
$\times T \circ \times T$
' $-\quad+\left[2+x\left(T_{0} . \times T\right)\right]$

Use these results (and any other experiments you wish to try) to determine the meaning of the function x when applied to one argument.

-8-
 DEFINING NEW FUNCTIONS

A. A parabola with zeros at 3 and 5:
$X+7$
$(X-3) \times(X-5)$
8
$\nabla \quad Z+F \quad X$
[1] $2+(X-3) \times(X-5) \quad \nabla$
$F 7 \quad$ If you wish to change a function F after
8 having defined it, type:)ERASE F
$2 \times F 7$
16
Then begin your new definition of F. More convenient, but more complex, ways of revising functions are presented on page 20.
15
$F F 7$

B. A test for divisibility by 7 :
$\nabla 2+D x$
[1] $Z+0=(7 \mid X) \quad \nabla$

D 13
0

1

$$
\begin{array}{rcccccrrrrr}
& & D & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 &
\end{array}
$$

C. A plotting function.

Enter the following:
$2 \leftarrow$ PLOT T
[1] Z+1 *'[1+T] ∇
$\begin{array}{llllllllll}R & -8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0\end{array}{ }^{-1} 1$
PLOT Ro. $=\begin{array}{llllllll}F & 1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$

APL is a simplification and extension of vector algebra.

ELEMENT-BY-ELEMENT EXTENSION OF FUNCTIONS

REDUCTION


```
POSITION OF FUNCTION SYMBOL
    The monadic functions (i.e., functions
    of a single argument) in APL follow
    the model of negation in algebra: the
    function symbol appears before its
    argument. This model is applied
    strictly to all functions.
    Y+-2 -1 0 1 1 2
    IY Absolute value or magnitude.
210 1 2
    :X The symbol for factorial is formed by
12 6 24 120
    overstriking a quote (uppercase K)
    with a period by the
    sequence ' backspace .
DOUBLE USE OF SYMBOLS
    X-Y The minus sign denotes both
3 3 3 3 subtraction (dyadic) and negation
    (monadic). This model is followed for
    other symbols in APL.
2 1 0 % - = - - - %
    Y\divX
-2 -0.5 0 0.25 0.4
    :X
1 0.5 0.33зззз3з33 0.25 0.2
    L.5 1 1.5 2 2.5
01 1 2 2
Exercises: Experiment with various arguments to determine what monadic function is represented by each of the following symbols: * L 「 \(\times\)
```


ORDER OF EXECUTION

PARENTHESES

```
7 7
    (3+(4Г5))\times6
```

 \((3+4) \times(5+6) \quad\) Parentheses are used to specify the
 order of execution in a compound
 expression exactly as in algebra.
 48

RIGHT TO LEFT EXECUTION
Except for the order imposed by parentheses, expressions are evaluated from right to left, following the pattern provided by expressions of the form F G H y (or Log Sin Arctan y) in algebra. For example:

$$
X+^{-}{ }_{2}-10012
$$

21012
$-0.5-\frac{\div-!\mid X}{-} X_{1}-0.5$
The same rule applies to dyadic functions. In particular, there is no hierarchy (such as x is executed before +) among the functions; all are treated alike. For example:

3×4 「5	10	$+/ X * 2$
$3 \times 4+5$	0	$(+/ X) * 2$

The main advantage of the hierarchy of,$+ \times$, and $*$ in conventional notation is in writing polynomials. However, a polynomial can be written in terms of its vector of coefficients and vector of exponents as follows:

```
    X+5
    +/3 1 4 2\timesX*0 1 2 3
```

358

Horner's form of the polynomial (for efficient evaluation) and the expression for a continued fraction can be written without parentheses:

$$
3+X \times 1+X \times 4+X \times 2
$$

358

$$
3+\div 1+\div 4+\div 2
$$

3.818181818

Exercises: Show how the order of execution implies that -/X will yield the alternating sum of X and \div / X will yield the alternating product.

