

Scientific
Time Sharing
Corporation

7316 Wisconsin Avenue
Bethesda, Maryland 20014

NOTE TO READERS

In becember 1974 Scientific Time Sharing
Corporation held a seminar for its
APL*PLUSt Service Representatives. One
outcome of that seminar was a "wish list"
of goodies these marketing folks would
like to have. On that list, they
expressed a desire for some sort of
"APL Whizbang" -- a column describing
neat programming tricks that would illus
trate some powerful, but perhaps not
obvious, features of the language.

A year later, in delayed response to that
request, the "Whizbang" was born in News,
the APL*PLUS Service newsletter. Th-e--
first "Whizbang" illustrated a program
ming technique for finding the current
definition of a name. That was the first
and last pure "Whizbang". In response to

:reader requests, the "Whizbang" evolved
into a more general tutorial on APL pro
gramming techniques.

Over the past two and a half years, the
reader response to the "Whizbang" has been
gratifying. Today it remains one of the
most popular features of News. For those
who've never seen the "Whizbang" and for
those who'd like to reminisce, we've
collected past "Whizbangs" in this handy
reference booklet.

Neither the "Whizbang" nor this booklet
could exist without the devoted efforts
of Karen Kromas and Beth Matsumune of
STSC. Many thanks to them -- for patiently
translating my barely legible scrawl into
finished columns -- and to the other STSC
people who review the drafts. And, most
of all, thanks to the readers who make it
all worthwhile.

Roy A. Sykes, Jr.
Los Angeles, California
August 1978

tAPL*PLUS is a service mark and trademark
of Scientific Time Sharing Corporation,
registered in the United States Patent
and Trademark Offices.

WHAT'S IN A NAME?

Finding the current definition of a
named object in the workspace is useful in
programs that mayor may not reference
global objects. A common technique, using
the APL*PLUS primitive DSIZE, to find the
storage required is:

R+o<DSIZE 'OBJECTNAMES'
A DSIZE ++ STORAGE REQUIRED

Unfortunately, this algorithm returns a I
indiscriminately for groups and labels, as
well as for functions and variables. Us
ing DIDLOC (object definition) is more
appropriate, but has the disadvantage of
producing too much information; we wish
only to know what the current definition
is, not that at every level of the state
indicator.

Before the scan operator's existence,
the technique for picking out the proper
element of A+DIDLOC 'OBJECTNAMES' (in
ORIGIN 1) was cumbersome:

With the advent of scan, the same funda
mental technique was used, incrementally
improved to:

But using scan in another way gives
us a much more elegant solution:

The last solution is fast and succinct,
and works in either origin.

The results of these three algorithms
are the same:

R object is currently
o undefined
1 a function
2 a variable
4 a group
8 a label

Observe that <\ is similar to v\, but
only the first 1 on each row is preserved.
Because the global definition of an object
cannot be -1, we're assured of exactly a
single 1 in each row of the result of <\.

One use of this technique is the emu
lation of subscripted or triadic APL func
tions (AlB or AI[KJB) :

V R+A COMPRESS B;C
[1J C+,DIDLOC 'COORD' 0 +(2=«\C~-1)IC)pd

[2J R+AIB 0 +0
[3J 4:R+AI[COORDJ B 0 C+DERASE 'COORD'

V

V R+B SUB C
[1J COORD+C 0 R+B

V

-1-

1 o 1 COMPRESS 3 3P19 SUB 2
1 3
4 6
7 9

1 o 1 COMPRESS 3 3P19 SUB 1
1 2 3
7 8 9

1 o 1 COMPRESS 3 3P19
1 3
4 6
7 9

December 1975

PERMUTATION VECTORS IN APL - A RANK ANSWER

This article shows how one can use
permutation vectors in APL to rearrange
city names and population data from sepa
rate sources into a convenient report.

One common characteristic of the four
expressions:

S?S 0 lS 0 !V 0 'V

is that they each generate a E~~mutation

vector. A permutation vector-or-rength N
is an arbitrary arrangement of IN. A
permutation vector may be recognized by
the truth of either of the following ex
pressions, which both assert whether PV
contains exactly one of all its indices:

A/(lpPV)EPV
A/PV[~PVJ= 1 pPV

One may also test whether a vector is
a permutation vector by:

A/PV=!!PV

This statement depends on the fact that
every permutation vector has a unique
inverse permutation, expressed as ~PV. If
PV-rs-rndeed a permutation vector, then
the inverse of its inverse should be iden
tical to itself.

Because permutation vectors represent
all indices of a vector with pPV elements,
they-are-commonly used in selection and
reordering. For instance, GV+'V generates
that permutation which, if applied as
subscripts to V, would arrange V in de
scending order:

V+?10p99 0 V2+V[GV+'V] 0 A/V2=L\V2
1

V,[lJ GV,[O.5J V2

85 41 15 40 5 42 80 2 54 78
1 7 10 9 6 2 4 3 5 8

85 80 78 54 42 41 40 15 5 2

(V)
(GV)
(V2)

The particular permutation GV is
called a descending ~~~~ vecto~. The
inverse permutation of a grade vector is
called a ~ing vect££, which expresses
the ordinailty of the vector:

V,[l] GV,[0.5] !GV
85 41 15 40 5 42 80 2 54 78

1 7 10 9 6 2 4 3 5 8
1 6 8 7 9 5 2 10 4 3

(V)
(GV)

(!GV)

-2-

!'V is the descending ranking vector
on V because it rs-the permutational in
verse of the descending grade vector of V.
One might expect then that !!V is the
~cendi~ ranking vector on V, and that is
Indeed tne case.

Although grade vectors occur more
commonly, ranking vectors have many uses
in merging, rearranging, and reporting
data. For example, suppose we have a
matrix of city names, NAMES, arranged by
state, an associated vector EW indicating

-3-

D+POP+POP[GRADEJ
641 3367 515 1233 2816 7868 1949 716 757

D+GRADE+!CODED
6 539 1 7 824

D+CODED+RAiALP1~NAMES

2.09E24 3.02E24 8.95E23 3.59E24 7.67E23
6.62E23 2.32E24 2.62E24 1.52E24

populations, although we will be using the
ordering of city names to organize the re
port.

(VPOP)
(RANK)

(VPOP),[O.5J RANK+!VPOP
6 2 5 7 498 1 3
829 5 3 147 6

NAMES
LOS ANGELES, CA
SAN FRANCISCO, CA
DENVER, CO
WASHINGTON, DC
CHICAGO, IL
BOSTON, MA
NEW YORK, NY
PHILADELPHIA, PA
HOUSTON, TX

EW
1 1 1 000 0 0 1

whether the cities are eastern (0) or
western (1), and two vectors, EAST and
WEST, containing the population of the
eastern and western cities.

EAST
757 3367 641 7868 1949

WEST
2816 716 515 1233

Line [7J uses GRADE, which we compu
ted on line [4J to sort by city name, to
reorder NAMES in ascending sequence; it
then uses ~FMT to format the report.
VOILA! -- Your very own almanac.

We wish to produce a single listing,
sorted by both city name and population.
This is almost impossible to do (unless,
fortuitously, the order of cities and
populations correspond), because objects
(lines of the report) can only be arranged
in one order at a time.

However, ordering can also ~e indi
cated by a ranking vector, so we decide to
arrange the report by city name, and ex
press the population relationships by a
ranking vector. The function REPORT uses
two ranking vectors and one independent
grade vector.

REPORT
~1~l_M~M~ _
BOSTON, MA
CHICAGO, IL
DENVER, CO
HOUSTON, TX
LOS ANGELES, CA
NEW YORK, NY
PHILADELPHIA, PA
SAN FRANCISCO, CA
WASHINGTON, DC

April 1976

_E.QE.
641

3367
515

1233
2816
7868
1949

716
757

!1~!i.K
8
2
9
5
3
1
4
7
6

V REPORT;RA;ALP;POP;RANK;GRADE;FORMAT
[lJ A REQUIRES <NAMES,EW,EAST,WEST>.
[2J ALP+' ,ABCDEFGHIJKLMNOPQRSTUVWXYZ'
[3J RA+pALP 0 POP+(EAST,WEST)[!!EWJ
[4J RANK+!VPOP+POP[GRADE+!RAiALP1~NAMESJ

[5J 'CITY NAME POP RANK'
[6J FORMAT:'17Al:X3:14,X2:13' ----
[7J FORMAT ~FMT(NAMES[GRADE;J;POP;RANK)

V

On line [3J of REPORT we use an as
cending ranking vector, !!EW, to merge the
elements of EAST and WEST:

EW 0 !EW 0 !!EW
1 1 100 0 001
45678 1 2 3 9
678 1 2 3 4 5 9

EAST,WEST O D+POP+(EAST . WEST) [! ! EWJ
757 3367 641 7868 1949 2816 716 515 1233
2816 716 515 757 3367 641 7868 1949 1233

POP and NAMES now correspond; hence, we
must reorder both by the same indices to
maintain that relationship.

Line [4J of REPORT performs several
operations. It generates an ascending
grade vector by coding the city names into
numbers and grading up those numbers; it
reorders POP into ascending sequence by
city name, saving GRADE so we can later
reorder NAMES by the same permutation; and
finally, it generates a descending ranking
vector on POP to express the ordering of

-4- -5-

SUBSCRIPTION

This article discusses the use of
subscription for selecting and changing
scattered elements of an APL array.

The APL indexing (or subscription)
function provides a powerful facility for
identifying elements of an array. Once
identified, those elements may be selected
(DATA+V[IJ) or chan~ed (V[IJ+DATA). An
individual element IS identified by one or
more indices, depending on the rank of the
left argument. Each set of indices suffi
cient to identify one element of an array
is called an index-tuple. The right argu
ment is a lisr-or-APL expressions repre
senting the-rndices for each co?rdinate of
the left argument. The expressIons ~re

separated by semicolons, and the entIre
list is enclosed in brackets.

LEFTARG[R;I;G;H;T; ••• ;A;R;GJ

(outer product) cross-coupling, leaving
only (scalar) parallel-coupling. The two
techniques for doing this are:

o refine the result of the index func
tion, and

o reduce the rank of the indexed array.

It is important to note that, for
vectors, only one index is needed to iden
tify each element. Hence, vector indexing
already can do scattered-point selection
because no index-coupling is performed.

