
(
 

System Programmer's Guide to Tailoring Your APL2/TSO System 

18 February, 1988 

Ray Trimble 

IBM Corporation M46/825 
P.O. Box 49023 

San Jose CA 95161·9023 

( 

'eM· SJ· 167 



IBM SJ· 1G7 
System Programmer's Guide to Tailoring Your APL2ITSO System ii 



.( Preface 

Installation and custcm.zatton of APL2 under T50 involves a large number of APL2ITSO installation 
options, installation exit points, PROCLIBs, PARMLIBs, LOGON precs and CLJSTs. The goal of this 
paper is to help you make the right decisions in installing, ,customizing, and maintaining APL2 so that: 

• your users see a fast and sm~th APL system; 

• they can get at what they need, but ,not what they shouldn't; 

• you can maintain accountability of resource use; and 

• the system runs itself for the most part. 

Note: Those are goals, not promises, and this paper can at best provide help, not a panacea. 

The topics to be covered include: 

• ·Workspace Library Choices" on page 1. 
• "ClISTs and Logon PROes" on page 5.
 

" • "Invocaticn Options and their Defaults" on page 7.
 
• "Changing Installation Options" on page 13. 
• "tnstauatron Exit Routines" on page 17. 

( 

IBM SJ· 1G7 
Preface ill 



•t, 

IBM SJ 167

Iv System Programmer's Guide to Tailoring Your APL2JTSO System
 



( Workspace Library Choices 

The Nature of SAM Library Support 

When workspaces are: kept in SAM libraries. each workspace is stored as a secarate MVS dataset. 
written and read using the Basic Sequential Access Method (BSAM). Blocksize is installation select
able. but is always forced to a multiple of 80 bytes. 

The grouping orworkspaces into IIbralies is done by using a specific dataset naming scheme.' This 
makes it possible to use the MVS system catalog as the directory through which all workspaces are 
located. An implication of this 'is that a single APL library structure app,'ies to all users of the computer 
comptex.s · 

APL2 does its own dynamic allocation, both to create new workspace datasets and to access existing 
ones. There is a sizable list of installation options controlling where and how new datasets are 
created. Once a dataset has been created. that same dataset is- reused for all updates to the work
space. This ensures that any RACF controls placed on the dataset will be retained across )SAVE. 
Since each )SAVE is a complete replacement. it also means. however. that the moment a )SAVE 
has started, the previous version or the the workspace has been destroyed. 

Three classes of workspac-e libraries exist. with somewhat confusing names. 

PRIVATE libraries contain workspaces which are only known to a single TSO user, or a group of TSO 
users who share the same TSO PROFILE PREfiX.' Each user has one private library, which

( is always his library 1001. This is the one exception to the rule that all APL users see the 
same set of libraries. 

PUBLIC	 libraries contain workspaces that are all owned by the installation. Ordinaf)l users typically 
cannot update any workspaces in these libraries. Prior: to Release 3, libraries 1 through 999 
were always public libraries. Beginning with Release 3 a new installation option can be 
used to specify the upper limit of the public library range. 

PROJECT	 libraries contain workspaces which are owned by individual users but may (RACF permit
ting) be accessed by other users. Specifically, the owner's PROFILE PREFIX is used as the 
high level qualifier for the workspace dataset name. All workspaces within a single project 
library are owned by the same PROFILE PREFIX. All library numbers that are not public or 
private. by the rules above, are treated as project libraries. The first user to save a work"!' 
space in a particular library becomes the owner orthat library from then on.4 

Note that a user's default library (the one assumed if a library command omits the library number) is 

always +OAI. That in turn is controlled by the 10 invocation option, or in some cases an installation 
exit. If 1001=tOAI then the default is a private library. and its workspaces cannot normally be 
accessed by any other users. If 1001< +DAI then the default is a project library. and the user's 
• private " workspaces (to use connicting terminology from the past' can be accessed by others who 
know his 10 number and have the appropriate RACF authorization to his PROFILE PREFIX. 

1	 APL2 Rejease 3 allows an installation exit to replace this scheme. 

2	 Unless multiple copies of APL2 have been installed with carefully distinguished installation options. 

,	 In most installaUons the PROFILE PREFIX is the same as the T50 user 10. 

•	 Except that the LJBKEEP instaUation option ":an be used to indicate that empty librarIes are to revert to an 
unowned status. 

'BM SJ· 1G7 
Workspace Ubrary Choices 1 



The Nature of VSAM Library Support 

All of the workspaces in one VSAM library are stored within a single VSAM cluster (a KSDS to be 
specific). The association between APL library numbers and VSAM cluster names is made by ALLO
CATE (or DO) statements provided by the user or installation, typically in an APL2 invocation ellST. 
This user association means that there is no universal numbering scheme for workspaces in the 
complex. pne user's library 7 can be the same physical data as another user's library 1234. And a 
third user can have a library 1234 which is completely different.! 

The DONAME used is "Wnnnn,·' where nnnn is the library number with no leading zeros. "WO" can be 

used as a special case representing the library whose number is +OAI. On all workspace library 
requests the system looks first for the Wnnnn DOname. The library is treated as a VSAM library if that 
ODname exists, or as a SAM library if it does not. 

VSAM libraries are not created automatically by APL2. Instead, users or system administrators must 
create them with Access Method Services DEF1NE statements or the equivalent TSO DEFINE com
mands. The DEFINE command has a complex syntax and an overwhelming number of parameters. but 
its simplest form might be: 

DEFINE CLUSTER( NAME(my.name) MODEl(existing.name) ) 

Since VSAM controls space allocation within the cluster, there is no inherent reason why saving a new 
version of a workspace would have to begin by destroying the previous one. Unfortunately, that is 
exactly what happens in the current implementation. 

Three classes or workspace libraries exist, with names that are not only confusing. but have different 
meanings than for SAM libraries. ( 

PRIVATE	 libraries are kept open, once used, for the remainder of the APL2 session. This means they 
cannot be dynamically unallocated (T50 FREE), that only a single user can access a given 
library as private, and that no one else can depend on writing to that library. Private 
libraries are efficient for all library commands because there is no OPEN/CLOSE overhead 

for individual requests. Only the WO library (or Wnnnn where nnnn= +OAI) is treated as a 
private VSAM library. 