EVALUATION OF SERIES

The general term of the series expansion of the exponential function is written as $(X * K) \div!K$. Thus:
$X+.5 \quad$ For a single term.
$K+3$
$(X \star K) \div!K$
0.02083333333
$K+012234 \quad$ For a set of terms.
$10.5^{(X * K) \div!K} 0.1250020833333330 .002504156567$
$S++/(X \star K) \div!K \quad$ Sum of the set of terms.
S
1.6484375
$\star X \quad$ Correct value of the exponential.
1.648721271

AS $-/(X * K) \div!K \quad$ Alternating sum.
$A S$
0.6067708333

* $-X$
0.6065306597
$S \times A S$
1.000223796
$C+2 \times K$

C
02468
$+/(X * C) \div!C \quad$ Hyperbolic cosine.
1.127625965

Exercises: 1. Use the foregoing scheme to approximate $\operatorname{Sinh} X, \operatorname{Sin} X$, and $\operatorname{Cos} X$.
2. Repeat exercise 1 using more terms of the series. For convenience, use the index generator function denoted by 1.
3. Use the expression $10 X$ to check the result obtained for the approximation to Sin above. Consult page 22 for the notation for the whole family of circular and hyperbolic functions.
4. Evaluate the expression 1230.015 .

FUNCTION DEFINITION

An expression such as $(X * K) \div!K$ is a function of two arguments; it can be assigned a name (in this case the name $T E R M$) and then used like a primitive function as follows:
$\nabla Z+X$ TERM K
[1] $Z \leftarrow(X * K) \div!K$
[2] ∇
. 5 TERM 3
0.02083333333
.5 TERM 01234
10.50 .1250 .020833333330 .002604166667
$+/ .5$ TERM ${ }^{-1+15}$
1.6484375

A defined function can be used within the definition of another function:

```
    \nabla 2+X SUM K
[1] 2++/X TERM K \nabla
    .5 SUM }\mp@subsup{}{}{-1+15
1.6484375
    \nabla z+\operatorname{cosh }x
[1] Z<X SUM 2*- 1+128 \nabla
    COSH 3
10.067662
```

Exercises: 1. Define functions SIN and COS.
2. Define functions of two arguments using the following example of length of hypotenuse as a model:
$\nabla Z+X H Y P Y$
[1] $Z *((X * 2)+(Y * 2)) * .5 \nabla$
356 HYP 4128
51310
3. Explore the scalar functions listed on page 24, particularly the logical functions (and, or, etc.) and use them in function definitions.

HIGHER-DIMENSIONAL ARRAYS

FORMATION

$M \times M$				
1	4	9	16	Scalar functions apply element.
25	36	49	64	
81	100	121	144	

$+/[1] M$ Reduction applies over specified
$\begin{array}{llll}15 & 18 & 21 & 24\end{array}$ coordinate.
$\begin{array}{lll}4 & 8 & 12\end{array}$
$\times / M \quad$ Or over last coordinate if none is 24168011880 specified.

SHAPE
ρM The shape of an array is given by the
34 monadic function ρ.

234
$\times / \rho T \quad$ Total number of elements in T.
24

Exercises: 1. Determine the behaviour of the reshape function when the right argument is too short to fill the shape specified by the left argument, e.g.: $44 \rho 123$
2. Experiment with the expressions $N \rho X$ and (N, N) $\rho 1, N \rho 0$ where N is a scalar integer.

INNER PRODUCT

Abstract

The ordinary matrix product is a special case of the inner product in which each element of the result is obtained from an expression of the form $+/ R \times C$, where R is the appropriate row of the first argument and C is the appropriate column of the second. The role of the functions + and x is reflected in the notation $+\times$ used for the matrix product. For example:


```
\(M+(14) \circ . \geq 14\)
```

$N+44 \rho 116$
$M \quad N$
$\begin{array}{llllllll}1 & 0 & 0 & 0 & 1 & 2 & 3 & 4 \\ 1 & 1 & 0 & 0 & 5 & 6 & 7 & 8\end{array}$
$\begin{array}{llllllll}1 & 1 & 0\end{array} 9101112$
$\begin{array}{llllllll}1 & 1 & 1 & 1 & 13 & 14 & 15 & 16\end{array}$
$M+. \times N$
1234
$\begin{array}{llll}6 & 8 & 10 & 12\end{array}$
$\begin{array}{llll}15 & 18 & 21 & 24\end{array}$
$28 \quad 32 \quad 36 \quad 40$
$1234+. \times M$
10974
$M+. \times 1 \quad 2 \quad 3 \quad 4$
13610

In the general inner product, the functions + and x can be replaced by any primitive dyadic functions f and g and each element of the result is then obtained from an expression of the form $\mathrm{f} / \mathrm{Rg}_{\mathrm{g}} \mathrm{C}$ For example:

Exercise: Explore the significance of the expression $(X \circ, *=1+l \rho C)+. \times C$ for vectors C and X of differing lengths, and also for matrices \mathcal{C} and X.