V+' BRUTE' 0 V[6 5 1 5 4J
ET TU

However, for matrices, two indices are
needed to identify each element. Indexing
produces these two-element index-tuples by
coupling all specified row and column
indices:

If all indices of a coordinate are used,
the expression (but not the semicolon) may
be elided for that coordinate.

The elements that are identified
represent the cross product (outer prod
uct) of all specified indices ~f.eac~ .
coordinate coupled to all specIfIed IndI
ces of the other coordinates. For in
stance, each element of a three-dimension
al (3-0) array,

O+T+ 2 3 5 p130
1 234 5
6 7 8 9 10

11 12 13 14 15

M+'SPADE CLUB HEART DIAMOND'
O+M+ 4 7 pM

SPADE
CLUB
HEART
DIAMOND

M[l 2 4 3 1 1 3 2 5 lJ
SAPES
CUL C
DAIOD
HAETH
SAPES

16 17 18 19 20
21 22 23 24 25
26 27 28 29 30

must be identified by three indices:
layer, row, and column.

Using transpose to refine the result

Suppose that what we really want in
the above case is simply a pairwise cou
pling of the row and column indices, for
example:

L+2 0 R+l 0 C+4
T[L;R;CJ

M[l; lJ ,M[2; 3J ,M[4; 2J ,M[3; 5J ,M[l; lJ
SUITS

19

If the result of any of the expres
sions is not a one-element array, each
element is conceptually coupled with all
elements of the other expressions to pro
duce an array of index-tuples (in this
case, each having three elements),

Look back at the major diagonal (top
left to bottom right) of the matrix re
sult. Primitive indexing has in fact
selected what we want, and more. By using
dyadic transpose, we can select that diag
onal, thus achieving the effect of a pair
wise coupling of the row and column indi
ces:

(pVl)L (pV2)L (pV3)L ••• LpV~

(~Pl)~A[Vl;V2;V2;••• ;V~J

and the result would be a vector of length

This technique applies to selecting
scattered elements out of any array, as
suming the index expressions are vectors.
For A[Vl;V2;V3; ••• ;V~J (where ~+ppA), one
would use

1 3 2 5 lJ1 1 ~M[l 2 4 3 1
SUITS

L+ 2 1 0 R+3 0 C+ 1 2 5 2
F+'G~ T[9;9;9J ~,

F ~FMT(Lxl00)o.+(Rxl0)o.+C

T[2;3;lJ T[2;3;2J T[2;3;5J T[2;3;2J
T[1;3;lJ T[1;3;2J T[1;3;5J T[1;3;2J

which are then used to select the data:

T[L;R;CJ
26 27 30 27
11 12 15 12

If we wish to select elements scat
tered throughout the array, the outer
product index-coupling generally identi
fies more elements than we want. Essen
tially, we would like to disable the

-6-
-7-

J+'JELL JELLO JELLY JELLIED'
G+'GEL GELD GELT GELATIN'
D+JG+(47 pJ),[0.5J 4 7 pG

JELL
JELLO
JELLY
JELLIED

If we generalize the problem somewhat
we find that we can primitively select:

scattered points (scalar elements) from
vectors by V[CJ, and

scattered lines (row/column vectors) from
matrices by M[R;J or M[;CJ, and

scattered planes (matrices) from
3-D ar rays by T [L; ; J, T [; R; J, or T [; ; CJ •

(Elided coordinate indices may be replaced
by any APL expression.)

Remember that we can select scattered
points from a matrix, but only if they all
fallon a single row or column. The same
principle applies to scattered points or
lines in a 3-D array. Essentially

GEL
GELD
GELT
GELATIN

1 1 2 QJG[1 1 1 2 2
JELL
JELLIED
JELLY
GELATIN
GEL

1 4 3 4 1 ;]

M[3; 5 1 2 3 5 2 4J
THEATER

is really only selecting scattered points
from the vector

M[3;J
HEART

(M[3;J)[5 1 2 3 5 2 4J
THEATER

Conversely, we cannot select:

scattered scalars from
matrices or higher-order arrays, or

scattered vectors from
3-D or higher-order arrays, or

scattered matrices from
4-D or higher-order arrays,

trnless all the selected subarrays are
Identified by single indices along all
other coordinates (thus effectively reduc
ing the rank of the indexed array).

In general, if we wish to select more
than one subarray (e.g., a scalar) from an
array-oI rank greater than one higher than
that subarray (e.g., a matrix), we must
use a slicing transpose to obtain the
result. The following table illustrates
scattered-array indexing for common cases
where L, R, and C are vectors:

Select
scat- from from from
tered a vector a matrix a 3-D array

points 1~V[CJ* 1 1~M[R;CJ 1 1 1~T[L;R;CJ

cols 1~V[C]* 1 2~M[; CJ* 2 1 2~T [L; ; C]

rows 1~V[J* 1 2~M[R;]* 1 1 2~T[L;R;]

planes 1 2~M[;] * 1 2 3~T[L;;]*

(*) The ~ may be elided from these expres
sions.

Here's an example of indexing scat
tered rows:

-8-

Reducing the rank of the indexed array

The transpose technique is concise,
but it has several disadvantages:

o For large right arguments (the indi
ces) it requires a great deal of tem
porary workspace storage and extra
computer time to select all the super
fluous data before the transpose is
performed.

o Altering the shape of the result ne
cessitates potentially confusing
changes to both the indices and the
left argument to transpose.

o It does not allow specification.

An alternative technique is to reduce
the rank of the indexed array such that we
can use primitive indexing. This requires
that we somehow recalculate the indices to
correctly identify the desired data. In
the preceding example (selecting scattered
rows) :

(8 7 pJG)[1 4 3 8 5 ;]
JELL
JELLIED
JELLY
GELATIN
GEL

The indices were actually calculated by:

IND+ 1 1 1 2 2 .[0.5J 1 4 3 4 1
D+IND+(11)+(-1~pJG)~IND-11

14385

Notice the dependence on the ORIGIN (11)
to offset the indices when working in
ORIGIN 1. Number systems (which is actu
ally what i deals with) are based in
ORIGIN O.

A more common case is selecting scat
tered points from an arbitrary array.
Since only vector indexing primitively
allows selection of scattered points, we
must reduce the rank of the array to 1
(e.g., ravel it) and calculate the sub
scripts (assume ORIGIN 1):

-9-

7 0 "fM SPS ROWS,[2.5J COLS
1 6
2 12
3 18
4 24
5 30

5 0 2 0 "fROWS,COLS
1 1 1 6
1 2 2 5
1 3 3 4
1 4 4 3
1 5 5 2

DATA+ 3 3 4 5
D+M+M SPA 4 2 p 2 1 , 4 5, 3 2 , 5 4

2 2 3 2 5 6 7
3 2 10 11 12 13 14

15 4 17 18 19 20 21
22 23 24 2 - 3 27 28
29 30 31 5 33 34 35

DATA+-2
D+M+M SPA 5 2 p 1 1,1 4,2 2,3 2,4 4

2 2 3 -2 5 6 7
8 2 10 11 12 13 14

15 2 17 18 19 20 21
22 23 24 2 26 27 28
29 30 31 32 33 34 35

The function SPA might be used as
follows:

M SPS 2,[1.5J15 A ROW 2; COLS 1-5
8 9 10 11 12

M SPS(15),[1.5J 2 A ROWS 1-5; COL 2
2 9 16 23 30

M SPS 5 1 p15 A LAST COORD. EXTENDED
1 9 17 25 33

ROWS+l,[1.5J15 0 COLS+(15),[1.5J7-15

V R+A SPS B;C
A SCATTERED-POINT SELECTION.
A ~A> IS THE-ARRAY-TO BE SUBSCRIPTED.
A IS THE ARRAY OF COORDINATE
A INDICES IN <A> SUCH THAT ITS LAST
A COLUMN REPRESENTS COLUMN INDICES,
A THE NEXT-TO-LAST (IF ANY) IS ROW
A INDICES, THE NEXT IS LAYERS, ETC.
A CONFORMABILITY: C-ltl,pB)el,ppA
A ORIGIN DEPENDENT. (pR)=-l+pB
R+pA 0 C+"ll
R+(,A)[(R~(l~lPpB)~B)+C-R~CJ

[lJ
[2J
[3J
[4J
[5J
[6J
[7J
[8]
[9J
[10J
[11J

V

L+ 1 1 1 1 2 2 2 2 1 2 2 2 2 2 2
R+ 1 1 1 1 2 4 4 4 2 2 4 2 3 2 1
C+ 1 2 3 4 7 6 7 5 5 7 4 7 1 2 3
A J ELL I N T 0 AGE L

In fact, we can write a generalized
scattered-point selection function as
follows:

It may be clearer if we look at rav
elled JG (after removing spaces), its
indices, and the indices we calculated:

Notice how the base value operation
(i) had the effect of multiplying L by 28
(number of elements in each layer), R by 7
(number of elements in each row), and C
by 1.

B+' '~V+,JG 0 ~'I2' ~FMT BIlpB 0 BIV
111111112222222233333344445555555

123489012567892345678901678934560123456
JELLJELLOJELLYJELLIEDGELGELDGELTGELATIN

l+(pJG)~(L,[lJ R,[0.5J C)-l
1 2 3 4 42 55 56 54 12 42 53 42 43 37 31

(,JG)[l+(pJG)~(L,[lJ R,[0.5J C)-lJ
JELL INTO A GEL

A scattered-point assignment func
tion, utilizing a global to hold the data,
might be defined as:

V R+A SPA B;C
[lJ A SCATTERED-POINT ASSIGNMENT.
[2J A SIMILAR TO-<SPS>-BUT THE RESULT IS
[3J A THE LEFT ARGUMENT <A> MODIFIED BY
[4J A THE GLOBAL <DATA>.
[5J R+,A 0 C+"ll 0 A+pA
[6J R[(A~(l~lppB)~B)+C-AiCJ+DATA0 R+ApR

V

DATA+ 4 4 p14
R+ 1 2 2 2 3 3 3 3 4 4 4
C+ 6 3 5 7 1 4 6 7 1 3 5
D+M+M SPA (4 4 pR),[2.5J

223 2 5 1 7
3 2 2 11 3 13 4
1 4 17 2 19 3 4
1 23 2 2 3 27 4

29 1 31 5 2 3 4

June 1976

4 5 555
7 2 5 6 7
4 4 pC

In both of these functions, the ORIGIN
offset is calculated in a slightly differ
ent fashion to maximize efficiency for
large index arrays.