PUBLIC	 libraries that are only being read are kept open for the remainder of the APL2 session, but 

they are closed if a )SA VE is done into them. This means they cannot normally be unallo
cated dynamically, but that multiple users can write into the same library. Public libraries 

are efficient for )LIB, )LOAD and )eOPI. but less efficient for )SAVE. Library numbers 
from 1 through 999 are always treated as public.' 

PROJECT	 libraries are always opened and closed for each library command. This means they can be 
unallocated at any time, that multiple users can write into the same library. and that other 

users will always be able to )LOAD or )COPY the latest version of a workspace. But 
project libraries are less efficient than private or public libraries. All library numbers that 
are not pUblic or private, by the rules above, are treated as project libraries. 

Note that for VSAM libraries it is not the library itself which is private. public. or project. but the way it 
is being accessed in a particular APL2 session. II would be possible ror three users to have concur
rent access to a single VSAM cluster, one treating it as private, a second as public, and a third as 
project. It would. in (act be quite typical for one user to access another user's private library as if it 
were a read-only public or project library. 

S This has both advantages and disadvantages. See the next section ror a discussion. 

• The new instanation opticn for SAM public library upper limit has no effect on VSAM libraries. 

'8M SJ· 167 

2 System Programmer's Guide to Tailoring Your APL2ITSO System 



When Is SAM better, and when is VSAM better? 

·( 
The first point to be made is that this is not an either/or issue. In many installations a combination of 

• ..	 I 
some VSAM libraries with some SAM libraries may be the best approach. APL2 makes the choice 
dynamica"y for each user at the time of each library command, based on whether a Wnnnn DDNAME 
is allocated at that point in time. 

For many installations the most important criterion is the errect on their CASO space management 
strategies. 

•	 If HSM is used heavily, it is important to be able to migrate individual workspaces. Typically a 
library will contain a number of workspaces that are rarely used. but others that are used fre
quently. This is a strong argument for SAM libraries, which have separate datasets for each work
space.. 

•	 SAM dataset creation depends on static UNIT and VOLSER parameters which must be specified 
when the APL2 product is installed. Generic or esoteric units may be used, or the system may be 
allowed to default to public volumes. but these do not provide for volume selection based on 
userid, and often do not dovetail with installation rules for location or permanent datasets. Where 
this is a problem, manually defined VSAM clusters may provide the simplest solution. It is also 
possible to write installation exit routines to circumvent the problem. 

•	 Installations which want to control the total CASO space allocated 10 each user may find that VSAM 
clusters are preferable. The system administrator can create a cluster of the proper size (or each 

.._ ...user, and dynamic dataset creation can be disabled. This is not feasible with SAM libraries. since 
it would prevent all )SA VEs except for existing workspaccs. 

(
 Performance may also be an important criterion.
 

•	 SAM libraries require ALLOC/OPEN/CLOSE/FREE operations for each system command. VSAM 
libraries always avoid the ALlOe/FREE, and often the OPEN/CLOSE. (See the previous section for 
details.) 

•	 The actual read/write operations are faster for SAM libraries than for VSAM libraries. (This is 
inherent in the DASD data structures currently used, but could change in the future.) 

The net effec1 is that SAM is currently faster for large workspaces and for project libraries, while VSAM 
is faster for small workspaces being read from private or public libraries. 

A number of other factors may also be critical in particular cases. 

•	 SAM datasets have- a rigid three-level naming convention which may violate the rules of an instal
lation. This can be modified (beginning next year) by writing installation exit routines to create 
different dataset names. Or it can be avoided completely by using VSAM libraries. 

•	 RACF protection for SAM libraries can be specified to the individual workspace level, with generic 
profiles that operate at either a user or library level. VSAM libraries can be protected only at a 
user or library level.. 

•	 Often an installation might want to maintain separate "test." .• production." and "cbsotescent" ver
sions of a set of workspaces. With SAM, these must be kept in separate libraries. Libraries are 
normatly copied as they mature, and programs or manual procedures must be modified to access 
different versions.' With VSAM, only the allocation need be changed. The applications and oper
ating procedures are identical no matter which version is being accessed. 

The PUBOLFR installation option does allow some versioning. 

IBM SJ· lG7 
Workspace Ubrary Choices 3 

7 



•	 Some installations are so biased against VSAM that they will avord it wherever possible. This 
probably does not apply to you, since if you were that biased you would have laughed when you 
saw the heading for this section, and skipped it completely. 

•	 New library creation is automatic with SAM. manual with V5AM. Installations which don't want 
their users randomly grabbing new libraries may prefer the manual approach. Overworked system 
adrmmstrators would certainly prefer the automatic approach unless their users are sophisticated 
enough to do their own library creation. Users would undoubtedly prefer the automatic approach 
in all cases. 

J8M SJ· 167 
4 System Programmer's Guide to Tailoring Your APL2rrSO System 



( CLISTs and Logon PROCs 

This sedion addresses only allocations, whether by ALLOe commands or DO statements. See also 
"tnvoeanen Options and their Defaults" on page 7. 

There are other DOnames you will often need to allocate, in particular AOMSYM80L, AP2TN011. and 
(as or Release 3) APL2LANG. For batch jobs and TERMCODE(-1) you also need APLIN and APLOUT. 
These are handled by the installation process, and not discussed further here. 

Providing fqr Trace and Dump Output 

APL2 honors optional DOnames of APLTRACE and ,APLDUMP, but only when it is invoked. This is 
somewhat unfortunate, since it is usually ·not until later that you discover you would like to use the 

features. Sorry, but )HOST ALLOC will do you no good at all. 

Trace output is controlled by·the TRACE invocation option, but this is frequently modified dynamically 

using )CHECK SYSTEM TRACE (numbers ). If no APLTRACE DOname existed when APL2 was 
•	 invoked all trace output is directed to the user's terminal. This is really what you want anyway for 

interactive debugging. In general it is probably better to omit the APLTRACE DO unless you know 
before invoking APL2 that you will want to record trace output. 

APL dumps come in several flavors. One kind may appear on the user's terminal along with a 
SYSTEM ERROR message, and may be accompanied by a DUMPnnnn workspace being saved. 

( These "dumps" are associated with problems in the APL2 interpreter or the internal structure of the 
active workspace. They always go where they will go, and are unaffected by any DOnames that may 
be allocated. 