LINEAR EQUATIONS

```
    A+?4 409
    X+3 2 5 7
    A
6 4 8 5
9467
8 4 2 7
7 8 1 7
l
    BRA Yields result of solving the set of linear
3 57 equations expressed conventionally as Ax=b.
        The symbol is formed by overstriking the
        symbol : by the symbol }\square\mathrm{ (uppercase L).
    &A Inverse of A.
0.16091954023 0.09195402299 -0.17241379310 0.08045977011
-0.09195402299 - 0.19540229885 0.24137931034 -0.04597701149
`0.19827586207 0.17241379310 - 0.19827586207 0.27586206897
    0.13936781509 -0.06321839080 0.30603448276 -0.36781609195
    (固A)+.\timesB
3 2 5 7
```


As shown in the discussion of linear equations，the expression $X+B$ 因 A yields a vector X such that $\wedge / B=A+\times X$ if A is nonsingular．If A is singular such a value of X is not attainable，but X is determined so as to minimize（in a least squares sense）the difference between B and $A+. \times X$ ．In other words，the value of the expression $+/(B-A+. \times X) \star 2$ is minimized．This implies that $A+. \times B$ 国 A is the projection of B on the subspace spanned by the column vectors of A ．

LEAST SQUARES POLYNOMIAL FIT

If X is a vector and $Y \nleftarrow X$ for some function F ，and A is the matrix $X \circ, * 0,1 D$ ，then $C+Y$ 团 $0, * 0,1 D$ yields the coefficients of the polynomial of degree D which best fits the function F ．For example：
$X+1 \quad 2 \quad 3 \quad 4$
$Y \nleftarrow X * 3$
Y
182764
Xo．＊0， 12
$1 \quad 1 \quad 1$
$\begin{array}{lll}1 & 2 & 4 \\ 1 & 3 & 9\end{array}$
$3-9$
$C \leftarrow Y$ 周X。．＊0， 12
C
10.5 －16．7 7．5
（X०．＊0， 12 ）＋．$\times C$
$1.37 .1 \quad 27.963 .7$
Y固X。．＊ 0,13
$1.372 E^{-} 14{ }^{-} 2.422 E^{-} 141.232 E^{-} 141$

OTHER FUNCTIONS

The coefficients for sets of functions other than powers can be obtained in a similar way．For example：

$$
X \circ . \times 14
$$

$3 \quad 4$
468
$9 \quad 12$
1216
contains the multiples（harmonics）of X up to D and the matrix $10 X_{0}, \times 0,1 D$ therefore contains the sines of the harmonics and the expression Y 固 $10 X_{0} . \times{ }_{1} D$ yields the coefficients for a best fit to Y by a linear combination of sines of multiples of X ．

SELECTION FUNCTIONS

INDEXING

```
            P+2 3 5 5 7 11
            M+3 4p:12
            M
    1 2 3 4
    5
    10 11 12
            P[3]
5
    P[[2 3-4}
3 57
    P[\begin{array}{lllll}{4}&{1}&{5}&{2}&{3}\end{array}] Permutation.
7 2 11 3 5
    M[2;3] Single element.
7
    M[2 3;3 2 1] Set of rows and columns.
    7 6 5
    11 10 9
    M[2;] Entire row.
5 6 7 8
    M[;3] Entire column.
3711
    M[;3 2] Entire columns.
    3 2
1 1 1 0
TAKE AND DROP
```


Exercise: Explore the selection and other functions in the table of mixed functions on page 23, particularly the decode, transpose, compress, and rotate functions. Use vectors of characters in some of your examples (see page 6).

BRANCHING

A sequence of lines occurring in a function definition is executed in sequence except that a branch (denoted by an expression of the form $\rightarrow S$) causes line number S to be executed next. For example:
$\nabla Z \leftarrow F X \quad$ This function will repeat lines $2-4$
[1] $Z+X$ without stopping unless interrupted
[2] 2 by depressing the Attention button
[3] $2+3+X$ at the upper right of the keyboard.
[4] $\rightarrow 2 \quad \nabla$
F 7
7
10
13
16

CONDITIONAL BRANCH

A change in the value of the argument of a branch will cause a branch to a different line and the sequence can therefore be controlled. A branch to a non-existent line terminates the function. For example:
$\nabla 2+B I N N$
[1] $Z+1$
[2] $Z+(Z, 0)+0, Z$
[3] $\rightarrow 2 \times N \geq \rho Z \nabla$
BIN 4
14641

