
APLSV User's Manual

APL SHARED VARIABLE SYSTEM

~-""L r. l.LL L LL ':' LAAA AA S5'~"''''
'V~V¥LLLLL!LLLLAAAAA SSS~SSS$SS PPPPPLLLLLYVVVV
VYVVVLLLLLLLLLLAAAAA ssssssssss PPPPPLLLLLVYVVV
LLLLLSSSS$ PPPPP PPPPPssssssssss VVVYVLLLLL
LLLLLSSSSS PPPPP PPPPPSSSSSS5SSS VVVVVLLLLL
LLLLLSSSSS PPPPP rrrrrssssssssss VVVVVLLLLL

SSSSPFPPPS5SSS VVYVYAAAAA VVVYVPPPPPsssssvvvvv pppp
5SSSPPPPPSSS$S VVVVVAAHA VVVVI'PPPPPSSSSSVVVYV PPE'P

SsssSPPPPPSSS$S VVVVVAAAAA ~VVVYPPPPPSSSSSVVVYV pppp
AAAA VVVVVVVVVVSSSSS SBSSS AAAAALLLLLVVYVVLLL'LAAAA

,.AHA vvvvvvrvvvsssss esss: AAAAALLLLLVVVVVL LL HAd
~AAAA VVVVVVYVVVSSSSS s.:~~ AAAAALLLLLVVVVVLLLLLAAAA

HA"?PP?PAAAA"!.LLLL [,!.LLLLLLLLPPPPP .. :'L;'
.lAAAAPPPPPAAAAALLLn LLLLLLLLLLPPPPI' LL'·

AAAAPPPPf'AAAAALULL LLLL' r.LLLLPPPPP "LL:'
AAAA LLLLLPPPPPAAAAA LJ..LL ULLL 1'1" v
AAAA LLLLLl'PPl'PAAAAA LLLLLLLLL! ilVVV
AAA.A LLLLLPPPPPA.AA.AA tLLLLLLLLL VHV
VVVVVV7VV SSSSS SSSSSYVVVYYYVVY AAAAAPPPP
VVVVVYYVV SSSSS SSSSSVYVVYYVVYY AAAAAPPPP
VYYVVVYVY SSSSS SSSSSVVYVVVVVVV AAAAAPPPP
PPPPLLLLLSSSSSVYVYVPPPPi'VVVVVAAAAAi'Pi'PP[,LLLLLLLLLPPFPPAAAAA~AAA

PPPPLLLLL SSSSYVVVVPPi'PPVVVYYAAAAAPPpPpLLLLLLLLLLPPPPPAAAAAAAAA
pPPI'L['LLLSSSSSVYVVVI'PPPPVYVVVAA.AA.A.PPPPPLL~~LLL·LLPPPPPA.AA.AAAA.AA.

SSSSYVYVY LLLLLLLL!L vvvrv 'LL' SSSSSVVVYVAAAAA.AA.AA
SSSSYYV'. LLLLLLLLLL VVVYV~L'LL JSSSSVYVYVAAAAAAAAA
SSSSVYJlVV LLLLLLLLLL JlJIV"VL':'':'' L _SSSSYVVYVAAAAAAAA.A

YVVVV AAAAA PPPPP SSSS AAAAAAAAAAPPPPP
VVVY AAAAA PPPPP SS5SS AAAAAAAAAAP PPE'

VVYVV AAAAA PPPPP SSSSS AAAAAAAAAAPPPPP
SSSSAAAAASSSSSPPPPPPPPPPLLLLLAAAAASSSSSYVYVV$SSSS LLLLLAAAA

SSSSSAAAAASSSSSPPPPPPPPPPLLLLLAAAAAS$ SSVVYVVSSSSS LLLLLAAAA
~SSSSAAAAASSSSSPPPPPPPPPPLLLLLAAAAASSSSSYVVVVSSSSS LLLLLAAAA

PPPPP LLLLLAAAAAL!LL!!!!LL AAAAApPPPPSS 5S
ppppp LL!LLAAAAALLLLLLLLLI AAAAAPPPPP 5S
ppppp LLLLLAAAAALLLLLLLLL: AAAAAPPPPPS- ~~

SSSSSSSSSSVV'lVVAAAAALLLLLPPPPPAAAAA PP1'1'P pppp
SSSS5SSSSSVVVVVUAAA!LLLLPPPfPAAAAI< PPPPP PPPP
SSSSS5SSSSVVVV!lAAAU PH A _,0:110"'"..

IBM Philadelphia SciM litic Cenler

APLSV User's Manual

A. D. Falkoff

K. E. Iverson

© International Business Machines Corporation 1973

ACKNOWLEDGEMENT

The enhancements to APL described herein are
the result of more than six years of personal
experience with APL 360, and countless comments
and suggestions fro~ many other users. The shared
variable concept goes back in principle to early
pUblications by Falkoff and Iverson, but it was
R. H. Lathwell who recognized the practical
potential of the idea and, with L. A. Morrow,
designed an effective data processing facility
based upon it. The system was implemented by
Lathwell, Morrow, J. A. Brown, and C. F. Shen, all
of whom contributed to the design of the other new
features as well. R. J. Creasy first proposed the
use of surrogate names.

PART 1

PART 2

PART 3

PART 4

PART 5

TABLE OF CONTENTS

INTRODUCTION

GENERAL SYSTEM CHANGES
Changes in keyboard entry and in output
Changes in error handling
Changes in function definition
Changes in primitive functions
Changes in system commands

NEW PRIMITIVE FUNCTIONS
Scan
Execute
Format

SYSTEM FUNCTIONS AND SYSTEM VARIABLES
Introduction
System functions
System variables

SHARED VARIABLES
Introduction
Offers
Access control
Retraction
Inquiries

2
3
3
4
8

10
11
13

17
17
22

25
26
29
32
33

This manual is also available as
IBM Publication SH20-1460.

BIBLIOGRAPHY 34

APL SHARED VARIABLE SYSTEl''1

PJ'!""RT 1
INTRODUCTION

This APL system is fundamentally the same as that
described in the APL\360 User's !'1anual (IB~Jl Puhlication
GH20-0906-l). Except as noted herein, this document also
describes the present system, and it will be assumed that
the reader is familiar with it or has it available for
reference.

The major difference is the addition of a shared
variable facility which provides simple and effective
channels of communication between programs running at
different terminals, and also forms a basis for managing
files and high speed input and output from an APL terminal.
The facility itself is managed by a group of dynanically
executable system functions provided for this purpose. This
system also differs in the following respects:

o There are several minor chanqes and additions to the
system commands and primitive functions, changes in
certain aspects of system behavior, and improvements in
the efficiency of execution.

o The scan operator provides efficient representation and
execution of algorithms which otherwise require iteration
or the generation of relatively large arrays.

o The execute and format functions provide efficient
conversion between character arrays and numerical arrays,
as well as a number of other desirable actions.

o The canonical representation of a function definition is
established (as a character matrix), and system functions
are provided for conversion between such a representation
and a defined function, making possible the storage of
functions as data and the generation and application of
defined functions under program control.

o System variables, a special instance of shared variables,
are introduced to control parameters such as index origin
and printing width, and to provide information such as
time of day and computer time used. The ad hoc facilities
represented by I19 through I28 and the workspace functions
are now redundant but remain in the system to permit a
smooth transition. The system variables also provide one
new facility, a latent expression which is automatically
executed when a workspace 1S activated.

o An auxiliary processor called TSIO is provided to give the
APL user convenient control of high-speed printers, files,
and other system facilities through the medium of shared
variables. TSIO is described in IBM Publication
SH20-l463.

-2-

PART 2
GENERAL SYSTEM CHANGES

CHANGES IN KEYBOARD ENTRY AND IN OUTPUT

Automatic closing of open guote. If a carriage return is
entered in an open quote (i.e., before an opening quote is
paired by a closing quote) the computer automatically types
the closing quote on the next line. The situation then is
exactly as if the user had typed the closing quote, i.e.,
the carriage return is the last character of the string
entered, and the user can backspace and erase the quote by
an attention signal if desired.

Character errors. If character errors occur in an input
line, the line is printed out up to the first such error, at
which point the keyboard unlocks to allow further entry as
if the printed line had been entered from the keyboard.

No commands executed in function definition. A system
command entered in function definition mode is no longer
executed directly but is entered as a line of the function
definition. In execution, such a line will be treated as an
APL statement and will invoke an appropriate error message.

Escape from literal input. Overstruck 0 U T interrupts
execution but no longer causes an exit from the function.

Extended printing width. The printing width (as set by the
WIDTH command and other facilities) can now be set to 390.