If the APL2 system detects an error outside or the interpreter it usually attempts to produce an MVS 
SNAP dump. It is this dump which uses the APLDUMP allocation. If there is no APLOUMP DOt the 
dump is simply bypassed, APL2 recovers to the best of its ability, and the only diagnostic information 
available will probably be a single cryptic message. If you want to have your problems fixed, we 
strongly recommend that you include an APLDUMP allocation in all of your APL2 invocation proce
dures. 

There is a third class of errors, those that APl2 is unable to detect. These include errors in other 
products called by APL2. as well as errors in critical parts of APL2 itself while responding to other 
errors. This class of errors will normally result in an attempted MVS ABEND dump. Like all such 
dumps. MVS will attempt to use SYSUDUMP. SYSABENO. or SYSMDUMP to record the dump, and will 
also produce an indicative dumJ) at the user terminal, Presumably standard installation procedures for 
TSO sessions will cover this class appropriately. From an APl2 viewpoint problems in this class are 
Quite rare. 

Spill Files for )COPV 

While processing ) COpy, )MCOPY, or )PCOPY commands the system needs space to manipulate 
the source workspace. the active workspace. and intermediate forms of the copied data, aU concur
rently. To the extent possible this is done in virtual storage wilhin the user's address space. If that is 

ISM SJ· lG7 
C1.ISTs and Logon PROCs 5 



not adequate, spill files will be written to the user's private APL file library if it exists.! If no file library 
is allocated, or it is not large enough, spill (iles are written using the CPYSPILL and CPYSWAP 
DD'names. 

These are temporary tiles which are written and read in a strictly sequential order..An~ direct access 
'[	 (or even tape!) storage would work, but VIC is probably the most appropriate. In most installations the 

two nles should be allocated as a standard part of the APL2 invocation procedures. The maximum 
size of the CPYSWAP file is the size of the active workspace. The theoretical limit on the size of the 
CPYSPllL file is much higher, but in practice a similar size is normally adequate. 

Accessing Modules in Private Libraries 

In 'some installations, part or all of the APL2 code itself may be in private libraries, not in LPA or the 
LINKLIB concatenation. It is frequently true that user programs called from APL may be in private 
libraries. APL2 provides a LQAOLI8 DC to help with such problems. But the behavior of this file is 
somewhat confusing. 

First, it is obvious that no filename passed to APL2 can help in locating the primary APL2 load modute 
itself. That must be in LPA or LINKLJB or a STEPL18 defined in the logon PROC.' 

Once the APL2 module has been loaded and invoked. many other modules called by it can be located 
through LOADlI8. This includes modules brought in as a part of the APl2 invocation such as 
AP2TACTL, AP2INTRP, AP2TN11, AP2TYSTX. AP2TMEXC, AP2T127. AP2X1Q4. and any other auxiliary 
processors. It also includes programs loaded by Processor 11, if the NAMES file entry does not specify 
the :Ioad tag. 

The situation becomes much more confusing for commands and CLJSTs invoked by AP 100. Whether 
LOADLJB is searched depends on: 

•	 whether APL2 is invoked under fSPF, 
•	 whether you are running TSO or TSO/E, and if TSO/E. what release and modification level of it. 
•	 what release of APL2 you are using and what PTFs have been applied. 
•	 whether a command or a CLIST was specified to AP 100, and 
•	 which variation of AP 100 command syntax was used. 

tt is probably not worth the trouble to try to ntt in an data points in that five dimensionaJ array. Our 
general direction. however, is away from using LOADLIB unless explicitly requested in the syntax or 
the AP 100 request. The -APL ATTACH command" has always used LOAOLIB and will continue to do 
so. The "TSO command" has often used it in the past. and will do so consistently beginning with 
Release 3. 

Finally, a comment about allocating LOAOllB versus the LOADllB invocation option. The invocation 
option is precisely equivalent to doing an ALLOe with the REUS option during APl2 invocation, and a 
FREE dUring APL2 termination. Thus the invocation option overrides any earlier allocation t per
sonaJly wish we did not support the the invocation option. We have an entire module devoted to it, and 
the function seems to be completely redundant. But compatibility arguments will probably force us to 
continue our support forever. 

•	 This;s a VSAM library which is also used for the rog files maintained by the APL2 session manager, but is 
distinct from the private workspace library. 

'One other possibility,s to invoke APL2 from another program which uses a private load library. T50 reST and 
ISPF both have this capability. Some installations also have a very nice little command which does nothing but 
this. Ours is called #. 

IBM. SJ lG7 
Syslem Programme,·s.Guide to Tailoring Your APL2ITSO System 6 



( Invocation Options and their Defaults 
I	 • 

Invocation options can be supplied from a combination of three sources. It is important to understand 
how they are merged. The three sources, In the order they are considered. are: 

1. The DEFAULT parameter of the AP2TITOP macro in the installation options module. AP2TIOPT. 
2. The options specified on the APL2 command. 
3. The OVER IDE parameter of the AP2TITOP macro. 

Each of these sources provides a character string. The three stnnqsare effectively catenated in the 
order shown above. The result may. of course, include the same keyword more than once. It does not 
matter whether the multiple references to a keyw9rd came from different sources. or the same source. 
The combined string is processed from left to right. and in general the last option encountered 
replaces any earlier ones. (See "The Boolean Options: DEBUG, SYSDEBUG. and TRACE" on page 10 
for an exception to this.) 

Who am 11	 The to option 

APL has a long tradition of depending on a user number. That tradition has has become a language 

requirement in the first element of OAI, the len argument to OSVO. and the result or DSVQ. 

TSO, of course, assigns a user name instead of user· number. The 10 option is an attempt to resolve 
this incompatibility. 

(	 VS APL under TSO did not permit shared variables across the boundaries of each individual user's 
address space, so it was not important to have unique numbers for each user. Each user was arbi
trarily assigned the number 1001. That is what applications saw in DAI, and what auxiliary processors 
used when sharing variables with the APL session. 

APL2 still defaults to 10(1001), but users taking that default cannot share variables with other users or 
with global auxiliary prccesscrs.w Thus It is important in many installations to ensure that each user 
invokes APL2 with a unique JD value. 

In most cases no security checking is done based on the 10 number, so the only requirement is 
uniqueness. An algorithm within the invoking eLIST, a CLIST parameter, or a a separate CLJST for 
each user may provide.an adequate solution. 