TRACING
The execution of any desired lines of a function can be traced as shown in the following example:
$T \triangle B I N+2 \quad 3$
$Z+B I N 2$
BIN[2] 11
BIN[3] 2
BIN[2] 121
BIN[3] 0
$T \triangle B I N+0$
BIN 2
121

IDENTITIES

APL is rich in useful identities，and the serious user should become familiar with the more important of them．

DUALITY
The following expressions are identities，i．e．，they have the value 1 （true）for any vector arguments within the domains of the indicated functions：

```
(\Gamma/A)=-L/-A (^/L)=~v/~L
(L/A)=-\lceil/-A (\not=/L)=~=/~L
```

Duality also applies to matrix arguments in inner products：

```
^/, (C\vee, ^D) =~(~C)^.\vee~D
^/, (ML.「N )=-(-M)「.L L N
^/,(C^.=D)=~(~C)\vee. *~D
```


ASSOCIATIVITY

$$
\begin{aligned}
& \wedge /,((M+. \times N)+\cdot \times P)=M+\cdot \times(N+\cdot \times P) \\
& \wedge /,((C \vee \cdot \wedge D) \vee \cdot \wedge E)=C \vee \cdot \wedge(D \vee \cdot \wedge E) \\
& \wedge /,((M \mathrm{~L} \cdot+N) L \cdot+P)=M \mathrm{~L} \cdot+(N \mathrm{~L} \cdot+P)
\end{aligned}
$$

DISTRIBUTIVITY

$$
\begin{aligned}
& \wedge /,(M+. \times(N+P))=(M+\times N)+(M+\cdot \times P) \\
& \wedge /,(C \vee \cdot \wedge(D \vee E))=(C \vee \cdot \wedge D) \vee(C \vee \cdot \wedge E) \\
& \wedge /,(M \mathrm{~L} \cdot+(N L P))=(M \mathrm{~L} \cdot+N) L(M \mathrm{~L} \cdot+P)
\end{aligned}
$$

PARTITIONING

If U is a logical vector then：
$\wedge /,(M+. \times N)=((U / M)+. \times U /[1] N)+((\sim U) / M)+. \times(\sim U) /[1] N$
$\wedge /,(C \vee, \wedge D)=((U / C) \vee, \wedge U /[1] D)+((\sim U) / C) \vee . \wedge(\sim U) /[1] D$
Exercises：Test the identities by evaluating them for sample values of the arguments．Then attempt to generalize them．For example：

What is the dual of the not－and function＊？
What is the rule for determining whether any inner product （such as 「．＋or \wedge ．＝）is associative？

To what inner products does the partitioning identity apply？

Test（and generalize）the following relation between inner and outer products：$\wedge /,(M+. \times N)=+/ 1 \begin{array}{llll}1 & 3 & 2 ゆ M \circ . \times N\end{array}$

PROOFS

Exercises: 1 . Illustrate the foregoing theorems by evaluating the expressions for assigned values of the arguments.
2. Illustrate and prove the following theorems (for scalar X and vectors A, B, P, and Q):

```
Thm 4: (A\timesP)\circ. }\times(B\timesQ) (Show that the I,Jth element of
```



```
    element of the second)
```

Thm 5: $(X * A) \circ . \times(X * B)$
$X \star(A \circ \cdot+B)$

THE PRODUCT OF POLYNOMIALS

Let P be the following polynomial function:

```
    \nabla Z+C P X
[1] 2*+/C\timesX* 
```

The coefficient vector of the product of polynomials with coefficients C and D is obtained by summing the table $C \circ . \times D$ as shown on the right. The rationale for this rests on the matrix of exponents M also shown on the right. The necessary theorem follows:

$(C P X) \times(D P X)$
$\left(+/ C \times X *^{-} 1+1 \rho C\right) \times\left(+/ D \times X *^{-} 1+1 \rho D\right) \quad$ Definition of P
$+/+/\left(C \times X *^{-} 1+\imath \rho C\right) 。 \cdot \times\left(D \times X *^{-} 1+1 \rho D\right)$
$+/+/(C \circ \cdot \times D) \times\left(X *^{-} 1+1 \rho C\right) \circ \cdot \times\left(X *^{-} 1+20 D\right)$
$+/+/(C \circ \cdot \times D) \times X *\left({ }^{-1}+1 \rho C\right) 0 .+\left({ }^{-} 1+1 \rho D\right)$

Thm 3
Thm 4
Thm 5

REFERENCE MATERIAL

For complete reference material (including the establishment and use of libraries of work to be saved for later use) the reader is referred to the manual mentioned on page 1. The following three pages contain a table of all error reports, a table of all scalar functions, and a table of all mixed functions. This page offers advice on difficulties frequently encountered by the beginner.