Bare output. Normal output includes a concluding carriage
return so that the succeeding entry (either input or output)
will begin at a standard position on the following line.
Bare output, denoted by expressions of the form.~~X! do~s

not include this gratuitous carriage return 1£ It 15
followed either by another bare output or by character input
(of the form X~~). Character input following a bare output
is treated exactly as if the user had spaced over to the
position occupied at the conclusion of the bare output,
i.e., the characters entered in response will normally be
prefixed by a number of space characters. For example:

-3-

The carriage returns normally occasioned by the page width
limitation setting are also absent from bare output.

Because any expression of the form ~~X entered at the
keyboard (rather than being executed within a defined
function) is necessarily followed by another keyboard entry,
it is concluded by a carriage return and its effect is
therefore indistinguishable (except for possible page width
limitations) from the effect of the corresponding normal
output.

Heterogeneous output. Parentheses surrounding a
heterogeneous output statement are no longer per~itted.

They can be systematically removed from any unlocked
function by user-defined editing functions, employing the
dynamic function definition capability provided by the
functions [lCR and []FX described in Part 4.

The facility for heterogeneous output does not
represent a proper APL function; in particular, its result
cannot be assigned to a name. It was introduced as an early
convenience to obviate awkward conversions of numbers to
character representations. The format function described in
Part 3 now provides such conversions conveniently, and
output combinations are easily formulated as proper APL
objects. Therefore, the user is advised to avoin the use of
the heterogeneous output facility.

CHANGES IN ERROR HANDLING

Depth error. Depth errors no longer occur.

Errors in locked functions. A locked function is treated
essentially as primitive and its execution can invok~ only
a DOMAIN error, although conditions (such as J/,'J ..T;'.7jL!J)
arising from system limitations will also be reported.
Moreover, execution of a locked function is terminated by
any error occurring \vithin it, or by a double attention.

CHANGES IN FUNCTION DEFINITION

F
TRUE OR FALSE: THE SQUARE OF 2 IS 9FALSE

X

[1]
[2]
[3]
[4]
[5]

IJ F
~+fTRUE OR FALSE: THE SQUARE OF 1

[!]+?4
~+-f IS '
[']+(?4)*2
X+-[!] IJ

Line editing. An entry of the form rNDMl while in function
definition mode now invokes the follo~~inq special action for
the case when M is zero: line N is displayed with the
carrier resting at the end of the line, as if the line had
just been entered from the keyboard. At this point the line
can be extended, or modified by backspace and attention, in
the usual manner.

FALSE

•

-4-
-5-

Becau~e of the change in handling of character errors
(noted under Changes in Keyboard Entry), a deliberate
character~error can no longer be used to abort the revision
after the second display of a line in the editing process.

Stop and trace in locked functions. Settings of stop and
trace are automatically nullified when a function definition
is locked.

Display of comments.
labels, exdented one
function definitions.

Comment lines are,
space to the left

like lines w.i, th
in the display of

Encode. The definition of the encode function T is based on
the residue function in the manner specified by the
following function for vector A and scalar B:

V Z~A E B
~1l Z~OxA

r2l 1+pA
~3l L:~(I=O)/O

[4J ZCI]+ACIJ\B
[5J 7(A[Il=O)/0
[6J B+(B-Z1Il)+Al1l
[7J 1+1-1
1.8l -+L

'V

Monadic transpose. The monadic transpose now reverses the
order of all coordinates rather than ~nterchanging only the
last two. Formally, it is defined ln terms of the dyadic
transpose as follows: ~A is equivalent to (¢lppA)~A.

with this change the identity M+.xN+~~(QN)+.xQMwhich
held for matrices M and N now holds for higher-dimensional
~rrays. Indeed, the corresponding identity holds for any
lnner product f.g if g is commutative.

1. If A=O then AlB is equal to B.

The residue function. The residue function was
defined to depend only on the absolute value
argument. It is now defined as follows:

CHANGES IN PRIMITIVE FUNCTIONS

2 2 2T13 2 2 2T
-

13

1 0 1 0 1 1

2 2 2T13 2 2 2T5

1 1 1 1 1 1

2 0 2T13 2 2 2T5

0 6 1 0 1 1

The definition of the encode function for a left
argument having one or more ne9ative elements is therefore
affected by the change in the definition of residue. For
example:

Generalized matrix product and matrix divide. The domain of
the ~ function described in--rhe APL\360 User's Manual (IBM
Publication GH20-0906-1) has been extended -slightly to
include vector and scalar arguments. This section defines
the extensions, and also provides a more comprehensive
discussion of the function and its potential appli~ations.

The domino (~) represents two functions which are
useful in a variety of problems including the solution of
systems of linear equations, determining the projection of a
vector on the subspace spanned by the columns of a matrix,
and determining the coefficients of a polynomial which best
fits a set of points in the least-squares sense.

When applied to a non-singular matrix A the expression
~A (monadic) yields the inverse of A, and the expression
X~B~A (dyadic) yields a value of X which satisfies the
relation A/,B=A+.xX and is therefore the solution of the
system of linear equations conventionally represented as
Ax=b. In the following examples the floor function is used
only to obtain a compact display:

previously
of its left

and zero (being
and is equal to

If A70 then AlB lies between A
permitted to equal zero but not A)
B-NxA for some integer N.

X+21.824
.011 X

2.

For example:

A+3 0 3
B+-

6 5 4 3 2 1 0 1 2 3 4 5 6

A 0 • 1 B
0 1 2 0 1 2 0 1 2 0 1 2 0
6 5 4 3 2 1 0 1 2 3 4 5 6

0 2 1 0 2 1 0 2 1 0 2 1 0

0.004

The new definition of residue can be stated formally
as follows: AIB~~B-AxLB~A+A=O

A~("l4)o.;?14

A LlfIA LA+ . x rBA
1 0 0 0 1 0 0 0 1 0 0 0
1 1 0 0 1 1 0 0 0 1 0 0
1 1 1 0 0 1 1 0 0 0 1 0
1 1 1 1 0 0 1 1 0 0 0 1

The final example above shows that if the left argument is a
matrix C, then C[]A yields a solution of the system of
equations for each column of C.

LA+.xy LCl±IA)+.xC
1 2 1 2

3 5 2 3
6 9 3 4

10 14 4 5

-6-

B+1 3 6 10
X+BfBA
B X

1 3 6 10 1 2 3 4

C+4 2pl 2 3 5 6 9 10 14
Y+C[]A
C LY

1 2 1 2
3 5 2 3
6 9 3 4

10 14 4 5

A+. «x
1 3 6 10

CillA)+.xB
1 2 3 4

-7-

The use of ~ for a singular argument can be
illustrated as follows: if X is a vector and Y+F X, then
the expression Y~Xo.*O,lD yields the coefficients of the
polynomial of degree D which best fits (in the least squares
sense) the function F at the points x.

The general definition of B~A has certain useful
geometric interpretations. If B is a vector and A is a
matrix, then saying that +/(B-A+.xB~A)*2 is a minimum is
equivalent to saying that the length of the vector B-A+.xB~A

is a minimum. But A+.xB~A is a point in the space spanned
by the column vectors of A and is therefore the point in
this space which is closest to B. In other words, P+A+.xBffiA
is the projection of B on the space spanned by the columns
of A. Moreover, the vector B-P must be normal to every
vector in the space; in particular, (B-P)+.xA is a zero
vector.

If A is non-singular and if I is an identity matrix of
the same dimension, then the matrix inverse l±IA is equivalent
to the matrix divide I[]A. ~ore generally, for any matrix p
the expression fBp is equivalent to the expression
((lR)o.=lR)lliP, where R is the number of rows in P.

The domino functions apply more generally to singular
and non-square matrices, and to vectors and scalars; any
argument of rank greater than 2 is rejected (RANK ERROR) .
For matrix arguments A and B the expression X+Bl±IA is
executed only if

1. A and B have the same number of rows, and

2. the columns of A are linearly independent.

If the expression X+Bl±IA is executable, then pX is equal to
(1*pA),1*pB and X is determined so as to minimize the value
of the expression +/,(B-A+.xX)*2.

The domino functions apply to vector and scalar
arguments as follows: except that the shape of the result
is determined as specified above, a vector is treated as a
one-column matrix (since a one-rowed matrix of more than one
column would be rejected by condition 2 above) and a scalar
is treated as a one-by-one matrix. In the case of scalar
arguments X and Y, the expression ~y is equivalent to ~Y

and, except that it yields a domain error for the case o~o,

the expression X[]Y is equivalent to X~Y.

Although the following examples of the use of ~ add
nothing to its definition, they may be of interest to
readers familiar with problems of polynomial fitting and of
geometry.