An alternative is for an installation, exit to provide the number, as discussed in "tnvccaticn and 
Termination" on page 17. This alternative would be required if the installation is using global auxiliary 
processors (including global servers written in APL) that do authorization checking based on partner 
number. 

Allocating Space: AISIZE, FREESIZE, SHRSIZE, SVMAX, WSSJZE, and XA 

FREESIZE, SHRSIZE. and WSSIZE are the three primary values that you need to worry about. 

FREESIZE is a very elusive quantnv. It really means only "24-bit addressable space that will be 
needed for anything else during the session." This may include a great deal of code. depending ort 
what programs have been installed in LPA and whether yours is an MVS/370 or MVS/XA system. In 

10 This kind of sharing is not permitted anyway if the optional GSVP has not been installed. 

IBM· SJ . lG7 

Invocation Options and their DefauUs 7 



particular, it sometimes includes the APL2 interpreter (AP2INTRP). Access Method Services. and 
GDDM proqrarns. It wiU also include other programs that need to be loaded dynamically (below the 
line) in the user's addrees space. And it includes much of the dynamic storage neede'd during the 
APL2 session. If a FREESIZE value is specified. it is only used as a check during APL2 invocation. The 
system will verify that there is enough available storage to get. as three separate blocks. storage for 
FREESIZE, SHRS1ZE. and WSSIZE.. If not. the APL2 session will be terminated immediately. ,There is 
no actual FREESIZE block kept after initialization. Since there is rarely any way to make a reasonable 
estimate of the requirement. my normal recommendation is to omit this option. 

SHRSIZE and WSSIZE represent blocks of storage that are allocated statically for the duration of the 
APL2, session. In an MVS/XA system they are normally allocated in extended storage (above the 
16Meg line). SHRSIZE should be at least 10K larger than 'the size of the largest shared variable value 
that will be used during the session. WSSIZE snculd be large enough for the largest workspace that is 
to be loaded as well as the dynamic storage that its functions will need during processing. The 
symptom orWSSIZE being too small is TiS FULL. The symptom of SHRSIZE being too small is 
SYSTEM LIMIT with DET= 1 7. or a shared memory space error code' returned by an auxiliary 
processor. 

The IBM-supplied defaults of SHRSIZE(32K) WSSIZE(2S%) may be reasonable for an MVS/370 system, 
but they are probably too small for an MVS/XA system. You should consider changing them in 
AP2TtOPT. Note that the 25% is based on the T50 SIZE parameter. which defines only storage below 
the 16Meg line. For MVS/XA systems, the JEFUSR system exit is used to set the limits for storage 
above the line. with a default of 32Meg. The APL WSSIZE default in AP2TIOPT should be chosen based 
on the rules used by IEFUSR.. If. for example. IEFUSR makes the storage above the line five times as 
great as that below the line. you might set WSSIZE(40Q%) as the default Or. if the MVS defauJt of 
32Meg is retained, you might set WSS1ZE(2SM) SHRSIZE{5M). 

One warning is in order here. Large workspaces do increase the paging load on the system. some
times rather dramatically. If you are having paging problems, one early correction to try is to reduce 
the default WSSIZE. 

AISIZE and SVMAX are mere drops in the bucket in contrast to SHRSIZE and WSSIZE. The default 512 
byte AISJZE is really too small, and likely to caus-e problems for applications that make much use of AP 
101. You can increase this to 8K or more without much chance of causing storage problems else

where. SVMAX is expressed as number or variables, not space. but it does imply 12 bytes per vari 

able. The default of 88 is probably quite adequate.
 

. XA seems like a ringer in this group. It does not specify any storage at all. But. on an MVS/XA 

system, it does determine where W5SIZE, SHRSIZE. and the storage used during )COPY is all allo
cated. Its default is 31-bit storage, but that is ignored on an MVS/370 system. In most cases this is 
exactly what you want. The real reason for the option is that some FORTRAN programs called through 
processor 11 may not be able to tolerate parameter data above the line. Any session that is going to 
call such a program will have to specify XA(24). But the instaUation default should normally be fen as 
XA(31). 

Terminal Options: DSCS, DSOPEN, PROFILE, SMAPL, and TERMCODE 

For most situations these parameters should be left atone, at least as installation defaults. The default 
actions are to try to use the session manager. but revert 10 normal T50 terminal 1/0 if that fails. The 
defautt is to let GOOM or VTAM determine the terminal type (depending on whether the APL session
manager is being used). If you have non-18M terminals, or want to fake one 1erminal1ype on another, 
you may need to specify DSOPEN (for GDOM) or TERMCODE (for VTAM). OSCS to obtain the special 
Asian-language character support available in Release 3. 

IBM. SJ . 167
 

8 System Programmer's Guide to Tailoring Your APL2ITSO System
 

( 
\ 

(
 



PROFILE could be changed to to provide, as a default. a session manager profile different from that 

( supplied by IBM, while retaining the IBM profile for ~ptional use. The IBM default is stored as 
"pubqlfr.DEFA~LT.VSAPLPR," ,where, "pubqltr" is specifiabte in the AP2TJTOP macro parameters in 
AP2TIOPT. If, for example, PROFILE{LOCAL) was included in the default invocation options in 
AP2TJOPT, then initial session manager setup would be controlled by "pubqlfr.tOCAL.VSAPLPR."11 

or course some backward installations may decide they don't want their users to experience the joy of 
working with the APL session manager." Such installations may want to specify SMAPL(OFF) in default 
invocation options, or if they are truly fanatical, in the override options. 

User Preference: CASE, DATEFORM, and HILIGHT 

The term "user preference" probably says all the installation programmer needs to know for this group 
of options, except that you may want to defau~t DATEFORM to the format which is most common in 
your country. For Americans, this means changing the DATEFORM(ISO) shipped with the product to be 
DATEFORM(US). 

Just because you are likely to get complaints from confused users, a word on CASE may also be in 
order. Preferred character set case is really a workspace attribute, not a session attribute. Once it 
has been set for a given workspace it cannot be changed. short of copying that workspace into another 
one with a different attribute. Workspaces created prior to APL2 Release 2 have a CASE(O) attribute. 

Every new workspace begins life as a CLEAR TiS. The CASE invocation option is merely a means of 

adding an implied parameter to the )CLEAR command, indicating what the case attribute of that new 
workspace will be. 