CORRECTIONS

Every entry must be concluded by a carriage return to signal the end of the entry to the computer. To correct any typing error detected before striking the carriage return, backspace to the beginning of the error, strike the attention button (which effectively erases everything from that point to the right, marks the point with a caret, and spaces the paper up) and then continue typing.

If the computer gives no response to one or more entries, you have probably entered an unmatched quote; try entering a single quote (uppercase K) followed by a carriage return.

REVISION AND DISPLAY OF FUNCTIONS

To revise or display a function already defined first enter a ∇ followed by the name of the function only. This reopens the definition.

The function may then be displayed by entering [0]. For example, if the function $B I N$ of page 19 is already defined then:
$\nabla B I N$
[4] [口]
$\nabla \quad Z \leftarrow B I N N$
[1] $\quad 2+1$
[2] $Z \leftarrow(Z, 0)+0, Z$
[.3] $\rightarrow 2 \times N \geq \rho Z$
∇
[4]
Line 2 can now be revised by entering
[.2] $Z \leftarrow(Z, 0)-0, Z$
Finally, the function definition may be closed by entering ∇ 。

TYPE	Cause; CORRECTIVE ACTION
CHARACTER	Illeqitimate overstrike.
DEPTH	Excessive depth of function execution. CLEAR STATE INDICATOR.
DOMA IN	Arguments not in the domain of the function.
DEFN	Misuse of ∇ or [] symbols: 1. ∇ is in some position other than the first. 2. The function is pendent. DISPLAY STATE INDICATOR AND CLEAR AS REQUIRED. 3. Use of other than the function name alone in reopening a definition. 4. Improper request for a line edit or display.
INDEX	Index value out of range.
LABEL	Name of already defined function used as a label, or colon used other than in function definition and between label and statement.
LENGTH	Shapes not conformable.
RANK	Ranks not conformable.
RESEND	Transmission failure. RE-ENTER. IF CHRONIC, REDIAL OR HAVE TERMINAL OR PHONE REPAIRED.
SYNTAX	Invalid syntax; e.g., two variables juxtaposed; function used without appropriate arguments as dictated by its header; unmatched parentheses.
SYMBOL	Too many names used. ERASE SOME FUNCTIONS
$\begin{gathered} \text { TABLE } \\ \text { FULL } \end{gathered}$	OR VARIABLES, THEN SAVE, CLEAR, AND COPY.
SYSTEM	Fault in internal oneration of APL $\backslash 360$. RELOAD OR SAVE, CLEAR, AND COPY. SEND TYPED RECORD, INCLUDING ALL WORK LEADING TO THE ERROR, TO THE SYSTEM MANAGER.
VALUE	Use of name which has not beer assigned a value. ASSIGN A VALUE TO THE VARIABLE, OR DEFINE THE FUNCTION.
WS FULL	Workspace is filled (perhaps by temporary values produced in evaluating a compound expression). CLEAR STATE INDICATOR, ERASE NEEDLESS OBJECTS, OR REVISE CALCUIATIONS TO USE LESS SPACE.

ERROR REPORTS
(Reprinted from reference [2])

SCALAR FUNCTIONS

[^0]-25-

1. Restrictions on argument ranks are indicated by: S for scalar, V for vector, M for matrix, A for Any. Except as the first argument of $S_{1} A$ or $S[A]$, a scalar may be used instead of a vector. A one-element array may replace any scalar.
2. Arrays used $\quad P \leftrightarrow 2 \begin{array}{llllllll}1 & 5 & 7 & 2 & 4 \\ 5 & 6 & 7 & 8\end{array} \quad X \rightarrow A B C D$

3. Function depends on index origin.
4. Elision of any index selects all along that coordinate.
5. The function is applied along the last coordinate; the symbols t, t, and θ are equivalent to $/, \$, and ϕ, respectively, except that the function is applied along the first coordinate. If [S] appears after any of the symbols, the relevant coordinate is determined by the scalar S.

Notes to Table of Mixed Functions

IBM

[^0]: (Reprinted from reference [2])