A few examples should show the power
of SPS:

D+M+ 5 7 p135
1 2 3 4 5 6 7
8 9 10 11 12 13 14

15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31 32 33 34 35

M SPS 5 2 p 1 1 , 1 4, 2 2 , 3 2, 4 4
149 16 25

-10-
-11-

SOME NOTES ON DATE STORAGE

The processing of calendar dates
often involves fairly complex conversions
between the stored representation and what
is presented to the user. Typically,
dates are stored in one of two formats,
both designed to allow the representation
of a date as a single number:

o Ordinal Representation
Dates in this form are stored as inte
gers indicating the number of days
elapsed since a certain base date. In
particular, the APL*PLUS File Subsys
tem stores DFRDCI timestamps as ordi
nal values relative to March 1, 1960.
Given a file timestamp TS, the number
of elapsed days can be calculated by
LTSt5184000 (5184000 = the number of
sixtieths of a second in one day).

o Packed Representation
Dates in this form are stored as
100LYEAR~MONTH~DAY. The form is com
monly abbreviated to YYMMDD, express
ing only dates in the twentieth cen
tury. Today's date represented as a
packed number can be calculated by

100oooo1100L3tOTS
760714 A BASTILLE DAY

Both representations allow qualita
tive analysis among dates. That is, dates
stored in either format may be compared
and ordered directly. However, quantita
tive analysis (e.g., "How many days be
tween •.. ") is possible only with the
ordinal representation.

Ordinal dates are not as commonly
used as packed dates because they are
significantly more expensive to process,
particularly in the complex conversion
necessary to display them in a meaningful
format. Frequently, dates are stored in
packed format, and occasionally converted
to ordinal format for quantitative pro
cessing.

Dates also have a variety of display
formats, such as:

To really speed up the process, how
ever, we should consider formatting only
one number per date. This can be done by
repacking the dates in the desired order,
and using the G format phrase to insert
the slash (/) decorations:

D+l00~la 100 100 100 TDATES
'G~Z9/99/99~' OFMT D

The reordering can be speeded up even
more by:

D+100~a 0 10000TDATES

which reduces the required number of in
ternal arithmetic and data-movement opera
tions.

A disadvantage of the above tech
niques is that they all require a large
amount of intermediate storage; in fact,
they may temporarily require up to six
times the working area for each date! The
solution is some clever algebraic manipu
lation of the digits within each date.

Here's a symbolic illustration of
what we want:

~MDD+
MMDDYY

1. Let's start by picking off the month
and day:

10000lYYMMDD
MMDD

2. Multiplying that by 1000000 (6 digits)
produces:

1000000 xMMDD

MMDDOOOOOO

3. To which we add the original dates:

YYMMDD+MMDDOOOOOO
MMDDYYMMDD

4. Now all we have to do is divide by
10000 (to eliminate the trailing four
digits that represent MMDD) :

The standard format used in columnar re
ports is MM/DD/YY (although in Europe the
accepted form is DD/MM/YY). Assuming our
dates are in a vector DATES in YYMMDD
form, how can we most efficiently display
the standard format?

7/4/76 SEPTEMBER 2~ 1945 31 MAY 69
MMDDYYMMDDtl0000

MMDDYY.MMDD

5. and floor the result:

LMMDDYY.MMDD
MMDDYY

The most obvious approach is to un
pack the dates into three numbers each,
reorder them, and format each column:

D+~le 100 100 100 TDATES
'I2,~/~,ZI2,~/~,ZI2' OFMT D

We can reduce the number of format
phrases, and speed up OFMT's operation, by
the following:

'I2,2P~/~ZI3' OFMT D

-12-

It could be written in one statement:

L(YYMMDD+l000000 x10000IYYMMDD)tl0000

There's yet a further simplification
that will eliminate the L, and allow the
whole calculation to proceed in integer
representation. The fractional part of
step (4) is exactly (10000IYYMMDD)tl0000.
Given MD+l0000IYYMMDD, the statement above
becomes:

L(YYMMDD+l000000 xMD)tl0000

-13-

which is equivalent to:

«YYMMDD+l000000 xMD)fl0000)-MDfl0000

because of the fraction in step (4). Now
distribute the denominator (10000):

«YYMMDD+l000000 xMD)-MD)fl0000

Reassociate the numerator:

(YYMMDD+(1000000 xMD)-MD)fl0000

Add common terms (distribute MD) :

(YYMMDD+999999 xMD)fl0000

and expand MD:

(YYMMDD+999999 xl0000IYYMMDD)fl0000

This statement requires one-third the
dynamic storage of its equivalent:

100~e 0 10000 rDATES

and executes up to three times faster!

As an exercise, try applying these
principles to converting dates input in
MMDDYY form to their YYMMDD representa
tion.

August 1976

-14-

STRETCHING THE WORKSPACE

programs execute faster in less
space". Those are sweet words to APL
users. They mean functions will consume
fewer CPU cycles, take less connect time,
and require less workspace storage. The
net effect is lower cost and increased
utilization of the APL workspace.

That third benefit is important.
Workspaces hold only a limited amount of
information. They must accommodate func
tions, variables, groups, a symbol table
(to store object names), execution stack
information (the state indicator), and
other internal directories. Moreover,
during execution of expressions, the
active workspace is continually allocating
and freeing storage for temporary values.

By making efficient use of the free
working area of the active workspace (mea
sured by DWA), the APL*PLUS System reduces
the incidence of WS FULL errors. The user
can therefore store more programs or pro
cess more data than is otherwise possible,
thus leading to additional benefits in
programmer productivity, more efficient
execution, and reduced internal overhead.

There are four fundamental, as well
as several specialized, mechanisms cur
rently employed by the APL*PLUS System to
conserve available workspace storage
resources. All are invoked automatically,
and generally have no immediately apparent
effect on running programs. Without them,
however, usable working area would be
drastically reduced, and WS FULL would be
a recurring nightmare to programmers.

When executing a function, the APL
System typically requires space for both
the argument(s) and the result simultane
ously. For example, during execution of

R+(VEe~0)fMAT[;2 3 4J

the system will, at one instant, require
space for the temporary value VEe~O, the
other temporary value MAT[;2 3 4J, and the
result of the compression. Essentially,

TEMP1+VEe~0 0 TEMP2+MAT[;2 3 4J
R+TEMPlfTEMP2 0 DERASE 'TEMPl TEMP2'

Of course, VEe and MAT are held in the
workspace during the entire process.
Given this general rule, let's see how the
system tries to conserve space.

1. In-place storage

Often the system recognizes that the
result of an operation fits into the space
used by one of its temporary arguments,
and is "smart" enough to use that same
area to store the result. For instance,

A++\1100

requires space only for 1100; the +\ is
subsequently stored over that temporary

-15-

value. This effect would not take place
for A~+ \ A because the argument to scan is
not a temporar y value.

Other examples of in-place storage
are:

R~A [~ 1 5 0J A BOT H FOR ~ AND [J
R~ 1 0 1 p2 + 1 10 0 A BO TH FO R p AND +

Some functions, like reversal and reshape,
normally make copies if there is room in
the workspace, and resort to in-place
storage and slower algorithms only if
necessary to avoid a WS FULL condition.

2. Chained va riab l e s

Chained va riables can result in
significant savings when using defined
functions with named arguments. Most
APL s ystems materialize often super
fluous (waste ful) copies of named a rgu
ments; the APL*PLUS System defers copy ing
until necessary -- sometimes not at all!

The following function returns an
ascending grade vector on its numeric
matrix argument:

~ R~GRADE MAT;I O;COL
[l J I O~' '11 0 R~ l (pMA T) [IO J

[2J ~(COL~(pMA T)[IO+1 J)+0 0 COL~COL --IO

[3J &:R~R[!MAT[R;COLJ J 0 ~& xIO$COL~COL-l

~

Given M~? 1 00 20 pl00, executing
G V~GRADE M requires OWA to be slightly
more than 1400 bytes. The traditional
function-calling mechanism would have
required OWA to be more than 9400 bytes to
avoid a WS FULL.

3. Datatype conservation

Numbers stored in binary, integer, or
floating-point format require 1, 32, or 64
bits per number, respectively. Several
enhancements in the APL*PLUS System deal
with conserving storage by maintaining
datatype wherever possible. For example,

60 f1 6 0 2*1 31 0 !112

all return 4-byte integer results, rather
than the 8-byte floating-point results
given by other APL systems. Similarly,
dyadic x , *, r, L, I, and l operations on
Boolean arguments preserve the binary
datatype. Also, indexed assignment
attempts to maintain the data type of the
target variable whenever possible. For
example:

A~100pO 0 A[J~200 A COS OF 0 RADIANS

preserves A as binary, even though 20 0 is
a floating-point 1.

4. Name referencin~

Several identity operations perform
no actual data movement in the workspace
at all. Instead they pass internal point
ers to the right argument. This occurs

-16-

for both named and tempor ary arguments.
For instance, the following e xp r e s s io n
takes almost no workspace storage be yond
that required for CV :

CV~8 0 0 00 p ' A BC '

CV~(pCV) p'l /.~' CV[J'

A AA AAA A PASS POINTERS

A particularly common use is functions
that ravel arguments which are predomi
nantly vectors anyway.

5. Specialized mechanisms

Besides the techniques described
above, several others are used when speci
fic syntactic constructions are encoun
tered. For instance

'1 80' OFMT 10000pl

requires only 1500 bytes for execution,
even though the "result" would seem to
require 800,000 bytes. Similarly,

BV/lpBV

requires space only for the result. In
the case where BV~-50000 0tl, OWA need be
only 76 bytes to execute the expression,
rather than the over 2 million bytes that
might otherwise be necessary. Another
special case is ~OLC, which requires only
40 bytes for execution, regardless of the
size of the state indicator. In fact,
~OLC may work when OLC alone engenders a
WS FULL error!