Running Applications: INPUT, QUIET, RUN, and TERMCODE(-1)( 
RU~J is an option that you may not have seen yet. unless you are reading this paper retrospectively. It 

provides a simple means of automatically starting an application which is located via DNA. 

INPUT can also be used to start an application, either through DNA or by )LOADing a workspace. It 
is a bit more complex, since each APL statement needed must be provided as a character string. This 
becomes particularly messy when quote (') characters are involved. By the time you get through 
CLIST processing and APL2 parsing it may take half a dozen or so quotes to get one through to APL.u 
Worst of all, a number of APL characters won't make it at all through TSO PARSE, which has its own 
ideas of what characters are valid, and what kind of folding is best for the user. 

TERMCODE{-1) provides another way to drive an application, which avoids the pitfalls of INPUT. In this 
case the input APL statements are in a file, allocated using the APLIN DOname. However it carries the 

idea too far to please some application writers. The file Is the terminal, at least so far as 0 or [!] input, 
or standard APL prompting is concerned. Any application interaction with the user must be in 
fullscreen mode. using GDDM or ISPF. 

For anyone used to the eMS stack, it is not possible under T50 to stack APL input before invoking 
APl2. It is possible within APl2 to use AP 101 to stack commands that will be processed after exit. 

11	 The PROFILE description in Chapter 3 of "System Services Reference·· states that "VSAPLPR" is installation 
modifiable. lain't so for T50. 

l' There may be a slight bias to this statement. It should be read with an overlay of lighthearted self-den ation. 

U It usually ti.kes me hair a dozen or so tries, too. to gel the ri~ht number of quotes. 

'SM SJ· 167 
Invocation Options and their Defaults 9 



\ 
\ 

The QUIET option is a means of suppressing APL chatter (such as responses to )LOAD commands) 
that the application writer does not want the' user to see. Beginning with Release 3 there are two fairly 
significant enhancements affec1ing this option: ' 

1. It may be specified as QUIET(ON) or QUIET(OFF). QUIET is still accer ted without parentheses, and 
means, of course, QUIET(ON). 

2. A new processor 11 fundion, OPTION, lets an application test and set the QUIET option (either ON 
or OFF) dynamically.1' 

None of these options should be specified as system defaults, unless your installation uses APL for 
only a single application. But but they would frequently be provided in ClJSTs used to invoke applica
tions. ' 

The Boolean Options: DEBUG, SYSDEBUG, and TRACE 

These options are mavericks. Although often expressed as single numbers, they really consist of a 
sum of integers. each of which is a power of 2. APL2 (but not the CLI~T processor) will let you express 
them either way, so that option(1 2) means exactly the same thing as option(3). You can even say 
option(1 3) and it still means the same thing. (No. that is not the same as option(4).) All orthe other 
options· replace any previous occurrences or themselves, but this group ors them together. So 
option(1) option(2) also means the same thing as o~tion(3). 

But how can you reverse a previous flag setting? By using a negative number. (Either an APL - or an 
ordinary • is acceptabte.)" Negative numbers follow the same power-or-two decomposition rules as 
unsigned numbers, but are applied by turning the corresponding nags orr. 

The DEBUG options are, in general. provided 10 assist in debugging user-written workspaces and auxil 
Iary processors. Their use is as described in APL2 Programming: System Services Reference. NoneU	 It 

of them would normally be set by default. In particular. DEBUG{32) is somewhat of a religious issue. 
Traditional APL programmers become very upset if they see 

AP2ISSS220 SYNTAX ERROR 

when they were expecting to see SYNTAX ERROR. 

1would also warn against the temptation to set DE8UG(4). This produces much bigger dumps, but in 
our experience, somewhat less use(uJ ones. Without DEBUG(4) APL2 chooses the areas it thinks are 
important in solving the problem. With DEBUG(4) APl2 tells MVS to dump the areas that MVS con
siders important. More specifically, without DEBUG(4) APL2 dumps the first and last 4K of the work
space and shared memory, the installation options module. the area around the PSW and register 14. 
SOATA(C8). and POATA(SA,SPLS). DEBUG(4) adds SDATA(lSQA,Q.TRn. PDATA(ALLPA). the entire 
workspace. and all or shared memory. But it omits specific dumps or the installation options module 
and the areas around the PSW and register 14. 

The SYSDEBUG options are intended to provide assistance in debugging Ihe APl2 product itself.. Their 
use is described in •APL2 Di;:tgnosis Reference." Paradoxically. you probably want one or two of these 
options all the time. 

•	 SYSDEBUG(1) degrades the system very slightly by activating an in-storage wraparound trace. 
However that trace table is often worth its weight in goJd when analyzing dumps. The system, as 

'4 You might suspect that with a name as general as OPTION. the function could do more than QUIET. You might 
be right. 

15 No, you can't say OEBUG( + 2). 

,st.,. SJ lG7 

10 System Programmer's Guide to Tailoring Your APL2ITSO System 



distributed. includes SYSDEBUG(1). in the default options in AP2Tl0PT. and you should probably

( leave it there. 
i ' 

•	 SYSDEBUG(16) Tells APL2 not to bother checking for.hardware features that are available only on 
certain machines. If you have some of those features on your machine, their use can improve 
APL2 performance. But if you do not have them, the tests can be costly. Each test causes a 
program check and, depending on the level or APL2 you are running, they may be repeated on 

every )LOAD or ) CLEAR. Th~ features tested currently (or in the near future) include Square 
Root. E to the X, Natural Log, Base 10 Log, and Vedor Facility. My recollection is that none of 
these instructions are currently implemented anywhere except on 4361. 4381. and 3090 processors. 

In exceptional conditions you may need to use SYSDEBUG(64). This will disable all APL abend han
dling. It w9u1d. for example, allow T50 TEST to gain control on program checks within an auxiliary 
processor. But you need to be aware that program checks may occur normally while APL2 is per
forming calculations on data. Setting SYSDEBUG(64) is likely to expose apparent ~bugs" in the APL2 
interpreter or elsewhere which are in fact not errors at all. In Releases 1 and 2 of APL2 it is not pos

sible to modify SYSOEBUG{64) dynamically using )CHECK SYSTEM. 