If A and B are single-column matrices, then B~A is a 1
by 1 matrix and A+.xBl±IA is equivalent to AxS, where S is the
scalar "pB~A. If A and B are vectors, then B~A is a scalar
and the projection of B on A is therefore given by the
simpler expression AXB~A. For example:

A+4.5 1.7
B+2 5
P+AxB[]A
P

3.403197926 1.28565255
N+B-P
N

1.403197926 3.71434745
N+.xA

2.4424906543-15

Similar analysis shows that if A is a vector then ffiA
is a vector in the direction of A; that is, ~A is equal to
SxA for some scalar S. Moreover, A+.x~A is equal to 1. In
other words, ~A is the II image " of the vector A obtained by
inversion in the unit circle (or sphere).

-----_. _._----------------------------------.....,

-8-

CHANGES IN SYSTEM COMMANDS

Communication commands. There are many occasions when a
user may -wish to be undisturbed by messages arriving at the
terminal; for example, when producing finished output, or
while concentrating on a difficult problem. Even under such
circumstances, however, it may be necessary to communicate
briefly with another port.

The command)MSG OFF blocks any message except one
coming in response to a transmitted message in which a reply
was requested (that is, a message of the form)OPR or)MSG)
and arriving before the keyboard is again unlocked. Any
blocked message is treated as if the keyboard were
continuously unlocked, and it will so appear to the sender.

The command)MSG ON restores the acceptance of
messages and causes the last public address message, if any,
to be printed.

~ commands. The commands)COPY and)PCOPY now accept a
multiplicity of object names. The response lists separately
the objects not found (headed by NOT FOUND) and those found
but not copied (headed by NOT COPIED).

Erase command. The erase command now acts on any global
object, and no longer distinguishes between pendent
functions and others. Problems that may possibly arise from
erasing a pendent function are forestalled by the response
SI DAMAGE, which warns the user to take appropriate action
before resuming function execution.

Save command. An attempt to save a workspace during
execution of a function, as had been possible through an
explicit command during a request for 0 input or a forced
disconnect in ~ input, will result in the function's being
interrupted prior to the execution of the command.

When the workspace is next activated, therefore,
function execution will not automatically resume. Such
automatic resumption can be invoked by the system variable
DLX defined in Part 4.

Symbol table size. The command)SYMBOLS without a number
prints the current number of names accommodated.

Workspace identification. The command)WSID can be used to
set a lock as well as the workspace name, using the same
form as the)SAVE command. Used as an inquiry,)WSID will
continue to return only the workspace identification.

-9-

Privacy. In the interest of privacy, a workspace saved with
the name CONTINUE cannot be activated or copied by a user
other than the one in whose library it has been saved.

Public libraries. Workspaces named CONTINUE cannot be
stored in public libraries.

Local function names. As a result of the introduction of
the system function DFX (defined in Pa:t 4), local names may
now refer to functions as well as varlables. Consequently,
the phrase IIfunctions and global variables" occurring in the
APL\360 User's Manual should now be read as "global
functions and variables ll

•

-10- -11-

PART 3
NEW PRIMITIVE FUNCTIONS

SCAN

For any dyadic function a and any vector X, the a-scan
of X (denoted by a\X) yields a result R of the same shape as
X such that R~IJ is equal to a/ItX. For example:

+\1 2 3 4 5 6
1 3 6 10 15 21

P+\lO
o

in machine arithmetic the results of the two definitions may
differ, and differ significantly, if the elements of X
differ by many orders of magnitude. For example, compare
the last element of the scan with the corresponding
reductions in the following case:

X+1E6 lE6 lE-16
+\X

lE6 0 lE-16
+/X

o
+/¢X

R[11=X[1]
R[I]=R[I-llaX[IJ for IE1~lPX

For any associative function a the following
definition of R+a\X is formally equivalent to the definition
R[Il=a/ItX:

This definition requires only l+pX applications of a (as
compared to .5 x (pX) X- l +pX) , and is the one actually used for
associative functions. Because of the finite precision used

The scan is extended to any array as follows: if
R+a\~IJA, then pR equals pA and the vectors along the Ith
coordinate of R are the a-scans over the vectors along the
Ith coordinate of A; scan applied to a scalar yields the
scalar unchanged.

The following examples show some interesting uses of
the scan:

1. In those instances where it is desired to use the
name of an APL object as an argument of a defined
function, rather than its value, the name can be
enclosed in quotes, and the argument later evaluated
within the function by means of the execute function. A
common example of this is in the use of a general
integration function whose arguments might be the vector
of grid points and the name of the function to be
integrated. For example:

EXECUTE

'QI INT .l X1 5
0.0162
2. When applied to a vector of characters representing
numerical constants, the execute function will convert
them to numerical values. This is particularly useful
in this system, in which access to data generated by
alien systems is provided through the share~-variable

facility (see Part 5), and large quantities of such data
may need to be converted to numerical APL arrays.

There are several major uses of the execute function:

~ Z+L INT X;Y ~ Z+Q X
[lJ Z+(1~X--l¢X)+.xO.5X1~Y+-l~Y+1L,I X' [lJ Z+X*3

Any character vector can be regarded as a
representation of an APL statement (which mayor may not be
well-formed). The monadic function denoted by ~ (~ and 0

overstruck) takes as its argument a character vector or
scalar and evaluates or executes the APL statement it
represents. When applied to a character array that might be
construed as a system command or the opening of function
definition, an error will necessarily result when evaluation
is attempted, because neither of these is a well-formed APL
statement.

Therefore the scan (as well as reduction) should be used
with care in work requiring high precision.

AlIa's following first o.

liS indicate rows of X which
are in ascending order.

Triangular numbers.

All l's following first 1.

Factorials.

Removes all liS following
the first.

L+O a 1 0 1 a 1
L

a 0 1 0 1 a 1
"'L

1 1 0 1 a 1 a
v\L

0 a 1 1 1 1 1
/\\"'L

1 1 0 0 a a 0
<\L

0 0 1 a a 0 a
x

2 3 5 7

3 1 7 8
4 7 9 2

/\/x=r\X
1 0 0

+\15
1 3 6 10 15

x \ 1 5
1 2 6 24 120

-12-

3. Where it is necessary to treat collections of data
that are related but cannot be combined into a single
array~ the execute function allows families of names to
be used for related variables. The proper variable for
each case can be generated and used under program
control, either by selecting one of a set of names from
a character matrix, by computing a numerical suffix to a
generic name, or by other means.

4. The construction ~~ is nearly equivalent to the use
of 0 for requesting input from the keyboard during
function execution, and has certain advantages: it
allows complete control over the output prior to the
requested input, and permits the input to be examined by
the function prior to attempted execution.

5. Conditional expressions can be constructed in which
execution is applied only to the expression selected by
the condition, avoiding possible error generation or
unnecessary computation. For example, a recursive
definition of the factorial function can be written as a
single conditional statement:

vZ+FACT N
[1J ~3 12[1+N~OJt'Z+1 Z+NxFACT N-l' 9

The execute function may appear anywhere in a
statement, but it will successfully evaluate only valid
(complete) expressions, and its result must be at least
syntactically acceptable to its context. Thus, execute
applied to a vector that is empty, contains only spaces, or
starts with ~ (branch symbol) or A (comment symbol) produces
no explicit result and therefore can be used only on the
extreme left. For example:

~, ,
Z+~"

VALUE ERROR
Z+~' ,
A

-13-

An error can also occur in the attempted execution of
the APL expression represented by the argument of ~; such an
indirect error is reported by the error type prefaced by the
symbol ~ and followed by the character string and the caret
marking the point of difficulty. For example:

~'4~0'

~ DOMAIN ERROR
4~0

A

~')WSID'

~ VALUE ERROR
)WSID

A

FORMAT

The symbol W (T and overstruck) denotes two format
functions which convert numerical arrays to character
arrays. There are several significant uses of these
functions in addition to the obvious one for composing
tabular output. For example, the use of format is
complementary to the use of execute in treating bulk input
and output (via the shared variable facility), and in the
management of combined alphabetic and numeric data.