Of course, a large workspace always
helps. As recently as 1972, an APL*PLUS
workspace was limited to 32,000 bytes -
now it's over 100,000 ! Th eoretically, we
could allow even larger workspaces. But
keeping workspaces reasonably-sized and
making maximum use of that storage
increases the throughput of the APL*PLUS
System, and assures maximum machine utili
zation, economical operation, and the good
response time which users depend on.

The ability to bring data and func
tions in from files, to dynamically
expunge objects, and to automatically load
other workspaces also helps the user avoid
WS FULL errors. And, of course, there's
always)ERASEl But the automatic mecha
nisms used by the APL*PLUS System are the
silent sentries in stretching storage.

October 1976

-17-

BRANCHING AN D ITERATION

Th i s articl e discusses some g u i de
lines a nd techniques for branching a nd
iter ation in APL. Many people have asked
me, "Wha t ' s th e fast e st way t o b r a nc h ? "
I hope to shed some l ight on t h i s o f ten
malign ed subject.

is ce r tainl y more understandable t ha n

o +(M ~ C+C+1)t OLC

or

f : . . . 0 - r r l M ~ C+C+ 1

Yo u can de fin e the fun ctions IF a nd
TH IS L as :

IF can also be us ed f or multipl e
conditions. For instance ,

Gui5!~:!:.ines for Branc!:!.ing

The follo wi ng three guidelines will
simplify th e maintenance of your code and
i mprov e its readabilit y . The techniques
you us e are not as important as how con
sistentl y you us e them .

i

'V R+A IF B
[1] R+B/A

'V

'V R+TH IS L
[1] R+1t H OLC

'V

1 . Branch to labels , no t line numbe r s .
If yo ur branch t a r get s a r e l i ne numbe rs
rather than l a be l s, s i mp l y i nser ti ng or
de le ting l i nes f r om a pr ogram can become a
heinou s task . Further more , mino r be ne f i ts
in storage a nd exec utio n speed ar e gai ne d
by us i ng label va riabl es rather than con
s t a n t s .

2. Adopt a consistent notation for
labels. Labels like LOOP , AGAIN , DO,
MORE , and OO PS seldom add clarity to p r o
grams , e s pe c i a l ly large p r og rams . Fur
t hermore , t hey give the reader little or
no clue as to whe r e i n the function they
refer, or whether th e y are in fact labels.
Common notations are (L1 ; L2 ; L3 ; ••. J and
(d ;~ ;k ; ... J . More mnemonic conventions
can help the r e a de r recognize program
s egments (for example , LP1 o r ER2) . The
notation o r conve ntion that you choose is
i rre levant as l ong as you adhere to it .

3. Adopt consistent techniques for
br anching and i tera tion. For instance ,
s ome people fav or

+LABE Lx l co nd i t i o n

wh ile o ther s use

+(con di t io n)pLABEL

Aga in , i t ' s not s o i mporta n t which
tec hn i q ue s you use (e xcept f or trivial
differences in execu tion speed) , but that
yo u use them consistently . Among my per
sonal favorites a r e:

+(condition) pLABEL o r +(condition)tLABEL
+(xpvector)pLABEL or +(pvector)+LABEL
+(conditions) /L ABEL or + (A/conditions)p LABEL
+LABELxcondition or +LABELx-condition

~~~~ ~~~f~:!:. ~~~!:!.~iq~~~

1 . Subr out i nes to handle br a nc h ing log i c .

Programs can o f t en be made mo re read
abl e by usi ng functi on s with mnemoni c
names f o r branch c a lculations . Fo r
i ns t an ce ,

... 0 +THISL IF M ~C+C+1

- 1 8-

+(L 4 , L5 ) I F 1 1=xA

wil l br a nch to L4 i f A i s ne ga t i ve , L5 i f
A i s pos itive , and fal l thro ugh if A is
zero .

The se f unctions are especially be ne 
ficia l in programs with complex branching
logic and many trans fers of co n trol. How
ever, i n simple iteration (see below) . the y
exact a small but no t i c e a bl e penalty in
CPU resources .

2 . Fa ster tech niques for iteration.

The following techniques, while quit e
fast , generall y detract from readabilit y
and should therefore be used judiciousl y.

Typically, loops involve a leading
test as exemplified by IT ERATE.

'V IT ERATE M;C
[ 1 ] SETU P 0 C+1
[ 2 ] + 0 I F C> M 0 PROC ESS 0 C+C +1 0 +OLC

'V

We c an produce a spe ed i e r version of
I TERATE by elimi nati ng t he IF subroutine
a nd us ing a l abel .

'V I TERATE2 M;C
[1 ] SETUP 0 C+1
[ 2 ] d:+(C>M )pO 0 PROC ESS 0 C+C+1 0 +d

'V

By empl oying a trailing test , the
branch ov e rhead can be r ed uc e d signifi 
cantly . The once -execu ted leadi ng tes t,
+MtO , accommodates the ze ro case .

'V ITERATE3 M;C
[ 1] SETUP 0 +M+ O 0 C+1
[2 ] A:PROCESS 0 +( M ~ C+C +1 )p A

'V

Fur the r , by pr ecalcu la ting all branch
po i nts, we c an avoid the serial iteration 
by -i tera tion testing . APL permit~ (and
even e nc ou rages) parallel p rocessing on
data -- why no t parallel calculations ,
testi ng , a nd branch -point dete rmination ?
ITE RATE4 i l lu s t r a t e s a simplified form of
t h i s tech n ique .

-1 9-



(Executed 11/29/76 at 7:27 P.M. EST
on APLPLUSC with 20 users)

[lJ SETUP 0 C+O
[2J A:+(M<C+C+l)pO 0 PROCESS 0 +A

\j ITERATE4 M;C;L
[lJ SETUP 0 C+l C +L+(MPA),O
[2J A:PROCESS 0 +L[C+C+1J

\j

However, resumption after a VALUE ERROR on
PROCESS would have incremented C twice
(once before the error, and once after the
restart), thereby skipping one iteration.

\j R+A SSl B;C;D;E
[lJ C+pA+,A) D+pB+,B ) E+ofc-ofD-1
[2J R+(EtA/«lD)-ll)eAo.=B)/lE
[3J A OR ALTERNATIVELY,
[4J AR+(EtAf«lD)-ll)~Bo.=A)/lE

\j

STRING SEARCHING

The most fundamental APL solution is
quite straightforward:

A string is a vector, typically
character. String searching means locat
ing the occurrences of one string, called
the substri~, in another string, called
the ta£9.et stri!!g. The result can be a
Boolean vector of the same length as the
target string with l's denoting the
leading element of each match. More
commonly (see each function below), the
result is the origin-sensitive indices of
the l's in the Boolean vector (i.e.,
BV/lpBV). Overlapping matches are possi
ble. In all functions, the left argument
A is the target string and the right
argument B is the substring for which we
will search.

The ability to rapidly locate string
occurrences in other strings is often
useful. The many techniques applicable to
the problem also provide enlightening
examples of efficient problem-solving in
APL. This article discusses several
algorithms for string searching to illus
trate efficiency of execution and some
interesting techniques.

2.97
1.68
1.41
1.00

2.89
1.67
1.40
1.00

2.47
1.45
1.23
1.00

1.60
1.08

.92
1.00

1.11
.90
.65

1.00

Note that all of the above algorithms
correctly handle the case where zero iter
ations are requested. They are also re
startable; that is, if PROCESS produces a
WS FULL or VALUE ERROR, the problem can be
corrected, and +DLC will resume execution
normally. It is true that ITERATE2 could
have been shortened to

The following table illustrates the
relative CPU timings of the above tech
niques with varying numbers of iterations.
The ratios are to ITERATE4: SETUP and
PROCESS were set as empty matrices.

Iterations (M)
o 1 10 100 1000

ITERATE
ITERATE2
ITERATE3
ITERATE4

3. ~ Recursed!

Did you know that you can use the
execute function (~) to effect iteration
in desk calculator mode? Assume M is the
number of iterations (Mzl), and C is the
counter (initialized as C+l). Now compare
the following two lines -- one in a func
tion, the other in desk calculator mode:

[NJ L: PROCESS 0 +(MzC+C+l)/L
~L+'PROCESS 0 ~(MzC+C+l)/L'

Both have the effect of executing PROCESS
as many times as called for by M. Observe
that whereas the first line uses branching
to the label L, the second uses ~ to
recursively execute the statement repre
sented by L. Unpleasantly, the execute
construction consumes significantly more
CPU time and is far more extravagant in
its use of workspace storage. It does,
however, illustrate the interesting rela
tionship between + and ~.

All characters in the target string are
compared with all characters in the
substring, the logical matrix is shifted
to align each potential occurrence, and
the indices of complete matches are
selected. Notice that if the length of
the substring B is greater than that of
the target string A, then no matches are
possible. Furthermore, if the substring
is empty, all indices are returned. The
number of potential matches, E, is nor
mally 1 plus the difference in lengths of
the strings, that is, E+1+C-D or E+C-D-1.
The two of's are to correctly handle empty
or overlong substrings.

A somewhat more elegant solution
employs inner product to detect matches:

\j R+A 5S2 B;C;D;E
[lJ C+pA+,A 0 D+pB+,B 0 E+ofc-ofD-1
[2J R+(EtBA.=(D,C+1)pA)/lE
[3J A OR ALTERNATIVELY,
[4J AR+(EtBA.=«lD)-ll)~(D,C)pA)/lE

V

January 1977
Rather than rotating a logical array, this
technique builds a matrix of all possible
matches and then uses A.= to select those
that are complete. Observe the pleasant
effect of the reshape on line [2J -- it
both builds and shifts the matrix. SS2 is
somewhat faster than 551, although it
requires more workspace area (DWA) in
which to execute.

-20- -21-

l



V R+A SS6 B;C;D;E;F;G
C+pA+,A 0 D+pB+,B 0 +~L4+D

A:R+1C 0 +0 A EMPTY STRING
R+(AEB)/lC 0 +0 A SINGLETON STRING

~:F+' ETAISONRLCFHUDMPBWYGKVJQXZ.,'
E+OrC-D-1 0 B+B[G+fF1BJ
G+G-F+tC+l
+(pR+(EtG[FJ~AEB[FJ)/lE)~O

G+F~G 0 B+F~B

(:+(pR+(A[R+G[CJJEB[CJ)/R)~O

+(xD>C+C+1

pr~bable occ~rrences in the target string.
Th1S letter 1S used for the first compari
son. Its index is then removed on line
[7J for the outer product calculation of
indices and A.= comparison on line [8J.

Since we have concluded that reducing
the number of potential hits on one
character is beneficial, why not do it on
two or three? In fact, why not conclude
the entire process by constantly refining
the potential matches until none remain,
or until we have exhausted the substring?
SSS does just that:

V R+A SS5 B;C;D;E
[1J C+pA+,A 0 D+pB+,B 0 +~Ld+D

[2J 4:R+tC 0 +0 A EMPTY STRING
[3J R+(AEB)/lC 0 +0 A SINGLETON STRING
[4J ~:E+OrC-D-1 0 +(pR+(EtAE1tB)/lE)~0
[5J B+(lC+1)tB
[6J (:+(pR+(A[R+CJEB[CJ)/R)~O

[7J +(xD>C+C+1
V

Through line [4J the function is
identical to SS3; that is, both empty and
one-element strings are accommodated, and
the first character of longer strings has
been compared. Line [5J initializes the
substring element counter, and modifies B
so that the counter is appropriate in
either origin. Lines [6J and [7J compose
the loop; on line [6J the Cth character
beyond existing matches in the target
string is compared with the Cth character
of the remaining substring. If no matches
remain, the function terminates. Other
wise, the counter on line [7J is incre-
mented and the function branches back to
line [6J if there are more characters to
compare in the substring.

In most cases, SS5 is highly effi
cient. It slows down somewhat if the
substring is quite long because it must
iterate on each element. On the other
hand, its antecedents are all dangerously
prone to WS FULL problems in similar
situations, especially if the target
string is also long. However, WS FULL
errors are still possible in SS5, particu
larly if the first character of the
substring occurs often in the target
string. This situation can be remedied in
much the same way as was illustrated in
the progression from SS3 to SS4:

[1J
[2J
[3J
[4J
[5J
[6J
[7J
[8 ]
[9J
[10J

V

An expected letter distribution vector is
used to rearrange the elements of the
substring so that the fewest possible
matches are likely for each iteration.

V R+A SS3 B;C;D;E
[1J C+pA+,A 0 D+pB+,B 0 +~Ld+D

[2J 4:R+1C 0 +0 A EMPTY STRING
[3J R+(AEB)/lC 0 +0 A SINGLETON STRING
[4J ~:E+OrC-D-1 0 +(pR+(EtAE1tB)/lE)~0

[5J R+(A[Ro.+(-1*11)~lDJA.=1~B)/R

V

V R+A SS4 B;C;D;E;F;G
[1J C+pA+,A 0 D+pB+,B 0 +~L4+D

[2J 4:R+1C 0 +0 A EMPTY STRING
[3J R+(AEB)/lC 0 +0 A SINGLETON STRING
[4J ~:F+' ETAISONRLCFHUDMPBWYGKVJQXZ.,'
[5J E+OrC-D-1 0 G+F1B 0 F+G1r/G
[6J +(pR+(Et(F-11)~AEB[FJ)/tE)~0

[7J G+(F~lD)/lD

[8J R+(A[Ro.+G-11JA.=B[GJ)/R
V

This function employs some new techniques
worth discussing. Notice the unusual
branch on line [lJ which has the effect of
trapping both the empty and one-element
cases. If desired, line [2J could then be
modified to return 10 in the empty case
rather than all indices -- a more usable
result.

While SS3 is a considerable improve
ment over SS1 and SS2, it is still rela
tively naive. For instance, if the first
character of the substring occurs fre
quently in the target string, little or no
savings may accrue. Furthermore, the risk
of a WS FULL is increased because of the
larger space required by the matrix of
indices. A more sophisticated algorithm
employs basically the same technique, but
attempts to minimize the number of initial
"hits" by searching for the character in
the substring that has the least number of
expected occurrences:

Unfortunately, both of these algo
rithms are inherently inefficient because
they must compare all possible combina
tions of characters-In the two strings;
that is, they are "blind", and continue to
process even if no matches are possible.
A somewhat better approach is to determine
the indices of the first character, and
compare only the remaining candidates with
the rest of the string:

Line [4J specifies a letter distribution
vector arranged in descending order of
expected frequency in normal text. By
line [6J, F has become the index in the
substring of the letter with the fewest

Line [4J calculates the number of
potential matches, and locates the occur
rences of the first character. (For
character arguments, E is typically faster
than = because of the internal algorithm
used. ) If the first character is not
found, the function exits immediately with
an empty result. Otherwise, a matrix of
all remaining candidates is built via
outer product and subscription, and A.= is
used to produce the compression vector
which selects only complete matches. The