-
The TRACE options do not affect the wraparound trace table described earlier. Instead they activate 

"	 trace output to the terminal or a trace file. Note, however, that SYSDEBUG{1) is a prerequisite to being 
able to produce any trace output. The individual trace options are described in ..APL2 Diag,nos;s Ref
erence. " 

( 

TRACE(1) and TRACE(32) are special cases. TRACE(1) output is produced directly on the terminal 
using TPUT, independent of the session manager or any trace file. Most of the TRACE(32) output 
(which is quite voluminous) goes to GTF. It can be printed using AMDPRDMP. but only if USR = SA2 is 
specified on that program's EDIT command. 

Here are some general tips in using trace options: 

•	 TRACE(1) is the first thing to try in analyzing auxiliary processor problems. 
•	 TRACE(2), TRACE(4), and TRACE(8) are much smaller if the APL session manager Is not being 

used. 
•	 TRACE(16) can provide a good feel for the overall now of the system. 
•	 TRACE(64) and TRACE(256) are useful in understanding problems with processor 11 routines. 

The APNAMES, EXCLUDE, and LOADLIB quandary 

These three options are grouped because, like the preceding set, a keyword may have multiple values 
associated with it, but unlike the preceding set, they still operate by complete replacement. Thus if 
you specify a system-wide LOADLIB in the defaults. and a user specifies a private LOADLIB for his 
session. the system-wide library will not be searched, even though the option supports concatenation 
in general. Therein lies the quandary, and it applies to all three of these options. 

I will not have anything more to say about LOADLIB here. See" Accessing Modules in Private 
Libraries" on page 6. 

Because of the quandary. you will not want to use APNAMES and EXCLUDE in the override list 
Unless. that is. you want to force all of your users to run with exactly the same set of auxiliary 
processors. But you will in almost all cases want to inctude APNAMES in the default list. • Auxiliary 
Processors: ATASKS. RESAPS" on page 15 does discuss an alternative to the APNAMES parameter, 
but it involves linking the APs with APL2. For MVS/XA this means that the modules are moved (rom 
above the 16Meg line to below that line. For all systems it means that excluding the APs later will not 
recover the load module storage that they use. 

IBM SJ· 1G7 



The default options provided with the product list AP2X104 and AP2T12i in the APNAf\.'ES parameter. 
You will want to add to that list any locally written APs or APs provided with other products (such as 
ISPAPAUX, AP 317 for' ISPF) that are in general use. If your installation does not have 08/2 installed, 
you will probably want to remove AP2T127 from the list. This AP requires over 64K and is only used to 
call 08/2. If only a few of your users need 08/2 you may want to remove it from the default list and 
provide a special CLIST for those users. 

Whatever else you do, you almost certainly do not want to remove AP2X104 from the default APNAMES 

list. Without this AP the system cannot do )COPY, )PCOPY. or )HeOpy. (On the other hand. if you 

run a shop where users are only supposed to )LOAD applications. and no one needs )eOPYexcept 
the system programmer, this is an easy way to disable it Who would ever guess that specifying 
APNAMES(AP2X104) would reenabJe it?) 

For the most part, EXCLUDE would be used only on the APL2 command to override individual 
APNAMES in the default list. (This is one way out of the quandary.) APs which are not in the 
APNAMES list are linked with APL2. so excluding them does not save much storage. But in excep
tional cases you might want to provide an AP to replace one that is part of the product. It may be a 
FIXTEST version from Service, or a superset that you have written. - Ir you assign a different entry point 
name to the replacement (perhaps just at linkedit time) you can EXCLUDE the standard version so that 
your version can use the standard AP number. 

IBM SJ· 1G7 

12 System Pr(](Jr.amm~,.·. GuidA tn T.ailn..inn Vnur APL'ITSn SV!lt~"' 



( Changing Installation Options 

This sedion discusses the AP2TITOP macro parameters that you can specify in'AP2T10PT. The 
DEFAULT and OVERIDE parameters were already discussed in "Invocation Options and their Defaults" 
on page 7 and will not bementioned further here. Also not discussed here are the USERL macros 
which appeared in AP2TJOPT up through APL2 1.2.0. Finally, the module includes a table whose entry 
point is USERT. This table is used by the AP 100 APL USER command. It should be reviewed and 
corrected to match your system, but its fields are self-explanatory. 

SAM Ubrary Paraphernalia 

Half of the AP2TITOP parameters deal specifically with tailoring the SAM library support. If you have 
decided to use VSAM libraries exclusively you need not worry about any of these exeeet PUBQLFR. 
That parameter also determines the dataset names used for system wide APL session manager pro
files. 

SAM library support uses three-level dataset names.11 There are three variations on these names 
depending on library type (private, public. or project), plus a fourth form that appears only as a catalog 
entry. See "The Nature of SAM Library Support" on page 1 for an explanation of the library types. 
The forms are: 

Private prefix.aplid.wsname 
Public pubqlfr.aplidJib. wsname 
Project prefix.aplidlib.wsname 

( Catalog libqlfr.aplidlib.prefix 

The values used in each of these forms are: 

prefix The T50 PROFILE PREFIX of the user who owns the library. 
wsname The simple workspace name. 
pubq'fr The value orthe PUBQLFR parameter or AP2TITOP, 
Iibqlfr The value of the LI8QLFR parameter or AP2TJTOP. 
aplid The value of the APLIO parameter of AP2TITOP. 
aplidlib An eight character name beginning with apUd and ending with a fibrary number. Zeroes 

are inserted at the beginning of the library number to pad the name to eight characters. 

The special catalog entries are used as a project library index. As an example. if AP2TITOP 

APLID=V,LIBQLFR=APL2, and a user enters )LOAD 123~ STOCKS, APL2 will begin by doing a 
catatog search for Iibqlf,.aplidlib which is APL2.VOOO1234 in this case. It might find an entry 
APL2.VOOO1234.JOHNNY. which would indicate that JOHNNY is the owner of that library. APL2 would 
then know to read JOHNNY.VOOO1234.STOCKS to satisfy the )LOAD request. 

You have probably already realized that APLID should be short, normaily one or two characters at the 
most Providing a three character APllD would restrict users to five digit library numbers. and tonger 
APllD names would be progressively worse. In most cases the default of ·V· is fine, but you might 
have a dataset naming convention that requires a different leading character in the second level name. 