The monadic format function produces a character array
identical to the printing normally produced by its argument,
but makes this result explicitly available. For example:

M+2=?4 4p2
R+wM
M R R[;2 xl4]

0 1 0 1 0 1 0 1 0101
0 0 1 1 0 0 1 1 0011
1 0 1 1 1 0 1 1 1011
0 0 1 1 0 0 1 1 0011

pM pR
4 4 4 8

The domain of ~ is any character array of rank less
than two, and RANK and DOMAIN errors are reported in the
usual way:

C+'3 4'
+/~C

7
~1 3pC

RANK ERROR
~ 1 3 pC
A

~3 4
DOMAIN ERROR

~ 3 4
A

pW2 5
3

A/,R=wR
1

w'ABCD'
ABeD

-14- -15-

6 2 8 3 3 0 4 0 5 0 12 4l,A
12.34 -34.567 0 12 0 -123.4500

. Each column of an array can be individually composed by
a left argument that has a control pair for each:

The format function applied to an array of rank greater
than two applies to each of the planes defined by the last
two coordinates. For example:

If the width indicator of the control pair is zero, a
field width is chosen such that at least one space will be
left between adjacent numbers. If only a single control
number is used, it is treated like a number pair with a
width indicator of zero:

pO+-8 0 0 -2,A
12 3.5EOl

o 1.2E01
o 1.2E02

3 17

pO+8 3 0 21fA
12.340 34.57

0.000 12.00
0.260 123.45

3 16

p 0+ 6 2 1 2 - 3 "IfA
12.34 -3.46E01

0.00 1.20E01
0.26 1.23E02

3 18

pD+-21fA pO+- 21fA
12.34 34.57 1.2E01 3.5EOl

0.00 12.00 O.OEOO 1.2EOl
0.26 123.45 2.6E

-
01 1.2E02

3 16 3 18

pO+-O 21fA pO+-O 21fA
12.34 34.57 1.2E01 3.5EOl

0.00 12.00 O.OEOO 1.2EOl
0.26 123.45 2.6E 01 1.2E02

3 16 3 18

pO+-O 2 0 21fA
12.34 -34.57

0.00 12.00
0.26 123.45

3 15

pD+A pO+12 3.A
12.34 34.567 12.340 34.567

0 12 0.000 12.000
0.26 123.45 0.260 123.450

3 2 3 24
R+9 2lA
5+9 2.A pD+6 O,A
pD+R 12

- 35
12.34 34.57 0 12

0.00 12.00 0 123
0.26 123.45 3 12

3 18
pD+S pD+7 l'fA

1.2EOl 3.5EOl lEOl 3EOl
O.OEOD 1.2EOl aEaO lEOl
2.6E 01 1.2E02 3E 01 lE02

3 18 3 14

In general, a pair of numbers is used to control the
result: the first determines the total width of a number
field, and the second sets the precision~r decimal form
the precision is specified as the number of digits to the
right of the decimal point, and for scaled form it is
specified as the number of digits in the multiplier. The
form to be used is determined by the sign of the precision
indicator, negative numbers indicating scaled form. Thus:

The dyadic format function accepts only numerical
arrays as its right argument, and uses variations in the
left argument to provide progressively more detailed control
over the result. Thus, for F.A, the argument F may be a
single number, a pair of numbers, or a vector of length
2 x-1tl,pA.

The format function applied to a character array yields
the array unchanged, as illustrated by the last two examples
above. For a numerical array, the shape of the result is
the sam~ as the shape of the argument except for the
required expansion along the last coordinate, each number
going, in general, to several characters. The format of a
scalar number is always a vector.

L+-2=?2 2 5 p 2
L 4 1,L

1 1 0 0 1 1.0 1.0 0.0 0.0 1.0
1 1 1 0 1 1.0 1 .0 1.0 O. a 1 . a

1 0 0 1 0 1 .0 0.0 o • 0 1 . a 0.0
0 0 0 0 0 0.0 0.0 o.0 0.0 0.0

Tabular displays incorporating row and column headings,
or other information between columns or rows, are easily

-16-

configured using the format function together with extended
catenation .. For example:

-17-

PART 4
SYSTEM FUNCTIONS AND SYSTEM VARIABLES

It is no longer necessary to use "heterogeneous output ll

in order to conveniently combine literal statements with
numerical results. For example:

JAN
APR
JUL
OCT

ROWHEADS+4 3p'JANAPRJULOCT'
YEARS+71+15
TABLE+.00lx-4E5+?4 5p8ES
(' " [lJROWHEADS), (2~9 ow YEARS) , [1J9

72 73 74 75
318.13 351a55 3.62 144.77
327.41 341.00 92.69 331.05
359.93 216.16 299.71 150.77
180.33 310.86 154.94 10.62

27fTABLE
76
4.82

28.44
103.64
276a79

INTRODUCTION

Although the primitive functions of APL deal only with
abstract objects (arrays of numbers and characters), it is
often desirable to bring the power of the language to bear
on the management of the concrete resources or the
environment of the system in which APL operates. This can
be done within the language by identifying certain variables
as elements of the interface between APL and its host
system, and using these variables for communication between
them. While still abstract objects to APL, the values of
such system variables may have any required concrete
significance to the host sytem.

X+17.34 M+'THE VALUE OF X IS ,
'THE VALUE OF X IS ' ;X X+25.4

THE VALUE OF X IS 17.34 M;X
'THE VALUE OF X IS ,

,7fX THE VALUE OF X IS 25.4
THE VALUE OF X IS 17a34 (7fM), (l"X)

THE VALUE OF X IS 25a4

There are obvious restrictions on the left argument of
format, since the width of a field must be large enough to
hold the requested form, and if the specified width is
inadequate the result will be a DOMAIN error. However, the
width need not provide open spaces between adjacent numbers.
For example, boolean arrays can be tightly packed:

1 0l"2=?4 4p2
1001
0000
1101
0111

In principle all necessary interaction between APL and
its environment could be managed by use of a complete set of
system variables, but there are situations where it is more
convenient, or otherwise more desirable, to use functions
based on the use of system variables which may not
themselves be made explicitly available. Such functions are
called, by analogy, system functions.

System variables and system functions are denoted by
distinguished names that begin with a quad. The use of such
names is reserved for the system and cannot be applied to
user-defined objects. They cannot be copied, grouped, or
erased: those that denote system variables can appear in
function headers, but only to be localized. Within APL
statements, distinguished names are subject to all the
normal rules of syntax.

SYSTEM FUNCTIONS

The least width required to represent a column of
numbers C for an indicated precision P is determined as
W+(v/C<O)+(~PEO -1)+(\p)+(4,r/0,1+Llo~IC+C=0)[1+PcOJ.

If the width indicator is zero, the width used is l+W.

The expressions (M7fA),Nl"B and (M,N)7fA,B are equivalent
if M and N are full control vectors, that is, if
«pM)=2 x-1tpA)A(pN)=2 x-ltpB. If 2=pM, then (M7fA),M7fB
and M7fA,B are equivalent.

The following formal characteristics
function need not concern the general user,
interest in certain applications:

of the format
but may be of

]

1

Like the primitive abstract functions of APL, the
system functions are available throughout the system, and
can be used in defined functions. They are monadic or
dyadic, as appropriate, and have explicit results. In most
cases they also have implicit results, in that their
execution causes a change in the environment. The explicit
result always indicates the status of the environment
relevant to the possible implicit result.

Altogether, 13 system functions are provided. Six of
these are concerned with the management of the
shared-variable facility and are described in Part 5. The
other seven are given in Table 1, and are described here.

BIN 4
1 4 6 4 1

-19-

vBINCOJv
IJ Z+BIN X

[lJ Z+l
[2J L1:Z+(0,Z)+Z,0
[3J -+(X~pZ)/L1

IJ

4 14

Canonical representation. The character arra~ printed in
displaying the definition of a function F 1S clearly an
unambiguous representation of the function F. The
representation remains unambiguous if the v symbols and the
line numbers and their brackets are removed, and the rows
representing lines containing labels are shifted to the
right to remove the exdenting. If the rows are then padded
with spaces on the right, where necessary to make them all
of equal length, the resulting matrix is called the
canonical representation of F. The canonical representation
of a defined function is obtained as a result of applying
the system function OCR to the character array representing
the name of the function. For example:

M[3;11J+-'-t
OFX M

VBIN[OJIJ
V 2+BIN X

[lJ Z+l
[2J L1:Z+(0,Z)-Z,0
[3J -+(X~pZ)/Ll

'V

BIN

Function establishment. The definition of a function can be
established or fixed by applying the system function OFX to
its canonical representation. To continue the preceding
example:

The function OCR applied to any argument which does not
represent the name of an unlocked defined function yields a
matrix of dimension ° by 0. possible error reports for OCR
are RANK error if the argument is not a vector or a scalar,
or DOMAIN error if the argument is not a character array.

M+-OCR tBINt
M

Z+EIN X
Z+l
L1:2+-(0,2)+Z,0
-+(X~pZ)/L1

pM

BIN 4
14641

U)
a.
c..
Al
~

4-i
o

tn
Q)

H
-..-I
:s
tyt
Q)

H
Q)

+J4J:s Q)
..or-!