(-1*11)~lD construct cleverly accounts for
the index origin while removing the index
of the character already examined.

-22- -23-



l

Besides reducing the expected storage
requirements, this technique normally
speeds up the search further because fewer
comparisons need be performed.

Some conclusions can be drawn from
the above discussion:

o the shortest solution is not necessar
ily the fastest;

o handling special cases as such is
often beneficial;

o iteration can be faster than "closed
form" code; and

o intelligent analysis of an algorithm
can yield substantial gains in CRU
efficiency and workspace conservation.

In case you're dubious, the following
timing comparisons should dispel any
doubts. The target string is the variable
INSTRUCTIONS (3683 characters) from
workspace 1 FILEAID on the APL*PLUS
System. The times are in CPU millisec
onds; the origin is 1.

B pR
SUBSTRING HITS SSl SS2 SS3 SS4 SS5 SS6

, , 3683 19 19 2 2 2 2, , 783 85 60 8 8 8 8
'w' 0 82 56 2 2 2 2, 342 164 105 27 28 14 14
'AN' 33 163 104 10 9 7 7

'aw' 0 162 103 3 4 3 4, THE' 20 262 204 55 9 14 8
'THE , 16 261 203 14 9 9 9
'MATRIX' 5 357 300 15 5 10 9
'RATMIX' 0 356 301 23 5 9 5, PERMITS' 15 456 403 113 17 18 13
'PERMITS , 15 455 401 16 17 12 13
'NOTFOUND' 0 454 399 22 19 7 7
'aE1Oup ...... W' 0 455 399 3 4 4 4

(Executed 2/25/77 at 9:19 P.M. EST
on APLPLUSC/470-100l1 with 8 users)

March 1977

-24-

TIMING ALGORITHMS

APL is a lovely notation for express
ing algorithms. Its rich set of primi
tives provides a wealth of identities -
alternative ways of formulating a problem.
In a theoretical or pedagogical environ
ment, these formal equivalences allow us
to write expressions and derivations in
the manner that seems most appropriate.
This use of APL as a mathematical notation
preceded its implementation as a computer
language by several years.

When APL was implemented in 1966, one
could, by simply assigning values to
variables and entering an expression, have
a computer evaluate it and return the
result. Henceforth, rather than being an
abstract notation, APL became widely known
as a computer language. In such a practi
cal environment, users soon discovered
that alternative formulations of the same
problem often took widely disparate
amounts of computer time to execute.
Since computer time costs money, users had
a definite interest in knowing the rela
tive costs of alternative algorithms. And
so were born timing programs.

A timing program simply measures the
time required to perform an algorithm.
The elapsed time, or the CPU time, or both
can be measured. However, the elapsed
time is usually ignored for two reasons:
(1) it varies due to unpredictable exter
nal influences (such as what else the
computer is doing at the moment), and (2)
its cost is typically insignificant as
compared to CPU time. On most large-scale
computers today, the cost of connect time
is typically less than one percent of
equivalent CPU time.

Thus, it is CPU time we wish to
measure, and the system function OAI
(accounting information) is our tool. Its
second element is the CPU time accumulated
since sign-on, which is measured in
thousandths of a second (milliseconds).
If we wish to measure the CPU time used to
perform an algorithm, we first record the
time, then execute the algorithm, then
note the time again and subtract.

V+?40pl000 0 M+? 40 40 pl00
OAI[2]

27

164
164-27

137

Thus, it took less than one-seventh of a
second to solve a set of 40 linear equa
tions with 40 unknowns.

Alternatively, to avoid reentering
desk calculator mode twice (which itself
takes a small amount of computer time) we
could perform:

-25-



l

CPU+DAI[2J 0 R+V~M 0 OAI[2J-CPU
131

Two problems are inherent in all
measurements: (I) the accuracy of the
measuring device, and (2) the impact of
the measuring device on the process it is
measuring. Observe that if we repeat the
test above, the time may differ slightly.

CPU+DAI[2J 0 R+V~M 0 DAI[2J-CPU
133

This phenomenon is normal and reflects
imprecise timing resolution within the
computer. We can improve the statistical
reliability of our measurement by perform
ing the algorithm several times, and
dividing the total time by the number of
iterations.

V CPU+FOR N;TIMES
[lJ CPU+DAI 0 TIMES+l
[2J A:+(TIMES>N)p~

[3J R+V~M

[4J TIMES+TIMES+l 0 +A
[5J ~:CPU+(DAI-CPU)[2JfN

'V

FOR 10
131.4

FOR 10
131 . 2

If the algorithm takes a very small
amount of computer time, as in the follow
ing example,

CPU+DAI[2J 0 R+99+11300 0 DAI[2J-CPU
2

CPU+DAI[2J 0 R+99+11300 0 DAI[2]-CPU
1

the coarse resolution of the timer makes
it impossible to obtain reliable measure
ments. Thus it is essential to repeat the
algorithm many times just to accumulate a
measurable amount of time.

'VFOR[3J R+99+11300'Y
FOR 100

1.84

'YFOR[3J R+99+11300'V
FOR 100

1.84

While FOR improves the accuracy of
our test, it imposes a measurable overhead
of its own, that of the testing and
looping time. If we remove line [3J and
rerun FOR,

'VFOR["'3J'V
FOR 100

0.32

we discover that the timing algorithm
itself uses one-third of a millisecond per
iteration. Thus, we should subtract this
overhead time from the result. This tech
nique is used in workspace 303 RASMARK.

A better and more general approach is
illustrated in the following algorithm.

-26-

'V B+A TIMES ~;Q;Q;RUN

[lJ ACPU FOR A ITERATIONS OF EXPRESSION ~

[2J Q+'O',~ 0 Q+l~(AxpQ)pQ

[3J Q+DDEF ''VRUN',DTCNL,'[lJ',Q,''Y'
[4J R+DAI 0 RUN 0 R+DAI-B
[5J Q+DDEFL 'RUN[l]',l~Ap'O'

[6J Q+DAI 0 RUN 0 Q+DAI-Q
[7J R+(R-Q)[2J,A

'Y

TIMES accurately isolates the time
required to execute the given algorithm.
For instance,

D+T+l0 TIMES 'R+V~M'

1306 10
f/T A PER ITERATION

130.6
f\100 TIMES 'R+99+11300'

147 1.47

Line [2J replicates the expression A
times, inserting diamonds between each
instance. This vector is converted into a
function, and its execution time measured
on line [4J. Lines [5J and [6J measure
the overhead cost of the diamond statement
separator, and the last line subtracts
this overhead from the total time and
catenates the number of iterations.

TIMES will help you evaluate alterna
tive formulations of a problem. Here is
an example of a typical test (finding the
unique values in a numeric vector):

ALG1+'R+«A1A)=lpA)/A'
ALG2+'R+A[!AJ 0 R+(l,(l~R)~-l~R)/R'

A+?7p20
f\50 TIMES ALGl 0 f\50 TIMES ALG2

20 0.4
38 0.76

A+?70p200
f\50 TIMES ALGl 0 f\50 TIMES ALG2

115 2.3
115 2.3

A+?700p2000
f\5 TIMES ALGl 0 f\5 TIMES ALG2

810 162
115 23

The first algorithm is faster for
small vectors, but the second is substan
tially faster for large vectors.

May 1977

-27-



USING BOOLEANS TO CONTROL COMPUTATION

One of APL's unique contributions to
computing languages is its ability to
generate and manipulate Boolean arrays
(those containing only 1 's and O's).
Although binary (or bit) datatype is
available in many other languages, it is
often clumsy to use, requiring conversion
and indirect manipulation. APL, on the
other hand, handles Boolean data directly
and efficiently; the data is stored
compactly (one value per bit) and pro
cessed rapidly.

veVV>8]
11 9 12 14 13 8 7 5 8 3 6 1 5 7

Boolean values can also represent
values in binary representation. The
following expression gives the base-2
representation of 165 in 8 bits:

2 2 2 2 2 2 2 2 T165
1 0 1 0 0 1 0 1

We can convert back to the base-IO value:

2L 1 0 1 0 0 1 0 1
165

Most uses of Boolean values deal with
representing logical true-false condi
tions. For instance,

Boolean values are most often gener
ated by one of the six relational func-
tions « ~ = ~ > ~) or by epsilon (E:).
Five other functions perform logical
calculations: and (/\), or (V), nand (1\'),
nor (¥), not (~). Together, these provide
all the nontrivial functions of logical
calculus. For instance, exclusive-or is ~

and logical implication is ~.

But APL's strength with Boolean
values lies in its ability to use them
with every primitive function that allows
numeric arguments. Some functions, such
as compression (/) and expansion (\), are
designed specifically for Boolean argu
ments; these allow us to select from, and
insert values into, arrays. Other func
tions for which Boolean arguments are most
useful are rotate (~), grade up (~), grade
down ('), decode (1), and several scalar
dyadic functions (+ - x -i- I !). The
reduction and scan operators also gain new
significance with Boolean arguments.

8
o

V+?14p14 0 V,CO.5] V>8
7 11 5 9 12 8 3 6
010 1 100 0

1 14
o 1

5
o

7 13
o 1

With some imagination, we can also
use Boolean values to control other
calculations. A common operation is
multiplication by a bit vector. For
instance, assume we have a matrix REGS of
sales region names and an associated
vector NACC indicating how many new
accounts each region has generated. We'd
like to produce a new-account report.

DISP+NACC>O Show only regions
with new accounts.

NA+NACCxNACC>l Show the number only
if it's more than 1.

DISPfREGS, 'P~ (~Q~)~BLI6' OFMT NA
NEW ENGLAND (3)
MIDDLE ATLANTIC (10)
EAST NORTH CENTRAL
EAST SOUTH CENTRAL (5)
WEST SOUTH CENTRAL
PACIFIC (2)

(~DISP)fREGS

SOUTH ATLANTIC
WEST NORTH CENTRAL
MOUNTAIN

By using logical multiplication, we
"zeroed out" NA for regions with only one
new account, and used the B modifier to
suppress display.

V>8 generates a Boolean vector (or bi t
vector) that asserts whether the corre
sponding element of V is greater than 8;
the result contains a 1 if the assertion
is true and a 0 if it is false. We can
use this result in a variety of ways:

+/V>8 How many greater than 8?
5

/\/V>8 All greater than 8?
0

v/V>8 Any greater than 8?
1

<\V>8 The first greater than 8 •
0 0 1 0 0 0 0 0 0 0 0 0 0 0

What is its index?
3

Another application is to return 0
rather than 1 for Of 0:

A+ 6 7 0 5 3 0 5 0 0 7
B+ 3 4 0 2 3 0 4 5 8 2
AfB 0 A-i-B*B~O

2 1.75 1 2.5 1 1 1.25 0 0 3.5
2 1.75 0 2.5 1 0 1.25 0 0 3.5

Here we used exponentiation by a logical
vector to change O's into l's because O-i-l
will produce the desired o. We could also
have used AfB+B=O in this case.

The following table (the first two
rows were illustrated above) shows the
most useful manipulations and what they
produce when BOOLEAN is 0 or 1.

The entry VC'V>8] moves all elements
greater than 8 to the front of the vector:

(V>8)/V
11 9 12 14 13

(V>8)/lpV
3 5 6 11 14

All elements greater
than 8.

Indices of all ele
ments greater than 8.

Operation
AxBOOLEAN
A*BOOLEAN
BOOLEAN!A
BOOLEANIA
AX~BOOLEAN

A*~BOOLEAN

(#) Only for

BOOLEAN+O
o
1
1
A
A
A

integer A.

BOOLEAN+l
A
A
A
o (#)
o
1

l
-28- -29-



(VOWELS,CONS)[!!MERGEJ
FACETIOUSLY

Another way to use Booleans is to
control the merge order of two vectors:

MERGE controls the selection of data from
VOWELS (MERGE=O) or CONS (MERGE=1).

Booleans can be used to control
computations in many other ways. Bob
Smith, known as the "Boolean Bomber" at
Scientific Time Sharing Corporation, has
done significant work in this area. His