LIBQlFR reeuires some careful consideration, at least in a RACF shop 1n order to create a new 
library. APL2 adds a catalog entry with IibqJfr as its first qualifier. RACF will prohibit that catalog 
update unless the user has either CREATE authority for the tibattr group. or ALTER authority for the 
libq/fr generic prefix. If you want your users to be able to define new libraries on the ny. but don't 

t. Unless overridden by the new installation exit support. 

'BM SJ· 167 
Changing Installation ~tiQns 13 



\ 
\ 

want them to be able to clobber the public workspaces shipped with APL2. then you will have to make 
LIBQLFR different from PUBQLFR. On the other hand. if you change LJBQLFR any time after the 
system has been installed (even an earner release). the change will make all project libraries seem to 
disappear. 11 

PUBQLFR is both more sensitive and less sensitive than LIBQLFR. It is more sensitive' in a security 
sense, since RACF ALTER authority provides write access to system-controlled data. (No data is 
stored under the libqJfr prefix, only pointers to data which is controlled under other prefixes.) But 
PUBQLFR is less sensitive in that only system-controlled data is located using it. An installation can 
change PU8QLFR and at the same time recatalog the datasets stored under that prefix, and users will 
never notice. Perhaps even more important, an installation can migrate from one public library level 
to another by changing PUBQLFR, while still keeping the previous level online with its original names. 

Future levels of the APL2 product will change the default PUBQLFR as a matter orcourse. while 
retaining LIBQLFR=APL2. 

BLKSIZE. LIBSER. and LIBUNIT are parameters that APL? uses when creating new workspace data
sets. You can use your own judgement and knowledge of DASe devices in choosing an appropriate 
value for BLKSIZE. The value distributed with the system is 4240. which is somewhat on the low side 
for today's devices. 00 remember that APL2 will reduce BLKSIZE to a multiple of 80. 

As the product is shipped, LJ8UNrr and LIBSER are both blank. This is equivalent to using ALLOCATE 
without a UNIT or VOLUME parameter, and (at least normally) means that APL workspaces are allo
cated on volumes with a PUBLIC use attribute." 

If your installation is one of those that routinely scratches private datasets on public volumes. you will 
have to do something about the LJ8UNIT or LIeSER option. 'Specifying a LIBSER will. of course. force 
all APL workspaces to a single volume. This is great if you have only a few APL users creating data
sets, and you want to limit the total space they can use. It can even work reasonably well tf you have 
more users but keep HSM busy nibbling away at that volume. But for a shop that writes a lot of APL 
code, you will need to be able to spread the data out. The way to do this (and hang on to your public 
volume procedures) is to define an "esoteric" unit type using the UN,rNAME macro in MVS SYSGEN. 
Then you can use that name in the APL2 LIBUNIT option. 

LIBKEEP is a simple YES or NO indicating whether empty project libraries are to revert to an unowned 
status. or whether the system should hang on to the previous owner. We make you decide because 
we could never make up our minds which approach was more reasonable, so don't expect any sage 
advice from me. One Iactor to consider is that the owner of an empty library (LIBKEEP=YES in effect) 
can get rid of it manually by entering )DROP nnnn OJiNBRSBIP. Since all workspace names are one 
to eight characters long we can treat "OWNERSHIP" as a special case. 

PBLJBMX is a new option being introduced in Release 3 by popular demand. Its definition is a bit 
confusing. It is actually the smallest number which is not a public lihrary number. So the default 
PBLIBMX =1000 is equivalent to the old rule that public libraries were 1-999. We expect a number of 
installations to change this value quickly to PBLIBMX =100, or perhaps even less. See -The Nature of 
SAM Library Support" on page 1 for the reasons. 

11 Don't worry, irs only an Ollie-foss. Change LIBOLFR back and the libraries win magically reappear. Of course 
if anyone has saved something new in the mean time•... 

" See SYS 1.PARMLIB(VATLSTxx). 

18M· SJ· 167
14 ~ue.'.", a.~..... ., ... ,....:-1.- &_ T_:t__: __ V_••_ A ftl tI\~p", t!" ••_6__ 



Session Variables: QNLT, QTZOEC, QTZINT
( 

lihese are initial values during each APL2 session for the ~PL session variables DNLT and DTZ. (The 

initial value for DPW. the remaining session variable, is based on terminal type.) The values to use 
may seem obvious, based on where you live. but there are a couple or surprises .Iurking here. 

Most people don't live in fractional time zones. so you can probably.leave QTZOEC =0 as it is. But the 
shipped value of QTZ1NT'=-13 is a bit unsettling. untess they have changed things since the last time I 
looked at a globe. no one lives 13 hours slower than GMT. Did we intentionally choose an invalid 
value to force you to change it? Not at all. The rule is that values outside the range of -12 to + 12 

mean APL2,should determine DTZ based on the MVS clocks. In general this is better than specifying 
the offset. Unless you live some place without Daylight Savings Time you would have to reassemble 
AP2TIOPT twice a year if you gave a specific value." 

Well. at least QNLT should be easy enough. Set it to ENGLISH, right? Wrong. Actually, we did set the 
default to ENGLISH for the first two releases of APL2. more's the pity. But if you look closely at the the 

definition of ONLT. the correct value for English is ONLT+ t t. t' represents the "built-in" lan
guage. Any time an invalid language name is specUied, the sysfem reverts to the built-in language. 
So QNLT=ENGLISH is no better and no worse than QNLT=GRINGO. 

But it works, doesn't it. so isn't this much ado about nothing? Not exactly. when you go to Release 3. 
In the first place, there is a )MORE message to warn you that you set ONLT to an unknown language. 

If·you say QNLT=ENGLISH -your users will see things like CLEAR ",5+ when they invoke APl2. In 
the second place. you or your users can actually create a language called ENGLISH, and "install" it 
without changing anything more than a single ALLOCATE statement. You might. for example, want to 

( get all of your messages in lower case. You can do that.'given the SAMPLE file shipped with the 
product. and half an hour or so of your own time. 

Product Structure: CSVPID, INAME, OPTUSER 

OPTUSER merely lets you have an installation exit routine that is not called AP2TIUSR. You might 
want this if you had rewritten the module from scratch. and did not want it confused with the sample 
we ship. No matter what you call it. the exit still has to be linked with the APL2 load module. 