Pol
S

.... 0
Q) U
s::
o 0
Z+J

til
-o
s::
o
o
(J)
tn

Q)

c
oz

~
a.
a.
AI
('\J

4-1 •• til
O~ -r-i

(J)4-I
tJ10
m
U) ~

~ 0
H

(J)

..c:..c:
4J(J

m
t.J1Q)H
s:: 0

-,-I s:: 4-1
:>-.-4

-.-4 rd
tJl

Q) ..:t Q)
H e r-I Q)
Om(T)..or-l
+oJ c m..o
u 0Jr-Iro
Q) ... o,...j o,...j

:>Q).,-lmH
.c :> m

r:::t:4Jom:>

~o::::t::
0- a.
a. a.
AI AI
'r'i 'r'i

(J)

s::
oz

-18-

a.
AI
'r'i

~
0
a.
AI
'r'i

(J)

s::
oz

~
a.
0
AI
('\J

(J)
C U) (J)
m-,-I H
(J) 4--1

.....-i+J
o ~ ~
o (J) 0

..0 ~ s::
(J)

.....-iU)
~ (J)-,-I

..c: <lJ
4J e
I-j oj

C

<lJ..c:
U)4J
Ol-j

..c:
:3 Q)

..c:
H4J
o
+J4-i
(J-,-I
(J)

:>'r'i

~
0-
0
Il

('\J

~
0
0
AI
'r'i

Q)

c
oz

z
o
H ~
E-4
U l:t:
Z CJ
D 0
~

-20-

As shown by the foregoing example, the function OFX produces
as an exp~icit result the array of characters which
represents the name of the function being fixed, while
replacing any existing definition of a function with the
same name. The argument to DFX is, of course, unaffected.
The name provided by the explicit result can be conveniently
used in a variety of ways. For example:

1 (OFX M),' 4'
1 4 6 -4 1

The name of any function established by the function
OFX obeys the normal rules of localization. Thus if a
function ABC is established within a function G in which the
name ABC is local, the definition of ABC disappears upon
termination of execution of the function G. Function
definition mode continues to apply to global names only.

An expression of the form DFX M will establish a
function if both the following conditions are met:

1. M is a valid representation of a function. Any
matrix which differs from a canonical matrix only in
the addition of non-significant spaces (other than
rows consisting of spaces only) is a valid
representation.

2. The name of the function to be established does not
conflict with an existing use of the name for a
halted function or for a label, group, or variable.

If the expression fails to establish a function then no
change occurs in the workspace and the expression returns a
scalar index of the row in the matrix argument where the
fault was found. If the argument of DFX is not a matrix a
RANK error will be reported, and if it is not a character
array a DOMAIN error will result.

Dynamic erasure. certain name conflicts can be avoided by
using the expunge function DEX to dynamically eliminate an
existing use of a name. Thus DEX 'PQR' will erase the
object PQR unless it is a label, a group, or a pendent or
suspended function. The function returns an explicit result
of 1 if the name is now unencumbered, and a result of 0 if
it is not, or if the argument does not represent a
well-formed name. The expunge function applies to a matrix
of names and then produces a logical vector result. DEX
will report a RANK error if its argument is of higher rank
than a matrix, or a DOMAIN error if the argument is not a
character array.

The expunge function is like the erase command except
that it applies to the active referent of a name (which may
be local), and cannot expunge certain names.

-21-

Name list. The dyadic function DNL yields a character
matri~ach row of which represents the name of an object
in the dynamic environment. The right argument is an
integer scalar or vector which determines the class of names
produced as follows: 1, 2, and 3 respectively invoke the
names of labels, variables, and functions. The left
argument is a scalar or vector of alphabetic characters
which restricts the names produced to those with an initial
letter occurring in the argument. The ordering of the rows
is accidental.

The monadic function DNL behaves analogously with no
restriction on initial letters. For example, DNL 2 produces
a matrix of all variable names, and either of DNL 2 3 or
DNL 3 2 produces a matrix of all variable and function
names.

The uses of DNL include the following:

In conjunction with DEX, all the objects of a
certain class can be dynamically erased; or a
function can be readily defined that will clear a
workspace of all but a preselected set of objects.

In conjunction with OCR, functions can be written to
automatically display the definitions of all or
certain functions in the workspace, or to analyze
the interactions among functions and variables.

The dyadic form of DNL can be used as a convenient
guide-· in the choice of names while designing or
experimenting with a workspace.

Name classification. The monadic function DNC accepts a
matrix of characters and returns a numerical indication of
the class of the name represented by each row of the
argument. A single name may also be presented as a vector
or scalar.

The result of DNL is a suitable argument for ONC, but
other character arrays may also be used, in which case the
possible results are integers ranging from 0 to 4. The
significance of 1, 2, and 3 are as for DNL; a result of 0
signifies that the corresponding name is available for any
use~ a result of 4 signifies that the argument is not
ava1lable for use as a name. The latter case may arise
because the name is in use for denoting a group, or because
the argument is a distinguished name or not a valid name at
all.

-22-

Delay. The delay function, denoted by DDL, evokes a pause
in the execution of the statement in which it appears. The
argument. of the function determines the duration of the
pause, in seconds, but the accuracy is limited by possible
contending demands on the system at the moment of release.
Moreover, the delay can be aborted by a single attention
signal, which also causes an exit from the program using
DDL. The explicit result of the delay function is a scalar
value equal to the actual delay. If the argument of DDL is
not a scalar or vector with a single numerical value, a RANK
or DOMAIN error will be reported.

Generally speaking, the delay function uses only a
negligible amount of computer time (as opposed to connect
time) . It can therefore be used freely in situations where
repeated tests may be required at intervals to determine
whether an expected event has taken place. This is useful
in work with shared variables (as in the example on page
28), as well as in certain kinds of interactions between
users and programs.

SYSTEr·1 VARIABLES

System variables are instances of shared variables,
which are treated in Part 5. The characteristics of shared
variables that are most significant here are these:

1. If a variable is shared between two processors, the
value of the variable when used by one of them may
well be different from what that processor last
specified, and

2. each processor is free to use or not use a value
specified by the other, according to its own
internal workings.

System variables are shared between a workspace and
the APL processor. Sharing takes place automatically each
time a workspace is activated and, when a system variable is
localized in a function, each time the function is used.

The system variables are listed in Table 2, which
gives their significance and use. Also listed are the
workspace functions and I-beam functions they are intended
to replace. These earlier, ad hoc, facilities are still
available, but are expected to be supplanted by the use of
system variables. The old definitions of the workspace
functions will no longer work. New definitions may be
copied from 1 WSFNS, or defined for each according to the
following example:

V Z+ORIGIN N
[lJ Z+OIO
[2J DIO+N 'V

-23-

-
r: (J) ~

~ rl 0
rilL- 4-l

8 t':J ~ tf} ~ .:t to a
~:;>-l t':J ~ Q) E-i ~ ~ ('\J ('\J ('\J +J
Z8 ~ ~ C h.t E-, h.t Q) co (Y) ('\J ~

P:::H ~ ~ 0 c.:J h:4 ~ rl ~ r- L.{) ('\J ('\J ('\J Q)

~H E-, ~ Z h.t I--.j E-t ('\J 0 C'J N H H H +J
8H kJ C) ~ ::::s: kJ Z H H
HU C!) tJ:) (J) (])

~~
('\J Q)

~ H U}

'H 00

P ~ rl

~ Q) ~ (Y)

t9 +J .o it

:z rl ~ U to (T) ('\J ~

H~ I rd ~ .-' + ~

Zl'J a 0 ~
.-' + rl 0

~:z ro m I ~

~~ ..c ('\J

~ U ~

ZUJ
Q)
tyI

H~ C
(T) 0

~~ rl - 0 0 L.{) 0 ~

p~ I rl - v--l C'J it

H~ kJ ~ r-- 0
~H rl C
::>U

~-

"''0 ~ ~

'H. le- Q) C ~ '0 0 ~

E res 0 ~ 4-l .r-!
1\ o .r-! .r-! 0 ~

OJ .r-! +J(1) +J o
1\1 o '0 '0 ~ Q) ('\J tn

res res c c tn C
II o, C 0 Q) 0

en 0 ~ () xr-!
VI ~ E Q) ill QJ ill o +J

lo-l +J en +J .r-! U
v 0 TO ~.r-! ~ lo-l C

...... ~ c n..~ c c +J ~
-J ro E~ ·M .r-! U 4-1

'0 4-1 +J 0·,.., E ill
L- ~ 0 +J ~ U E en ~ OJ

ro ~ P.! C Q) U
C C 0- +J C 0 ... (J) ro

.r-i C".. 0 +J ::1 .,.., .,.., lo-l o,.,..,
~ 0 ... +J ~ tn

'0 C ..j.J 0 C en o 0 lo-l ~
Q) .r-! nj ill o ill C ..c: 0 lo-l
(1) :> o lo-l -M E ~ 4-l 0
~ "d .r-i .r-! nj +J .r-! 4-l ~

C +J lo-l .c co+J ...
W .. Cd U ill o ~ rl
(/) - CO E +J .r-!~ 4-1 Cd (])
0 ill 0'. ~ ::1 4-I~ 0 TO roC
~ :> h C h .o .r-! rd 0 +J
~ .r-! .r-! 0 +J- Lf)