paper, "Boolean Functions and Techniques"
is available from STSC as Working Memo
randum No. 106.

VOWELS+'AEIOUY'
CONS+'FCTSL'
MERGE+1 0 1 0 1 0 0 0 1 1 0
(pVOWELS)=+/~MERGE

(pCONS)=+/MERGE
1

1

Other times, we may wish to alter the
order of the arguments of the computation
itself based on a conditional array (e.g.,
A-B or B-A). For functions with an
inverse, we may wish to conditionally
alter the function used in a computation
(e.g., A+B or A-B). If a function has an
inverse, we can use 1 and one of x*l! on
the conditional array to give us the
proper answer. Or, as shown above, we can
use the conditional array to control
whether the operation is done or not. In
the table below, C is the conditional
array. C controls the function used in
the first two lines, the order of the
function's arguments in the next two
lines, and whether or not the function is
performed in the last three lines.

BILLS+BILLSx1.03*DAYSOLD>30

Often when dealing with arrays, we
wish to process part of the array while
leaving the rest untouched. For instance,
add 3 percent to only those bills over 30
days old:

If C=O
Return

A+B
AxB
A-B
AfB

A
A
A

If C=1
Return

A-B
AfB
B-A
BfA
A+B
AxB
A*B

By Using This Expression

A+B x-1*C
AxB *-1*C

(A-B)x-1*C
(AfB)*-1*C

A+BxC
AxB*C
A*B*C

July 1977

A more general way to interchange
scalar function arguments conditionally is
by reducing a two-row array that has been
rotated by a conditional vector. For
example, the following performs A*B if c=o
and B*A if C=1:

A,[1J B,[0.5J C
5 1 7 1 9 2 5 1 2 2 7 3 3
1 6 1 8 1 4 2 27 5 6 2 4 4
0 1 0 1 0 1 0 1 0 1 0 1 0

(1,pA)p*fceA,[0.5J B
5 6 7 8 9 16 25 27 32 36 49 64 81

Booleans can also be used to select
one of two values via subscr iption. (Note
that if the index origin is 0, the Boolean
values can serve directly as indices,
obviating the need for the +1.)

B+ 0 1 0 1 1 1 0 0 1 1 0 0
7 11[B+1] (or 7+Bx4 or 7+B\4)

7 11 7 11 11 11 7 7 11 11 7 7

This capability allows simple plotting:

0+FREQ+8?42
10 24 15 21 35 31 5 18

, D'[1+FREQo.~lr/FREQ]

ODDDDDDDDD
DDDDDDDDDDDDDDDDDDDDDDDD
ODDDDDDDDDDDDDD
DDDDDDDDDDDDDDDDDDDDD
DOODDDDDDDDODODDDDDDDDDDDDDDDDDDDDD
DDDDD
DOOOOOOOOOOOOOOOOO

-30-
-31-



l

APL POTPOURRI

(Note: All examples are in origin 1.)

Did you know that ••• ?

"pA selects the first element of A
as a scalar. What happens if A is empty?

3 5tSCALAR is acceptable, and
creates a matrix with all zeros or blanks
except for position [l;lJ which is the
same value as SCALAR.

(NpO)iSCALAR has the same effect as
(Npl)pSCALAR or (Npl)tSCALAR -- it creates
a singleton of rank N.

A scalar is allowed as the right
argument to compression and expansion. In
each case, the scalar is first replicated
to the appropriate length. Thus, B/SCALAR
is identical to (+/B)pSCALAR.

A+l/A changes A into a one-element
vector if A was a scalar, but leaves all
other arrays unchanged.

O=ltOpA returns 1 if A is numeric,
o if A is character.

A/.B=B=l returns 1 if B is Boolean
valued, 0 otherwise. A/.BEO 1 can also
be used but is somewhat slower.

You can demote a numeric array R to
its most compact internal representation
with the following expression:

A+pR 0 L+(x/A)pO 0 Le]+,R 0 R+ApL

Note particularly the third statement, a
syntactic construction not often seen in
APL programs.

Applying reversal (~[KJA) or rotation
(B~[KJA) along a nonexistent coordinate
(that is, where -KElppA) is acceptable and
has no effect. This can be useful. For
instance, V[~[KJtVJ sorts V in ascending
order if K is 1, and in descending order
otherwise.

The expression +/[2J 3 0 4 p5
returns a 3 by 4 matrix of zeros, thereby
actually increasing the storage require
ments. Can you guess what L/ 2 3 0 p6
returns, and why?

Relational scans «\ s\ =\ ~\ >\ ~\)

do not always return Boolean values. For
example,

>\ 0.5 0.5 0.5
0.5 0 1

Any outer product can be rewritten as
an inner product. For instance, Ao.+B can
be restated as «(pA).l)pA)o.+(l.pB)pB
where 0 can be any scalar dyadic function.

-32-

Any reduction on numeric data can
likewise be written as an inner product.
For instance, x/[K]A can be restated as
ox.+(i!K~lppA)~A.

Base value (L) can be written as a
+.x matrix product. Thus ALB (without
scalar or unitary coordinate extension on
the left argument) can be restated as
(~x\(pA)tl.~A)+.xB.

A+A is faster than Ax2, and AxA is
faster than A*2. Generally the simplest
function is fastest; but the speed differ
ence is small, so use the most natural
construct.

The expression (l*pA)~A selects the
major diagonal of any array.

'IO' or 'AO' or 'G~~' can be used
with DFMT to suppress display of unwanted
columns. For example:

'IO.I2.AO.I4.3G~~.F8.3' DFMT 4 8P132
2 4 8.000

10 12 16.000
18 20 24.000
26 28 32.000

Many experienced APL programmers
cannot name all APL primitive scalar
dyadic functions. Can you? (Hint: + is
one of them, and there are twenty more.)

September 1977

-33-



DATA SELECTION

Selecting data from an array is one
of the most common operations in APL.
There are three primary facilities for APL
data selection:

o posi~i~nal, usi~g subscription (A[B])
cond1t1onal, uSIng compression (B/[K]A)

o bounded, using take (BtA) or drop (B+A)

There are also several specialized
techniques for frontal and diagonal
selection u~ing reshap: (BpA) or transpose
(B~A). BeS1des select1ng data, some of
these functions can replicate data (sub
scription, compression of a scalar, and
~eshape), extend data (take), or reorgan
1ze data (subscription, reshape, and
transpose). This article discusses these
techniques as applied to the matrix A in
origin 1:

DIO+l OD+A+(10x\5)o.+\9
11 12 13 14 15 16 17 18 19
21 22 23 24 25 26 27 28 29
31 32 33 34 35 36 37 38 39
41 42 43 44 45 46 47 48 49
51 52 53 54 55 56 57 58 59

subscription. Of course, it is ideal when
selecting on the basis of a Boolean vector
from epsilon (€) or one of the relational
« s = ~ > ~) or logical (A v ~ ¥ ~)

functions. As noted, compression can
select along only one coordinate. Thus
the matrix must be compressed twice in
order to select both rows and columns.

o 1 1 0 0 f 0 0 0 1 1 1 1 0 0 /A
24 25 26 27
34 35 36 37

If indices are already provided for
one coordinate, it is usually faster to
use B/lpB and subscription. For instance,

A[B/lpB; 5 4 7 6]

should be used rather than

BfA[; 5 4 7 6]

Take and drop are the most restric
tive selection functions. They allow only
contiguous blocks of data to be selected,
and they cannot replicate or reorder.
They are quite fast, however, at selecting
large blocks of data. One application of
either function is sufficient to select
any corner subarray.

can be selected by each of 16 expressions:

A[2 3 ; 4 5 6 7]
24 25 26 27
34 35 36 37

Any contiguous block of data can be
selected by two applications of either
function. The subarray

Subscription is the most generalized
selection function. It can be used to
select, reorder, and replicate data.

A[2 5 1 ; 9 1 5 7 5 5]
29 21 25 27 25 25
59 51 55 57 55 55
19 11 15 17 15 15

Because of its flexibility, subscrip
tion is typically the slowest of all
selection functions applied to a matrix.
However, it alone can reorder or selec
tively replicate data, and it can be used
to the left of assignment (+). In the
a~sen~e of these requirements, subscrip
t10n 1S best used only to select single
rows or columns, or small subarrays.
Subscription is somewhat faster on vectors
than it is on matrices.

3 5tA A-2
11 12 13 14 15
21 22 23 24 25
31 32 33 34 35

3 5tA A 2
31 32 33 34 35
41 42 43 44 45
51 52 53 54 55

4+A 3 5tA A-2 4+A
15 16 17 18 19
25 26 27 28 29
35 36 37 38 39

4+A 3 5tA A 2 4+A
35 36 37 38 39
45 46 47 48 49
55 56 57 58 59

Compression is less flexible than
s~bscription~ it can select only along a
slngle coord1nate, and it cannot replicate
or reorder data. However, it can select
non-contiguous rows or columns in the same
order they occur in the array.

1 1 0 0 1 fA
11 12 13 14 15 16 17 18 19
21 22 23 24 25 26 27 28 29
51 52 53 54 55 56 57 58 59

1 0 o 0 1 010 1 /A
11 15 17 19
21 25 27 29
31 35 37 39
41 45 47 49
51 55 57 59

Because of its more limited capabil
ity, compression is typically faster than

-34-

2 4 t 3 7 tA 2 4 t 3 6 tA
2 4 t 2 2 +A 2 4 t 2 3 +A
1 3 + 3 7 tA 1 2 + 3 6 tA
1 3 + 2 2 +A 1 2 + 2 3 +A

2 4 t 4 7 tA 2 4 t 4 6 tA
2 4 t 1 2 +A 2 4 t 1 3 +A
2 3 + 4 7 tA 2 2 + 4 6 tA
2 3 + 1 2 +A 2 2 + 1 3 +A

Unless extension (padding with zeros or
blanks) is needed, convenience should
determine whether to use take or drop.

Reshape and transpose are normally
considered structural functions, but are
often used for specialized selection.
Reshape can select data from the front of
an array. For instance, the following
expression selects the first element as a
scalar:

-35-



, 'pA

11

The next expression selects the first row
as a vector:

9pA
11 12 13 14 15 16 17 18 19

Transpose can select the major
diagonal, or the other diagonals if used
with reversal.

1 1 ~A

11 22 33 44 55
1 1 ~<t>A

19 28 37 46 55
1 1 ~eA

51 42 33 24 15
1 1 ~<t>eA

59 48 37 26 15

Both reshape and transpose are very fast.

In general, the speed of all selec
tion functions depends on the amount of
data being selected, not on the size of
the original array. As more data is
selected, more CRUs will be consumed. By
avoiding superfluous data selection and by
using the most specialized function appro
priate to your needs, you can increase the
efficiency of your programs.

November 1977

-36-

WHY NOT TO LOOP

Most APL systems are implemented as
interpreters. This allows users great
flexibility in creating and modifying
programs. There is no need for compila
tion, and errors can be diagnosed and
corrected during execution.

The major penalty of an interpreter
is the cost of syntax analysis and dynamic
data checking. Fortunately, APL functions
tend to be quite short relative to pro
grams in other languages, and therefore
the interpretive overhead is minimized.

On the other hand, when looping is
performed in APL, the interpretive over
head skyrockets because the same code must
be reanalyzed for each iteration. The
general rule, therefore, is to try to
minimize looping in APL.

As anyone familiar with APL will
attest, most programs can be written with
no loops at all. APL's rich set of
primitive functions and operators allows
"closed form" (nonlooping) solutions to
many complex problems. The control
~tructures that must be written explicitly
In other languages (e.g., DO loops) are
performed implicitly in APL primitives
(e.g., scan). But difficulties can arise
when people who have been schooled in
languages like FORTRAN, BASIC, and COBOL
try to move their looping programs intact
into APL.

For example, the following portion of
a FORTRAN program calculates cash flow for
a series of 360 investments using variable
interest rates. DEP is N+l deposits, the
first being the initial amount; RATE is N
interest rates between 0 and 1; CF is the