CSVPID is not a module name, but a subsystem name. This has to match the value used in the SSID:: 
parameter used to start the Global Shared Variable Processor. . 

INAME is new for Release 3. It lets you have multiple levels of the system available concurrently. by 
matching the proper interpreter with the proper system support code. 

Auxiliary Processors: ATASKS, RESAPS 

Both of these parameters define auxiliary processors that are to be linked with the APL2 product. As 
noted earlier, doing this forces the APs below the line in an MVS/XA system. APs defined here must 
be distinguished as VS APL protocol (RESAPS) or APL2 protocol (ATASKS). For APs defined using the 
APNAMES invocation option that distinction is made by linking the VS APL routines with a compatibility 
stub. AP2TASVP. 

11 Installations thaI cheat by redefin;ng eMT twice a year are too contemptible to be considered. Never trust a 
workspace from such a place. 

'8M. SJ . lG7 
Changing Installation Options 15 



\ 
\ 
i 
\ 

(
 

IBM SJ· 167 
16 System Programmer*1 Guide te:'. Tailoring Vo~r APL2IT~O_System 



\ 
t. 
\ 

(Installation Exit Routines 

There are two very different types of exit routines: 

1. The OPTUSER installation option points to an exit routine module (Default AP2TIUSR) which is
 
entered at APL2 invocation and termination. for all system commands. and (or AP 100 commands.
 
This exit executes in problem state as a part of a user's T50 session.
 

2. If the Global Shared Vari,able	 Processor is active. it also calls an installation exit during APL2
 
initialization. That exit is identified in the GSVP startup parameters as the ISECNAME. In some
 
releases of APL2 the GSVP calls another exit whenever the APL2 session signs on to the GSVP.
 
That second exit is named in the GSVP startup parameters as the GSECNAME•.but is not discussed
 
here since it is being removed from the product.
 

The OPTUSER exit has a new more formalized interface, together with full documentation. beginning 
with Release 3. A compatibility mapping has been provided for customers who have already rewritten 
the existing sample, or modified it heavily. The sample provided_ in Release 3 has been completely 
rewritten. 

Invocation and Termination 

There are two calls to the OPTUSER exit during invocation. The first occurs as early as possible. 
before any option parsing has been done. The exit is given the invocation option string (converted to 
EBCDIC) and can make limited changes to it. It can also set up an installation debugging exit. 
(Sample code is included. though disabled, to use a product called DBC which was devetoped by Yale 
University.) ~ 

The second OPTUSER exit occurs after option parsing has been done. The 10 number. TERMCODE and 
terminal type are passed to this exit. It may return a list of SAM libraries that the user 4S permitted to 
save into. 

Either exit may force termination of the APl2 session, and may return an error message to be dis
played or queued. 

The GSVP ISECNAME routine is entered after option parsing but before the second OPTUSER exit. It 
executes in supervisor state, key O. in the GSVP address space. (Obviously it has to be stored in an 
authonzed library.) The routine is given the T50 userid, the ASCB address for the T50 session 
address space. and the"10 number which the APL2 session is proposing to use. The routine may 
approve or deny use or the GSVP by the APL2 session, and may change the 10 number. 

If ~ CONTINUE workspace is loaded automatically during invocation. the OPTUSER exits for )LOAD 
will be caUed. 

The OPTUSER exit is also entered twice dUring APL2 session ternlination.2I At the first exit the terminal 
support. SVP. and auxiliary processors are still active. The second exit occurs just before APL2 
returns to its caller. These exits cannot exercise any control over the APL2 session. except that the 
first one could display a message. But the exits may want to do logging. and clean up any storage 
used used by the exit module. 

'II This is in addition to the )SAVE exits that will be entered il a CONTINUE workspace ilsaved. 

'BM· SJ· 167 
Installation Exit Routines 17 



Workspace Command Exits
( 

OPTUSER exits are taken at the beginning and end of processtnq for rlll system commands dealing 
with workspace libraries. The first exit is taker after the appropriate library system has been chosen 
(SAM or "SAM) but before that subcomponent Jegins its work. The exit can inspect or modify the 
library n~mber,r1 workspace name, password, or workspace size. It can also reject the command, 
specifying a return code which will trigger one of the standard system messages. Finally. like all 
OPTUSER exits it can also provide its own message text to be displayed or queued. 

The second exit can specify a return code that triggers one of the standard system messages, or 
provide its own message text to be displayed or queued. It can also request processing to be 
restarted. 

For SAM libraries, a number of other parameters can be controlled by the installation exits. These 
include prefix control, some dataset name control. and reclassification as private, public. or project. 
For Relase 3 there are special exits taken while the system is generating dataset names and looking 
up project library owners. These exits can be used to nne tune the standard processing or to replace 
it completely. 

OPTUSER exits are also taken at the beginning and end of processing for )CLEAR. The first exit can 

prevent the operation or specify a size to be used for the CLEAR liS. Either exit may provide addi
tional messages. 

AP 100 ,and System Command Exits 

( OPTUSER exits are taken at the beginning and end or AP 100 command processing. The )HOST 
command also passes its text through AP 100. so the same exits are taken. The first exit can inspect 
the command about to be issued. and can abort processing of it ir it chooses. It can also provide 
message text to be displayed or queued. The second exit can also provide a message. 

Most of the OPTUSER exits previously described are entered for operations that originally arise as 
system commands. But in addition to those exits, there is a special OPTUSER exit that is taken for all 
system commands, even ones as innocent as ) VARS. This exit is entered as soon as the command 
name has been parsed. If the command name is recognized. its command number is provided. 22 If the 
command name is not recognized, a command number of -1 is assigned and the exit is still called. 

The exit can inspect the command and check its command number" On return it indicates that the 
command is to be executed. rejected. or ignored. And it can queue or display a message. 

The -ignore" case is especially significant. The exit can in fact implement installation specific system 
commands. The system will call the exit indicating that the command is unknown. But the exit will 
aduafly execute the command and then return, indicating that it is to be "ignored." 

"	 Changing the number (or FREeing a DOname) can be used to switch from a VSAM to SAM library, but not the 
other direction. 

n	 If ONLT% fl. the command name passed may be in another language. but the command number will still be 
the lame. 

18M· SJ 1G7
18 SY~'em Programmer", Guide fa Tailorina Your APl2ITSO System 