D +J ~ tn r--i C en ... 0 4-1
c, CO Q) -o +J ~ (]) - lo-l roC ~ 0

~ rc Q) o rd ro Q) C Q) +J
<l) C +J (]) .,.., E 0 ,.Q C {/)

H .r-! ::1 4-l {/) .r-!.r-! E 0 lo-l C- o 4-1 +J C'-. +J {/) ::1 E 0 Q) 0
C QJ CO U .. {/) C 4-l r-I .r-! C

QJ .r-! >< QJ c: C O"l QJ ,.Q +J 0
U QJ .. 4-1 .r-! o C Ul ... rd .r-t ·M
c "d c: 4-1 .r-!.r-! Q) lo-l 0 r-I C+J

Ird QJ C 0 rd '0 +J ~ O"l c n:l .r-! .r-! ()
lo-l {/) 0 .r-! QJ ro QJ C .r-f OJ rcJ 4-1 CO
QJ ~ .r-! en .. {/) E~ .r-! r-1+J ~ .. :> (l)

r-I Ul .r-! ..c: :J H lo-l en OJ ro "dQ)
0 .. U) U +J 0 ... ~ H •• lo-l 04 :>

..j.J c Q) QJ -o .. 4-IQJ'"d 0 lo-l.r-i .. ~ ro "d .r-!
.r-! lo-l lo-l .r-t ~ c E ..j.J QJ4-I ~'"d +J Q) r-1+Jc: tJ1 0- 0. ~ C .r-f.r-! (l) U +J E c 10-1 o U

0 .r-t X .r-f ..j.J :> Q) C+J m 0 '"d rcJ Q)
Ul H QJ O"l tJ1 r-I .r-! :> ::1 U) +J () r-lQ m H

.r-l 0 s:: C -I-l+J..j.J o 0 [I) QJ mC) a O"l QJ H
H ..j.J .,.-i .r-f E C () ro u () IS {/) em r-l C ..c: 0ro >< c +J ..j.J a ::1QJr-I .r-! H .r-! -r-fr-! 8 U
0. Q) QJ C s:: "d o C ::1 E QJ QJ QJr-l EU lo-l ~e ro ..j.J .r-l .r-! c: U c: S a r:: r:: Er-l 10-18 OJ Ha r:: OJ lo-l H OJ U a ::1 ..j.J .r-! r:: .r-t .r-! QJE-! U) 0 ..

- U H:l ~ Pol t=t:: ~ () () ~ H·r-4 E-! S E-!~ D ~ r-l

~ ~

~
E-, C) ~ ~ ::::s: ~ ~ ~ G C/:) E-t ~ ~ E-i
C,.) ~ I-..::J ~ ~ ~Z "'t: ~ ~ E-i E-1 ~ ~ 0
0 0 0 0 0 0 0 0 0 0 0 0 0 z

....

N

OJ
r-I
.0
nj
E-!

-24-

Two classes of system variables can be discerned:

compar~son tolerance, index origin, latent exp:ession,
printing precision, printing width, and random Iln~: In
these cases the value specified by the user (or ava1la~le
in a clear workspace) is used by the APL processor durlng
the execution of operations to which they relate. If
this value is inappropriate, or if no value ha7 been
specified after localization, an IMPLICIT error wlll ~e
evoked at the time of execution. A non-scalar value 1S
treated as inappropriate.

Account information, atomic vector, line counter, time
stamp, terminal type, user load, and work area: In these
cases localization or setting by the user are immaterial.
The APL processor will always reset the variable before
it can be used again.

The APL statement represented by the latent expressi?n
is automatically executed whenever the workspace 1S
activated. Formally, DLX is used as an argument to the
execute function (~DLX), and any error message will be
appropriate to the use of that function. Common uses of the
latent expression include the form DLX+'G' used to invoke an
arbitrary function G, the form DLX+" 'FOR NEW FEATURES IN
THIS WS ENTER: NEW'" used to print a message upon
activation of the workspace, and the form. DLX+'~DLC' .used
to automatically restart a suspended functlon. The var7a~le
DLX may a lso be localized within a function an~ respeclfled
th~rein to furnish a different latent expresslon when the
function is suspended:

DLX+'F'
v F;DLX

[1J OLX+'~OLC,pD+''WE CONTINUE FROM WHERE WE LEFT OFF'"
[2J 'WE NOW BEGIN LESSON 2'
[3J DRILLFUNCTION V

)SA VE ABC

On the first activation of workspace ABC, the function F
would be automatically invoked; if it were later saved with
F halted, subsequent activation of the workspace would
automatically continue execution from the point of
interruption.

The atomic vector OAV is a 256-element vector of all
possible characters. If V is any 8-element logical.vector,
then (in a-origin) DAV[2~VJ is the character whose lnte:nal
representation is V. Certain elements of OAV are termln~l
control characters, e.g., in a-origin DAV[156 158 159] 15
the carriage return, backspace, and linefeed. Ma~y ~lements
of OAV neither print nor exercise control. The .1ndlce5 of
any known characters can be determined as in th1S example:
DAVl'ABCA~Q' yields 86 87 88 113 114 115.

-25-

PART 5
SHARED VARIABLES

INTRODUCTION

Two otherwise independent concurrently operating
processors can communicate, and thereby be enabled to
cooperate, if they share one or more variables. Such shared
variables constitute an interface between the processors,
through which information can be passed to be used by each
for its own purposes. In particular, variables can be
shared between two active APL workspaces, or between an APL
workspace and some other processor that is part of the
overall APL system, to achieve a variety of effects
including the control and utilization of devices such as
printers, card readers, magnetic tape units, and magnetic
disk storage units.

In use in an APL workspace, a shared variable may be
either global or local, and is syntactically
indistinguishable from ordinary variables. It may appear to
the left of an assignment, in which case its value is said
to be set, or elsewhere in a statement, where its value is
said to be used. Either form of reference is an access.

At any instant a shared variable has only one value,
that last assigned to it by one of its owners.
Characteristically, however, a processor using a shared
variable will find its value different from what it might
have set earlier. A familiar exaMple of this in APL is the
quote quad when it is used successively for output from a
function and input to it from the keyboard; ~ is, in fact, a
variable shared between the function and the user at the
terminal.

A given processor can simultaneously share variables
with any number of other processors. However, each sharing
is bilateral; that is, each shared variable has only two
owners. This restriction does not represent a loss of
generality in the systems that can be constructed, and
commonly useful arrangements are easily designed. For
example, a shared file can be made directly accessible to a
single control processor which communicates bilaterally with
(or is integral with) the file processor itself. In turn,
the central processor shares variables bilaterally with each
of the using processors, controlling their individual access
to the data, as required.

It was noted in Part 4 that system variables are
instances of shared variables in which the sharing is
automatic. It was not pointed out, however, that access
sequence disciplines are also imposed on certain of these
variables, although one effect of this was notedt namely,
variables like the time stamp accept any value specified,

-26-

but continue to provide the proper information when used.
The discipline that accomplishes this effect is an
inhibition against two successive accesses to the variable
unless the sharing processor (the system) has set it in the
interim.

When ordinary, "undistinguished", variables are to be
shared, explicit actions are necessary to effect the sharing
and establish a desired access discipline. Six system
functions are provided for these purposes; three for the
actual management and three to provide related information.
The functions are summarized in Table 3.

OFFERS

A single offer to share is of the form P DSVO N, where
P is the identification of another processor and N is a
character vector representing a pair of names. The first of
this pair is the name of the variable to be shared, and the
second is a surrogate name which is offered to match a name
offered by the other processor. The name of the variable may
be its own surrogate, in which case only the one name need
be used, rather than two. For example, the three sets of
actions shown below all have the same effect, which is to
share one variable between users 1234 and 5678, the variable
being known to the former as ABC, and to the latter as Q.
Note that the processor identification of a user is his
account (sign-on) number on the APL system.

User 1234 User 5678

5678 DSVO 'ABC y'
1 1234 DSVO 'Q Y'

2

5678 DSVO 'ABC Q'
1 1234 DSVO 'Q'

2

5678 DSVO 'ABC'
1 1234 DsVO 'Q ABC'

2

The surrogate names have no effect other than to
control the matching, making it possible for one processor
to operate with no direct knowledge of, or concern with, the
variable name used by the other. The same surrogate can be
used in a succession of offers to the same processor, in
which case they are matched in sequence by appropriate
counter-offers. The same surrogate may also be used for
offers to any number of other processors at the same time.
However, since a variable may be offered to (or shared with)
only one other processor at a time, each coincident use of a
particular surrogate name must be associated with a
different variable name.