result.

DIMENSION CF(36l)
DIMENSION DEP(36l)
DIMENSION RATE(360)

CF(l)=DEP(l)
DO 20 1=1,360

20 CF(I+l)=DEP(I+l)+CF(I)*(RATE(I)+l.)

This segment can be translated almost
directly into the following APL program:

V CF+RATE CASHFLOW DEP;I;N
[1J CF+DEP
[2J N+pRATE
[3J -+N~O 0 I+1
[4J L20:CF[I+1J+DEP[I+1J+CF[IJxRATE[IJ+1
[5J -+L20xN~I+I+l

V

and will run successfully, albeit slowly:

(pDEP).pRATE A 30-YEAR MONTHLY LOAN
361 360

T+DAI 0 CF+RATE CASHFLOW DEP 0 DAI-T
o 2070 483 0 ~ILLICRUSpMILLIS?-CONI2S.0l

-37-



More than 2 computer resource units are
required to run CASHFLOW -- not a very
cost-effective solution!

Rather than entirely rethinking the
problem, some users will take great pains
to optimize the existing algorithm. This
approach is fine if no alternative algo
rithms are considered, but it often
results in a more obscure program:

V CF+R CASHFL02 D;I;J;N;T
[lJ T+D[I+1J 0 D+l~CF+D

[2J R+R+l
[3J ~N+( (pR)pL),O
[4J f:T+CF[J+I+1J+D[IJ+TxR[IJ 0 ~N[I+J]

V

The techniques used in CASHFL02 all
serve to reduce interpretive overhead in
the loop on line [4J. Interest rates R
and branch targets N are calculated in
advance, and subscript calculations are
simplified. (Note that the use of one
letter variable names does not affect the
cost of running the program.)

T+DAI 0 CF+RATE CASHFL02 DEP 0 DAI-T
o 1301 330 0

We've reduced the cost by one third -- a
significant savings, but still not enough
to be cost effective.

By far the most effective approach is
to reformulate the problem into an APL
solution, rather than a warmed-over
FORTRAN solution. Consider the following:

CHARACTER SEARCHES

With the recent introduction of the
system function DSS for character string
searching, and the major speedups to
character A.= and v.~, a variety of new
techniques are now practical. Although
these techniques were usable before the
enhancements, they were often infeasible
because of WS FULL conditions or the large
number of computer resource units needed
to accomplish them. Frequently, obscure
or clumsy code was written to circumvent
the previous snailish pace of A.=.

For example, a typical table lookup

MATRIXA.=VECTOR

was occasionally coded as

A/MATRIX=(pMATRIX)pVECTOR

to reduce cost (at the risk of WS FULL).
Now, the first expression is many times
faster.

The improvements to A.= also dramati
cally altered the relative speeds of the
six different string-searching algorithms
presented in "String Searching" beginning
on page 21. In particular, 552, 553, and
554 all use A.= for part or all of the
search. Below is a table comparing their
performance on 25 February 1977 with their
current performance and with that of their
D55-equivalent (R+(A D55 B)/lpA). The
times are in milliseconds.

B pR 25 FEB 1977 24 FEB 1978
SUBSTRING HITS SS2 SS3 SS4 SS2 SS3 SS4 DSS

V CF+RATE FASTFLOW DEP
[lJ CF+l,x\RATE+l 0 CF+CFx+\DEPfCF

V

CF is set first to the cumulative present
value discount factors for future depos
its. The deposits are divided by those
factors, summed, and then multiplied by
the factors to produce the result. A good
exercise is to derive this algorithm from
the looping algorithm; the key is that
multiplication and division are both
distributive with respect to addition
(division is only right distributive).

FASTFLOW is indeed an elegant and
inexpensive solution to the problem:

T+DAI 0 CF+RATE FASTFLOW DEP 0 OAI-T
o 26 7 0

, ,
, ,
'w',
'AN'
'aw'
, THE'
'THE'
'MATRIX'
'RATMIX'
, PERMITS'
'PERMITS'
'NOTFOUND'
'a€lOup"""W'

3683
783

o
342

33
o

20
16

5
o

15
15

o
o

19
60
56

105
104
103
204
203
300
301
403
401
399
3"99

2
8
2

27
10

3
55
14
15
23

113
16
22

3

2
8
2

28
9
4
9
9
5
5

17
17
19

4

8
11

6
10

7
6
8
7
8
8

10
8
8
8

2
8
2

18
8
3

24
9
9

12
41

9
10

3

2
8
2

19
8
4
7
7
6
6

10
9

10
5

6
8
2
7
2
2
5
3
2
2
5
2
2
1

It performs 50 times faster than even the
optimized looping solution, and illus
trates the benefits that can be derived
from writing nonlooping APL code.

January 1978

-38-

(Executed 24 Feb 78 at 6:46 PM EST
on APLPLUSC/470-l00l1 with 34 users)

Although they still suffer a propensity
for WS FULLs with large arguments, it's
nice to know their cost has dropped so
dramatically!

Pleasantly, the discussion of string
search techniques is now moot because we
have DSS. In fact, even if DSS weren't
available, the following simple function
would perform the same task:

-39-



Mark the line-ending carriage returns in a
function.

And finally, here's a function that
locates a string in any row of a matrix:

Determine if function DSPELL is currently
suspended or pendent; that is, whether
it's in the state indicator.

'V R+-A flSS B;C
[lJ R+-pA 0 C+-p~B

[2J R+-Rt(-C)~BA.=(C~R+xR)pA

'V

8295

8295

X+l0
(8xX*3)+(2 xX*2)+(9xX)+5

for x=lO, or, for you APL'ers out there:

The effect of "putting numbers together"
is actually the result of evaluating the
polynomial expression

BACK TO BASICS

Base value, also called decode, is
r2presented by the i symbol (shift B). It
is dyadic and accepts only numeric argu
ments. Let's see what happens in a simple
c~ase •

8x' + 2x 2 + 9x + 5

10i 8 2 9 5

One of the beauties of APL is the
ability to get useful results while using
.~nly a small subset of the language.
Gradually, through curiosity and experi
mentation, users discover more advanced
features which they can apply to their
problems. In the interest of hastening
that discovery, I'd like to introduce you
to a powerful function in APL called base
value. I'll discuss its performance on-
scalars and vectors only, leaving you to
experiment with matrices if you wish.

VR+-OVR 'FNNAME' 0 VR[OIO-6-pVRJ+-'['
(VR=OTCNL)A1~VR='['

VR OSS OTCNL,'['
OLD
NEW

FN+'DSPELL'
OLD v/«(ltpOSI),l+p,FN)tD$I)A.=FN,'['

v/«(ltpOSI),7)tOS~)A.='DSPEL£[,
NEW v I ( " " OSI) OSS ' " FN , , [ ,

-rc,: ',OSI)OSS ' DSPELL['

Not only does OSS provide cost and
storage advantages, but it also allows
novel or simpler approaches to problems.
Below are a few examples.

The function ~SS takes roughly twice as
long as OSS to perform a given search.
Moreover, OSS has the advantage of
requiring no additional or intermediate
workspace storage.

V R+-M ROWSS V
[lJ R+-V/(O,l-p,V)~(pM)p(,M)OSS V

V

DSS locates all occurrences in the rav
elled matrix, and its result is reshaped
to the shape of the matrix. Then, those
columns that might identify matches
spanning more than one row are dropped.
Finally, the vI singles out the proper
rows. ROWSS will locate matches in a
character matrix:

or

5+Xx9+Xx2+Xx8
8295

Notice that the coefficients are on the
~ight and the independent variable is on
the left. Thus, base value evaluates
eolynomials. This may seem esoteric, but
It actually proves quite useful. For
example, you can use it to combine month,
day, and year into one number,

pSTATES
50 14

100i 6 5 77 A (10000x6)+(100 x5)+lx77
60577

(STATES ROWSS 'NIA')fSTATES
CALIFORNIA
PENNSYLVANIA
VIRGINIA
WEST VIRGINIA

(STATES ROWSS 'LIN')fSTATES
ILLINOIS
NORTH CAROLINA
SOUTH CAROLINA

or to determine the number of seconds in 2
hours, 10 minutes, and 38 seconds.

60i 2 10 38 A (3600x2)+(60x10)+lx38
7838

Note that the following three expres
0.:10ns are equal:

2+3x4 0 3i 4 2 0 4i 3 2
March 1978 14

14
14

From what you've seen so far, can you
explain why 1iVEC is the same as +/VEC,
and why OiVEC is the same as -l+VEC?

For scalars and vectors, AiR is
equivalent to +/WxB (or W+.xB), where W is
a vector of weights derived from A. As
we've seen above, if the left argument is

-40- -41-



a scalar, then (assuming DIO~l) W is
calculated as follows:

W~ A*(pB)-tpB
60* 3 -1 2 3
60* 2 1 0
3600 60 1

More generally, if the left argument is a
vector,

A~ 0 7 24 60 60 1000
B~ 1 2 3 4 5 6
AJ.B

788645006

base value is evaluating a mixed radix
polynomial. In the example above we're
calculating the number of milliseconds in
I week, 2 days, 3 hours, 4 minutes,
5 seconds, and 6 milliseconds. In this
case the left argument represents:

o (placeholder)
7 days per week

24 hours per day
60 minutes per hour
60 seconds per minute

1000 milliseconds per second

The weighting vector is computed by
performing a multiplication scan from
right-to-Ieft on all but the first element
of the left argument, and catenating a 1
to that result:

W~<Pl.x\<I>l+A

W~<I>l,x\<I>l+0 7 24 60 60 1000
W~<Pl,x\~7 24 60 60 1000
W~<I>l.X\1000 60 60 24 7
W~<I>l.1000 60000 3600000 86400000 604800000
W~<I>l 1000 60000 3600000 86400000 604800000
W~604800000 86400000 3600000 60000 1000 1

week day hour min. sec. ms
(milliseconds in)

Hence we multiply the number of milli
seconds in a week by the number of weeks,
add it to the number of milliseconds in a
day multiplied by the number of days, and
so on, to produce the result:

+/WxB
788645006

If either argument is scalar, it is
extended to the length of the other
argument, and the same weighting vector
calculation is used. Thus the following
expressions are equivalent:

12 12 12 J. 2
314

12 12 12 J. 2 2 2
314

12 J. 2 2 2
314

60 J. 10 0 120
36120

60 60 60 J. 10 0 120
36120

o 60 60 J. 10 0 120
36120

743 60 60 J. 10 0 120
36120

-42-

As illustrated, the first element of
the left argument does not affect the
result, but serves only as a placeholder.
If either argument is not a scalar or one
element vector, the lengths of the argu
ments must match.

60 60J.l0 0 120
LENGTH ERROR

60 60 J. 10 0 120
1\

This rule is identical to that used by
inner product (for example, +.x), although
in inner product the first element of the
left argument does affect the result.

SOME USEFUL APPLICATIONS

Right justify a character vector V:

(l-(V=' ')J.l)<I>V

Actually, this expression will right
justify an array of any rank. It uses the
"reverse multiplication scan" weighting
vector calculation as an and-scan (1\\),
and the +/Wx l to calculate (1+) the number
of contiguous ending spaces.

"Why Not to Loop" beginning on page
37 contains the function FASTFLOW to com
pute a cash flow series for a starting
balance (SB) and N subsequent deposits
(DP), all compounded at varying interest
rates (IR).

V CF~RATE FASTFLOW DEP
[lJ CF~l,x\RATE+l 0 CF~CFx+\DEPfCF

SB~ 100
DP~ 0 50 100 216 0 123.26
IR~ 0.2 0.25 0.08 0 0.05 0.06
IR FASTFLOW SB,DP

100 120 200 316 100 105 234.56

If you don't need the intermediate values
and only wish to know the ending balance,
the following expression will suffice:

(O.IR+l)J.SB.DP
234.56

Given an array YM containing months
packed as YYMM or YYYYMM, add A months and
return the dates in the same format:

V R~A MONTHADD YM
[lJ R~1+100J.l0000 12TA+12J.l0000 100TYM-l

7 MONTHADD 197805 7806 197912
197812 7901 198007

-5 -11 -16 MONTHADD 197804
197711 197705 197612

(t6) MONTHADD 197806+\6
197808 197810 197812 197902 197904 197906

This is a lovely illustration of the
relationship between decode (J.) and encode
(T). It uses both to convert back and
forth between decimal and base-l2 repre
sentation.

May 1978

-43-