-27-

r--- s:: s:: I (l) I U} U) U) ~ ~ ro+J
.,..1 .r-t C)...j •..-1 H·H Q) 0 U)

~ H 0 0 +J o..c: E H 4-1 H
~ •..-1 .,..; o r-I 4-1 C U)+J I'd "-4 "-4 H·"';
o rt1 ~ rd 0 (l) Q) U) C 0 (l) 4-1
C O-J O~ U) H .0 ro Q) U)

E-i C U) .=t +J .r-{ U a 4--l U)"O til
H 0-' Q) (l)~ (l) #'0 s:: tJI O+J 0 OJ Q) s:: .Q)
p C E ~ tilE a. U ,,--., 0 c ~ 4-1 104 U 104 -r-{ U)..c:
r.J) •..-1 rd a. h rd -+ U ~ U -,.., a. 0 0.. :x: o rd TO <D+J
ril ...-IC4 •..-1 C n I'd a.-i • -+ U) •..-1 H..c: C E
p::; 0.1 n ..--I I -+ U) o..Cn 104 H H O-IU) 0 ro H

~ OJ I 04<D 4-1 n U) ;J 0 I a 4--l 0) +J 04 C 0
E-i o.r:: <, ::J..c:: x 0 I Q) 0·"'; +JQ4-I res ~+J U)
H U +J x O+J '-"' U U+J x U 4-1 ::8,.QQ) OJ 4-1
U U t» U U Q) U) 0 ~ H o H
H 4-1 H •• H .. C .. m rd .. :> C .. H ·ri
H o 0 s:: 4--l0C:: •..-1 C 4--l H c: 0 ~TO+J 0 "-4 res
P-i 4-10 a 4-1 0 +J 0 tyl o +J 0 ••• ..-1 r» o.Q)O U •..-1 Q.;
>:: •...-1 .,.., +J •..-1 c: Q).r-t ~+JC H c:: co
~ Q)+JU) OJ +J U) (l) U) ..-1 Q) H U) a. co-1 104 x Q) Cd C~Q)

Q) U C (]) U c: Ul ·C +J Q) s:: II U~ Ul II 4--l +J .c:
H Q) (]) H Q) Q) ..--I Q) Ul H en Q) 0·..-1 co Uln4-l::l TO H+J
r» 4-1 E 0'.4-1 E :3: 0 E •...-1 til·..-I IS 4-IE ::l 0..0 C 0
(]) 4-1 ·ri Q) 4-1 •...-1 Q) H·..-I :x: Q) ..c:: ...-1 4-1 4-1 ro H
Q UlQ Q(])Q Z+JQ ~ Q+JCI H H OJ OJ

TO S..c::
H Q)~C: C I ..--I I Q) Cd+J
Q E.....-i·..-I Cd rd ro H +J C: ...-I
Ul nj Ul .r-{ H co ::J OJ

E-t Ul h ::J ::>-t 104 Q) ..c:: o nJ
Z Q) o TO 4-1 co C U) Q)
~ U •...-1 co 0 :> (ll x +J-
~ O-:>Q) til (J) (]) Co
Z H >-tQ.> H co TO <V~
0 0....--1 H-i Q) (J) ...-I C +J U)tr)
p::; co..co 8 C·..-I ~ 0 (]) 0 QJO
H o 0 co nj II 104 - C H Ul
t> +J +J+J c..c:: H 0 +J o, C
Z "-400 +J Q) C U) UJ QJ U 0
~ HOC C 4-14-1 0 H •.-1 H·r-i·..-I

Q,l- 4-1 .,.., U Q) ro+J
Z 4-1 Ul Q,l "-4 0 4-1 C +J nj U
0 4-1 +J.,-I ro..c: Q,l - U) 4-1 0 (J) >-. c:o UJ C +J..c: Q) Q) U) 0 •...-1 ::l TO ::l
E-t H H Cd +J..c:: s:: (]) +J 8-4-1
U •..-1 •..-1 08 0 U U) U
~ U)4-IroTO U) ~ U +J c: - H
~ H ~Q) m+J s:: m o ::l ~HQ,l
~ 0)4-1 H U m CO 4-l o.<v..c:
~ ro .,-i nj (l) (l) Q) Ul (J) H- Q,l a. 4-1 +J

C 4-1 (l)·n(l) 0 C +.J c: +J~ c Q,l 1\ 4-1 0
(l) 4-I4-IOO.o..--l+.J 0 (]) 0 Q) C 0 ..c:: ("\.JO

E-t ~ a 0 ::J 0..0- Z (J) Z p::; . ..-I Z +J OJ
4-1C.c

n n +.J .,-1 co +J
(Y) (Y) Q)

Z iC iC S 4-1HH
H ("\.J n ('\J ,..-iOO

~
r-' +J (])4-14-1
+ 0 + 0 U)

0 n \J.J n s:: +J1'(5'O
~Q I r-l rI t.J l"", r-l rl J .r-! Q) Q)
n \IJ('\J ('\J <, ('\J ('\J ('\J \V Ul [J) Ul
l-.J ~LJ L....: <LJ LJ LJ ~ •..-1 ~::J~

U) ~ t.J .=t TOHOOQ)
E-t a. 0. "' +J Q) O·r-!.oz -+ <, ,,--., C+.J-
~ n x ~ (]) s:: s::::E:=C I II 0. 8·..-1 ~ Ul ro
~E-t "' n -+ Q) S-! Q) o
~l? n <S-!n H ~4-I SHZ \J.J ,,--., 01 ·ri 0 m ...
g ~ ,,--., t.J ::J (J) s:: ~H n, 0. II P.... tJ1.,-i ~ ..--I
~ a. Q) a. ,,--., Q) Q) "' (l) 04-4 s::P:: <, s:: 1\1 t.J ~ s:: a. H +J S-! 0 ax a ,.....; 0. 0 0 Al H......... Z '-' z Z n ro 0 .c S-! Q)

~~ ~ ~t.J
0., U·r-! S

~ ~ c, 4-4 Q) ro ro ro
~ a. a. 0- o, a. a. a. a. H H ~ 0.. CZ o, a. a. Q. a. a. a. a.
~

1\11\1 1\1 AI 1\1 1\1 1\1 1\1

- ('\J 'rl ('\J ('\J N ('\J N n

Z ~
..--I N

0
:c::; ~ ~ ~ P....

H 0 C) t.J t.J r:t: Q> ..
E-t ~ ~ ~ :::::". :::::". ~ (J)u tJ) tQ tI) tI) tr) tr) ~z 0 0 0 0 D 0 E-i::> 0
~ ~ t.J Z-----

-28-

The explicit result of the expression P DSVO N is the
degree of coupling. of the name or name pair in N: zero if
no offer has been made, one if an offer has been made but
not matched, two if sharing is completed. An offer to any
processor (other than the offering processor itself)
increases the coupling of the name offered if the name has
zero coupling and is not the name of a label, function, or
group. An offer never decreases the coupling.

The monadic function DsVO does not affect the coupling
of the name represented by its argument, but does report the
degree of coupling as its explicit result. If the degree of
coupling is one or two, a repeated offer has no further
implicit result and either monadic or dyadic DSVO may be
used for inquiry. Advantage is taken of this in the
following example of a defined function for offering a name
(to be entered on request) to a processor P for a period of

T seconds:

v Z+P OFFER T;I;Q
[1J [!l+'NAME:
[2 J -+ (' 'A. = Q+[!]) / Z+I + 0
[3J L1:-+(2=Z+P DSVO Q)/L2
[4J -+(T~I+I+1+0xDDL 1)/L1
[5J 'NO DEAL'
[6J -+0
[7J £2: 'ACCEPTED' V

If the arguments of DSVO fail to meet any of the basic
requirements listed in Table 3, the appropriate error report
is evoked and the function is not executed. If a user
attempts to share more variables than the quota allotted to
him by those responsible for the general management of the
system the error report will be INTERFACE QUOTA EXHAUSTED,
and if, for any reason, the shared variable facility itself
is not available the report will be NO SHARES. An offer to
a processor will be tendered, whether or not the processor
happens to be available.

The value of a shared variable when sharing is first
completed is determined thus: if both owners had assigned
values beforehand, the value is that assigned by the first
to have offered; if only one owner had, that value obtains;
if neither had, the variable has no value. Names used in
sharing are subject to the usual rules of localization.

A set of offers can be made by using a vector left
argument (or a scalar or one-element vector which is
automatically extended) and a matrix right argument, each of
whose rows represents a name or name pa~r: The offe:s are
then treated in sequence and the expllclt result 1S the
vector of the resulting degrees of coupling. If the quota
of shared variables is exhausted in the course of such a
multiple offer, none of the offers will be tendered.

-29-

An offer made with zero as left argument is a general
offer, that is, an offer to any processor. A general offer
will be matched only with a counter-offer which is not
general, that is, one that explicitly identifies the
processor making the general offer. The processor
identification associated with a user is his account
(sign-on) number. Auxiliary processors such as TSIO are
usually identified by numbers between 1 and 1000.

ACCESS CONTROL

Consider the following simple example of sharing the
variable V between two users 1234 and 5678:

User 12 J l~ User 5678

5678 ilSVO ' V'
1 1734 []SVO 'V'

2
V+- 5

V+-3 xV*2

V
75

The relative sequence of events in the two workspaces, after
sharing, is significant; for example, had the use of V by
1234 in the foregoing example preceded the setting by 5678,
the resulting value would have been 5 rather than '15.

In most practical applications it is important to know
that a new value has been assigned between successive uses
of a shared variable, or that use has been made of an
assigned value before a new one is set. Since, as a
practical matter, this cannot be left to chance, an access
control mechanism is embodied in the shared variable
facility.

The access control operates by inhibiting the setting
or use of a shared variable by one owner or the other,
depending upon the access state of the variable and the
value of an access control matrix which is set jointly by
the two owners, using the dyadic form of the system function
Dsvc. If, in the example above, one user (say 5678) had
followed his offer to share V by the expression
1 1 1 1 OSVC IV', then the desired sequence would have been
enforced. That is, the use of V bV 5678 would be
automatically delayed until V is set by 1234, and the use by
1234 would be delayed until V is seE by 5678.

The delay occasioned by the inhibition of any access
uses only a negligible amount of computer time.
Interruption by a double attention signal during the period
of delay aborts the access and unlocks the keyboar~.

-30- -31-

Figure 4: Access Control of a Shared Variable

Access control vectors as seen by A and B,
respectively, are ,ACM and ,~ACM

A one in an element of ACM inhibits the asso
ciated access. Allowable accesses are given
by the zeros in ACMAASM

If ACM[2;1 l=l, then two successive uses by A require an
intervening set by B.

If ACM[1;2]=1, then two successive sets by B require an
intervening access by A.

If ACM[l;l]=l, then two successive sets by A require an
intervening access (set or use) by B.

If ACM[2;2]=1, then two successive uses by B require an
intervening set by A.

The setting of the access control matrix for a shared
variable is determined in a manner which maintains the
functional symmetry. An expression of the form t. II.; VC 'V'
executed by user A assigns the value of the logical left
argument j, to a four-element vector which, for the purposes
of the present discussion, will be called QA. Similar
action by user B sets QB. The value of the access control
matrix is Jetermined as follows:

The value of the access state representation is not
directly available to a user, but the value of the access
control matrix is given by the monadic function DSVC. For a
shared variable V the result of the expression DSVC 'V'
executed by user A is the access control vector ,ACM (the
four-element ravel of ACM). However, if user B executed the
same expression he would obtain the result ,$!JCM. The
reason for the reversal is that sharing is symmetric:
neither owner has precedence over the other, and each sees a
control vector in which the first one of each pair of
control settings applies to his own accesses. This symmetry
is evident in Figure 4; if it were redrawn to interchange
the roles of A and B the control matrix would be the
row-reversal of the matrix shown.

Figure 4 shows the three access states possible for a
shared variable, the possible transitions between states,
and the potential inhibitions imposed by the access control
matrix, ACM. The first row of ACM is associated with
setting of the variable by each owner, and the second with
its use. The permissible operations for any state are
indicated by the zeros in ACMAASM, where ASM is the
representation of the access state shown in the figure.
This can be confirmed by using Figure 4 to validate each of
the following statements:

o 1
o 1

ASM

USE
&

INITIAL
STATE

----SB---

----SA---

Legend:
SA SB UA UB: Denote set or use by A or B.
ACM: Access Control Matrix
ASM: Access State Matrix

ACM+(2 2p()11)V$2 7(>(2/1

Since ones in I1CM inhibit the corresponding actions, it is
clear -rDOm this expression that one user can only increase
the degree of control imposed by the other (although he can,
by using IlilVC with a left argument of zeros, restore the
control to that minimum level at any time).

-32-

Access control can be imposed only after a variable is
offered, either before or after the degree of coupling
reaches two. The initial values of QA and QB when sharing
is first offered are zero.

The, access state when a variable is first offered
(degree of coupling is one) is always the initial state
shown in Figure 4. If the variable is set or used before
the offer is accepted, the state changes accordingly.
Completion of sharing does not change the access state.

Table 5 lists a number of settings of the access
control vector which are of common practical interest. Any
one of them can be represented by a simplification of Figure
4 obtained by omitting the control matrix and deleting the
lines representing those accesses which are inhibited in the
particular case. For example, with maximum constraints all
the inner paths would be removed from the figure.

A group of N access control matrices can be set at
once by applying the function DSVC to an N by 4 matrix left
argument and an N-rowed matrix right argument of names. The
explicit result is an N by 4 matrix giving the current
values of the (ravels of) control matrices. When control is
being set for a single variable the left argument may be a
single 1 or 0 if all inhibits or none are intended.

RETRACTION

Sharing offers can be retracted by the monadic
function OSVR applied to a name or a matrix of names. The
explicit result is the degree (or degrees) of coupling prior
to the retraction. The implicit result is to reduce the
degree of coupling to zero.

Retraction of sharing is automatic if the connection
to the computer is interrupted or if the user signs off or
loads a new workspace. Sharing of a variable is also
retracted by its erasure or, if it is a local variable, upon
completion of the function in which it appeared.

Once a variable has non-zero coupling its access state
depends only upon the sequence of accesses that ~o~lows, and
its access control matrix depends only upon expllclt use of
dyadic DSVC. This means that a variable may be repeated~y

retracted and reshared by either owner with no change In
these attributes, as long as no overt action is taken to
change them and the degree of coupling never becomes less
than one. This makes it possible, under suitable settings
of the access control vector, to recover gracefully from
inadvertent retractions due to communication failures or
other mishaps.

-33-
~

Control Vector CommentsAccess
as seen by

~

A B

-
0 0 0 0 0 0 0 a No constraints.

a a 1 1 0 a 1 1 Half-duplex. Ensures that each use is
preceded by a set by partner.

1 1 a 0 1 1 0 0 Half-duplex. Ensures that each set is
preceded by an access by partner.

1 1 1 1 1 1 1 1 Reversing half-duplex. Maximum con-
straint.

0 1 1 0 1 0 0 1 Simplex. Controlled communication from B
to A. (For card reader, etc.)

Table 5: Some Useful Settings for the Access Control Vector

The nature of the shared-variable implementation is
such that the current value of a variable set by a partner
will not be represented within a user's workspace until
actually required to be there. This re9uir~ment ?btains
when the variable is to be used, when sharlng lS termlnated,
or when a SAVE command is issued (since the current value of
the variable must be stored). Under any of these conditions
it is possible for a WS FULL error to be reported. In all
cases the prior access state remains in effect and the
operation can be retried after corrective action.

INQUIRIES

There are three monadic inquiry functions which
produce information concerning the shared variable
environment but do not alter it; the functions OSVO and DSVC
already discussed, and the function DsvQ. A user who
applies the latter function to an empty vector obtains a
vector result containing the identification of each user
making any sharing offer to him. A user who applies the
function DSVQ to a non-empty argument obtains a matrix of
the names offered to him by the processor identified in the
argument. This matrix includes only those names which have
not been accepted by counter-offers.

The expression (O~DSVO ONL 2)/[OIOJ DNL 2) can be used
to produce a character matrix whose rows represent the names
of all shared variables in the environment. I

-34-

BIBLIOGRAPHY

This bibliography includes only recent items of
tutorial interest. For an extensive guide to
literature on APL see the bibliography provided by J.
C. Rault and G. Demars in the Proceedings of the
Fourth International APL User's Conference , July
1972, published by the Board of Education of the City
of Atlanta, Georgia.

Iverson, K. E.

Introducing APL to Teachers
IBM Tech. Report No. 320-3014

An Introduction to APL for Scientists and
Engineers

IBM Tech. Report No. 320-3019

APL in Exposition
IBM Tech. Report No. 320-3010

Berry, P. C., G. Bartoli, C. Dell 'Aquila, and
V. Spadavecchia

APL and Insight: The Use of Programs to
Represent Concepts in TeacnIng--

IBM Tech. Report No. 320-3020

Falkoff, A. D. and K. E. Iverson

"The Design of APL"
IBM "J our na l of Research and Development,
pp 324-334 , Vol. 17, No. 4~uly, 1973

Lathwell, R. H.

"System Formulation and APL Shared Variables"
IBM Journal of Research and Development,
pp 353 359, vcr. 17, No. 4~uly, 1973

	hpsc8
	hpsc9
	hpsc10
	hpsc11
	hpsc12
	hpsc13
	hpsc14
	hpsc15
	hpsc16
	hpsc17
	hpsc18
	hpsc19
	hpsc20
	hpsc21
	hpsc22
	hpsc23
	hpsc24
	hpsc25

